UNITED STATES OF AMERICA
BEFORE THE
FEDERAL ENERGY REGULATORY COMMISSION

Klamath River Renewal Corporation
PacifiCorp
Project Nos. 14803-001; 2082-063

AMENDED APPLICATION FOR SURRENDER OF LICENSE
FOR MAJOR PROJECT AND REMOVAL OF PROJECT WORKS

EXHIBIT R
100% Design Report
(Part 11 of 12)
UNITED STATES OF AMERICA
BEFORE THE
FEDERAL ENERGY REGULATORY COMMISSION

Klamath River Renewal Corporation
PacifiCorp
Project Nos. 14803-001; 2082-063

AMENDED APPLICATION FOR SURRENDER OF LICENSE
FOR MAJOR PROJECT AND REMOVAL OF PROJECT WORKS

EXHIBIT R-6
City of Yreka Waterline
City of Yreka Waterline Modification 100% Design Drawings
KLAMATH RIVER RENEWAL CORPORATION
CITY OF YREKA WATER LINE

VOLUME 2 - CONSTRUCTION DRAWINGS
FEBRUARY, 2021

100% DESIGN SUBMITTAL
<table>
<thead>
<tr>
<th>DWG NO</th>
<th>SHEET NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G001</td>
<td>COVER SHEET</td>
</tr>
<tr>
<td>2</td>
<td>G002</td>
<td>LOCATION AND SURVEY MAP AND SURVEY CONTROL POINTS</td>
</tr>
<tr>
<td>3</td>
<td>G003</td>
<td>DRAWING INDEX</td>
</tr>
<tr>
<td>4</td>
<td>G004</td>
<td>STANDARD ABBREVIATIONS</td>
</tr>
<tr>
<td>5</td>
<td>G005</td>
<td>STANDARD SYMBOLS</td>
</tr>
<tr>
<td>6</td>
<td>G006</td>
<td>OVERALL PLAN AND PRIVACY CONTROL</td>
</tr>
<tr>
<td>7</td>
<td>G007</td>
<td>FLOW AND VALVE SCHEDULES</td>
</tr>
<tr>
<td>8</td>
<td>EC001</td>
<td>EROSION AND SEDIMENT CONTROL, STANDARD DETAILS 1</td>
</tr>
<tr>
<td>9</td>
<td>EC002</td>
<td>EROSION AND SEDIMENT CONTROL, STANDARD DETAILS 2</td>
</tr>
<tr>
<td>10</td>
<td>EC005</td>
<td>EROSION AND SEDIMENT CONTROL, SITE COORDINATES</td>
</tr>
<tr>
<td>11</td>
<td>GC001</td>
<td>DEMOLITION WATERSHED SITE PLAN AND DETAILS</td>
</tr>
<tr>
<td>12</td>
<td>GC002</td>
<td>DEMOLITION WATERSHED SITE PLAN AND DETAILS 2</td>
</tr>
<tr>
<td>13</td>
<td>GC003</td>
<td>DEMOLITION WATERSHED SITE PLAN AND DETAILS 3</td>
</tr>
<tr>
<td>14</td>
<td>GC004</td>
<td>DEMOLITION WATERSHED SITE PLAN AND DETAILS 4</td>
</tr>
<tr>
<td>15</td>
<td>GC005</td>
<td>DEMOLITION WATERSHED SITE PLAN AND DETAILS 5</td>
</tr>
<tr>
<td>16</td>
<td>GC006</td>
<td>DEMOLITION WATERSHED SITE PLAN AND DETAILS 6</td>
</tr>
<tr>
<td>17</td>
<td>GC007</td>
<td>DEMOLITION WATERSHED SITE PLAN AND DETAILS 7</td>
</tr>
<tr>
<td>18</td>
<td>C001</td>
<td>GENERAL SITE PLAN</td>
</tr>
<tr>
<td>19</td>
<td>C002</td>
<td>TEMPORARY WATERLINE PLAN AND PROFILE 1</td>
</tr>
<tr>
<td>20</td>
<td>C003</td>
<td>TEMPORARY WATERLINE PLAN AND PROFILE 2</td>
</tr>
<tr>
<td>21</td>
<td>C004</td>
<td>TEMPORARY WATERLINE PLAN AND PROFILE 3</td>
</tr>
<tr>
<td>22</td>
<td>C005</td>
<td>TEMORARY WATERLINE PLAN AND PROFILE 4</td>
</tr>
<tr>
<td>23</td>
<td>C006</td>
<td>TEMORARY WATERLINE PLAN AND PROFILE 5</td>
</tr>
<tr>
<td>24</td>
<td>C007</td>
<td>TEMORARY WATERLINE PLAN AND PROFILE 6</td>
</tr>
<tr>
<td>25</td>
<td>C008</td>
<td>TEMORARY WATERLINE PLAN AND PROFILE 7</td>
</tr>
<tr>
<td>26</td>
<td>C009</td>
<td>TEMORARY WATERLINE PLAN AND PROFILE 8</td>
</tr>
<tr>
<td>27</td>
<td>C010</td>
<td>PERMANENT WATERLINE PLAN AND PROFILE</td>
</tr>
<tr>
<td>28</td>
<td>C011</td>
<td>CIVIL SECTIONS AND DETAILS 1</td>
</tr>
<tr>
<td>29</td>
<td>C012</td>
<td>CIVIL SECTIONS AND DETAILS 2</td>
</tr>
</tbody>
</table>
MAJOR CONSTRUCTION ITEMS:

A. CONSTRUCT NEW TEMPORARY PIPELINE.
B. SUPPORT THE TEMPORARY PIPELINE AT THE FALL CREEK CULVERT DURING CONSTRUCTION AND REMOVAL.
C. SUPPORT THE TEMPORARY PIPELINE ALONG THE DAGGETT ROAD BRIDGE DURING CONSTRUCTION AND REMOVAL.
D. DEMOLISH & DISPOSE OF EXISTING 24" DIAMETER WATERLINE. DISPOSE OF MATERIALS DISPOSE AT APPROVED LOCATION.
E. CONSTRUCT NEW 24" DIAMETER WATERLINE.
F. RETAIN AND PROTECT EXIST CATHODIC PROTECTION SYSTEM.

SHEET NOTES:

1. LIDAR SURVEY PROVIDED BY KRRC ON NOVEMBER 2020, CONTRACTOR SHALL CONFIRM AND VERIFY ELEVATIONS PRIOR TO CONSTRUCTION.
2. THE HORIZONTAL DATUM FOR THE PROJECT IS BASED UPON THE CALIFORNIA COORDINATE SYSTEM OF 1983, ZONE 1 NORTH AMERICAN DATUM OF 1983 (HANSS) IN FEET.
CONTRACTOR STAGING AREA PLAN

SCALE: 1"= 100'
NOTES:

1. SEE SPECIFICATIONS FOR FENCE MATERIAL, COATINGS, AND INSTALLATION REQUIREMENTS.
2. EXTENSION ARM MAY BE TURNED IN AT OPTION OF OWNER.

CONSTRUCTION FENCING DETAIL

SCALE: NTS
1. THE EXPOSED AND DISTURBED AREAS SHALL BE REGRADED TO MATCH EXISTING AND RIGGED WITH NATIVE GRADES FOR OWNER REQUIREMENTS.

2. ALL FILL MATERIALS AND CONSTRUCTION REQUIREMENTS ARE DEFINED IN SPECIFICATION SECTION 23 15 00.

3. MATCH EXISTING GRADES AND PROVIDE SMOOTH TRANSITION BETWEEN ALL NEW SURFACES AND EXISTING AREAS.

4. CLEARING AND GRUBBING WILL BE DESIGNED AND CONSTRUCTED BY CONTRACTOR. REFER TO SPECIFICATION 03 12 00 FOR DETAILS OF THE SITE HYDROLOGY.

EROSION AND SEDIMENT CONTROL NOTES:

GENERAL NOTES:

1. THE CONTRACTOR SHALL SUBMIT AN EROSION AND SEDIMENT CONTROL PLAN FOR WORK DURING CONSTRUCTION THAT MEETS ALL FEDERAL, STATE, AND LOCAL REQUIREMENTS. THE CONTRACTOR IS RESPONSIBLE FOR IMPLEMENTATION AND MAINTENANCE OF EROSION AND SEDIMENT CONTROL MEASURES.

2. CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL NECESSARY EROSION CONTROL MEASURES FOR THE DURATION OF THE PROJECT. THE CONTRACTOR SHALL DESIGN AND CONSTRUCT Aadjacent EROSION AND SEDIMENT CONTROL MEASURES CONSIDERED INCIDENTAL.

EROSION AND SEDIMENT CONTROL NOTES:

1. CONTRACTOR SHALL DEVELOP A SPILL PREVENTION, CONTAINMENT, AND RESPONSE PLAN THAT WILL BE ATTACHED TO THE SMP.

DRAWING AND FINAL STABILIZATION:

1. CLEARING, SURFACING, AND GRADING DISTURBED AREAS SHALL BE CONFIRMED TO MEET EXISTING LIMITS AND SHALL MEET THE REQUIREMENTS OF SPECIFICATION 25 15 00. GRADING OR CONSTRUCTION ACTIVITIES SHALL OCCUR OUTSIDE OF THE PROPOSED IMPROVEMENTS SHOWN ON THE CONSTRUCTION PLANS FOR THIS PROJECT.

2. DURING CONSTRUCTION, PROVIDE POSITIVE DRAINAGE AWAY FROM WORK ZONES.

3. CONTRACTOR SHALL REMOVE ALL TEMPORARY EROSION AND SEDIMENT CONTROL FACILITIES, EDGING, AND STAGING AREA MATERIALLS WHEN CONSTRUCTION COMPLETE. NO CONSTRUCTION MATERIALLS OR EXCESS EQUIPMENT SHALL BE LEFT ON SITE.

4. CONTRACTOR SHALL REGRADE DISTURBED AREAS TO MATCH EXISTING CONDITION AS APPROVED BY THE OWNER.

5. ESTABLISH A TEMPORARY VEGETATIVE COVER ON ALL DISTURBED AREAS IMMEDIATELY AFTER BANK RESTORATION TO EXIST GRADE, TOP SOIL SHALL BE PLACED IN SEPARATE STOCKPILES. ALL TOP SOIL SHALL BE STRIPPED AND PLACED IN SEPARATE STOCKPILES.

6. CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL NECESSARY EROSION CONTROL MEASURES FOR THE DURATION OF THE PROJECT.

7. CONTRACTOR SHALL DEVELOP A SPILL PREVENTION, CONTAINMENT, AND RESPONSE PLAN THAT WILL BE ATTACHED TO THE SMP.

8. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

9. CONTRACTOR IS RESPONSIBLE FOR IMPLEMENTATION AND MAINTENANCE OF EROSION AND SEDIMENT CONTROL MEASURES.

10. CONTRACTOR IS RESPONSIBLE FOR IMPLEMENTATION AND MAINTENANCE OF EROSION AND SEDIMENT CONTROL MEASURES.

11. CONTRACTOR IS RESPONSIBLE FOR IMPLEMENTATION AND MAINTENANCE OF EROSION AND SEDIMENT CONTROL MEASURES.

12. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

SPRINKLER OPERATIONS.

5. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

6. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

7. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

8. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

9. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

10. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

11. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

12. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

13. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.

14. CONTRACTOR SHALL HAVE AVAILABLE AT ALL TIMES SPILL PREVENTION AND CONTROL MEASURES.
CLEARING AND GRUBBING CONTROL POINTS

<table>
<thead>
<tr>
<th>POINT NO</th>
<th>NORTHING</th>
<th>EASTING</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>260191.09</td>
<td>661314.59</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260198.03</td>
<td>661319.82</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260196.61</td>
<td>661283.40</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260128.69</td>
<td>661157.15</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260170.78</td>
<td>661292.00</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260174.82</td>
<td>661358.72</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260176.90</td>
<td>661307.45</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260172.23</td>
<td>661364.53</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260181.92</td>
<td>661215.07</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260207.69</td>
<td>661288.41</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260203.90</td>
<td>661265.74</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260201.04</td>
<td>661249.95</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260206.65</td>
<td>661270.60</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260209.50</td>
<td>661274.69</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260183.38</td>
<td>661263.36</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260167.58</td>
<td>661268.03</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260126.85</td>
<td>661162.75</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260125.07</td>
<td>661168.41</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260122.93</td>
<td>661174.38</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260133.65</td>
<td>661103.42</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260132.47</td>
<td>661104.93</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260158.27</td>
<td>661100.22</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260156.68</td>
<td>661108.26</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260147.02</td>
<td>661097.34</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260132.20</td>
<td>661163.01</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260173.73</td>
<td>661183.16</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260196.89</td>
<td>661219.49</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260206.85</td>
<td>661184.90</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260202.39</td>
<td>661142.94</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260201.93</td>
<td>661142.01</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
</tbody>
</table>

CLEARING AND GRUBBING CONTROL POINTS

<table>
<thead>
<tr>
<th>POINT NO</th>
<th>NORTHING</th>
<th>EASTING</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>260186.26</td>
<td>661142.54</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260150.28</td>
<td>661138.07</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260180.70</td>
<td>661132.34</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260187.28</td>
<td>661134.94</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260176.38</td>
<td>661128.47</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260196.76</td>
<td>661125.14</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260197.34</td>
<td>661131.88</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260196.41</td>
<td>661125.11</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260208.87</td>
<td>661139.30</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260205.64</td>
<td>661138.77</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260218.73</td>
<td>661128.14</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260204.95</td>
<td>661138.08</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260214.18</td>
<td>661181.28</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260237.88</td>
<td>661190.54</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260236.71</td>
<td>661190.23</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260241.06</td>
<td>661190.91</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260237.11</td>
<td>661189.79</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260231.43</td>
<td>661176.63</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260237.27</td>
<td>661176.82</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260230.95</td>
<td>661174.78</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260240.37</td>
<td>661177.34</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260245.11</td>
<td>661173.73</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260241.89</td>
<td>661242.90</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260263.52</td>
<td>661247.33</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260242.31</td>
<td>661247.11</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260216.31</td>
<td>661265.37</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260235.38</td>
<td>661246.64</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260236.46</td>
<td>661236.78</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260235.11</td>
<td>661237.69</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260236.37</td>
<td>661277.86</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
<tr>
<td>260240.01</td>
<td>661274.40</td>
<td>CLEARING AND GRUBBING LIMITS</td>
<td></td>
</tr>
</tbody>
</table>
1. Contractor shall demolish and dispose of existing 24-inch diameter pipeline after the temporary pipeline is in service and operational as approved by owner. Dispose of materials offsite at approved disposal location.

2. The existing rock line is based solely upon existing borings completed for the project. See specifications for detailed boring information. Contractor shall verify the location of rock line prior to construction of the new 24-inch diameter permanent pipeline.

Contractor to verify exist joint type, gasket with thrust block or weld joints.

Reservoir normal pool WSL 2331.3

Reservoir bottom WSEL 2318.07

WARNING

If this bar does not measure 1" then drawing is not to scale.

Reservoir bottom WSEL 2318.07

Existing under water riprap detail

Existing under water riprap detail

1. Contractor shall demolish and dispose of existing 24-inch diameter pipeline after the temporary pipeline is in service and operational as approved by owner. Dispose of materials offsite at approved disposal location.

2. The existing rock line is based solely upon existing borings completed for the project. See specifications for detailed boring information. Contractor shall verify the location of rock line prior to construction of the new 24-inch diameter permanent pipeline.

Contractor to verify exist joint type, gasket with thrust block or weld joints.

Reservoir normal pool WSL 2331.3

Reservoir bottom WSEL 2318.07

WARNING

If this bar does not measure 1" then drawing is not to scale.

Reservoir bottom WSEL 2318.07

Existing under water riprap detail

Existing under water riprap detail

1. Contractor shall demolish and dispose of existing 24-inch diameter pipeline after the temporary pipeline is in service and operational as approved by owner. Dispose of materials offsite at approved disposal location.

2. The existing rock line is based solely upon existing borings completed for the project. See specifications for detailed boring information. Contractor shall verify the location of rock line prior to construction of the new 24-inch diameter permanent pipeline.

Contractor to verify exist joint type, gasket with thrust block or weld joints.

Reservoir normal pool WSL 2331.3

Reservoir bottom WSEL 2318.07

WARNING

If this bar does not measure 1" then drawing is not to scale.

Reservoir bottom WSEL 2318.07

Existing under water riprap detail

Existing under water riprap detail

1. Contractor shall demolish and dispose of existing 24-inch diameter pipeline after the temporary pipeline is in service and operational as approved by owner. Dispose of materials offsite at approved disposal location.

2. The existing rock line is based solely upon existing borings completed for the project. See specifications for detailed boring information. Contractor shall verify the location of rock line prior to construction of the new 24-inch diameter permanent pipeline.

Contractor to verify exist joint type, gasket with thrust block or weld joints.

Reservoir normal pool WSL 2331.3

Reservoir bottom WSEL 2318.07

WARNING

If this bar does not measure 1" then drawing is not to scale.

Reservoir bottom WSEL 2318.07

Existing under water riprap detail

Existing under water riprap detail

1. Contractor shall demolish and dispose of existing 24-inch diameter pipeline after the temporary pipeline is in service and operational as approved by owner. Dispose of materials offsite at approved disposal location.

2. The existing rock line is based solely upon existing borings completed for the project. See specifications for detailed boring information. Contractor shall verify the location of rock line prior to construction of the new 24-inch diameter permanent pipeline.

Contractor to verify exist joint type, gasket with thrust block or weld joints.

Reservoir normal pool WSL 2331.3

Reservoir bottom WSEL 2318.07

WARNING

If this bar does not measure 1" then drawing is not to scale.

Reservoir bottom WSEL 2318.07

Existing under water riprap detail

Existing under water riprap detail

1. Contractor shall demolish and dispose of existing 24-inch diameter pipeline after the temporary pipeline is in service and operational as approved by owner. Dispose of materials offsite at approved disposal location.

2. The existing rock line is based solely upon existing borings completed for the project. See specifications for detailed boring information. Contractor shall verify the location of rock line prior to construction of the new 24-inch diameter permanent pipeline.

Contractor to verify exist joint type, gasket with thrust block or weld joints.

Reservoir normal pool WSL 2331.3

Reservoir bottom WSEL 2318.07

WARNING

If this bar does not measure 1" then drawing is not to scale.
GENERAL PROJECT NOTES:
1. Existing topography, and site features are shown screened and/or light-lined. New finish grade, structural, and site features are shown heavy-lined.
2. Mark all, relocate, or replace existing survey monuments, control points, and stakes which are disturbed or destroyed. Perform the work to produce the same level of accuracy as the original monuments in a timely manner, and at the contractor’s expense.
3. Vertical datum based upon NAVD88 Datum, GD02 Datum, and CS 100X Datum. Existing utility lines are shown heavy-lined.
4. Horizontal datum based upon the California Coordinate System of 1883, Zone 3 North American Datum of 1883 (NAD83) in feet.
5. Staging area shall be for contractor’s employees parking, contractor’s equipment parking, contractor’s storage of materials, see sheet 5010, coordinate specific area units with owner.
6. Elevators, covers are to finish grade unless otherwise shown.
7. Survey uniformly between contours and spot elevations shown.
8. A geotechnical evaluation was performed for this project. A 2019 geotechnical engineering evaluation report was prepared by AECOM technical services and CSD Smith. A geotechnical memo was prepared by CSD Smith based on the review of the largest report for the project and is attached to the project specifications.
9. Manning’s Equation will be used to determine magnitude of flow to commencing construction activities to request verification of underground utility locations.
10. Provide minimum 4 ft cover over water main pipes unless otherwise indicated on the drawings.
11. Contractor shall keep construction activities within the site boundaries for this project as shown. This includes, but is not limited to, vehicles and equipment. Jobs of trend excavation, stockpiled excavated materials, backfill material, and pipe material.

GENERAL CONSTRUCTION NOTES:
1. Contractor shall attend a pre-construction conference for an on-site meeting with the project representative prior to the start of work.
2. Contractor shall notify the project representative when materials are on site or inspection of the work is required. No work may begin on any project without twenty-four (24) hour prior notice.
3. All material furnished on, or for the project must meet the minimum requirements of the approving agencies. At the request of the approving agency or the design engineer, contractor shall furnish proof that all materials installed on this project meet the specification requirements and standards of the approving agencies.
4. Work subject to approval by engineer must be approved prior to (A) placements of concrete (B) placing of aggregate base (C) placing of asphalt paving (D) installation of sidewalks and curbs, and (E) otherwise specified.
5. Any deviation from the approved plans and specifications must have design engineer and owner approval. In writing prior to construction.
6. All disturbed surfaces shall be returned to original or better conditions.

GENERAL YARD PIPING AND UTILITIES NOTES:
1. Existing underground utilities obtained from As-Built and from topographic field survey provided by KRRP. Contractor shall field verify depth and location prior to excavation. Contractor shall protect all existing utilities during construction. If existing utilities (gas, electric, potable water, etc.) are in conflict with the pipeline realignment or trench alignment, contractor shall contact engineer.
2. Existing piping and equipment are shown screened and/or light-lined. New piping and equipment are shown heavy-lined and heavy-lined.
3. All pipes will have constant uniform slope.
4. The horizontal separation of potable water mains and non-potable water mains and non-potable water mains and non-potable water mains shall be a minimum of ten (10) feet outside of pipe to outside of pipe, where it is necessary for a potable water main and non-potable water mains to cross with less than eighteen (18) inches of vertical separation. The crossings shall be constructed in accordance with section 64572 Title 22, California administration code.
5. Contractor shall repair all existing surfaces, utilities, buildings and foundations impacted by construction.
6. All valves set flush with grade shall have bevels and collars.
NOTES:
1. PROVIDE PROTECTIVE COATING TO EXTERIOR SURFACE OF VALVE BODY
2. FOR LUBRICATED PLUG VALVE, EXTEND LUBRICATION LINE TO GRADE PER MANUFACTURER'S INSTRUCTIONS.
3. IF 2-FT MINIMUM IS NOT MET, CONTRACTOR SHALL CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

WIRE TRACER PVC TERMINATION FITTING

CONCRETE

SET Flush W/ PAVEMENT OR CONCRETE

VALVE BOX

CONCRETE

SHOULD CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

NOTES:
1. PROVIDE PROTECTIVE COATING TO EXTERIOR SURFACE OF VALVE BODY
2. FOR LUBRICATED PLUG VALVE, EXTEND LUBRICATION LINE TO GRADE PER MANUFACTURER'S INSTRUCTIONS.
3. IF 2-FT MINIMUM IS NOT MET, CONTRACTOR SHALL CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

WIRE TRACER PVC TERMINATION FITTING

CONCRETE

SET Flush W/ PAVEMENT OR CONCRETE

VALVE BOX

CONCRETE

SHOULD CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

NOTES:
1. PROVIDE PROTECTIVE COATING TO EXTERIOR SURFACE OF VALVE BODY
2. FOR LUBRICATED PLUG VALVE, EXTEND LUBRICATION LINE TO GRADE PER MANUFACTURER'S INSTRUCTIONS.
3. IF 2-FT MINIMUM IS NOT MET, CONTRACTOR SHALL CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

WIRE TRACER PVC TERMINATION FITTING

CONCRETE

SET Flush W/ PAVEMENT OR CONCRETE

VALVE BOX

CONCRETE

SHOULD CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

NOTES:
1. PROVIDE PROTECTIVE COATING TO EXTERIOR SURFACE OF VALVE BODY
2. FOR LUBRICATED PLUG VALVE, EXTEND LUBRICATION LINE TO GRADE PER MANUFACTURER'S INSTRUCTIONS.
3. IF 2-FT MINIMUM IS NOT MET, CONTRACTOR SHALL CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

WIRE TRACER PVC TERMINATION FITTING

CONCRETE

SET Flush W/ PAVEMENT OR CONCRETE

VALVE BOX

CONCRETE

SHOULD CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

NOTES:
1. PROVIDE PROTECTIVE COATING TO EXTERIOR SURFACE OF VALVE BODY
2. FOR LUBRICATED PLUG VALVE, EXTEND LUBRICATION LINE TO GRADE PER MANUFACTURER'S INSTRUCTIONS.
3. IF 2-FT MINIMUM IS NOT MET, CONTRACTOR SHALL CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

WIRE TRACER PVC TERMINATION FITTING

CONCRETE

SET Flush W/ PAVEMENT OR CONCRETE

VALVE BOX

CONCRETE

SHOULD CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

NOTES:
1. PROVIDE PROTECTIVE COATING TO EXTERIOR SURFACE OF VALVE BODY
2. FOR LUBRICATED PLUG VALVE, EXTEND LUBRICATION LINE TO GRADE PER MANUFACTURER'S INSTRUCTIONS.
3. IF 2-FT MINIMUM IS NOT MET, CONTRACTOR SHALL CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.

WIRE TRACER PVC TERMINATION FITTING

CONCRETE

SET Flush W/ PAVEMENT OR CONCRETE

VALVE BOX

CONCRETE

SHOULD CONSULT WITH ENGINEER TO REVISE TRENCH DETAIL.
1. NOTES:

A. CONTRACTOR SHALL CONDUCT AN AIR/SOAP SOLUTION LEAK TEST AT 50 PSI AIR PRESSURE IN ADDITION TO THE PENETRANT OR MAGNETIC PARTICLE TESTING RECOMMENDED BY THE MANUFACTURER. IF LEAKS ARE DETECTED, REPAIR AND RETEST THE WELDS UNTIL THERE ARE NO DEFECTS. PLUG HOLES WITH A THREAD REPAIR PLUG AT COMPLETION OF THE TEST AND COAT AS SHOWN. TAP HOLES MAY BE LEFT UNPLUGGED IF NOT REQUIRED AS PART OF JOINT REPAIR, SEE DETAIL CRS.

B. FIELD PLACED CEMENT GROUT AND DRAINER, SEE NOTE 2.

C. SUPPORTING DOCUMENTATION SHALL BE SUBMITTED TO THE ENGINEER REGARDING PIPE DESIGN AND CONSTRUCTION REQUIREMENTS. DOCUMENTATION SUPPORTING COMPLIANCE AND PIPE DESIGN CALCULATIONS SHALL BE SUBMITTED TO THE ENGINEER.

D. IF DURING CONSTRUCTION, THE WATER TABLE IS DISCOVERED TO BE ABOVE THE TRENCH BOTTOM, THE ENGINEER SHALL BE NOTIFIED, AND APPROPRIATE DEWATERING SHALL BE IMPLEMENTED TO LOWER THE WATER LEVEL BELOW THE TRENCH BOTTOM. THE BACKFILL MATERIAL SHALL BE ACCORDING TO THE EARTHWORK SECTIONS OF THE SPECIFICATIONS, OR AS ORDERED BY THE ENGINEER.

E. THE NEED FOR PROTECTIVE SYSTEMS AND EXCAVATION SLOPES SHALL BE DETERMINED CONSIDERING APPLICABLE LOCAL, STATE AND FEDERAL (OSHA) SAFETY STANDARDS AND REGULATIONS, AND GEOENGINEERING CONSULTANTS' RECOMMENDATIONS.

2. FIELD PLACED CEMENT GROUT AND DRAINER IS NOT REQUIRED WHERE THE PIPE IS FULLY SUPPORTED, SEE DETAIL CRS.

3. SUPPORTING DOCUMENTATION OF AWWA C206, OR AS ORDERED BY THE ENGINEER.

4. CONSTRUCTION DRAWING DETAILED TO MEET THE REQUIREMENTS OF AWWA C401.

5. CONSTRUCTION DRAWING DETAILED TO MEET THE REQUIREMENTS OF AWWA C701.

6. CONSTRUCTION DRAWING DETAILED TO MEET THE REQUIREMENTS OF AWWA C703.

7. CONSTRUCTION DRAWING DETAILED TO MEET THE REQUIREMENTS OF AWWA C900.

[Diagram of pipeline and associated components, with notes on specification and requirements.

[Detailed specifications and requirements for pipeline construction, including joint types, welding, and backfill materials.

[Additional notes and specifications for construction procedures and safety standards.

[Conclusion with final notes and specifications for the pipeline construction project.

[Signature page with project details and signatures.
1. If possible, make wire connection to steel pipe at field joint at holdback of pipeline coating.

2. Maintain separation between multiple test wire connections of one pipe dia. or 12", whichever is less.

3. Copper sleeve required for #2 AWG joint bonds or for #12 AWG or smaller test wires.

4. Welder and cartridge size varies according to pipe size and material; consult welder manufacturer for recommended welder and cartridge.

5. Coat completed connections with dielectric coating as specified.

6. Pipeline joint coating not shown for clarity.

7. Pipeline wire connection detail

8. Bank riprap detail

9. Air-vacuum and air-release valve assembly - 3" and smaller

10. Thrust block detail

11. Buried air/vac assembly - plan/section

12. Notes:
 - Make wire connection to steel pipe at field joint at holdback of pipeline coating.
 - Maintain separation between multiple test wire connections of one pipe dia. or 12", whichever is less.
 - Copper sleeve required for #2 AWG joint bonds or for #12 AWG or smaller test wires.
 - Welder and cartridge size varies according to pipe size and material; consult welder manufacturer for recommended welder and cartridge.
 - Coat completed connections with dielectric coating as specified.
 - Pipeline joint coating not shown for clarity.

13. Section A-A

14. Table for buried thrust block detail - 0.04

15. Notes:
 - Precast manhole shall be Type 1 manhole or approved equal. Installation shall be per manufacturers recommendations. Access to manhole shall be equipped with locking devices and manhole cover cast into wall as specified.
 - Provide all pipes cast into wall and at all air valve locations.
 - ISOLATION VALVE shall be #2 BRASS BALL VALVE.
 - Provide 4" NPT INLET and NMT 600# RATED COLD WORKING PRESS.

16. Warning:
 - If this bar does not measure 1" then drawing is not to scale.
WARNING
1. IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE.

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.

MATCHLINE - SEE DRAWING C102
EXIST GRADE

MATCHLINE - SEE DRAWING C100

SHEET NOTES:
1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS ShOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWLINE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONTRACTOR TO PROVIDE A MINIMUM OF 1.5FT OF COVER OVER TEMPORARY PIPELINE.
Sheet Notes:

1. See EC DWGS for erosion and sediment control measures.
2. Erosion Control Plan Profile dibits are to invert (flowline) of pipeline unless otherwise noted.
3. Contractor to provide a minimum of 1.5ft of cover over temporary pipeline.

Temporary Waterline Plan and Profile 3

Warning:

1. If this bar does not measure 1" then drawing is not to scale.
Sheet Notes:

1. See EC DWG for erosion and sediment control measures.
2. Elevations shown in pipeline profile are to invert (flowline) of pipeline unless otherwise noted.
3. Contractor to provide a minimum of 1.5 ft of cover over temporary pipeline.

Matchline - See Drawing C102

Elevation grades shown in pipeline profile are to invert (flowline) of pipeline unless otherwise noted.

Contractor to provide a minimum of 1.5 ft of cover over temporary pipeline.

Temporarily Waterline Plan and Profile 4
Warning:

1. See EC DWGS for erosion and sediment control measures.
2. Erosion control measures shown in pipeline profile are to invert (flowline) of pipeline unless otherwise noted.
3. Contractor to provide a minimum of 1.5 ft of cover over temporary pipeline.

Sheet Notes:

1. See EC DWGS for erosion and sediment control measures.
2. Erosion control measures shown in pipeline profile are to invert (flowline) of pipeline unless otherwise noted.
3. Contractor to provide a minimum of 1.5 ft of cover over temporary pipeline.

Profile:

- Scale: 1" = 20'
- Scale: Vert 2" = 5'

Plan:

- Scale: 1" = 20'

Profile Notes:

- Trench
- Provide fill to meet 1.5 ft of cover
- Thrust block

Temporary Waterline Plan and Profile:

Temporary waterline plan and profile for Klamath River Renewal Corporation's City of Yreka Water Line. The design includes erosion and sediment control measures and specifies the minimum cover required for the temporary pipeline.
WARNING
1. IF THIS BAR DOES NOT MEASURE 1" THEN DRAWING IS NOT TO SCALE.

NOT FOR CONSTRUCTION

MATCHLINE - SEE DRAWING C106
EXIST GRADE

MATCHLINE - SEE DRAWING C104

1. SEE EC DWGS FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. Elevations shown in pipeline profile are to invert (flowline) of pipeline unless otherwise noted.
3. Contractor to provide a minimum of 1.5ft of cover over temporary pipeline.

C105

TEMPORARY WATERLINE PLAN AND PROFILE 6
MATCHLINE - SEE DRAWING C107
EXIST GRADE
MATCHLINE - SEE DRAWING C105

SHEET NOTES:
1. SEE EC DWG FOR EROSION AND SEDIMENT CONTROL MEASURES.
2. ELEVATIONS SHOWN IN PIPELINE PROFILE ARE TO INVERT (FLOWSIDE) OF PIPELINE UNLESS OTHERWISE NOTED.
3. CONSTRUCTION TO PROVIDE A MINIMUM OF 1.5 FT OF COVER OVER TEMPORARY PIPELINE.

DAGGETT ROAD
C601
TRENCH
24" RW (6)
24" RW (6)
24" RW (6)
STA 26+18.19
STA 25+50.46
STA 26+18.19
HORIZ BEND
HORIZ BEND
HORIZ BEND
37+00

PLAN
SCALE 1"=20'

PROFILE
SCALE HORIZ 1"=20'
VERT 1"=5'

NOT FOR CONSTRUCTION
PRELIMINARY

KLAMATH RIVER RENEWAL CORPORATION
CITY OF YREKA WATER LINE
TEMPORARY WATERLINE PLAN AND PROFILE 7

PREFACE DR001
02/05/21
50% DESIGN SUBMITTAL

ASSOCIATES
JACOBS
McMILLEN

JOB NO: 000000

KLAMATH RIVER RENEWAL CORPORATION
CITY OF YREKA WATER LINE

PRELIMINARY NOT FOR CONSTRUCTION

WARNING
BECAUSE YOUR DESIGN MEASURES 1" THEN DRAWING IS NOT TO SCALE

DESIGNED BY: BURNS
CHECKED BY: MCMILLEN
DRAWN BY: ROONEY

C106
DRAWING
DRAWING CHECKED
DRAWN DESIGN
PROJECT DATE: 02/05/21

WARNING
BECAUSE YOUR DESIGN MEASURES 1" THEN DRAWING IS NOT TO SCALE

DESIGNED BY: BURNS
CHECKED BY: MCMILLEN
DRAWN BY: ROONEY

C106
DRAWING
NOTES:
1. ALL BOLTS AND NUTS SHALL ASTM A325-1 COATED WITH FUSION BONDED POLYFLUORO-POLYMER FUSION BONDED COATING (TRIPAC BLUE 2000, OR EQUAL).
2. ALL FLANGES SHALL BE ASME B16.42 CLASS 300.
3. CONTRACTOR SHALL PROVIDE PIPE WIRE CONNECTION AT FLANGES PER DETAIL C902.

FROM RIVER CROSSING

24" RW (6)

EXIST 24" PIPE

2'-0"

24" STL TEE WITH MORTAR COATING PER SPECIFICATIONS

2'-0"

24" RW (8)

C640

C640

NOTES:
1. ALL BOLTS AND NUTS SHALL ASTM A325-1 COATED WITH FUSION BONDED POLYFLUORO-POLYMER FUSION BONDED COATING (TRIPAC BLUE 2000, OR EQUAL).
2. ALL FLANGES SHALL BE ASME B16.42 CLASS 300.
3. CONTRACTOR SHALL PROVIDE PIPE WIRE CONNECTION AT FLANGES PER DETAIL C902.

TO RIVER CROSSING

24" RW (8)

C640

C640

24" STL SPOOL WITH SHOP WELDED FLG WITH MORTAR COATING PER SPECIFICATIONS

WITH MORTAR COATING PER SPECIFICATIONS

UNDISTURBED NATIVE SOIL (AT LEAST 75-DEG FACE, EST BEARING CAPACITY = 3500 PSF)

THRUST BLOCK

FROM DAGGET ROAD BRIDGE CROSSING

55 SQ FT BEARING AREA

THRUST BLOCK

TO DAGGET ROAD BRIDGE CROSSING

55 SQ FT BEARING AREA

WWW.ROO_YY_2021.CAD

Perspective view of the pipeline crossing the river with specified design details and specifications.

KLAMATH RIVER RENEWAL CORPORATION
CITY OF YREKA WATER LINE
CIVIL SECTIONS AND DETAILS 2

NOT FOR CONSTRUCTION

PRELIMINARY

DRAWN

CHECKED

DESIGNED

SIGNED

REV

DATE

DESCRIPTION

1/2/21

02/05/21

100% DESIGN SUBMITTAL
CITY OF YREKA WATERLINE MODIFICATION TECHNICAL SPECIFICATIONS

TABLE OF CONTENTS

Division 01 – General Requirements
- Section 01 11 00 – Summary of Work
- Section 01 12 00 – Hydrology and Hydraulics
- Section 01 33 00 – Contractor Submittals
- Section 01 42 10 – Reference Standards
- Section 01 74 30 – Pressure Pipeline Testing and Disinfection

Division 02 – Existing Conditions
- Section 02 15 00 – Cofferdams & Protective Works
- Section 02 22 00 – Site Condition Assessment
- Section 02 41 00 – Demolition, Salvage, and Rehabilitation

Division 03 – Concrete
- Section 03 11 13 – Concrete Formwork
- Section 03 30 00 – CIP Concrete

Division 05 – Metals
- Section 05 12 00 – Structural Steel Framing

Division 31 – Earthwork
- Section 31 00 00 – Earthwork
- Section 31 05 19 – Geotextiles
- Section 31 11 00 – Site Preparation (Clearing and Grubbing)
- Section 31 23 00 – Controlled Low Strength Material
- Section 31 23 19 – Dewatering
- Section 31 35 00 – Erosion and Sediment Control
- Section 31 35 20 – Erosion Control Barrier
- Section 31 35 29 – Erosion and Sediment Control Turbidity Curtain
- Section 31 35 30 – Erosion and Sediment Control (Vegetative)
- Section 31 37 00 – Riprap

Division 32 – Exterior Improvements
- Section 32 11 13 – Asphaltic Concrete Pavement and Base

Division 33 – Utilities
- Section 33 05 00 – Precast Concrete Manholes and Vaults
- Section 33 11 11 – Steel Pipe, Specials and Fittings (AWWA C200, Modified)
- Section 33 11 12 – Steel Pipe, American Petroleum Institute (API)

Division 40 – Process Piping and Integration
- Section 40 23 00 – Piping, General
- Section 40 23 01 – Piping Identification
- Section 40 23 15 – Steel Pipe (ASTMA53)
Division 43 – Process Gas and Liquid Handling
 Section 43 25 00 – Valves, General
 Section 43 25 02 – Butterfly Valves
 Section 43 25 42 – Miscellaneous Valves

Attachments
 Attachment A -- Klamath River Renewal Project – Geotechnical Data Report

VOLUME 2: CONTRACT DRAWINGS
PART 1 -- GENERAL

1.1 SUMMARY

A. The WORK to be performed under this Contract shall consist of furnishing tools, equipment, materials, supplies, and manufactured articles, and furnishing all labor, transportation, and services, including fuel, power, water, and essential communications, and performing all work or other operations required for the fulfillment of the Contract in strict accordance with the Contract Documents. The WORK shall be complete, and all work, materials, and services not expressly indicated or called for in the Contract Documents which may be necessary for the complete and proper construction of the WORK in good faith shall be provided by the CONTRACTOR as though originally so indicated, at no increase in cost to the OWNER.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

A. The WORK of this Contract comprises the demolition of the existing 24-inch diameter steel pipe that is minimally buried in the Iron Gate Reservoir bed, construction of a new 24-inch diameter steel pipe across the Klamath River within bedrock, and construction of a 24-inch diameter steel temporary pipeline to keep the City of Yreka’s waterline in service during construction of the new steel pipeline across the Klamath River.

B. The WORK is located in Siskiyou County northeast of Iron Gate Dam near Hornbrook, California. The Project is located near the intersection of Copco Road and Daggett Road southwest of the Daggett Road Bridge crossing the Klamath Reservoir.

1.3 OTHER WORK

A. Where two or more projects are being performed at one time on the same site or adjacent land in such manner that work may interfere with work under another, the CONTRACTOR shall determine the sequence and order of the Work in either or both projects. When the Site of one project is the necessary or convenient means of access for performance of work under another, the OWNER may grant privilege of access or other reasonable privilege to the contractor so desiring, to the extent, amount, and in manner and at time that the OWNER may determine. No OWNER determination of method or time or sequence or order of the work or access privilege shall be the basis for a claim for delay or damage except under provisions of the General Conditions for temporary suspensions of the work. The CONTRACTOR shall conduct its operations so as to cause a minimum of interference with the work of such other contractors, and shall cooperate fully with such contractors to allow continued safe access to their respective portions of the Site, as required to perform work under their respective contracts.

B. **Interference With Work On Utilities:** The CONTRACTOR shall cooperate fully with all utility forces of the OWNER or forces of other public or private agencies engaged in the relocation, altering, or otherwise rearranging of any facilities which interfere with the progress of the WORK, and shall schedule the WORK so as to minimize interference with said relocation, altering, or other rearranging of facilities.
1.4 WORK SEQUENCE

A. The CONTRACTOR's attention is directed to the fact that during the period of construction there shall be no interruption in the City or Yreka's flow can be accommodated, and the CONTRACTOR shall so schedule its construction operations that no interference with the operation of the water system will occur during this critical period.

1.5 CONTRACTOR USE OF SITE

A. The CONTRACTOR's use of the Site shall be limited to its construction operations, including on-Site storage of materials, on-Site fabrication facilities, and field offices.

1.6 OUTAGE PLAN AND REQUESTS

A. Unless the Contract Documents indicate otherwise, the CONTRACTOR shall not remove from service, de-energize, or modify settings for any existing operating tank, pipeline, valve, channel, equipment, structure, road, or any other facility without permission from the OWNER.

B. Where the WORK requires modifications to existing facilities or construction of new facilities and connection of new facilities to existing facilities, the CONTRACTOR shall submit a detailed outage plan and schedule for the ENGINEER'S approval a minimum of two (2) weeks in advance of the time that such outage is planned.

C. Construction activities shall be scheduled and sequenced to ensure continuous operation of the existing waterline to the greatest extent possible. The City has stated that they have enough storage capacity to meet City water demands and the waterline can be turned off for up to 20 hours in the summer months (May through October) and up to 60 hours in the winter months (November through April).

D. A completed System Outage Request form shall accompany each outage plan. The outage plans shall be coordinated with the construction schedule and shall meet the restrictions and conditions of the Contract Documents. The outage plan shall describe the CONTRACTOR's estimated length of time required to complete said operation; any necessary temporary power, controls, instrumentation or alarms required to maintain control, monitoring, and alarms for the processes; and the manpower and equipment which the CONTRACTOR will furnish. All costs for preparing and implementing the outage plans shall be at no increase in cost to the OWNER.

E. The ENGINEER shall be notified in writing at least one week in advance of the required outage if the schedule for performing the work has changed or if revisions to the outage plan are required.

F. The CONTRACTOR shall provide written confirmation of the shutdown date and time two (2) working days prior to the actual shutdown.

1.7 PROJECT MEETINGS

A. Preconstruction Conference
1. Prior to the commencement of WORK at the Site, a preconstruction conference will be held at a mutually agreed time and place. The conference shall be attended by the CONTRACTOR’S Project Manager, its superintendent, and its subcontractors as the CONTRACTOR deems appropriate. Other attendees will be:
 a. ENGINEER and the Resident Project Representative.
 b. Representatives of OWNER.
 c. Governmental representatives as appropriate.
 d. Others as requested by CONTRACTOR, OWNER, or ENGINEER.

2. The CONTRACTOR shall bring the preconstruction conference submittals in accordance with Section 01 33 00 - Contractor Submittals.

3. The purpose of the conference is to designate responsible personnel and establish a working relationship. Matters requiring coordination will be discussed and procedures for handling such matters established. The complete agenda will be furnished to the CONTRACTOR prior to the meeting date. However, the CONTRACTOR should be prepared to discuss all of the items listed below.
 a. Status of CONTRACTOR’s insurance and bonds.
 b. CONTRACTOR’s tentative schedules.
 c. Transmittal, review, and distribution of CONTRACTOR’s submittals.
 d. Processing applications for payment.
 e. Maintaining record documents.
 f. Critical work sequencing.
 g. Field decisions and Change Orders.
 h. Use of Site, office and storage areas, security, housekeeping, and OWNER’s needs.
 i. Major equipment deliveries and priorities.
 j. CONTRACTOR’s assignments for safety and first aid.
 k. Daily Report Form which the ENGINEER will furnish.
 l. Submittal Transmittal Form which the ENGINEER will furnish.

4. The ENGINEER will preside at the preconstruction conference and will arrange for keeping and distributing the minutes to all persons in attendance.

5. The CONTRACTOR and its subcontractors should plan on the conference taking no less than one (1) full working day. The meeting will cover the items listed in
paragraphs 2 and 3, and reviewing the Drawings and Specifications, in extensive
detail, with the ENGINEER and the OWNER.

B. Progress Meetings

1. The ENGINEER will schedule and hold regular on-Site progress meetings at least
biweekly and at other times as requested by CONTRACTOR or as required by
progress of the WORK. The CONTRACTOR, ENGINEER, and all subcontractors
active on the Site shall attend each meeting. CONTRACTOR may at its discretion
request attendance by representatives of its suppliers, manufacturers, and other
subcontractors.

2. The ENGINEER will preside at the progress meetings and will arrange for keeping
and distributing the minutes. The purpose of the meetings is to review the progress
of the WORK, maintain coordination of efforts, discuss changes in scheduling, and
resolve other problems which may develop. During each meeting, the
CONTRACTOR shall present any issues that may impact its progress with a view to
resolve these issues expeditiously.

PART 2 -- PRODUCTS (NOT USED)

PART 3 -- EXECUTION (NOT USED)

- END OF SECTION -
PART 1 -- GENERAL

1.1 OVERVIEW

A. This Section describes: the hydrologic data of the Klamath River pre and post-drawdown at the location of the City of Yreka Waterline crossing.

B. This Section is provided for information only and does not guarantee specific hydrology or hydraulics.

1.2 DEFINITIONS

A. In-Water Work (IWW): Work that is performed within the limits of the Ordinary High Water Mark (OHWM), as defined on the Contract Drawings. This definition does not imply that work outside of the OHWM will not be impacted by extreme events. Some areas not designated IWW are within the channel floodplain.

1.3 AREAS FOR IN-WATER WORK (IWW)

A. There exist one location as part of the Work defined for this Project for which IWW is expected:

1. City of Yreka waterline crossing – Work in Klamath River is expected to demolish the existing 24-inch diameter waterline and construct the new 24-inch diameter waterline.

1.4 COFFERDAM AND DESIGN WATER LEVELS DURING CONSTRUCTION

A. The cofferdam design shall be per Specification Section 02 15 00 – Cofferdam and Protective Works.

B. CONTRACTOR shall take into account the below design and overflow levels in planning and scheduling construction activities. Provisions for all cofferdams shall be CONTRACTOR’s responsibility.

1.5 PROJECT HYDROLOGY RECORDS

A. Knight Piésold (2020) analyzed the annual peak floods for the Klamath River Renewal Project, 90% Design Report. They analyzed the historic USGS data and the 2019 BiOp data.

B. Table 01 12 00 – 01 presents a summary of the design flood events for the Klamath River.

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>Return Period</th>
<th>Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>2-yr</td>
<td>7,500</td>
</tr>
</tbody>
</table>
Probability (%), Return Period, Flow (cfs)

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>Return Period</th>
<th>Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>5-yr</td>
<td>10,900</td>
</tr>
<tr>
<td>10%</td>
<td>10-yr</td>
<td>14,900</td>
</tr>
<tr>
<td>5%</td>
<td>20-yr</td>
<td>19,300</td>
</tr>
<tr>
<td>2%</td>
<td>50-yr</td>
<td>25,700</td>
</tr>
<tr>
<td>1%</td>
<td>100-yr</td>
<td>31,200</td>
</tr>
<tr>
<td>0.5%</td>
<td>200-yr</td>
<td>37,100</td>
</tr>
<tr>
<td>0.2%</td>
<td>500-yr</td>
<td>45,800</td>
</tr>
</tbody>
</table>

Source: Table 3.2, Appendix A-6 (Knight Piébal, 2020)

C. The ordinary high-water mark (OHWM) is defined as the point on a stream bank at which the presence and action of surface water is so continuous as to leave a distinct erosion mark, destruction or prevention of woody terrestrial vegetation, predominance of aquatic vegetation, or other easily recognized characteristics. Therefore, the OHWM defines the jurisdictional boundary between upland and riparian areas subject to permitting requirements. The OHWM is often defined as the 2-year flood elevation.

1. The Klamath River OHWM Post Drawdown is at elevation 2318.07 feet.

D. The HEC-RAS station closest to the waterline and the sections upstream and downstream are shown in Figure 1. The total flow, flow depth, velocity, stream power, and shear stress are reported for each cross-section in Table 2. The HEC-RAS station, 489524, closest to the Yreka waterline crossing has the lowest stream power when compared to the cross-sections upstream and downstream. The higher the stream power, the more erosion potential. The proposed Yreka waterline crossing is located basically in a pool area with strong riffles upstream and a mild riffle downstream.

![Figure 01 12 00 – 01. HEC-RAS Cross-Section Location and Waterline Location.](image-url)
Table 01 12 00 – 02. Cut and Cover Crossing Data from HEC-RAS.

<table>
<thead>
<tr>
<th>Description</th>
<th>River Station</th>
<th>River Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>490022</td>
<td>489524</td>
</tr>
<tr>
<td>Total Flow (cfs)</td>
<td>25,700</td>
<td>31,200</td>
</tr>
<tr>
<td>Max Channel Depth (ft)</td>
<td>14.36</td>
<td>23.12</td>
</tr>
<tr>
<td>Velocity (ft/s)</td>
<td>18.91</td>
<td>11.27</td>
</tr>
<tr>
<td>Stream Power (lb/ft²)</td>
<td>132.58</td>
<td>24.93</td>
</tr>
<tr>
<td>Shear Stresses (lb/ft²)</td>
<td>7.01</td>
<td>2.21</td>
</tr>
<tr>
<td>Total Flow (cfs)</td>
<td>37,100</td>
<td>45,800</td>
</tr>
<tr>
<td>Max Channel Depth (ft)</td>
<td>16.95</td>
<td>25.3</td>
</tr>
<tr>
<td>Velocity (ft/s)</td>
<td>21.48</td>
<td>14.16</td>
</tr>
<tr>
<td>Stream Power (lb/ft²)</td>
<td>182.48</td>
<td>47.64</td>
</tr>
<tr>
<td>Shear Stresses (lb/ft²)</td>
<td>8.5</td>
<td>3.36</td>
</tr>
</tbody>
</table>

1.6 WATER SURFACE ELEVATIONS

A. Water surface elevations at the locations of IWW will be impacted by the CONTRACTOR’s use of cofferdam systems, protective works, dewatering and bypass infrastructure, and construction staging. Therefore, predictions of design water surface levels cannot be accurately made prior to the development of cofferdam and dewatering plans, and it shall be incumbent upon the CONTRACTOR to perform calculations and make determinations regarding the design water surface levels during construction. Hydrologic data has been provided to aid the CONTRACTOR in making such determinations.

B. The 500-year Post Drawdown Flood Elevation is at elevation 2322.48 feet.

1.7 AREA WEATHER

A. Precipitation and Temperature records were collected from the nearby NOAA station in Montague, CA at the Siskiyou Airport, and are provided below for the CONTRACTOR’s reference.

B. Precipitation varies throughout the year with the highest average monthly precipitation during November and the lowest during August. The average rainfall in the Montague, CA for each month is listed in Table 01 12 00 – 03.

Table 01 12 00 – 03. Average Precipitation and Temperature Records

<table>
<thead>
<tr>
<th>Month</th>
<th>Precipitation (inches)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>January</td>
<td>2.2</td>
<td>45</td>
</tr>
<tr>
<td>February</td>
<td>2.0</td>
<td>51</td>
</tr>
<tr>
<td>March</td>
<td>2.3</td>
<td>56</td>
</tr>
<tr>
<td>April</td>
<td>1.6</td>
<td>61</td>
</tr>
<tr>
<td>Month</td>
<td>Precipitation (inches)</td>
<td>Temperature (°F)</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>May</td>
<td>1.4</td>
<td>72</td>
</tr>
<tr>
<td>June</td>
<td>0.7</td>
<td>80</td>
</tr>
<tr>
<td>July</td>
<td>0.5</td>
<td>91</td>
</tr>
<tr>
<td>August</td>
<td>0.3</td>
<td>90</td>
</tr>
<tr>
<td>September</td>
<td>0.6</td>
<td>81</td>
</tr>
<tr>
<td>October</td>
<td>1.2</td>
<td>68</td>
</tr>
<tr>
<td>November</td>
<td>3.0</td>
<td>50</td>
</tr>
<tr>
<td>December</td>
<td>2.7</td>
<td>44</td>
</tr>
</tbody>
</table>

C. Temperature and other weather conditions at the site vary throughout the year and should be carefully factored into the construction work. CONTRACTOR shall comply with all applicable cold weather construction practices and requirements.

1.8 CONSTRUCTION LIMITATION

A. Construction activities must not impede the City of Yreka obtaining its full water right of 15 cfs throughout the entire construction period.

PART 2 -- PRODUCTS (NOT USED)

PART 3 -- EXECUTION

3.1 CONSTRUCTION PLANNING AND SCHEDULING

A. CONTRACTOR shall take account the above described hydrology, hydraulic design, and weather conditions when planning and scheduling all construction activities. CONTRACTOR shall ensure the work is carried out in a safe manner, protected from damage, and in accordance with standard accepted construction practice.
SECTION 01 33 00 - CONTRACTOR SUBMITTALS

PART 1 -- GENERAL

1.1 SUMMARY

A. Wherever submittals are required in the Contract Documents, submit them to the OWNER or OWNER’s Resident Representative as directed.

B. Within seven (7) Days after the date of commencement as stated in the Notice to Proceed, the CONTRACTOR shall submit the following items for review:

1. A preliminary schedule of Shop Drawings, Samples, and proposed Substitutes ("Or-Equal") submittals listed in the Bid. The schedule of submittals shall be based on CONTRACTOR's priority, planned construction sequence and schedule, long lead items, and size of submittal package. Allow time for resubmittals.

2. A list of permits and licenses the CONTRACTOR shall obtain, indicating the agency required to grant the permit and the expected date of submittal for the permit and required date for receipt of the permit.

1.2 PRECONSTRUCTION CONFERENCE SUBMITTALS

A. At the preconstruction conference of Section 01 11 00 - Summary of Work, the submit the following items to the OWNER for review:

1. A revised schedule of Shop Drawings, Samples, and proposed Substitute ("Or-Equal") submittals listed in the Bid.

2. A list of permits and licenses the CONTRACTOR shall obtain, indicating the agency required to grant the permit, the expected date of submittal for the permit, and required date for receipt of the permit.

3. A preliminary schedule of values in accordance with Section 01 29 00 - Schedule of Values.

4. A 60-Day plan of operation in accordance with Section 01 32 15 - CPM Construction Schedule.

5. A detailed layout of the field office required under Section 01 52 00 - Field Office, Equipment, and Services. The office shall not be shipped to the Site until the layout is approved.

1.3 SHOP DRAWINGS

A. All shop drawing submittals along with the shop drawing transmittal form, shall be made electronically in “.pdf” format and distributed by email from the CONTRACTOR to the OWNER’s Resident Project Representative (RPR). The OWNER’S RPR shall be responsible to distribute each shop drawing to all reviewers and to receive and compile all review comments generated.
B. Wherever called for in the Contract Documents or where required by the ENGINEER, the CONTRACTOR shall furnish a clear (non-scanned) electronic version, of each Shop Drawing submittal. Shop Drawings may include detail design calculations, shop-prepared drawings, fabrication and installation drawings, erection drawings, lists, graphs, catalog sheets, data sheets, and similar items. Whenever the CONTRACTOR is required to submit design calculations as part of a submittal, such calculations shall bear the signature and seal of an engineer registered in the appropriate branch and in the state wherein the project is located, unless otherwise indicated.

C. Shop Drawing submittals shall be accompanied by the OWNER's standard submittal transmittal form, an electronic copy of which is available from the OWNER. A submittal without the form or where applicable items on the form are not completed will be returned for resubmittal.

D. Organization

1. A single submittal transmittal form shall be used for each technical specification section or item or class of material or equipment for which a submittal is required. A single submittal covering multiple sections will not be acceptable, unless the primary specification references other sections for components.

2. On the transmittal form, index the components of the submittal and insert tabs in the submittal to match the components. Relate the submittal components to specification paragraph and subparagraph, Drawing number, detail number, schedule title, as applicable.

3. Unless indicated otherwise, terminology and equipment names and numbers used in submittals shall match those used in the Contract Documents.

E. Format

1. Minimum sheet size shall be 8-1/2 inches by 11-inches. Maximum sheet size shall be 11-inches by 17-inches. Every page in a submittal shall be numbered in sequence. All sheets shall be submitted on one (1) pdf file and arranged.

2. Where product data from a manufacturer is submitted, clearly mark which model is proposed, with complete pertinent data capacities, dimensions, clearances, diagrams, controls, connections, anchorage, and supports. Sufficient level of detail shall be presented for assessment of compliance with the Contract Documents.

3. Each submittal shall be assigned a unique number. Submittals shall be numbered sequentially, and the submittal numbers shall be clearly noted on the transmittal. Original submittals shall be assigned a numeric submittal number followed by a decimal point and a “1” to indicate it is an original (first) submittal. (For example, if submittal number 16.1 requires a resubmittal, that resubmittal will bear the designation “16.2”. A further resubmittal would bear the designation “16.3”, etc.

F. Disorganized submittals that do not meet the requirements of the Contract Documents will be returned without review.
G. Except as may otherwise be indicated, the ENGINEER will return email comments (in pdf format) of each submittal to the OWNER’s RPR with comments noted thereon, within 14 calendar Days following receipt by the ENGINEER. The OWNER’s RPR will compile all comments and return the complete submittal (in pdf format), within 21 calendar days following original receipt by the OWNER’s RPR. It is considered reasonable that the CONTRACTOR will make a complete and acceptable submittal to the OWNER’s RPR by the first resubmittal on an item. The OWNER reserves the right to withhold monies due to the CONTRACTOR to cover additional costs of the ENGINEER’s review beyond the first resubmittal. The ENGINEER’s and OWNER RPR’s combined maximum review period for each submittal or resubmittal will be 21 calendar Days. Thus, for a submittal that requires 2 resubmittals before it is complete, the maximum review period could be 63 calendar Days.

H. Submittal Review Marking

1. **NO EXCEPTIONS TAKEN.** If a submittal is returned to the CONTRACTOR marked "NO EXCEPTIONS TAKEN," formal revision and resubmission will not be required.

2. **MAKE CORRECTIONS NOTED.** If a submittal is returned marked "MAKE CORRECTIONS NOTED," CONTRACTOR shall make the corrections on the submittal, but formal revision and resubmission will not be required.

3. **REVISE-RESUBMIT.** If a submittal is returned marked "REVISE-RESUBMIT," the CONTRACTOR shall revise it and shall resubmit the required number of copies. Resubmittal of portions of multi-page or multi-drawing submittals will not be allowed. For example, if a Shop Drawing submittal consisting of 10 drawings contains one drawing noted as "REVISE - RESUBMIT," the submittal as a whole is deemed "REVISE - RESUBMIT," and all 10 drawings are required to be resubmitted.

4. **REJECTED-RESUBMIT.** If a submittal is returned marked "REJECTED-RESUBMIT," it shall mean either that the proposed material or product does not satisfy the specification, the submittal is so incomplete that it cannot be reviewed, or is a substitution request not submitted in accordance with Section 01 60 00 - Products, Materials, Equipment, and Substitutions. In the first 2 cases, the CONTRACTOR shall prepare a new submittal and shall resubmit. In the latter case, the CONTRACTOR shall submit the substitution request according to Section 01 60 00.

I. Resubmittal of rejected portions of a previous submittal will not be allowed. Every change from a submittal to a resubmittal or from a resubmittal to a subsequent resubmittal shall be identified and flagged on the resubmittal.

J. Fabrication of an item may commence only after the ENGINEER has reviewed the pertinent submittals and returned copies to the CONTRACTOR marked either "NO EXCEPTIONS TAKEN" or "MAKE CORRECTIONS NOTED." Corrections indicated on submittals shall be considered as changes necessary to meet the requirements of the Contract Documents and shall not be taken as changes to the contract requirements.

K. Submittals shall be carefully reviewed by an authorized representative of the CONTRACTOR prior to submission to the ENGINEER. Each submittal shall be dated and signed by the CONTRACTOR as being correct and in strict conformance with the
Contract Documents. In the case of Shop Drawings, each sheet shall be so dated and signed. Any deviations from the Contract Documents shall be noted on the transmittal sheet. The ENGINEER will only review submittals that have been so verified by the CONTRACTOR. Non-verified submittals will be returned to the CONTRACTOR without action taken by the ENGINEER, and any delays caused thereby shall be the total responsibility of the CONTRACTOR.

L. Corrections or comments made on the CONTRACTOR's Shop Drawings during review do not relieve the CONTRACTOR from compliance with Contract Drawings and Specifications. Review is for conformance to the design concept and general compliance with the Contract Documents only. The CONTRACTOR is responsible for confirming and correlating quantities and dimensions, fabrication processes and techniques, coordinating WORK with the trades, and satisfactory and safe performance of the WORK.

1.4 SAMPLES

A. The CONTRACTOR shall submit the number of samples indicated by the Specifications. If the number is not indicated, submit not less than three (3) samples. Where the amount of each sample is not indicated, submit such amount as necessary for proper examination and testing by the methods indicated.

B. Samples shall be individually and indelibly labeled or tagged, indicating the salient physical characteristics and manufacturer's name. Upon acceptance by the ENGINEER, one set of the samples will be stamped and dated by the ENGINEER and returned to the CONTRACTOR, one set of samples will be retained by the OWNER, and one set shall remain at the Site in the OWNER RPR's field office until completion of the WORK.

C. Unless indicated otherwise, the OWNER will select colors and textures from the manufacturer's standard colors and standard materials, products, or equipment lines. If certain samples represent non-standard colors, materials, products, or equipment lines that will require an increase in Contract Times or Price, the CONTRACTOR shall clearly state so on the transmittal page of the submittal.

1.5 TECHNICAL MANUAL

A. The CONTRACTOR shall submit technical operation and maintenance information for each item of mechanical, electrical, and instrumentation equipment in an organized manner in the Technical Manual. It shall be written so that it can be used and understood by the OWNER's operation and maintenance staff.

B. Organization. The Technical Manual shall be subdivided first by specification section number; second, by equipment item; and last, by "Category." The following "Categories" shall be addressed (as applicable):

1. Category 1 - Equipment Summary
 a. Summary: A table shall indicate the equipment name, equipment number, and process area in which the equipment is installed.
b. Form: The ENGINEER will supply an Equipment Summary Form for each item of mechanical, electrical, and instrumentation equipment in the WORK. The CONTRACTOR shall fill in the relevant information on the form and include it in Part 1.

2. **Category 2 - Operational Procedures**

 a. Operational and Maintenance procedures shall be written in Microsoft ™ Word document format for the startup, operation, maintenance, emergency situations and shutdown for all facility systems. The procedures shall be written in a step by step method for proper operation or maintenance of each individual system. [For example, the startup procedure for a water supply system shall include operations of pumps, valves, gates, meters, HMI procedures, etc to bring the system online and functioning properly.]

 b. Manufacturer-recommended procedures on the following shall be included in Part 2:

 1) Installation

 2) Adjustment

 3) Startup

 4) Location of controls, special tools, equipment required, or related instrumentation needed for operation

 5) Operation procedures

 6) Load changes

 7) Calibration

 8) Shutdown

 9) Troubleshooting

 10) Disassembly

 11) Reassembly

 12) Realignment

 13) Testing to determine performance efficiency

 14) Tabulation of proper settings for pressure relief valves, low and high pressure switches, and other protection devices

 15) List of all electrical relay settings including alarm and contact settings

3. **Category 3 - Preventive Maintenance Procedures**
a. Procedures: Preventive maintenance procedures shall include manufacturer-recommended procedures to be performed on a periodic basis, both by removing and replacing the equipment or component, and by maintaining the equipment in place.

b. Schedules: Recommended frequency of preventive maintenance procedures shall be included. Lubrication schedules, including lubricant SAE grade, type, and temperature ranges, shall be covered.

4. Category 4 - Wiring and Loop Diagrams
 a. Diagrams: This category includes complete internal and connection wiring diagrams for electrical and instrumentation equipment items.

5. Category 5 - Shop Drawings
 a. Drawings: This category includes approved shop or fabrication drawings with ENGINEER comments and corrections incorporated, complete with dimensions.

6. Category 6 - Parts List
 a. Parts List: A complete parts list shall be furnished, including a generic description and manufacturer's identification number for each part. Addresses and telephone numbers of the nearest supplier and parts warehouse shall be included.

 b. Drawings: Cross-sectional or exploded view drawings shall accompany the parts list. Part numbers shall appear on the drawings with arrows to the corresponding part.

7. Category 7 - Safety
 a. Procedures: This category describes the safety precautions to be taken when operating and maintaining the equipment or working near it.

8. Category 8 – Documentation & Warrantees
 a. Equipment warranties, affidavits, certifications, calibrations, laboratory test results, etc. required by the Technical Specifications shall be placed in this category.

C. Format

 1. Each Technical Manual shall be bound in standard size 3 ring hardcover binders labeled on the spine and cover with project name, OWNER's project number, specification section number, equipment name, and equipment identification number.

 2. Each Binder shall contain its own detailed table of contents at the front, plus a summary level table of contents information for the other binders in a multi-binder set.
3. Documents in binders shall be 3-hole punched, no text shall be punched out, and pages larger than 8-1/2 inches by 11-inches shall be folded to 8-1/2 inches by 11-inches. Binder ring size shall not exceed 2.5-inches in diameter.

4. Each final set of Technical Manuals shall include a CD/DVD with electronic files:
 a. Project specific files created in Microsoft Office, AutoCAD, latest version, Adobe Acrobat portable document format, or other software required by the specifications.
 b. Manufacturer literature in Adobe Acrobat portable document format (pdf).

D. Technical Manual Review Process

1. The CONTRACTOR shall furnish three (3) draft Technical Manuals for each Specification Section that requires a Manual. The OWNER’s RPR will retain one (1) copy, will forward one (1) copy to the OWNER, and will return one (1) copy to the CONTRACTOR with review comments.

2. The CONTRACTOR shall incorporate all comments into the draft and shall submit five (5) identical hard copies of the final Manual, bound in 3-ring binders, for acceptance.

E. Schedule

1. Except where indicated otherwise, Technical Manuals shall be submitted in final form to the OWNER’s RPR not later than the 80 percent of construction completion date. Discrepancies found by the OWNER or ENGINEER shall be corrected within 30 Days from the date of written notification by the OWNER’s RPR.

2. WORK under this Contract involves start-up and commissioning of an existing water system. Manuals shall be complete for each piece of equipment prior to final acceptance of the equipment by the OWNER. Except where indicated otherwise, manuals shall be submitted for review in final form a minimum of 30 Days prior to the start of performance testing for each piece of equipment. Discrepancies found by the OWNER or ENGINEER shall be corrected within 30 Days from the date of written notification by the OWNER’s RPR.

1.6 SPARE PARTS LIST

A. The CONTRACTOR shall furnish to the OWNER spare parts information for mechanical, electrical, and instrumentation equipment. The spare parts list shall include those spare parts that each manufacturer recommends be maintained by the OWNER in inventory.

1. Sources and Pricing: The spare parts list shall include a current list price of each spare part. Each manufacturer or supplier shall indicate the name, address, and telephone number of its nearest outlet of spare parts to assist the OWNER in ordering.

2. Format: The CONTRACTOR shall cross-reference spare parts lists to the equipment numbers designated in the Contract Documents. The spare parts lists
shall be bound in standard size, 3 ring, loose-leaf, vinyl plastic hard cover binders suitable for bookshelf storage. Binder ring size shall not exceed 2.5 inches.

1.7 RECORD DRAWINGS

A. The CONTRACTOR shall maintain one set of Drawings at the Site for the preparation of record drawings. On these, it shall mark every project condition, location, configuration, and any other change or deviation which may differ from the Contract Drawings at the time of award, including buried or concealed construction and utility features that are revealed during the course of construction. Special attention shall be given to recording the horizontal and vertical location of buried utilities that differ from the locations indicated, or that were not indicated on the Contract Drawings.

B. The record drawings shall be supplemented by any detailed sketches as necessary or as CONTRACTOR is directed, to fully indicate the WORK as actually constructed. These record drawings are the CONTRACTOR’s representation of as-built conditions, shall include revisions made by addenda and change orders, and shall be maintained up-to-date during the progress of the WORK. Red ink shall be used for alterations and notes. Notes shall identify relevant Change Orders by number and date.

C. 11-inch x 17-inch size paper copies of the record drawings shall be submitted to the OWNER’s RRP at 120 day intervals, starting after the date of the Notice to Proceed, and also at completion of WORK. Failure to submit complete record drawings on or before these dates will enact the liquidated damages clause for interim record drawing submittals described in Division 00 Contract Specifications.

D. In the case of those drawings that depict the detail requirement for equipment to be assembled and fabricated in the factory, the record drawings shall be updated by indicating those portions which are superseded by change order drawings or final Shop Drawings, and by including appropriate reference information describing the change orders by number and the Shop Drawings by manufacturer, drawing, and revision numbers.

E. Disorganized or incomplete record drawings will not be accepted. The CONTRACTOR shall revise them and resubmit the drawings for review.

F. Record drawings shall be accessible to the OWNER’s RPR during the construction period.

G. Final payment will not be acted upon until the record drawings have been completed and delivered to the OWNER’s RPR. Said up-to-date record drawings shall be in the form of a set of prints with carefully plotted information overlaid on the Contract Drawings.

H. Information submitted by the CONTRACTOR will be assumed to be correct, and the CONTRACTOR shall be responsible for the accuracy of such information

1.8 QUALITY CONTROL (QC) SUBMITTALS

A. Quality control submittals are defined as those required by the Specifications to present documentary evidence to the OWNER and ENGINEER that the CONTRACTOR has satisfied certain requirements of the Contract Documents.
B. Unless otherwise indicated, QC submittals shall be submitted:

1. Before delivery and unloading, for the following types of submittals:
 a. Manufacturers' installation instructions
 b. Manufacturers' and Installers' experience qualifications
 c. Affidavits and manufacturers' certification of compliance with indicated product requirements
 d. Laboratory analysis results
 e. Factory test reports
 f. Ready mix concrete delivery tickets
 g. Design calculations

2. Within 30 Days of the event documented for the following types of submittals:
 a. Manufacturers' field representative certification of proper installation
 b. Field measurement
 c. Field test reports
 d. Receipt of permit
 e. Receipt of regulatory approval

C. The OWNER’s RPR and ENGINEER will record the date that a QC submittal was received and review it for compliance with submittal requirements, but the review procedures above for Shop Drawings and samples will not apply.

1.9 INFORMATIONAL SUBMITTALS

A. Informational submittals, such as Requests for Information (RFI), Deviation Request (DR), Change Order Proposals (COR), etc. formalize the flow of information between the CONTRACTOR and the ENGINEER. The OWNER’s standard forms will be employed for such purpose. Electronic copies of all standard Construction Management forms shall be provided by the OWNER to the CONTRACTOR.

1.10 CONSTRUCTION PHOTOGRAPHS

A. The CONTRACTOR shall be responsible to take digital construction photographs, no less than once per week, showing the progress of the WORK, including documentation of all buried utilities encountered during construction as well as installation of new buried utilities and buried WORK required by the Contract.
B. Upon completion of the WORK and before final payment, the CONTRACTOR shall electronically submit all photographs to the OWNER on a CD or other electronic media with each photograph’s file name identified by location and date it was taken.

PART 2 -- PRODUCTS (NOT USED)

PART 3 -- EXECUTION (NOT USED)

- END OF SECTION -
PART 1 -- GENERAL

1.1 GENERAL

A. **Titles of Sections and Paragraphs:** Titles and subtitles accompanying specification sections and paragraphs are for convenience and reference only and do not form a part of the Specifications.

B. **Applicable Publications:** Whenever in these Specifications references are made to published specifications, codes, standards, or other requirements, it shall be understood that wherever no date is indicated, only the latest specifications, standards, or requirements of the respective issuing agencies which have been published as of the date that the Contract is advertised for Bids shall apply; except to the extent that said standards or requirements may be in conflict with applicable laws, ordinances, or governing codes. No requirements set forth in the Specifications or shown on the Drawings will be waived because of any provision of or omission from said standards or requirements.

C. **Specialists, Assignments:** In certain instances, specification text requires (or implies) that specific WORK is to be assigned to specialists or expert entities who must be engaged to perform that WORK. Such assignments shall be recognized as special requirements over which the CONTRACTOR has no choice or option. These requirements shall not be interpreted so as to conflict with the enforcement of building codes and similar regulations governing the WORK; also they are not intended to interfere with local union jurisdiction settlements and similar conventions. Such assignments are intended to establish which party or entity involved in a specific unit of WORK is recognized as "expert" for the indicated construction processes or operations. Nevertheless, the final responsibility for fulfillment of the entire set of Contract requirements remains with the CONTRACTOR.

1.2 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. The CONTRACTOR shall construct the WORK in accordance with the Contract Documents and the referenced portions of those referenced codes, standards, and specifications.

B. In case of conflict between codes, reference standards, drawings, and the other Contract Documents, the most stringent requirements shall govern. All conflicts shall be brought to the attention of the ENGINEER for clarification and direction prior to ordering or providing any materials or furnishing labor. The CONTRACTOR shall bid for the most stringent requirements.

C. References to "OSHA Regulations for Construction" shall mean **Title 29, Part 1926, Construction Safety and Health Regulations**, Code of Federal Regulations (OSHA), including all changes and amendments thereto.

D. References to "OSHA Standards" shall mean **Title 29, Part 1910, Occupational Safety and Health Standards**, Code of Federal Regulations (OSHA), including all changes and amendments thereto.
E. Applicable Safety Standards: References to "Cal-OSHA" shall mean State of California, Department of Industrial Relations, Construction Safety Orders, as amended to date, and all changes and amendments thereto.

1.3 REGULATIONS RELATED TO HAZARDOUS MATERIALS

A. The CONTRACTOR shall be responsible that all WORK included in the Contract Documents, regardless if indicated or not, shall comply with all EPA, OSHA, RCRA, NFPA, and any other federal, state, and local regulations governing the storage and conveyance of hazardous materials, including petroleum products.

B. Where no specific regulations exist and the OWNER has not waived the requirement in writing, chemical, hazardous, and petroleum product piping and storage in underground locations shall be double containment piping and tanks or be installed in separate concrete trenches and vaults with an approved lining that cannot be penetrated by the chemicals.

PART 2 -- PRODUCTS (NOT USED)

PART 3 -- EXECUTION (NOT USED)

- END OF SECTION -
SECTION 01 74 30 - PRESSURE PIPE TESTING

PART 1 -- GENERAL

1.1 SUMMARY
A. The CONTRACTOR shall test raw water pipelines and appurtenant piping, in accordance with the Contract Documents.
B. The CONTRACTOR shall be responsible for obtaining permits for discharging excess testing water if required to satisfy permit limits.

1.2 CONTRACTOR SUBMITTALS
A. Furnish submittals in accordance with Section 01 33 00 – Contractor Submittals.
B. Furnish:
 1. A testing plan and schedule, including method for water conveyance, and control, disposal shall be submitted in writing for approval.

PART 2 -- PRODUCTS

2.1 MATERIAL REQUIREMENTS
A. All test equipment, temporary valves, bulkheads, and other water control equipment shall be as determined by the CONTRACTOR. No materials shall be used which would be injurious to the WORK.

PART 3 -- EXECUTION

3.1 GENERAL
A. Water for testing water pipelines will be furnished by the OWNER; however, the CONTRACTOR shall convey the water from the OWNER-designated source to the points of use.
B. All pressure pipelines shall be tested. All testing operations shall be performed in the presence of the ENGINEER.
C. Disposal of flushing water and water containing chlorine shall be by methods acceptable to the ENGINEER.

3.2 PIGGING
A. The CONTRACTOR shall clean the system thoroughly by pigging to remove sand, grit, gravel, stones, fluids, construction waste, and all material which would not be found in a properly cleaned pipeline. Pigging shall obtain a smooth interior pipe surface free from any material or fluid not used in cleaning.
B. Pigging shall be defined as passage of a sufficient number of pigs through the pipeline to achieve the clean conditions required. Flushing will not be acceptable as a substitute for pigging.

C. Provision for pig access and egress points and disposal of water and materials shall be the CONTRACTOR's responsibility.

D. Pigs shall be individually marked and their location shall be controlled and monitored so that no pigs remain in the system after cleaning.

E. Pigging may be done in conjunction with initial filling for the hydrostatic test.

3.3 HYDROSTATIC TESTING OF PIPELINES

A. Prior to hydrostatic testing, pipelines shall be flushed or blown out as appropriate. The CONTRACTOR shall test pipelines in sections. Sections to be tested shall be defined by isolation valves in the pipeline. Where such valves are not present, the CONTRACTOR shall install temporary bulkheads or plugs for the purpose of testing. Sections that do not have isolation valves shall be tested in approximate one-mile segments. Sections that have a zero leakage allowance may be tested as a unit. No section of the pipeline shall be tested until field-placed concrete or mortar has attained an age of 14 Days. The test shall be made by closing valves when available or by placing bulkheads and filling the line slowly with water. The CONTRACTOR shall be responsible for ascertaining that test bulkheads are suitably restrained to resist the thrust of the test pressure without damage to or movement of the adjacent pipe. Unharnessed sleeve-type couplings, expansion joints, or other sliding joints shall be restrained or suitably anchored prior to the test to avoid movement and damage to piping and equipment. Remove or protect any pipeline-mounted devices that may be damaged by the test pressure. The CONTRACTOR shall provide sufficient temporary tappings in the pipelines to allow for trapped air to exit. After completion of the tests, such taps shall be permanently plugged. Care shall be taken that air relief valves are open during filling.

B. The pipeline shall be filled at a rate which will not cause any surges or exceed the rate at which the air can be released through the release valves at a reasonable velocity. The air within the pipeline shall be allowed to escape completely. The differential pressure across the orifices in the air release valves shall not be allowed to exceed 5 psi at any time during filling. After the pipeline or section thereof has been filled, it shall be allowed to stand under a slight pressure for at least 24 hours to allow the concrete or mortar lining, as applicable, to absorb water and to allow the escape of air from air pockets. During this period, bulkheads, valves, and connections shall be examined for leaks. If leaks are found, corrective measures satisfactory to the ENGINEER shall be taken.

C. The hydrostatic test shall consist of holding the indicated test pressure on the pipeline segment for a period of 4 hours. The test pressure for yard piping shall be as indicated on the Piping Schedule measured at the lowest point of the pipeline section being tested. No pressure test will be required for a reservoir overflow line. Visible leaks that appear during testing shall be repaired in a manner acceptable to the ENGINEER. Add water to restore the test pressure if the pressure decreases 5-psi below test pressure during the test period.
D. Pipe with welded joints shall have no leakage. Exposed piping shall show no visible leaks and no pressure loss during the test. In the case of pipelines that fail to pass the leakage test, the CONTRACTOR shall determine the cause of the leakage, shall take corrective measures necessary to repair the leaks, and shall again test the pipeline, repeating as necessary until the pipeline passes.

- END OF SECTION -
PART 1 -- GENERAL

1.1 SUMMARY

A. The WORK includes furnishing all design, labor, and equipment necessary to construct and maintain in good working order all cofferdams and protective works necessary during construction of facilities located in or adjacent to static or moving bodies of water as specified herein.

B. All cofferdam and related protective work shall be located within the approved disturbance area limits as shown on the Contract Drawings.

C. Remove all temporary cofferdams or other temporary protective works upon completion of the facilities located in or adjacent to bodies of water.

1.2 CONTRACTOR SUBMITTALS

A. The CONTRACTOR shall submit a proposed plan for cofferdams and protective works in accordance with the requirements of Section 01 33 00 – Contractor Submittals which shall address, as a minimum, the following items:

1. Type of cofferdam or other protective works to be used.

2. Sequence of construction for cofferdam or other protective works-related Work items.

3. Description of provisions for limiting siltation or other effects on the river.

4. Description of provisions for removal of temporary cofferdams or protective works and replacement or grading to design elevations shown on the Contract Documents following removal.

5. Description of provisions for excavating and dewatering insides of the cofferdams or protective works, in accordance with Section 31 23 19 – Dewatering.

6. Regulatory requirements for cofferdam and cofferdam-related activities.

7. All calculations, assumptions, material properties, and other data required to substantiate the design of the cofferdam and protective works.

B. The submittal shall be prepared and sealed by a Professional Engineer registered in the State of California experienced with cofferdam and related design.

C. The plan shall be submitted for review a minimum of sixty (60) calendar days prior to beginning planned cofferdam work, shall be subject to review, permitting, and acceptance by governing authorities and the owners of any facilities utilized for water conveyance; as well as OWNER. However, these reviews shall not relieve the CONTRACTOR of full responsibility for the adequacy and stability of the cofferdams and protective works.
D. Additionally, the CONTRACTOR shall submit a fish salvage plan concurrent with the cofferdam and protective works plan, describing:

1. The anticipated order of activities for fish salvage operations behind the cofferdams prior to dewatering.
2. The qualified, subcontracted biologists intended to carry out fish salvage operations.

1.3 QUALIFICATIONS

A. The CONTRACTOR shall demonstrate a minimum of ten (10) years’ experience in the construction of shoring walls, in-water work, and cofferdams including, but not necessarily limited to experience with sheet piles, H piles, soldier pile walls, segmental (block) walls, earth fill cofferdams, and the associated planning, staging, and dewatering aspects thereof.

1.4 DEFINITIONS

A. Existing Ground. The elevation of the existing ground surface before construction (including existing ground surfaces under water).

B. Finish Grade. Represents the grade required by the Contract Documents to be the finished ground surface upon completion of construction.

PART 2 -- PRODUCTS

2.1 GENERAL

A. The type of construction used for cofferdams or other protective works (e.g., double-walled sheetpile cofferdams, tremie concrete, construction concrete block, or sandbag cofferdam) shall be at the choice of the CONTRACTOR, provided that the selected alternative fulfills the requirements of project permits and the Contract Documents. Cofferdam designs, configurations, or staging sequences that are substantially different than those shown on the Contract Documents require the CONTRACTOR to submit alternate design concepts such that the design and ownership team can evaluate design and permitting impacts.

B. Cofferdams or other protective works shall be constructed, maintained, and removed using materials and methods that do not produce siltation or other degradation of the water quality of the creek which exceeds the limits of applicable federal, state, and local regulations.

C. Cofferdams shall be designed and constructed of such a size that in no instance do they encroach within 10 feet of disturbed areas for other work.

D. Sheetling or any other methods requiring disturbance below original ground surface may not be used in any archeologically sensitive areas.
2.2 WOOD SHEETING
 A. Wood used for sheeting, shoring, and bracing will be sound; straight grained; free from
 shakes, loose knots, and other defects liable to impair its strength or durability; and will be
 Yellow Pine, Douglas Fir, or equivalent and will be either tongue-and-grooved or splined. Wood
 sheeting will not be less than nominal 2 inches thick.

2.3 STEEL SHEETING
 A. Steel sheeting will conform to ASTM A 328.

2.4 STRUCTURAL STEEL
 A. Temporary structural steel channels, angles, plates, and bars shall conform to ASTM A 36.
 B. Temporary structural steel W-Beams shall conform to ASTM A 992.
 C. Temporary structural steel rectangular HSS sections shall conform to ASTM A 500 Grade B.
 D. Temporary structural steel pipe sections shall conform to ASTM A 53 Grade B.

2.5 SANDBAGS IN WATER
 A. All temporary sandbags placed in water will conform to all applicable federal, state, and
 local laws and regulations.

2.6 CONSTRUCTION CONCRETE BLOCKS
 A. Construction concrete blocks shall be Ultrablock, Inc. or equivalent.

PART 3 -- EXECUTION

3.1 COFFERDAMS
 A. Cofferdams shall be designed by the CONTRACTOR and construction methods will be
 selected by the CONTRACTOR. The design of the cofferdams will take into account the
 range of river elevations which can be expected during the time allowed for in-water
 construction. The CONTRACTOR shall review available flow records to make this
 determination.

 B. Once the cofferdam is installed, the CONTRACTOR shall coordinate with their
 subcontracted biologists to perform a fish salvage process. The salvage will remove fish
 from behind the cofferdam or between cofferdams to be released back into the river. This
 will allow the area between cofferdams or behind a cofferdam to be completely dewatered
 during the river low flow periods. The CONTRACTOR shall follow the fish salvage plan
 that has been submitted and approved by the OWNER or ENGINEER and CDFW. The
 general process is assumed to be as follows:

 1. Prior to the cofferdam installation the fish salvage team shall use electro-fishers on a
 very low setting (non-stunning and moving downstream), to herd without capture.
Once the cofferdam is constructed the fish salvage team shall begin multiple pass shocking whining confined area to stun and remove all species of fish encountered. Species expected to encounter shall be *O. mykiss*, sculpin, suckers, and lamprey.

2. Site evaluation on arrival (weather / air and water temperatures).

3. All crew members participating will be outfitted with waterproof waders and rubber neoprene gloves to protect against electric shock.

4. Prior to sampling, stream temperature and conductivity will be recorded and used to set electro-fisher parameters (voltage, frequency, pulse) to manufacturer’s recommended guidelines.

5. Two netters will collect stunned fish and hold them in a 5-gallon bucket with bubble aerator. Fish are allowed to fully recover in the bucket before release downstream of the removal area.

6. The fish salvage team will record total number of salmonids handled (by spp.) and total mortality for reporting, which is required for the project permit.

7. Upon completion of each fish salvage event, the fish salvage team shall provide a report outlining the process and summarize the activity along with tabulated results of fish captured.

C. Cofferdam areas shall be dewatered such that the bottoms of the excavations within the cofferdams are firm, free of standing water, and in all respects acceptable to the OWNER as foundation. The dewatering methods used shall prevent boiling, quick conditions, or softening of foundation strata and shall maintain the bottom of the excavation in a condition so that every phase of the WORK can be performed in the dry, with the exception of in-water work related to cofferdams and protective works as specified in the Contract Documents. Dewatering shall be performed in accordance with the requirements of Section 31 23 19 - Dewatering.

D. After construction, the cofferdams shall be removed after areas are graded to finished grade, where indicated, or otherwise returned to existing grades; however, removal of cofferdams will not occur prior to the installation and backfill of all buried utilities which lie within 30 feet of the cofferdam areas. If options have been selected with below grade construction, it may be possible to cut off the structures at grade if the CONTRACTOR obtains approval of the appropriate jurisdictional authority.

E. Any loss of water and any damage to ground, structures, facilities, fishery resources, or any other existing items that may be affected by the CONTRACTOR’S cofferdam operations, shall be the responsibility and liability of the CONTRACTOR and will be repaired or restored by the CONTRACTOR as required, to the OWNER’S satisfaction. Any damage or injury to a person directly or indirectly caused by the CONTRACTOR’S cofferdam operations shall be the responsibility of the CONTRACTOR.

F. It is the CONTRACTOR’s responsibility to design, install, and maintain functionally effective and structurally sound cofferdams. The failure of the cofferdam either in function or structurally for any reason, subsurface conditions inclusive, and the consequences of such a failure and liability for such a failure, will be the responsibility of the CONTRACTOR.
In the event the cofferdam has failed or is not functional as designed, the CONTRACTOR shall repair or rebuild the cofferdam at no additional cost to OWNER. Repairs or modifications to the cofferdams require additional design and construction submittals subject to the requirements of the Cofferdams and Protective Works Plan shown in this specification.

- END OF SECTION -
PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall conduct thorough pre-construction and post-construction Site conditions surveys of the entire Project. Site conditions surveys shall consist of photographs, video recordings, and topographic mapping.

1.2 CONTRACTOR SUBMITTALS

A. Video surveys, photographs, and other data of the preconstruction conditions shall be submitted to the ENGINEER for record purposes prior to, but not more than three weeks before, commencement of any construction activities.

B. Except as otherwise indicated, post-construction topographic mapping shall be submitted to the ENGINEER within 60 days of completing WORK.

C. A complete set of all photographs and survey data of the post-construction conditions shall be completed and submitted prior to final inspection by the OWNER and ENGINEER.

PART 2 -- PRODUCTS (NOT USED)

PART 3 -- EXECUTION

3.1 PHOTOGRAPHS AND VIDEO RECORDINGS

A. CONTRACTOR, as a minimum, shall document pre- and post-construction conditions by preparing video surveys of the following:

1. Roadways used to access the Site or haul materials and equipment to the Site.

2. Work areas, including actual work sites, materials processing and stockpiling areas, access corridors, disposal areas, and staging areas.

3. Any work completed by other contractors at the Site that will be connected to or otherwise affected by the WORK.

4. Driveways, sidewalks, and buildings which might be affected by the WORK.

B. Supplement video surveys with photographs and spot elevation surveys as required to thoroughly document the original condition and location of existing features and facilities.

3.2 TOPOGRAPHIC MAPPING

A. Topographic mapping shall be developed using the Project coordinates, shall be referenced to the Project base lines and bench marks, and shall be adequate to
ascertain pre-construction and post-construction elevations of all public and private property within and adjacent to the construction limits

B. Topographic mapping shall be conducted to document the post-construction topography of the Site:

C. Spot elevation surveys used to document the elevation on abutting roadways, drives, and walks shall be taken at approximately 20-foot intervals and at the point of juncture with any structure to which they are attached or otherwise influenced by the WORK.

D. All pre- and post-construction topographic mapping and other data, including spot elevations, shall be prepared and sealed by a Professional Land Surveyor in the State of California.

E. All pre- and post-construction survey data shall be furnished as follows:

1. Site mapping shall be submitted as a separate electronic drawing in the latest version of AutoCAD.

2. Each AutoCAD site map shall also be submitted in PDF format.

3. ENGINEER will review PDF plots for accuracy relative to the indicated requirements.

4. CONTRACTOR shall amend mapping files as required, based on ENGINEER's comments.

5. The electronic mapping files shall be produced using field survey techniques with sufficient accuracy for reproduction and use as base maps at a scale of 1"=20' horizontal and 1-foot contour intervals as specified for National Map Accuracy Standards.

6. Electronic mapping files shall be three-dimensional.

7. Submit points lists for all topographic surveys in ASCII text file format.

- END OF SECTION -
PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall demolish and reconstruct existing civil, structural, mechanical, electrical, and instrumentation facilities as indicated, in accordance with the Contract Documents.

1.2 COORDINATION

A. The CONTRACTOR shall carefully coordinate the WORK in areas where existing facilities are interconnected with new facilities and where existing facilities remain operational. The WORK as indicated is not all inclusive, and the CONTRACTOR shall be responsible to perform the reconstruction indicated plus that which can be reasonably inferred from the Contract Documents as necessary to complete the Project. The Specifications and Drawings identify the major facilities that shall be demolished and reconstructed, but auxiliary utilities such as water, air, chemicals, drainage, lubrication, fluid power, electrical wiring, controls, and instrumentation are not necessarily shown. The CONTRACTOR shall comply with sequencing requirements in Section 01 11 00 – Summary of Work.

B. The CONTRACTOR shall note that the Drawings used to indicate demolition and reconstruction are based on record drawings of the existing facilities. These record drawings have been reproduced to show existing conditions and to clarify the scope of WORK as much as possible. Prior to bidding, the CONTRACTOR shall conduct a comprehensive survey at the Site to verify the correctness and exactness of the Drawings, the scope of WORK, and the extent of auxiliary utilities. A complete set of record drawings is available for review at the Project site.

C. While demolition and reconstruction are being performed, the CONTRACTOR shall provide adequate access for the continued operation and maintenance of equipment. The CONTRACTOR shall erect and maintain fences, warning signs, barricades, and other devices around the reconstruction as required for the protection of the CONTRACTOR's employees and the OWNER's personnel. The CONTRACTOR shall remove such protection when reconstruction activities are complete, or as work progresses, or when directed by the ENGINEER.

1.3 CONTRACTOR SUBMITTALS

A. Demolition and reconstruction activities and procedures, including operational sequence, shall be submitted to the ENGINEER for approval. The procedures shall provide for safe conduct of the WORK, careful removal and disposition of materials and equipment, protection of existing facilities which are to remain undisturbed, coordination with existing facilities to remain in service, and timely disconnection and reconnection of utility services. The procedures shall include a detailed description and time schedule of the methods and equipment to be used for each operation and the sequence of operation. A storage plan for salvaged items shall be included.
1.4 DEMOLITION

A. Existing pavement, structures, equipment, piping, valves, electrical gear, instrumentation, utilities, and related appurtenances such as anchors, supports, and hardware indicated or required to be demolished as part of the WORK shall be removed and disposed of unless otherwise indicated. Removal of buried structures, utilities, and appurtenances includes the related excavation and backfill as required. Removed items shall be disposed of offsite by the CONTRACTOR.

B. Items to be removed include:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing 24-inch diameter waterline from STA 1226+00 to STA 1230+00</td>
<td>Steel pipe with cement mortar lining. Coal tarn enamel with additional 3-inch cement mortar coating. Pipe includes welded and gasketed joints, per Contract Drawings.</td>
</tr>
<tr>
<td>Existing Thrust Blocks</td>
<td>Two - 7 ft x 6 ft x 3.6 ft Concrete Blocks</td>
</tr>
<tr>
<td>Exiting Underwater Riprap</td>
<td>¼ ton riprap cover over existing pipe</td>
</tr>
</tbody>
</table>

1.5 SALVAGE

A. Items of existing equipment, piping, valves, electrical gear, instrumentation, utilities, and appurtenances indicated to be salvaged shall be removed without any degradation in condition from that prior to removal. Salvaged items shall be stockpiled and protected on the Site at a location directed by the ENGINEER. The CONTRACTOR shall be responsible to properly safeguard the salvaged items against damage and loss during removal and handling.

B. No items have been identified to be salvaged.

1.6 RELOCATION

A. Items of existing equipment, piping, valves, electrical gear, instrumentation, utilities, and appurtenances required to be relocated shall be removed without any degradation in condition from that prior to removal. The CONTRACTOR shall be responsible to properly safeguard the relocated items against damage and loss during removal, handling, storage, and installation in the new location.

B. No items have been identified to be relocated.

1.7 ABANDONMENT

A. Items of existing equipment, piping, valves, electrical gear, instrumentation, utilities, and appurtenances required to be abandoned shall be prepared by the CONTRACTOR as indicated.
B. No items have been identified to be abandoned.

1.8 REHABILITATION

A. Existing civil, landscaping, structural, mechanical, electrical, and instrumentation WORK disturbed or damaged by reconstruction activities shall be repaired and rehabilitated as indicated.

B. Damaged items shall be repaired or replaced with new items to restore items or surfaces to a condition equal to and matching that existing prior to damage.

1.9 DISPOSAL

A. The CONTRACTOR shall be responsible for the offsite disposal of debris resulting from reconstruction in compliance with local, state, and federal codes and requirements.

PART 2 -- PRODUCTS (NOT USED)

PART 3 -- EXECUTION

3.1 GENERAL

A. The CONTRACTOR shall coordinate demolition and reconstruction WORK with the OWNER and ENGINEER. Unless otherwise indicated, the CONTRACTOR shall be responsible for the sequence of activities. WORK shall be performed in accordance with applicable safety rules and regulations.

B. The CONTRACTOR shall verify that any utilities connected to structures, equipment, and facilities to be removed, relocated, salvaged, replaced, or abandoned are rendered inoperable, replaced with new utilities, or adequately bypassed with temporary utilities before proceeding with demolition and reconstruction.

C. The CONTRACTOR shall take precautions to avoid damage to adjacent facilities and to limit the WORK activities to the extent indicated. If reconstruction beyond the scope indicated is required, the CONTRACTOR shall obtain approval from the ENGINEER prior to commencing.

3.2 PROTECTION OF EXISTING FACILITIES

A. Before beginning any reconstruction, the CONTRACTOR shall carefully survey the existing facilities and examine the Specifications and Drawings to determine the extent of reconstruction and coordination with the WORK. Existing facilities not subject to reconstruction shall be protected and maintained. Damaged existing facilities shall be repaired to the previous condition or replaced.

B. Persons shall be afforded safe passages around areas of demolition.

C. Structural elements shall not be overloaded. The CONTRACTOR shall be responsible for shoring, bracing, or adding new supports as may be required for adequate structural support as a result of WORK performed under this Section. The CONTRACTOR shall
D. The CONTRACTOR shall carefully consider bearing loads and capacities before placement of equipment and material on Site. In the event of any questions as to whether an area to be loaded has adequate bearing capacity, the CONTRACTOR shall consult with the ENGINEER prior to the placement of such equipment or material.

3.3 DEMOLITION, SALVAGE, AND RELOCATION

A. The Contract Documents indicate existing facilities to be demolished, salvaged, and/or relocated. Auxiliary utilities including such services as water, air, chemicals, drainage, lubrication, fluid power, electrical wiring, controls, and instrumentation are not necessarily indicated. The CONTRACTOR shall verify the scope of the WORK to remove the equipment indicated; coordinate its shutdown, removal, replacement, or relocation; and submit an outage plan in accordance with Section 01 11 00 – Summary of Work. The removal of existing facilities for demolition, salvage, and relocation shall include the following requirements:

1. The area shall be thoroughly cleaned such that little or no evidence of the previous equipment installation will remain.

2. Asphalt and concrete pavement, curbs, and gutters shall be removed as necessary to perform reconstruction. The limits of removal shall be sawcut. When the required improvements have been constructed, new asphalt and concrete pavement, curbs, and gutters shall be placed to match the original unless otherwise indicated.

3. Below-grade areas and voids resulting from demolition of structures shall be completely filled. Fill and compaction shall be in accordance with Section 31 00 00 - Earthwork. After fill and compaction, surfaces shall be graded to meet adjacent contours and to provide flow to surface drainage structures, or as indicated.

4. When existing pipe is removed, the CONTRACTOR shall plug the resulting open ends whether or not so indicated. Where removed piping is exposed, the remaining piping shall be blind-flanged or fitted with a removable cap or plug, as required, until the new pipe connection is made.

5. Electrical reconstruction shall be conducted by the CONTRACTOR in a safe and proper manner to avoid injury from electrical shock to the OWNER's and CONTRACTOR's personnel. Electrical equipment to be shut off for a period of time shall be tagged, locked out, and sealed with a crimped wire and lead seal and made inoperable. At no time shall electrical wiring or connections which are energized or could become energized be accessible to CONTRACTOR, OWNER, or other personnel without suitable protection or warning signs.

B. The CONTRACTOR shall perform a functional test of existing equipment that is relocated and reinstalled to ensure the equipment functions in the manner documented during the initial inspection. The CONTRACTOR shall inform the ENGINEER in writing a minimum of 5 Days prior to the functional testing in order for the OWNER and ENGINEER to witness the test. If, in the opinion of the ENGINEER, the relocated
equipment does not function in a satisfactory manner, the CONTRACTOR shall make repairs and modifications necessary to restore the equipment to its original operating condition at no additional cost to the OWNER.

3.4 ABANDONMENT

A. Existing facilities to be abandoned shall be prepared as indicated. Where existing buried piping is to be abandoned, the CONTRACTOR shall remove the abandoned pipe for a distance of 5-feet from any connecting structures. Openings at the existing structures shall be repaired. The remaining pipe shall be capped at both ends prior to backfill. Buried piping, 12-inches diameter or greater shall be completely sand-filled prior to closure of the piping ends.

3.5 REHABILITATION

A. Certain areas of existing structures, piping, conduits, and the like will be affected by WORK necessary to complete modifications under this Contract. The CONTRACTOR shall be responsible to rehabilitate those areas affected by its construction activities.

B. When new piping is to be connected to existing piping, the existing piping shall be cut square and ends properly prepared for the connection. Any damage to the lining and coating of the existing piping shall be repaired. Dielectric insulating joints shall be installed at interconnections between new and existing piping.

C. Where existing equipment, piping, and supports, electrical panels and devices, conduits, and associated appurtenances are removed, the CONTRACTOR shall rehabilitate the affected area such that little or no evidence of the previous installation remains. Abandoned connections to piping and conduits shall be terminated with blind flanges, caps, and plugs suited for the material, type, and service of the pipe or conduit.

D. Where reconstruction activities damage the painting and coating of adjacent or nearby facilities, the damaged areas shall be surface prepared and coated in accordance with Section 09 96 00 - Protective Coatings to match the original painting and coating with a compatible system. Surfaces of equipment items that are to be relocated shall be prepared and be coated in accordance with Section 09 96 00 - Protective Coatings.

3.6 DISPOSAL

A. Demolition and removal of debris shall minimize interference with roads, streets, walks, and other adjacent occupied or used facilities which shall not be closed or obstructed without permission from the OWNER. Alternate routes shall be provided around closed or obstructed traffic ways.

B. Site debris, rubbish, and other materials resulting from reconstruction operations shall be legally removed and disposed of. Structures and equipment to be demolished shall be cleaned prior to demolition and the wash water properly disposed of. No trace of these structures shall remain prior to placing of backfill in the areas from which structures were removed.

C. Refuse, debris, and waste materials resulting from demolition and clearing operations shall not be burned.
3.7 OCCUPANCY AND POLLUTION CONTROL

A. Water sprinkling, temporary enclosures, chutes, and other suitable methods shall be used to limit dust and dirt rising and scattering in the area. The CONTRACTOR shall comply with government regulations pertaining to environmental protection.

B. Water shall not be used if it creates hazardous or objectionable conditions such as ice, flooding, or pollution.

3.8 CLEANING

A. During and upon completion of WORK, the CONTRACTOR shall promptly remove tools and equipment, surplus materials, rubbish, debris, and dust and shall leave areas affected by WORK in a clean, approved condition.

B. Adjacent structures shall be cleaned of dust, dirt, and debris caused by reconstruction, as directed by the ENGINEER or governing authorities, and adjacent areas shall be returned to condition existing prior to start of WORK.

C. The CONTRACTOR shall clean and sweep the street and road daily.

- END OF SECTION -
PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall furnish concrete formwork, bracing, shoring, and supports for cast-in-place concrete and shall design and construct falsework, all in accordance with the Contract Documents.

1.2 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01 33 00 - Contractor Submittals.

B. Manufacturer’s information demonstrating compliance with requirements for the following:
 1. Form ties and related accessories, including taper tie plugs, if taper ties are used.
 2. Form gaskets.
 3. Form release agent, including NSF certification if not using mineral oil.

1.3 QUALITY CONTROL

A. Tolerances: The variation from required lines or grade shall not exceed 1/4-inch in 10-feet, non-cumulative, and there shall be no offsets or visible waviness in the finished surface. Other tolerances shall be within the tolerances of ACI 117 - Standard Tolerances for Concrete Construction and Materials

PART 2 -- PRODUCTS

2.1 GENERAL

A. Except as otherwise expressly accepted by the ENGINEER, lumber brought on the Site for use as forms, shoring, or bracing shall be new material. Forms shall be smooth surface forms and shall be of the following materials:

 | Thrustblock | Plywood |

B. NSF-61 Compliance. Form materials that may remain or leave residues on or in the concrete shall be certified as compliant with NSF Standard 61 – Drinking Water System Components.

2.2 FORM AND FALSEWORK MATERIALS

A. Materials. Materials for concrete forms, formwork, and falsework shall conform to the following requirements:
1. Lumber shall be Douglas Fir or Southern Yellow Pine, construction grade or better, in conformance with U.S. Product Standard PS 20 - American Softwood Lumber Standard

2. Plywood for concrete formwork shall be new, waterproof, synthetic resin bonded, exterior type Douglas Fir or Southern Yellow Pine plywood manufactured especially for concrete formwork, shall conform to the requirements of PS 1 – Construction and Industrial Plywood, for Concrete Forms, Class I, and shall be edge sealed.

3. Form materials shall be metal, wood, plywood, or other material that will not adversely affect the concrete and will facilitate placement of concrete to the shape, form, line, and grade indicated. Metal forms shall accomplish such results. Wood forms for surfaces to be painted shall be Medium Density Overlaid plywood, MDO Ext. Grade.

4. Steel leave in place forms shall not be used.

2.3 FORM TIES

A. Form ties shall be provided with a plastic cone or other suitable means for forming a conical hole to insure that the form tie may be broken off back of the face of the concrete. The maximum diameter of removable cones for rod ties or other removable form tie fasteners having a circular cross-section shall not exceed 1.5 inches; and all such fasteners shall be such as to leave holes of regular shape for reaming. Form ties for water-retaining structures shall have integral waterstops that tightly fit the form tie so that they cannot be moved from mid-point of the tie. Form ties shall be ST Snap Ties by MeadowBurke; A3 Snap Ties by Dayton Superior, or approved equal.

B. Removable taper ties may be used when approved by the ENGINEER. A preformed neoprene or polyurethane tapered plug sized to seat at the center of the wall shall be inserted in the hole left by the removal of the taper tie. Use Taper Ties by MeadowBurke, D9 Taper Ties by Dayton Superior, or approved equal.

PART 3 -- EXECUTION

3.1 GENERAL

A. Design Responsibility. Forms to confine the concrete and shape it to the required lines shall be used wherever necessary. The CONTRACTOR shall assume full responsibility for the adequate design of forms, and any forms that are unsafe or inadequate in any respect shall promptly be removed from the WORK and replaced.

1. A sufficient number of forms of each kind shall be available to permit the required rate of progress to be maintained.

2. Provide worker protection from protruding reinforcement bars in accordance with applicable safety codes.

3. The design and inspection of concrete forms, falsework, and shoring shall comply with applicable local, state, and Federal regulations.
4. Plumb and string lines shall be installed before concrete placement and shall be maintained during placement. Such lines shall be used by CONTRACTOR's personnel and by the ENGINEER and shall be in sufficient number and properly installed. During concrete placement, the CONTRACTOR shall continually monitor plumb and string line form positions and immediately correct deficiencies.

B. Quality Control & Bracing. Concrete forms shall conform to the shape, lines, and dimensions of members required, and shall be substantial, free from surface defects, and sufficiently tight to prevent leakage. Forms shall be properly braced or tied together to maintain their position and shape under a load of freshly-placed concrete. If adequate foundation for shores cannot be secured, trussed supports shall be provided.

C. All forms shall be removed, after the appropriate curing times have been obtained, unless approved otherwise by the ENGINEER.

3.2 FORM DESIGN

A. Forms shall be true in every respect to the required shape and size, shall conform to the established alignment and grade, and shall be of sufficient strength and rigidity to maintain their position and shape under the loads and operations incident to placing and vibrating the concrete. Suitable and effective means shall be provided on forms for holding adjacent edges and ends of panels and sections tightly together and in accurate alignment so as to prevent the formation of ridges, fins, offsets, or similar surface defects in the finished concrete.

1. Plywood, 5/8-inch and greater in thickness, may be fastened directly to studding if the studs are spaced close enough to prevent visible deflection marks in the concrete.

2. The forms shall be tight so as to prevent the loss of water, cement, and fines during placing and vibrating of the concrete. Specifically, the bottom of wall forms that rest on concrete footings or slabs shall be provided with a gasket to prevent loss of fines and paste during placement and vibration of concrete. Such gasket may be a 1.0- to 1.5-inch diameter polyethylene rod held in position to the underside of the wall form.

3. Adequate clean-out holes shall be provided at the bottom of each lift of forms. The size, number, and location of such clean-outs shall be as acceptable to the ENGINEER.

4. Whenever concrete cannot be placed from the top of a wall form in a manner that meets the requirements of the Contract Documents, form windows shall be provided in the size and spacing needed to allow placement of concrete to the requirements of Section 03 30 00 - Cast-in-Place Concrete. The size, number, and location of such form windows shall be as acceptable to the ENGINEER.

3.3 CONSTRUCTION

A. Vertical Surfaces: Vertical surfaces of concrete members shall be formed, except where placement of the concrete against the ground is indicated. Not less than 1-inch of concrete shall be added to the indicated thickness of a concrete member where concrete
is permitted to be placed against trimmed ground in lieu of forms. Permission to do this on other concrete members will be granted only for members of comparatively limited height and where the character of the ground is such that it can be trimmed to the required lines and will stand securely without caving or sloughing until the concrete has been placed.

B. Construction Joints: Concrete construction joints will not be permitted at locations other than those indicated, except as may be acceptable to the ENGINEER. When a second lift is placed on hardened concrete, special precautions shall be taken in the way of the number, location, and tightening of ties at the top of the old lift and bottom of the new to prevent any unsatisfactory effect whatsoever on the concrete. Pipe stubs and anchor bolts shall be set in the forms where required.

C. Form Ties

1. Embedded Ties: Holes left by the removal of form tie cones shall be reamed with suitable toothed reamers so as to leave the surface of the holes clean and rough before being filled with mortar. Wire ties for holding forms will not be permitted. No form-tying device or part thereof, other than metal, shall be left embedded in the concrete. Ties shall not be removed in such manner as to leave a hole extending through the interior of the concrete members. The use of snap-ties that cause spalling of the concrete upon form stripping or tie removal will not be permitted. If steel panel forms are used, rubber grommets shall be provided where the ties pass through the form in order to prevent loss of cement paste. Where metal rods extending through the concrete are used to support or to strengthen forms, the rods shall remain embedded and shall terminate not less than 1-inch back from the formed face or faces of the concrete.

2. Removable Ties: Where taper ties are approved for use, the larger end of the taper tie shall be on the wet side of walls in water retaining structures. After the taper tie is removed, the hole shall be thoroughly cleaned and roughened for bond. A precast neoprene or polyurethane tapered plug shall be located at the wall centerline. The hole shall be completely filled with non-shrink grout for water bearing and below-grade walls. The hole shall be completely filled with non-shrink or regular cement grout for above-grade walls that are dry on both sides. Exposed faces of walls shall have the outer 2-inches of the exposed face filled with a cement grout that shall match the color and texture of the surrounding wall surface.

3.4 REUSE OF FORMS

A. Forms may be reused only if in good condition and only if acceptable to the ENGINEER. Light sanding between uses will be required wherever necessary to obtain uniform surface texture on exposed concrete surfaces. Exposed concrete surfaces are defined as surfaces which are permanently exposed to view. In the case of forms for the inside wall surfaces of hydraulic/water retaining structures, unused tie rod holes in forms shall be covered with metal caps or shall be filled by other methods acceptable to the ENGINEER.
3.5 REMOVAL OF FORMS

A. Careful procedures for the removal of forms shall be strictly followed, and this WORK shall be done with care so as to avoid injury to the concrete. No heavy loading on green concrete will be permitted.

1. For roof slabs and above-ground floor slabs, forms shall remain in place until test cylinders for the roof concrete attain a minimum compressive strength of 75 percent of the 28 Day strength in Section 03 30 00 - Cast-in-Place Concrete. No forms shall be disturbed or removed under an individual panel or unit before the concrete in the adjacent panel or unit has attained 75 percent of the 28 Day strength and has been in place for a minimum of 7 Days. The time required to establish said strength shall be as determined by the ENGINEER who will make several test cylinders for this purpose from concrete used in the first group of roof panels placed. If the time so determined is more than the 7 Day minimum, then that time shall be used as the minimum length of time.

2. For vertical walls of water holding structures, forms shall remain in place at least 36 hours after the concrete has been placed.

3. For parts of the WORK not specifically mentioned herein, forms shall remain in place for periods of time as recommended in ACI 347 - Guide to Formwork for Concrete.

3.6 MAINTENANCE OF FORMS

A. General Condition. Forms shall be maintained in good condition, particularly as to size, shape, strength, rigidity, tightness, and smoothness of surface. Before concrete is placed, the forms shall be thoroughly cleaned.

B. Form Oil. The form surfaces shall be treated with a non-staining mineral oil or other lubricant acceptable to the ENGINEER. Any excess lubricant shall be satisfactorily removed before placing the concrete. Where field oiling of forms is required, the CONTRACTOR shall perform the oiling at least 2 weeks in advance of their use. Care shall be exercised to keep oil off the surfaces of steel reinforcement and other metal items to be embedded in concrete.

3.7 FALSEWORK

A. The CONTRACTOR shall be responsible for the design, engineering, construction, maintenance, and safety of falsework, including staging, walkways, forms, ladders, and similar appurtenances, which shall equal or exceed the applicable requirements of the provisions of the OSHA Safety and Health Standards for Construction.

B. Falsework shall be designed and constructed to provide the necessary rigidity and to support the loads. Falsework for the support of a superstructure shall be designed to support the loads that would be imposed if the entire superstructure were placed at one time.

C. Falsework shall be placed upon a solid footing, safe against undermining, and be protected from softening. When the falsework is supported on timber piles, the
maximum calculated pile loading shall not exceed 20-tons. When falsework is supported on any portion of the structure which is already constructed, the load imposed by the falsework shall be spread, distributed, and braced in such a way as to avoid any possibility of damage to the structure.

- END OF SECTION -
SECTION 03 30 00 - CAST-IN-PLACE CONCRETE

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide cast-in-place concrete in accordance with the Contract Documents.

B. The term "hydraulic structure" used in these Specifications means environmental engineering concrete structures for the containment, treatment, or transmission of water, wastewater, other fluids, or gases.

C. The following types of concrete are covered in this Section:

1. Structural Concrete
 a. Regular Mix: Thrustblocks and other concrete items not indicated otherwise in the Contract Documents.

2. Sitework Concrete: Concrete to be used for curbs, gutters, catch basins, sidewalks, fence and guard post embedment, underground duct bank encasement, and other concrete appurtenant to electrical facilities unless otherwise indicated.

3. Lean Concrete: Concrete to be used for thrust blocks, pipe trench cut-off blocks, and cradles that are indicated on the Drawings as unreinforced. Lean concrete shall be used as protective cover for dowels intended for future connections.

1.2 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01300 – Contractor Submittals.

B. Delivery Tickets: Where ready-mix concrete is used, the CONTRACTOR shall furnish delivery tickets at the time of delivery of each load of concrete. Each ticket shall show the state-certified equipment used for measuring and the total quantities, by weight, of cement, sand, each class of aggregate, admixtures, the amount of water in the aggregate added at the batching plant, and the amount allowed to be added at the Site for the specific design mix. In addition, each ticket shall state the mix number, total yield in cubic yards, and the time of day, to the nearest minute, corresponding to the times when the batch was dispatched, when it left the plant, when it arrived at the Site, when unloading began, and when unloading was finished.

C. Additional Submittals. Test data relating to the cement, aggregate, and admixtures shall be less than 6 months old. Furnish the following submittals in accordance with ACI 301 – Structural Concrete:

1. Mill tests for cement.

2. Admixture certification. Chloride ion content shall be included.

3. Aggregate gradation test results and certification.
1.3 QUALITY CONTROL

A. General

1. Tests on component materials and for compressive strength and shrinkage of concrete shall be performed as indicated. Tests for determining slump shall be in accordance with ASTM C 143 – Test Method for Slump of Hydraulic Cement Concrete.

2. Testing for aggregate shall include sand equivalence, reactivity, organic impurities, abrasion resistance, and soundness, according to ASTM C 33 – Concrete Aggregates.

3. Concrete for testing shall be furnished by the CONTRACTOR, and the CONTRACTOR shall assist the ENGINEER in obtaining samples and disposal and cleanup of excess material.

B. Field Compression Tests

1. Each set of specimens shall be a minimum of 5 cylinders.

2. Compression test specimens for concrete shall be made in accordance with Section 9.2 of ASTM C 31 – Practices for Making and Curing Concrete Test Specimens in the Field. Specimens shall be 6-inches diameter by 12-inches tall cylinders.

3. Frequency of Testing

 1) Sampling frequency and testing for each class of concrete shall be in accordance with ACI 350 section 5.5 ACI 318 section 5.6 as follows:

 2) Frequency of testing may be changed at the discretion of the ENGINEER.

4. Compression tests shall be performed in accordance with ASTM C 39 – Test Method for Compressive Strength of Cylindrical Concrete Specimens. One test cylinder will be tested at 7 Days and 2 at 28 Days. The remaining cylinders will be held to verify test results, if needed.

C. Evaluation and Acceptance of Concrete

1. Evaluation and acceptance of the compressive strength of concrete will be according to ACI 318 – Building Code Requirements for Reinforced Concrete, Chapter 5 “Concrete Quality,” and as indicated.

2. A statistical analysis of compression test results will be performed according to ACI 214 – Recommended Practice for Evaluation of Strength Test Methods. The standard deviation of the test results shall not exceed 640 psi, when ordered at equivalent water content as estimated by slump.

3. If any concrete fails to meet these requirements, immediate corrective action shall be taken to increase the compressive strength for subsequent batches of the type of concrete affected.
4. When the standard deviation of the test results exceeds 640 psi, the average strength for which the mix is designed shall be increased by an amount necessary to satisfy the statistical requirement that the probability of any test being more than 500 psi below or the average of any 3 consecutive tests being below the required compressive strength is 1 in 100. The required average strength shall be calculated by Criterion No. 3 of ACI 214 using the actual standard deviation.

5. Concrete that fails to meet the ACI requirements and these Specifications is subject to removal and replacement.

D. **Aggregate Testing:** Aggregate testing shall be performed within 12 months of the start of construction and every 12 months during construction to determine continued compliance.

E. **Construction Tolerances:** The CONTRACTOR shall set and maintain concrete forms and perform finishing operations to ensure that the completed WORK is within tolerances. Surface defects and irregularities are defined as finishes and are different from tolerances. Tolerance is the permissible variation from lines, grades, or dimensions indicated on the Drawings. Where tolerances are not stated in the Specifications, permissible deviations will be in accordance with ACI 117 – Standard Tolerance for Concrete Construction and Materials.

1. The following non-cumulative construction tolerances apply to finished walls and slabs unless otherwise indicated:

<table>
<thead>
<tr>
<th>Item</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation of the constructed linear outline from the established position in plan.</td>
<td>In 10-feet: 1/4-inch; In 20-feet or more: 1/2-inch</td>
</tr>
<tr>
<td>Variation from the level or from the grades indicated.</td>
<td>In 10-feet: 1/4-inch; In 20-feet or more: 1/2-inch</td>
</tr>
<tr>
<td>Variation from plumb</td>
<td>In 10-feet: 1/4-inch; In 20-feet or more: 1/2-inch</td>
</tr>
<tr>
<td>Variation in the thickness of slabs and walls.</td>
<td>Minus 1/4-inch; Plus 1/2-inch</td>
</tr>
<tr>
<td>Variation in the locations and sizes of slabs and wall openings</td>
<td>Plus or minus 1/4-inch</td>
</tr>
</tbody>
</table>

PART 2 -- PRODUCTS

2.1 **CONCRETE MATERIALS**

 A. **General**
1. Ready-mix concrete shall conform to the requirements of ASTM C 94 – Ready Mixed Concrete.

2. Cement for concrete that will contact potable water shall not be obtained from kilns that burn metal rich hazardous waste fuel.

3. Materials shall be delivered, stored, and handled so as to prevent damage by water or breakage. Cement reclaimed from cleaning bags or leaking containers shall not be used. Cement shall be used in the sequence of receipt of shipments.

B. Materials. Materials for concrete shall comply with ACI 301 and shall conform to the following requirements:

1. Cement. Cement shall be standard brand portland cement conforming to ASTM C 150 – Portland Cement, for Type I/II or Type V. A minimum of 85 percent of cement by weight shall pass a 325 screen. A single brand of cement shall be used throughout the WORK, and prior to its use, the brand shall be accepted by the ENGINEER. The cement shall be suitably protected from exposure to moisture until used. Cement that has become lumpy shall not be used. Sacked cement shall be stored in such a manner so as to permit access for inspection and sampling. Certified mill test reports, including fineness, for each shipment of cement to be used shall be submitted to the ENGINEER, if requested, regarding compliance with the Specifications.

2. Water. Water for mixing and curing shall be potable, clean, and free from objectionable quantities of silty organic matter, alkali, salts, and other impurities. The water shall be considered potable, for the purposes of this Section only, if it meets the requirements of the local governmental agencies. Agricultural water with high total dissolved solids (greater than 1000 mg/l TDS) shall not be used.

3. Aggregates. Aggregates shall be obtained from pits acceptable to the ENGINEER, shall be non-reactive, and shall conform to ASTM C 33 – Concrete Aggregates. Maximum size of coarse aggregate shall be as indicated. Substituting lightweight sand for fine aggregate will not be permitted.

 a. Coarse aggregates shall consist of clean, hard, durable gravel, crushed gravel, crushed rock, or a combination thereof. The coarse aggregates shall be prepared and handled in 2 or more size groups for combined aggregates with a maximum size greater than 3/4-inch. When the aggregates are proportioned for each batch of concrete, the 2 size groups shall be combined.

 b. Fine aggregates shall be natural sand or a combination of natural and manufactured sand that is hard and durable. When tested in accordance with ASTM D 2419 – Test Methods for Sand Equivalent Value of Soils and Fine Aggregate, the sand equivalency shall not be less than 75 percent for an average of 3 samples, nor less than 70 percent for an individual test. Gradation of fine aggregate shall conform to ASTM C 33 when tested in accordance with ASTM C 136 for the fineness modulus of the sand used, including the optional grading in Section 6.2. The fineness modulus of sand used shall not be over 3.1.
c. Combined aggregates shall be well graded from coarse to fine sizes and shall be uniformly graded between screen sizes to produce concrete that has optimum workability and consolidation characteristics. Where a trial batch is required for a mix design, the final combined aggregate gradations will be established during the trial batch process.

d. When tested in accordance with ASTM C 33, the ratio of silica released to reduction in alkalinity shall not exceed 1.0.

e. When tested in accordance with ASTM C 33, the fine aggregate shall produce a color in the supernatant liquid no darker than the reference standard color solution.

f. When tested in accordance with ASTM C 33, the coarse aggregate shall show a loss not exceeding 42 percent after 500 revolutions or 10.5 percent after 100 revolutions.

g. When tested in accordance with ASTM C 33, the loss resulting after 5 cycles of the soundness test shall not exceed 10 percent for fine aggregate and 12 percent for coarse aggregate when using sodium sulfate.

4. **Flyash.** If used, flyash shall be Class F and meet ASTM C618.

5. **Admixtures.** Admixtures shall be compatible and be furnished by a single manufacturer capable of providing qualified field service representation. Admixtures shall be used in accordance with manufacturer’s recommendations. If the use of an admixture is producing an inferior end result, the CONTRACTOR shall discontinue use of the admixture. Admixtures shall not contain thiocyanates nor more than 0.05 percent chloride ion, and shall be non-toxic after 30 days.

a. **Air-entraining agents:** Agents shall meet the requirements of ASTM C 260 – Air Entraining Admixtures for Concrete shall be used. Concrete floors to receive a dry-shake floor hardener shall have an air content not to exceed 3 percent. The OWNER reserves the right, at any time, to sample and test the air-entraining agent. The air-entraining agent shall be added to the batch in a portion of the mixing water. The solution shall be batched by means of a mechanical batcher capable of accurate measurement. Air content shall be tested at the point of placement. Air-entraining admixture shall be approved by the ENGINEER prior to use.

b. **Set controlling and water reducing admixtures:** Admixtures may be added at the CONTRACTOR's option, subject to the ENGINEER's approval, to control the set, effect water reduction, and increase workability. The cost of adding an admixture shall be the CONTRACTOR's responsibility. Concrete containing an admixture shall be first placed at a location determined by the ENGINEER. Admixtures shall conform to ASTM C 494 – Chemical Admixtures for Concrete. The required quantity of cement shall be used in the mix regardless of whether or not an admixture is used.

1) Concrete shall not contain more than one water reducing admixture.
2) Set controlling admixture may be either with or without water-reducing properties. Admixture shall be appropriate for the air temperature at time of placement. Set controlling admixture shall be approved by the ENGINEER prior to use.

3) Normal range water reducer shall conform to ASTM C 494, Type A. The quantity of admixture used and the method of mixing shall be in accordance with the manufacturer's instructions and recommendations. Normal range water reducing admixtures shall be approved by the ENGINEER prior to use.

4) High range water reducer shall conform to ASTM C 494, Type F or G. High range water reducer shall be added to the concrete after all other ingredients have been mixed and initial slump has been verified. No more than 14 ounces of water reducer per sack of cement shall be used. Water reducer shall be considered as part of the mixing water when calculating the water/cement ratio. High range water reducing admixtures shall be approved by the ENGINEER prior to use.

5) If the high range water reducer is added to the concrete at the Site, it may be used in conjunction with the same water reducer added at the batch plant. Concrete shall have a slump of 3-inches plus or minus 1/2-inch prior to adding the high range water reducing admixture at the Site. The high range water reducing admixture shall be accurately measured and pressure injected into the mixer as a single dose by an experienced technician. A standby system shall be provided and tested prior to each day's operation of the primary system.

6) Concrete shall be mixed at mixing speed for a minimum of 70 mixer revolutions or 5 minutes after the addition of the high range water reducer, unless recommended otherwise by the manufacturer.

6. **Lithium Additives:** Lithium additives shall not be used in concrete mix design for water bearing structures.

7. Fine and coarse aggregates to be used in all concrete shall be evaluated individually and tested for alkali-aggregate reactivity, according to ASTM C1260. The average expansion of the mortar bars for the fine aggregate test according to ASTM C1260 shall not exceed 0.10% at 16-days of immersion in a 1N NaOH solution. Likewise, the average expansion of the mortar bars for the coarse aggregate test according to ASTM C1260 shall not exceed 0.10% at 16-days of immersion in a 1N NaOH solution.

8. If either of the aggregates do not pass the ASTM C1260 test requirements as described above, CONTRACTOR shall provide information to the CONTRACTOR that the proposed fine and course aggregate is the best (i.e. least reactive) locally available material within [[50]] [[100]]-miles of the project site. In addition, the CONTRACTOR shall provide additional testing of the proposed aggregates (fine and course) along with approved mitigating additives (i.e. fly ash, class N pozzolan, GGBF slag, silica fume or other approved additives) to the concrete mix design, according to the requirements of ASTM C1567 and the following requirements:
a. The concrete mix design parameters used in the ASTM C1567 expansion test shall be within the allowable ranges of mix design parameters as specified under Part 2.5.D of this Section. After 16-days of immersion in a 1N NaOH solution, the average expansion of the three mortar bars shall not exceed 0.10% as measured according to ASTM C1567 standards and protocol.

b. ASR test on both the fine and course aggregate and concrete mix additives (i.e. flyash, pozzolan, or other approved additives), sample bar preparation, testing and all analytical methods shall meet the ASTM C1567 testing procedural requirements.

c. Alkali content of the cement in the proposed concrete mix design shall not be greater than the alkali content of the cement used in the test samples.

d. Results of the ASR test show that expansion of the concrete sample is less than 0.10% at 16-days after the start of the expansion test procedure.

e. Test results shall be reported to the CONTRACTOR and Design Engineer at 7-days, 11-days, and 16-days.

f. The Concrete Supplier is still actively mining and using aggregate from the same representative portion of the aggregate pit from which the aggregate samples were taken for testing.]

9. In lieu of the ASR testing above the aggregate may be tested in accordance with the requirements of ASTM C1293.

a. The concrete mix design parameters used in the ASTM C1293 expansion test shall be within the allowable ranges of mix design parameters as specified under Part 2.5.D of this Section.

b. Alkali content of the cement in the proposed concrete mix design shall not be greater than the alkali content of the cement used in the test samples.

c. Results of the test, in accordance with ASTM C33, shall indicate less than 0.04% expansion at 1-year for cement aggregate combinations to demonstrate aggregates to be non-reactive.

d. Results of the test, in accordance with ASTM C33, shall indicate less than 0.04% expansion at 2-years for cement aggregate combinations with pozzolan or slag to demonstrate aggregates to be non-reactive.

2.2 CURING MATERIALS

A. Curing compounds shall be resin-based and compliant with local VOC requirements.

1. Regular curing compounds shall be white pigmented and conform to ASTM C 309 - Liquid Membrane-Forming Compounds for Curing Concrete, Type 2, Class B. Sodium silicate compounds shall not be allowed. Concrete curing compound shall be approved by the ENGINEER prior to use.
2. When curing compound must be removed for finishes or grouting, compounds shall be a dissipating type meeting ASTM C 309, type 1 or 2, Class B. Concrete curing compound shall be approved by the ENGINEER prior to use.

B. Polyethylene sheet for use as concrete curing blanket shall be white and shall have a nominal thickness of 6-mils. The loss of moisture when determined in accordance with ASTM C 156 – Test Method for Water Retention by Concrete Curing Materials, shall not exceed 0.055 grams per square centimeter of surface.

C. Polyethylene-coated waterproof paper sheeting for use as concrete curing blanket shall consist of white polyethylene sheeting free of visible defects, uniform in appearance, have a nominal thickness of 2-mils, and be permanently bonded to waterproof paper conforming to the requirements of Federal Specification UU-B-790A – Building Paper, Vegetable Fiber (Kraft, Waterproofed, Water Repellant and Fire Resistant). The loss of moisture, when determined in accordance with ASTM C 156, shall not exceed 0.055 gram per square centimeter of surface.

D. Polyethylene-coated burlap for use as concrete curing blanket shall be 4-mils thick with white opaque polyethylene film impregnated or extruded into one side of the burlap. Burlap shall weigh not less than 9 ounces per square yard. The loss of moisture, when determined in accordance with ASTM C 156, shall not exceed 0.055 grams per square centimeter of surface.

E. Curing mats for use in Curing Method 6 below shall be heavy shag rugs or carpets or cotton mats quilted at 4-inches on center. Curing mats shall weigh a minimum of 12 ounces per square yard when dry.

F. Evaporation retardant shall be a material such as MasterKure ER 50 by BASF, Eucobar by Euclid Chemical Company, L&M E-CON by Laticrete, or equal.

2.3 NON-WATERSTOP JOINT MATERIALS

A. Materials for non-waterstop joints in concrete shall conform to the following requirements:

1. Preformed joint filler shall be a non-extruding neoprene sponge or polyurethane type conforming to Section 03290 - Joints in Concrete.

2. Elastomeric joint sealer shall conform to Section 07920 - Sealants and Caulking.

3. Mastic joint sealer shall be a material that does not contain evaporating solvents; that will tenaciously adhere to concrete surfaces; that will remain permanently resilient and pliable; that will not be affected by continuous presence of water and will not in any way contaminate potable water; and that will effectively seal the joints against moisture infiltration even when the joints are subject to movement from expansion and contraction. The sealer shall be composed of special asphalts or similar materials blended with lubricating and plasticizing agents to form a tough, durable mastic substance containing no volatile oils or lubricants and shall be capable of meeting the test requirements set forth below, if testing is required by the ENGINEER.
2.4 MISCELLANEOUS MATERIALS

2.5 CONCRETE DESIGN REQUIREMENTS

A. **General:** Concrete shall be composed of cement, admixtures, aggregates, and water of the qualities indicated. In general, the mix shall be designed to produce a concrete capable of being deposited so as to obtain maximum density and minimum shrinkage, and where deposited in forms, to have good consolidation properties and maximum smoothness of surface. The aggregate gradations shall be formulated to provide fresh concrete that will not promote rock pockets around reinforcing steel or embedded items. The proportions shall be changed whenever necessary or desirable to meet the required results. Changes shall be subject to review by the ENGINEER.

B. **Fine Aggregate Composition:** In mix designs for structural concrete, the percentage of fine aggregate in total aggregate by weight shall be as indicated in the following table.

<table>
<thead>
<tr>
<th>Fineness Modulus</th>
<th>Maximum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 or less</td>
<td>41</td>
</tr>
<tr>
<td>2.7 to 2.8</td>
<td>42</td>
</tr>
<tr>
<td>2.8 to 2.9</td>
<td>43</td>
</tr>
<tr>
<td>2.9 to 3.1</td>
<td>44</td>
</tr>
</tbody>
</table>

1. For other concrete, the maximum percentage of fine aggregate of total aggregate by weight shall not exceed 50.

C. Duct bank concrete shall contain an integral red-oxide coloring pigment. Concrete shall be dyed red throughout. Surface treatment to color duct banks will not be acceptable.

D. **Water/Cement Ratio W/C:** The water/cement ratio indicated is for saturated-surface dry condition of aggregate. Every Day, throughout the day, the batch water added shall be adjusted for the total free water in the aggregates.

1. Total free moisture of aggregates shall be determined by:
 a. Starting with the total moisture content of all aggregate, calculated by ASTM C 566 -Test Method for Total Moisture Content of Aggregate by Drying
 b. Subtracting the moisture absorbed by the coarse aggregate, calculated by ASTM C 127 – Standard Test Method for Density, Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
 c. Subtracting the moisture absorbed by the fine aggregate, calculated by ASTM C 128 – Standard Test Method for Density, Relative Density (Specific Gravity) and Absorption of Fine Aggregate
E. Concrete Property Tables

<table>
<thead>
<tr>
<th>Structural Concrete</th>
<th>Regular Mix</th>
<th>Not Used</th>
<th>Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of WORK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Thrustblocks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min 28 Day Compressive Strength, psi</td>
<td>4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Aggregate Size, in</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement Content, lbs/cubic yard,</td>
<td>564 to 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Allowable Fly Ash Content (FA); lbs/cubic yard</td>
<td>(i.e upto 15 % max of cement content)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max W/C Ratio by weight</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Air Content, percent</td>
<td>4.5 to 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slump, in</td>
<td>3-in +/- 1-in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with high range water reducer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-in +/- 2-in</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The CONTRACTOR is cautioned that the limiting parameters above are not a mix design. Admixtures may be required to achieve workability required by the CONTRACTOR’s construction methods and aggregates. The CONTRACTOR is responsible for providing concrete with the required workability and strength.

F. Adjustments to Mix Design: The CONTRACTOR may elect to decrease the water/cement ratio to achieve the strength and shrinkage requirements and/or add water reducers, as required to achieve workability. The mixes shall be changed whenever such change is necessary or desirable to secure the required strength, density,
workability, and surface finish, and the CONTRACTOR shall be entitled to no additional compensation because of such changes. Any changes to the accepted concrete mix design shall be submitted to the ENGINEER for review and shall be tested again in accordance with these Specifications.

2.6 CONSISTENCY

A. The quantity of water in a batch of concrete shall be just sufficient, with a normal mixing period, to produce a concrete that can be worked properly into place without segregation and which can be compacted by vibratory methods to give the desired density, impermeability, and smoothness of surface. The quantity of water shall be changed as necessary, with variations in the nature or moisture content of the aggregates, to maintain uniform production of a desired consistency. The consistency of the concrete in successive batches shall be determined by slump tests in accordance with ASTM C 143 – Test Method for Slump of Hydraulic Cement Concrete. The slumps shall be as indicated with the concrete properties.

B. Compressive Strength Testing. The determination of compressive strength will be made by testing 6-inch diameter by 12-inch high cylinders; made, cured, and tested in accordance with ASTM C 192 - Practice for Making and Curing Concrete Test Specimens in the Laboratory and ASTM C 39. Three compression test cylinders will be tested at 7 Days and 3 at 28 Days. The average compressive strength for the 3 cylinders tested at 28 Days for any given trial batch shall not be less than 125 percent of the indicated compressive strength.

2.7 MEASUREMENT OF CEMENT AND AGGREGATE

A. The amount of cement and of each separate size of aggregate entering into each batch of concrete shall be determined by direct weighing equipment furnished by the CONTRACTOR and acceptable to the ENGINEER. Weighing tolerances for the materials shall be a maximum of that given below.

<table>
<thead>
<tr>
<th>Material</th>
<th>Percent of Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1</td>
</tr>
<tr>
<td>Aggregates</td>
<td>3</td>
</tr>
<tr>
<td>Admixtures</td>
<td>3</td>
</tr>
</tbody>
</table>

2.8 MEASUREMENT OF WATER

A. The quantity of water entering the mixer shall be measured by a suitable water meter or other measuring device of a type acceptable to the ENGINEER and capable of measuring the water in variable amounts within a tolerance of one percent. The water feed control mechanism shall be capable of being locked in position so as to deliver constantly any required amount of water to each batch of concrete. A positive quick-acting valve shall be used for a cut-off in the water line to the mixer. The operating mechanism shall prevent leakage when the valves are closed.
2.9 READY-MIXED CONCRETE

A. At the CONTRACTOR’S option, ready-mixed concrete may be used if it meets the requirements as to materials, batching, mixing, transporting, and placing indicated herein and is in accordance with ASTM C 94, including the following supplementary requirements.

B. Ready-mixed concrete shall be delivered to the WORK, and discharge shall be completed within one hour after the addition of the cement to the aggregates or before the drum has been revolved 250 revolutions, whichever occurs first.

C. Truck mixers shall be equipped with electrically-actuated counters by which the number of revolutions of the drum or blades may be readily verified. The counter shall be the resettable, recording type and shall be mounted in the driver's cab. The counters shall be actuated at the time of starting mixers at mixing speeds.

D. Each batch of concrete shall be mixed in a truck mixer for not less than 70 revolutions of the drum or blades at the rate of rotation designated by the manufacturer of equipment. Additional mixing, if any, shall be at the speed designated by the manufacturer of the equipment as agitating speed. Materials including mixing water shall be in the mixer drum before actuating the revolution counter for determining the number of revolutions of mixing.

E. Truck mixers and their operation shall be such that the concrete throughout the mixed batch as discharged is within acceptable limits of uniformity with respect to consistency, mix, and grading. If slump tests taken at approximately the 1/4 and 3/4 points of the load during discharge give slumps differing by more than one-inch when the required slump is 3-inches or less, or if they differ by more than 2-inches when the required slump is more than 3-inches, the mixer shall not be used on the WORK unless the causative condition is corrected and satisfactory performance is verified by additional slump tests. Mechanical details of the mixer, such as water measuring and discharge apparatus, condition of the blades, speed of rotation, general mechanical condition of the unit, and clearance of the drum, shall be checked before a further attempt to use the unit will be permitted.

F. Each batch of ready-mixed concrete delivered to the Site shall be accompanied by a delivery ticket that is furnished to the ENGINEER in accordance with the Paragraph above entitled "Delivery Tickets."

G. The use of non-agitating equipment for transporting ready-mixed concrete will not be permitted. Combination truck and trailer equipment for transporting ready-mixed concrete will not be permitted. The quality and quantity of materials used in ready-mixed concrete and in batch aggregates shall be subject to continuous inspection at the batching plant by the ENGINEER.

PART 3 -- EXECUTION

3.1 PROPORTIONING AND MIXING

A. Proportioning: Proportioning of the mix shall conform to ACI 301.
B. **Mixing:** Mixing shall conform to ACI 301.

C. **Slump:** Slumps shall be as indicated.

D. **Retempering:** Retempering of concrete or mortar that has partially hardened shall not be permitted.

3.2 **PREPARATION OF SURFACES FOR CONCRETING**

A. **General:** Earth surfaces shall be thoroughly wetted by sprinkling prior to the placing of any concrete, and these surfaces shall be kept moist by frequent sprinkling up to the time of placing concrete thereon. The surface shall be free from standing water, mud, and debris at the time of placing concrete.

3.3 **HANDLING, TRANSPORTING, AND PLACING**

A. **General:** Placing of concrete shall conform to the applicable portions of ACI 301 and the requirements of this Section. No aluminum materials shall be used in conveying any concrete.

B. **Non-Conforming WORK or Materials:** Concrete which during or before placing is found not to conform to the requirements indicated herein shall be rejected and immediately removed from the WORK. Concrete that is not placed in accordance with these requirements or which is of inferior quality shall be removed and replaced.

C. **Unauthorized Placement:** No concrete shall be placed except in the presence of a duly authorized representative of the ENGINEER. The CONTRACTOR shall notify the ENGINEER in writing at least 24 hours in advance of placement of any concrete.

D. **Placement in Wall and Column Forms:** Concrete shall not be dropped through reinforcement steel or into any deep form, nor shall concrete be placed in any form in such a manner as to leave accumulation of mortar on the form surfaces above the placed concrete. In such cases, means such as hoppers and, if necessary, vertical ducts of canvas, rubber, or metal shall be used for placing concrete in the forms in a manner that it may reach the place of final deposit without separation. In no case shall the free fall of concrete below the ends of ducts, chutes, or buggies exceed 4-feet in walls and 8-feet in columns. Concrete shall be uniformly distributed during the process of depositing and in no case after depositing shall any portion be displaced in the forms more than 6-feet in horizontal direction. Concrete in wall forms shall be deposited in uniform horizontal layers not deeper than 2-feet; and care shall be taken to avoid inclined layers or inclined construction joints except where such are required for sloping members. Each layer shall be placed while the previous layer is still soft. The rate of placing concrete in wall forms shall not exceed 5-feet of vertical rise per hour. Sufficient illumination shall be provided in the interior of forms so that the concrete at the places of deposit is visible from the deck or runway.

E. **Conveyor Belts and Chutes:** Ends of chutes, hopper gates, and other points of concrete discharge throughout the CONTRACTOR's conveying, hoisting, and placing system shall be designed and arranged so that concrete passing from them will not fall separated into whatever receptacle immediately receives it. Conveyor belts, if used, shall be of a type acceptable to the ENGINEER. Chutes longer than 50-feet will not be
permitted. Minimum slopes of chutes shall be such that concrete of the indicated consistency will readily flow in them. If a conveyor belt is used, it shall be wiped clean by a device operated in such a manner that none of the mortar adhering to the belt will be wasted. Conveyor belts and chutes shall be covered.

F. **Placement in Slabs:** Concrete placement in sloping slabs shall proceed uniformly from the bottom of the slab to the top for the full width of the placement. As the WORK progresses, the concrete shall be vibrated and carefully worked around the slab reinforcement, and the surface of the slab shall be screeded in an up-slope direction.

G. **Temperature of Concrete:** The temperature of concrete when it is being placed shall be not more than 90 degrees F nor less than 50 degrees F. For sections less than 12-inches thick the temperature of concrete when placed shall be not less than 55 degrees.

1. If required by ENGINEER, CONTRACTOR shall submit detailed procedures for production, transportation, placement, protection, curing, and temperature monitoring of concrete during hot or cold weather. The submittal shall include procedures to be implemented upon abrupt changes in weather conditions or equipment failures.

2. CONTRACTOR shall not be entitled to additional compensation for satisfying the hot weather placement or the cold weather placement requirements below.

H. **Hot Weather Placement**

1. If the temperature of the concrete is 85 degrees F or greater, the time between introducing the cement into the aggregates and discharge shall not exceed 45 minutes.

2. If concrete is placed when the weather is such that the temperature of the concrete would exceed 90 degrees F, CONTRACTOR shall employ effective means such as precleaning of aggregates and using ice as mixing water or placing at night as necessary to maintain the temperature of the concrete below 90 degrees F as it is placed.

3. During the curing period, the maximum temperature decrease measured at the surface of the concrete shall not exceed 50 degrees F in 24 hours nor 5 degrees F in one hour.

I. **Cold Weather Placement**

1. Placement of concrete shall conform to ACI 306.1 - Cold Weather Concreting, and the following.

2. Remove snow, ice, and frost from the surfaces, including reinforcement, against which concrete is to be placed. Before beginning concrete placement, thaw the subgrade to a minimum depth of 6-inches. Reinforcement and embedded items shall be warmed to above 32 degrees F prior to concrete placement.

3. Maintain the concrete temperature above 50 degrees F for at least 72 hours after placement.
4. Concrete ingredients shall not be heated more than necessary to prevent the temperature of the mixed concrete, as placed, from falling below the minimum temperature criterion.

3.4 PUMPING OF CONCRETE

A. **General:** If the pumped concrete does not produce satisfactory end results, the CONTRACTOR shall discontinue the pumping operation and proceed with the placing of concrete using conventional methods.

B. **Pumping Equipment:** The pumping equipment shall have 2 cylinders and be designed to operate with one cylinder in case the other one is not functioning. In lieu of this requirement, the CONTRACTOR may have a standby pump on the Site during pumping.

C. The minimum diameter of the hose conduits shall be in accordance with ACI 304.2R – Placing Concrete by Pumping Methods.

D. Pumping equipment and hose conduits that are not functioning properly shall be replaced.

E. Aluminum conduits for conveying the concrete shall not be permitted.

F. **Field Control:** Concrete samples for slump, air content, and test cylinders will be taken at the placement end of the hose.

3.5 ORDER OF PLACING CONCRETE

A. The order of placing concrete in the WORK shall be acceptable to the ENGINEER. To minimize the effects of shrinkage, the concrete shall be placed in units as bounded by construction joints at the indicated locations. The placing of units shall be done by placing alternate units in a manner such that each unit placed shall have cured at least 5 Days for hydraulic structures and 2 Days for all other structures before the contiguous unit or units are placed, except that the corner sections of vertical walls shall not be placed until the 2 adjacent wall panels have cured at least 10 Days for hydraulic structures and 4 Days for all other structures.

B. The surface of the concrete shall be level whenever a run of concrete is stopped. For a level, straight joint on the exposed surface of walls, a wood strip at least 3/4-inch thick shall be tacked to the forms on these surfaces. The concrete shall be carried about 1/2-inch above the underside of the strip. About one hour after the concrete is placed, the strip shall be removed and any irregularities in the edge formed by the strip shall be leveled with a trowel and laitance shall be removed.

3.6 TAMPING AND VIBRATING

A. As concrete is placed in the forms or in excavations, it shall be thoroughly settled and compacted throughout the entire depth of the layer which is being consolidated into a dense, homogeneous mass, filling all corners and angles, thoroughly embedding the reinforcement, eliminating rock pockets, and bringing only a slight excess of water to the exposed surface of concrete. Vibrators shall be Group 3 per ACI 309 – Consolidation of Concrete, high speed power vibrators (8000 to 12,000 rpm) of an immersion type in
sufficient number and with at least one standby unit as required. Group 2 vibrators may be used only at specific locations when accepted by the ENGINEER.

B. Care shall be used in placing concrete around waterstops. The concrete shall be carefully worked by rodding and vibrating to make sure that air and rock pockets have been eliminated. Where flat-strip type waterstops are placed horizontally, the concrete shall be worked under the waterstops by hand, making sure that air and rock pockets have been eliminated. Concrete surrounding the waterstops shall be given additional vibration over and above that used for adjacent concrete placement to assure complete embedment of the waterstops in the concrete.

C. Concrete in walls shall be internally vibrated and at the same time rammed, stirred, or worked with suitable appliances, tamping bars, shovels, or forked tools until it completely fills the forms or excavations and closes snugly against each surface. Subsequent layers of concrete shall not be placed until the layers previously placed have been worked thoroughly. Vibrators shall be provided in sufficient numbers, with standby units as required, to accomplish the required results within 15 minutes after concrete of the prescribed consistency is placed in the forms. The vibrating head shall not contact the surfaces of the forms. Care shall be taken not to vibrate concrete excessively or to work it in any manner that causes segregation of its constituents.

3.7 FINISHING CONCRETE SURFACES

A. General: Surfaces shall be free from fins, bulges, ridges, offsets, honeycombing, or roughness of any kind, and shall present a finished, smooth, continuous hard surface. Allowable deviations from plumb or level and from the alignment, profiles, and dimensions indicated are defined as tolerances and are indicated above. These tolerances are to be distinguished from irregularities in finish as described herein. Aluminum finishing tools shall not be used.

3.8 CURING AND DAMPPROOFING

A. General: Concrete shall be cured for not less than 7 Days after placing, in accordance with the methods indicated below for the different parts of the WORK.

<table>
<thead>
<tr>
<th>Surface to be Cured or Dampproofed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encasement and ductbank concrete and thrust blocks</td>
<td>3</td>
</tr>
</tbody>
</table>

B. Method 1: Wooden forms shall be wetted immediately after concrete has been placed and shall be kept wet with water until removal. If steel forms are used the exposed concrete surfaces shall be kept continuously wet until the forms are removed. If forms are removed within 7 Days of placing the concrete, curing shall be continued in accordance with Method 6 below.

C. Method 2: The surface shall be covered with burlap mats which shall be kept wet with water for the duration of the curing period, until the concrete in the walls has been placed. No curing compound shall be applied to surfaces cured under Method 2.
D. **Method 3:** The surface shall be covered with moist earth not less than 4 hours nor more than 24 hours after the concrete is placed. Earthwork operations that may damage the concrete shall not begin until at least 7 Days after placement of concrete.

E. **Method 4:** The surface shall be sprayed with a liquid curing compound.

1. Compound shall be applied in accordance with the manufacturer’s printed instructions at a maximum coverage rate of 200 square feet per gallon and in such a manner as to cover the surface with a uniform film that will seal thoroughly.

2. Where the curing compound method is used, care shall be exercised to avoid damage to the seal during the 7 Day curing period. If the seal is damaged or broken before expiration of the curing period, the break shall be repaired immediately by the application of additional curing compound over the damaged portion.

3. Wherever curing compound has been applied by mistake to surfaces against which concrete subsequently is to be placed and to which it is to adhere, compound shall be entirely removed by wet sandblasting just prior to the placing of new concrete.

4. Curing compound shall be applied as soon as the concrete has hardened enough to prevent marring on unformed surfaces and within 2 hours after removal of forms. Repairs to formed surfaces shall be made within the 2 hour period; provided, however, that any such repairs which cannot be made within the said 2 hour period shall be delayed until after the curing compound has been applied. When repairs are to be made to an area on which curing compound has been applied, the area involved shall first be wet-sandblasted to remove the curing compound.

5. At locations where concrete is placed adjacent to a panel which has been coated with curing compound, the panel shall have curing compound reapplied to an area within 6-feet of the joint and to any other location where the curing membrane has been disturbed.

6. Prior to final acceptance of the WORK, visible traces of curing compound shall be removed in such a manner that does not damage the surface finish.

F. **Method 5:**

1. Until the concrete surface is covered with curing compound, the entire surface shall be kept damp by applying water using nozzles that atomize the flow so that the surface is not marred or washed. The concrete shall be given a coat of curing compound in accordance with Method 4 above. Not less than one hour nor more than 4 hours after the curing compound has been applied, the surface shall be wetted with water delivered through a fog nozzle, and concrete-curing blankets shall be placed on the slabs. The curing blankets shall be polyethylene sheet, polyethylene-coated waterproof paper sheeting, or polyethylene-coated burlap. The blankets shall be laid with the edges butted together and with the joints between strips sealed with 2-inch wide strips of sealing tape or with edges lapped not less than 3-inches and fastened together with a waterproof cement to form a continuous watertight joint.
2. The curing blankets shall be left in place during the 7 Day curing period and shall not be removed until after concrete for adjacent WORK has been placed. If the curing blankets become torn or otherwise ineffective, the CONTRACTOR shall replace damaged sections. During the first 3 Days of the curing period, no traffic of any nature and no depositing, temporary or otherwise, of any materials shall be permitted on the curing blankets. During the remainder of the curing period, foot traffic and temporary depositing of materials that impose light pressure will be permitted only on top of plywood sheets 5/8-inch minimum thickness, laid over the curing blanket. The CONTRACTOR shall add water under the curing blanket as often as necessary to maintain concrete surfaces damp.

G. **Method 6:** This method applies to both walls and slabs.

1. The concrete shall be kept continuously wet by the application of water for a minimum period of at least 7 Days beginning immediately after the concrete has reached final set or forms have been removed.

2. Until the concrete surface is covered with the curing medium, the entire surface shall be kept damp by applying water using nozzles that atomize the flow so that the surface is not marred or washed.

3. Heavy curing mats shall be used as a curing medium to retain the moisture during the curing period. The curing medium shall be weighted or otherwise held substantially in contact with the concrete surface to prevent dislodging by wind or any other causes. Edges shall be continuously held in place.

4. The curing blankets and concrete shall be kept continuously wet by the use of sprinklers or other means both during and after normal working hours.

5. Immediately after the application of water has terminated at the end of the curing period, the curing medium shall be removed, the entire concrete surface shall be wetted, and curing compound shall be immediately applied to the entire surface in accordance with Method 4 above.

6. The CONTRACTOR shall dispose of excess water from the curing operation to avoid damage to the WORK.

- END OF SECTION -
SECTION 05 12 00 - STRUCTURAL STEEL FRAMING

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide structural steel framing and appurtenant metal parts required for permanent connection of the structural steel system, complete and in place, in accordance with the Contract Documents.

1.2 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. References herein to "Building Code" shall mean the International Building Code of the International Code Council (ICC). The edition of the codes adopted as of the date of award of this contract shall apply to the WORK herein.

B. Federal Specifications and Commercial Standards

AISC Code of Standard Practice for Steel Buildings and Bridges
AISC Structural Steel Buildings-Allowable Stress Design and Plastic Design
AISC Allowable Stress Design Specifications for Structural Joints Using ASTM A325 and A490 Bolts approved by the Research Council on Structural Connections of the Engineering Foundation
ASTM A 36 Structural Steel
ASTM A 53 Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless
ASTM A 307 Carbon Steel Bolts and Studs
ASTM A 325 Structural Bolts, Steel, Heat Treated, 120/105-ksi Minimum Tensile Strength
ASTM A 500 Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
ASTM A 501 Hot-Formed Welded and Seamless Carbon Steel Structural Tubing
ASTM A 992 Steel for Structural Shapes for Use in Building Framing
AWS D1.1 Structural Welding Code – Steel

1.3 CONTRACTOR SUBMITTALS

A. Submit in accordance with Section 01 33 00 - Contractor Submittals.
B. Shop Drawings shall conform to AISC recommendations and specifications and shall show all holes, etc. required for other work. Drawings shall include complete details showing members and their connections, anchor bolt layouts, schedules for fabrication procedures, and diagrams showing the sequence of erection.

C. Testing laboratory certifications for shop and field welders shall be submitted in triplicate directly to the ENGINEER with copies to the CONTRACTOR and others as required.

PART 2 -- PRODUCTS

2.1 MATERIALS

A. Structural steel

<table>
<thead>
<tr>
<th></th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide Flange Shapes</td>
<td>ASTM A 992</td>
</tr>
<tr>
<td>Other Shapes, Plates, Bars</td>
<td>ASTM A 36</td>
</tr>
</tbody>
</table>

B. Bolts for connections shall be ASTM A 325, unless indicated otherwise. Bolts used to connect dissimilar metals shall be ASTM A 193 and A 194, Type 316 stainless steel.

C. Structural steel shall be non-coated.

PART 3 -- EXECUTION

3.1 MEASUREMENT

A. The CONTRACTOR shall verify dimensions and shall make any field measurements necessary and shall be fully responsible for accuracy and layout of WORK. The CONTRACTOR shall review the Drawings, and any discrepancies shall be reported to the ENGINEER for clarification prior to starting fabrication.

3.2 FABRICATION

A. Structural steel shall be fabricated in accordance with the Drawings, AISC Specifications, and the Shop Drawings.

B. Materials shall be properly marked and match-marked for field assembly.

C. Where finishing is required, assembly shall be completed including bolting and welding of units, before start of finishing operations.

3.3 CONNECTIONS

A. Shop and field connections shall be bolted as indicated. Connections shall develop full strength of members joined and shall conform to AISC standard connections.

B. Unless otherwise indicated, welds shall conform to AISC LRFD Specification for Structural Steel Buildings.
3.4 HOLES FOR OTHER WORK

A. Holes shall be provided as necessary or as indicated for securing other WORK to structural steel framing, and for the passage of other WORK through steel framing members. No torch cut holes will be permitted.

3.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Structural members shall be loaded in such a manner that they may be transported and unloaded without being excessively stressed, deformed, or otherwise damaged.

B. Structural steel members and packaged materials shall be protected from corrosion and deterioration. Material shall be stored in a dry area and shall not be placed in direct contact with the ground. Materials shall not be placed on the structure in a manner that might cause distortion or damage to the members or the supporting structures. Repair or replace damaged materials or structures as directed.

3.6 FIELD ASSEMBLY

A. Structural frames shall be set accurately to the lines and elevations indicated. The various members shall be aligned and adjusted to form a part of a complete frame or structure before permanently fastening. Bearing surfaces and other surfaces that will be in permanent contact shall be cleaned before assembly. Necessary adjustments to compensate for discrepancies in elevations and alignments shall be performed.

B. Individual members of the structure shall be leveled and plumbed within AISC tolerances.

C. Required leveling and plumbing measurements shall be established on the mean operating temperature of the structure.

3.7 MISFITS AT BOLTED CONNECTIONS

A. Where misfits in bolting are encountered, the ENGINEER shall be immediately notified. The CONTRACTOR shall submit a method to remedy the misfit for review by the ENGINEER. The ENGINEER will determine whether the remedy is acceptable or if the member must be refabricated.

B. Incorrectly sized or misaligned holes in members shall not be enlarged by burning or by the use of drift pins.

C. Correction of misfits is part of the WORK.

3.8 GAS CUTTING

A. Gas cutting torches shall not be used in the field for correcting fabrication errors in the structural framing, except when approved by the ENGINEER. Gas-cut sections shall be finished equal to a sheared appearance.
3.9 TOUCH-UP PAINTING

A. Immediately after erection, field welds, bolted connections, and abraded areas shall be cleaned of the shop paint primer. Touch-up paint primer applied by brush or spray shall be the same thickness and material as used for the shop coat. Galvanized surfaces that have been field welded or damaged shall be repaired in accordance with Section 05 50 00.

B. Finish coating of structural steel shall be as indicated in Section 09 96 00.

- END OF SECTION -
SECTION 31 00 00 - EARTHWORK

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall perform earthwork as indicated and required for construction of the WORK, complete and in place, in accordance with the Contract Documents.

1.2 CONTRACTOR SUBMITTALS

A. The CONTRACTOR shall submit samples of materials proposed for the WORK in conformance with the requirements of Section 01 33 00 – Contractor Submittals. Sample sizes shall be as determined by the testing laboratory

B. CONTRACTOR’s Detailed Excavation Plan

1. The CONTRACTOR, prior to beginning any trench or structure excavation 5 feet deep or deeper, shall submit to the OWNER and shall be in receipt of the OWNER's written acceptance of the CONTRACTOR's detailed plan showing the design of shoring, bracing, sloping of the sides of excavation, or other provisions for worker protection against the hazard of caving ground during the excavation of such trenches or structure excavation.

2. The CONTRACTOR’s plan shall be prepared and signed and sealed by a Professional Engineer experienced in the field of geotechnical engineering and licensed in the State where the WORK is being performed.

3. The OWNER's acceptance of said plan will be for verification of submittal of the plan with this requirement.

PART 2 -- PRODUCTS

2.1 FILL AND BACKFILL MATERIAL REQUIREMENTS

A. General

1. Fill, backfill, and embankment materials shall be selected or shall be processed and clean fine earth, rock, gravel, or sand, free from grass, roots, brush, other vegetation and organic matter.

2. Fill and backfill materials that are to be placed within 6 inches of any structure or pipe shall be free of rocks or unbroken masses of earth materials having a maximum dimension larger than 3 inches.

B. Suitable Materials

1. Materials not defined below as unsuitable will be considered as suitable materials and may be used in fills, backfilling, and embankment construction, subject to the indicated requirements.

2. If acceptable to the ENGINEER, some of the material listed as unsuitable may be used when thoroughly mixed with suitable material to form a stable composite.
3. Mixing or blending of materials to obtain a suitable composite is the CONTRACTOR's option but is subject to the approval of the ENGINEER.

4. The CONTRACTOR shall submit certification to the ENGINEER that the chloride concentration in imported materials within the pipe zone does not exceed 100 ppm, when tested in accordance with the requirements of AASHTO T291-94 – Standard Method of Test for determining Water-Soluble Chloride Ion Content in Soil.

5. Suitable materials may be obtained from on-Site excavations, may be processed on-Site materials, or may be imported.

6. If imported materials are required by this Section or are required in order to meet the quantity requirements of the WORK, the CONTRACTOR shall provide the imported materials as part of the WORK.

C. Types of Suitable Materials. The following types of suitable materials are defined:

Type AS (Aggregate Subbase): Crushed rock aggregate subbase material that can be compacted readily by watering and rolling to form a firm stable base. This material is often specified and required underneath the base course of asphaltic or concrete pavement. At the option of the CONTRACTOR, the grading for either the 3-inch maximum size or 2-inch maximum size gradation shall be used. The sand equivalent value shall be greater than 20. Crushed rock aggregate subbase material shall meet one of the following gradation requirements, as shown on the Drawings or approved by the OWNER:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage Passing (3-inch Max)</th>
<th>Percentage Passing (2-inch Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-inch</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2.0 inch</td>
<td>90 - 100</td>
<td>100</td>
</tr>
<tr>
<td>1.5 inch</td>
<td>-</td>
<td>95 - 100</td>
</tr>
<tr>
<td>No. 4</td>
<td>30 - 65</td>
<td>30 - 65</td>
</tr>
<tr>
<td>No. 16</td>
<td>15 - 40</td>
<td>15 - 40</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 20</td>
<td>0 - 20</td>
</tr>
</tbody>
</table>

Type C (Civil Fill) (Not for use beneath concrete foundations): Civil Fill may consist of imported materials or natural on-site materials. Civil Fill may be a combination of Type AS material, Type GF, or Type SF material, or any mixture thereof, except as shown. Some mixing, removal of oversized particles (greater than 4-inch diameter) and/or removal of other unsuitable material may be required. On site sources of this material may consist of forest duff/topsoil 1 ft to 2 ft below ground surface (bgs), silty sand (Qal) between 2 ft to 10 ft bgs, poorly graded gravel with sand/silt (Qal) to 75 ft bgs (very dense, ~15-inch to 2-ft cobbles observed).
Type CLSM (Controlled Low Strength Material): Controlled low strength material (CLSM) shall be in accordance with Section 31 23 00 - Controlled Low Strength Material.

Type DRC (Drain-rock Coarse): Crushed rock or gravel meeting the following gradation requirements.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-inch</td>
<td>100</td>
</tr>
<tr>
<td>1.5-inch</td>
<td>90 - 100</td>
</tr>
<tr>
<td>1-inch</td>
<td>20 - 55</td>
</tr>
<tr>
<td>3/4-inch</td>
<td>1 - 15</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 3</td>
</tr>
</tbody>
</table>

Type DRG (Drain-rock Graded): Drain-rock shall be crushed rock or gravel, durable and free from slaking or decomposition under the action of alternate wetting or drying. The drainrock shall have a sand equivalent value greater than 75. The finish graded surface of the drainrock immediately beneath hydraulic structures shall be stabilized to provide a firm, smooth surface upon which to construct reinforced concrete floor slabs. The material shall be uniformly graded and shall meet the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-inch</td>
<td>100</td>
</tr>
<tr>
<td>0.75-inch</td>
<td>90 – 100</td>
</tr>
<tr>
<td>0.375-inch</td>
<td>40 – 100</td>
</tr>
<tr>
<td>No. 4</td>
<td>25 – 40</td>
</tr>
<tr>
<td>No. 8</td>
<td>18 – 33</td>
</tr>
<tr>
<td>No. 30</td>
<td>5 – 15</td>
</tr>
<tr>
<td>No. 50</td>
<td>0 – 7</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 – 3</td>
</tr>
</tbody>
</table>

The finish graded surface of the drain rock immediately beneath hydraulic structures shall be stabilized to provide a firm, smooth surface upon which to construct reinforced concrete floor slabs.
Type EF (Embankment Fills from on-site materials): Embankment Fill for the gravel lot portions of the project may be obtained from on-Site excavations, may be processed on-Site materials, or may be imported materials comprised of mixtures of Type AS, Type DRG, Type GF, or Type S material. If on-site material is used for embankments, it may require moisture conditioning to facilitate compaction. Drying of the embankment fill material may not be practical during cold or wet periods of the year. Acceptable embankment material shall meet or exceed the compaction density of 95 percent as determined by ASTM D-1557.

Type GF (Granular Fill 0.75-inch minus): Angular crushed rock, stone or gravel, and sand conforming to the requirements listed below. Do not use pea gravel as granular backfill: The material shall have a maximum liquid limit of 35 and a maximum plasticity index of 10. The material shall have a sand equivalent value greater than 75. (This material is also known as Class I crushed stone.)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75-inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>30 - 50</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 6</td>
</tr>
</tbody>
</table>

Type PG (Pea Gravel fill): Crushed rock or gravel with 100 percent passing a 1/2-inch sieve and not more than 10 percent passing a Number 4 sieve.

Type SF (Structural Fill / Foundation Base): Crushed rock structural fill material of such nature that it can be compacted readily by watering and rolling to form a firm, stable base for fill material required beneath concrete foundations. This material is often specified and required directly underneath the finish course of asphaltic or concrete pavement. At the option of the CONTRACTOR, the grading for either the 1.5 inch maximum size or 0.75-inch maximum size gradation may be used material beneath concrete foundations. The sand equivalent value shall be greater than 22. The material shall meet the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-inch</td>
<td>100</td>
</tr>
<tr>
<td>1.5-inch</td>
<td>90 - 100</td>
</tr>
<tr>
<td>1-inch</td>
<td>-</td>
</tr>
<tr>
<td>0.75-inch</td>
<td>81 - 91</td>
</tr>
<tr>
<td>No. 4</td>
<td>43 - 53</td>
</tr>
<tr>
<td>No. 16</td>
<td>23 - 29</td>
</tr>
<tr>
<td>No. 200</td>
<td>4 - 10</td>
</tr>
</tbody>
</table>
Type SNF (Sand Fill): Sand material shall meet the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375-inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>90 - 100</td>
</tr>
<tr>
<td>No. 16</td>
<td>50 - 80</td>
</tr>
<tr>
<td>No. 50</td>
<td>5 - 25</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>

Type T (Topsoil): Stockpiled topsoil material which has been obtained at the Site by removing soil to a depth not exceeding 2 feet. Removal of the topsoil shall be done after the area has been stripped of vegetation and debris.

Type X-CTF (Cement-Treated fill): Material which consists of Type AS material, or any mixture of other approved materials which has been cement-treated so that the cement content of the material is not less than 5 percent by weight when tested in accordance with ASTM D 2901 - Standard Test Method for Cement Content of Freshly Mixed Soil Cement. The ultimate compressive strength at 28 days shall be not less than 400 psi when tested in accordance with ASTM D 1633 - Standard Test Method for Compressive Strength of Molded Soil - Cement Cylinders.

Schedule: Earth materials shall be as indicated in the Contract Drawings. Where clear definition in the drawings is not defined, the following schedule may be used to define acceptable fill materials.

<table>
<thead>
<tr>
<th>Civil Work Area</th>
<th>Material Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embankment Fills – (Solids Settling Basins & other Embankments)</td>
<td>Type EF material, or Mixture of A thru H materials that meet Type EF gradation requirements.</td>
</tr>
<tr>
<td>Bedding for all pipes</td>
<td>SNF</td>
</tr>
<tr>
<td>Pipe Zone Fills (unless indicated as Trench Zone)</td>
<td></td>
</tr>
<tr>
<td>Dielectrically / epoxy coated steel, polyethylene encased, non-mortar (rock-shield) coated</td>
<td>GF</td>
</tr>
<tr>
<td>Small PVC (< 6-inch dia), HDPE (ADS) Drain Pipe, & other pipes < 3-inch dia.</td>
<td>GF, SN</td>
</tr>
<tr>
<td>Other PVC, VCP, HDPE Pipe</td>
<td>GF</td>
</tr>
<tr>
<td>Pipes on grades >4% where backfills are graded with <10% passing No. 4 sieve</td>
<td>(CLSM) w/trench plugs of types J, L, or N at intervals of 200 feet</td>
</tr>
<tr>
<td>Civil Work Area</td>
<td>Material Type</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Trench zone backfill except as identified below</td>
<td>X, C, EF or an approved mixture thereof.</td>
</tr>
<tr>
<td>Final backfill for irrigated unpaved areas</td>
<td>T</td>
</tr>
<tr>
<td>Trench zone and final backfill under structures</td>
<td>Same as pipe zone except where concrete encasement is required</td>
</tr>
<tr>
<td>Replace pipeline trench over excavation</td>
<td>DRC with 6-inch top layer of PG, or non-woven filter fabric, or same as pipe zone backfill if trench is above water table.</td>
</tr>
<tr>
<td>Asphalt & Concrete Pavement Aggregate base & Gravel Road base materials</td>
<td>DRG, DRC</td>
</tr>
<tr>
<td>Asphalt & Concrete Pavement Aggregate subbase & Gravel Road subbase materials</td>
<td>AS</td>
</tr>
<tr>
<td>Backfill around structures (including berms)</td>
<td>C, EF, or an approved mixture</td>
</tr>
<tr>
<td>Under hydraulic or water retaining structures with underdrains</td>
<td>DRG</td>
</tr>
<tr>
<td>Under structures where ground water is removed to allow placement of concrete</td>
<td>DRC, underlain by non-woven filter fabric</td>
</tr>
<tr>
<td>All other structures</td>
<td>DRG,</td>
</tr>
<tr>
<td>Top 6-inches of embankment fills, or backfills around structures</td>
<td>T</td>
</tr>
</tbody>
</table>

D. **Unsuitable Materials.**

1. Soils which, when classified under ASTM D 2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System), fall in the classifications of PT, OH, CH, MH, or OL shall be classified as unsuitable materials.

2. In addition to the materials identified as unsuitable in the table above, a material shall be classified as unsuitable if one of the following conditions is present;

 a. Soils which cannot be compacted sufficiently to achieve the density specified for the intended use.
b. Materials that contain hazardous or designated waste materials including petroleum hydrocarbons, pesticides, heavy metals, and any material which may be classified as hazardous or toxic according to applicable regulations.

2.2 MATERIALS TESTING

A. Samples

1. Soils testing of samples submitted by the CONTRACTOR will be performed by a testing laboratory of the OWNER's choice and at the CONTRACTOR's expense.

2. The ENGINEER may direct the CONTRACTOR to supply samples for testing of any material used in the WORK.

B. Particle Size Analysis. Particle size analysis of soils and aggregates will be performed using ASTM D 422 - Standard Test Method for Particle-Size Analysis of Soils.

D. Unified Soil Classification System

1. References in this Section to soil classification types and standards shall have the meanings and definitions indicated in ASTM D 2487.

2. The CONTRACTOR shall be bound by applicable provisions of ASTM D 2487 in the interpretation of soil classifications.

E. Testing for sulfate, resistivity, and pH shall be performed in accordance with AASHTO Test Methods T 288 and T 289.

F. Testing for chloride shall be performed in accordance with AASHTO T291-94 – Standard Method of Test for determining Water-Soluble Chloride Ion Content in Soil.

2.3 IDENTIFICATION TAPE

A. Unless otherwise indicated, identification tape shall be placed above buried pipelines that are not comprised of magnetic components at least in part.

B. Identification tape shall be as specified in Section 40 23 01 – Piping Identification.

PART 3 -- EXECUTION

3.1 EXCAVATION AND BACKFILLING - GENERAL

A. General

1. Except when specifically provided to the contrary, excavation shall include the removal of materials, including obstructions that would interfere with the proper execution and completion of the WORK.
2. The removal of such materials shall conform to the lines and grades indicated or ordered.

3. Unless otherwise indicated, the entire Site shall be stripped of vegetation and debris and shall be grubbed, and such material shall be removed from the Site prior to performing any excavation or placing any fill.

4. The CONTRACTOR shall furnish, place, and maintain supports and shoring that may be required for the sides of excavations.

5. Excavations shall be sloped or otherwise supported in a safe manner in accordance with applicable state safety requirements and the requirements of OSHA Safety and Health Standards for Construction (29CFR1926).

6. The CONTRACTOR shall provide quantity surveys where so required to verify quantities for Unit Price Contracts.

7. Surveys shall be performed prior to beginning WORK and upon completion by a surveyor licensed in the state where the Site is located.

B. Removal and Exclusion of Water

1. The CONTRACTOR shall remove and exclude water, including stormwater, groundwater, irrigation water, and wastewater, from excavations.

2. Dewatering wells, wellpoints, sump pumps, or other means shall be used to remove water and continuously maintain groundwater at a level at least 2 feet below the bottom of excavations before the excavation WORK begins at each location.

3. Water shall be removed and excluded until backfilling is complete and field soils testing has been completed.

3.2 OVER-EXCAVATION

A. Indicated

1. Where areas are indicated to be over-excavated, excavation shall be to the depth indicated, and backfill shall be installed to the grade indicated.

B. Not Indicated

1. When ordered to over-excavate areas deeper and/or wider than required by the Contract Documents, the CONTRACTOR shall over-excavate to the dimensions ordered and backfill to the indicated grade.

C. Neither Indicated nor Ordered

1. Any over-excavation carried below the grade that is neither ordered or nor indicated shall be backfilled and compacted to the required grade with the indicated material as part of the WORK.
3.3 EXCAVATION IN LAWN AREAS

A. Where excavation occurs in lawn areas, the sod shall be carefully removed, dampened, and stockpiled in order to preserve it for replacement.

B. Excavated material may be placed on the lawn, provided that a drop cloth or other suitable method is employed to protect the lawn from damage, but the lawn shall not remain covered for more than 72 hours.

C. Immediately after completion of backfilling and testing of the pipeline, the sod shall be replaced and lightly rolled in a manner as to restore the lawn as near as possible to its original condition.

D. The CONTRACTOR shall provide new sod if the stockpiled sod has not been replaced within 72 hours.

3.4 EXCAVATION IN VICINITY OF TREES

A. Except where trees are indicated to be removed, trees shall be protected from injury during construction operations.

B. No tree roots larger than 2 inches in diameter shall be cut without the express permission of the ENGINEER.

C. Trees shall be supported during excavation by any means previously reviewed and accepted by the ENGINEER.

3.5 ROCK EXCAVATION

A. Normal Excavation. Nearly all excavation, except where indicated in the Contract Drawings shall be considered normal excavation, and may be accomplished using conventional equipment as follows:

1. For general excavation, a D-9N Caterpillar tractor with a single shank ripper, or equivalent equipment, is considered conventional equipment, if it can rip at a production rate of at least 300 bank cubic yards per hour.

2. For trench excavation, a 235C Caterpillar excavator with a medium stick and a rock ripping bucket, or equivalent equipment, is considered conventional equipment, if it can excavate at a production rate of at least 30 bank cubic yards per hour.

3. If material is encountered which the CONTRACTOR believes cannot be excavated by conventional equipment, the ENGINEER shall be notified immediately. The CONTRACTOR shall provide performance tests of the specified conventional or equivalent equipment. If the ENGINEER confirms in writing that the conventional equipment cannot perform at the production rates indicated, the excavation will be considered rock excavation.

B. Rock Excavation. Rock excavation shall include removal and disposal of the following items:

1. Boulders measuring 1/3 of a cubic yard or more in volume;
2. Rock material in ledges, bedding deposits, and un-stratified masses that cannot be removed using conventional equipment as defined herein and which require systematic drilling and blasting for removal;

3. Concrete or masonry structures that have been abandoned; and,

4. Conglomerate deposits that are so firmly cemented that they possess the characteristics of solid rock and cannot be removed using conventional equipment as herein defined and require systematic drilling and blasting for removal.

C. Scope and Payment for Rock Excavation

1. Rock excavation shall be performed by the CONTRACTOR, provided that if the quantity of rock excavation is affected by any change in the scope of the WORK an appropriate adjustment of the Contract Price will be made. Payment for rock excavation shall be as set forth in the Bid form as a unit price item. If a unit price item for rock excavation is not provided in the Bid form, the extra cost for excavation of rock will be treated as a change.

2. Otherwise, payment will be made in accordance with a negotiated price.

D. Explosives and Blasting. Blasting will not be permitted on the project site.

3.6 DISPOSAL OF EXCESS EXCAVATED MATERIAL

A. Unless otherwise indicated, excess excavated material shall be the property of the CONTRACTOR.

B. The CONTRACTOR shall be responsible for the removal and disposal of excess excavated material.

C. The CONTRACTOR shall remove and dispose of excess excavated material at a location selected by the CONTRACTOR and as approved by the ENGINEER or at an off-Site location selected and arranged for by the CONTRACTOR.

D. The CONTRACTOR shall obtain required permits and landowner and agency approvals for disposal of excess excavated material on-Site or off-Site and shall submit copies of related documents to the ENGINEER for information prior to disposal. CONTRACTOR shall pay costs associated with the removal and disposal.

3.7 BACKFILL

A. General

1. Backfill shall not be dropped directly upon any structure or pipe.

2. Backfill shall not be placed around or upon any structure until the concrete has attained sufficient strength to withstand the loads imposed.

3. Backfill around water-retaining structures shall not be placed until the structures have been tested, and the structures shall be full of water while backfill is being placed.
B. Pre-Placement Conditions

1. Except for drainrock materials being placed in over-excavated areas or trenches, backfill shall not be placed until water is removed from the excavation and the trench sidewalls and bottom have been dried to a moisture content suitable for compaction.

2. Immediately prior to placement of backfill materials, the bottoms and sidewalls of trenches and structure excavations shall have any loose, sloughing, or caving soil and rock materials removed.

3. Trench sidewalls shall consist of excavated surfaces that are in a relatively undisturbed condition before placement of backfill materials.

C. Layering

1. Backfill materials shall be placed and spread evenly in layers. During spreading, each layer shall be thoroughly mixed as necessary in order to promote uniformity of material in each layer.

2. When compaction is achieved using mechanical equipment, the layers shall be evenly spread such that when compacted each layer shall not exceed 6 inches in thickness.

D. Moisture Content

1. Where the backfill material moisture content is below the optimum moisture content, water shall be added before or during spreading until the proper moisture content is achieved.

2. Where the backfill material moisture content is too high to permit the indicated degree of compaction, the material shall be dried until the moisture content is satisfactory.

3.8 STRUCTURE, ROADWAY, AND EMBANKMENT EXCAVATION AND BACKFILL

A. Excavation Beneath Structures and Embankments

1. Except where indicated otherwise for a particular structure or where ordered by the ENGINEER, excavation shall be carried to an elevation 6 inches below the bottom of the footing or slab and brought back to grade with compacted materials acceptable for placement beneath structures.

2. The area where a fill or embankment is to be constructed shall be cleared of vegetation, roots, and foreign material.

3. Where indicated or ordered, areas beneath structures or fills shall be over-excavated.

4. The subgrade areas beneath embankments shall be excavated to remove not less than the top 6 inches of native material and where such subgrade is sloped, the native material shall be benched.
5. When such over-excavation is indicated, both the over-excavation and the subsequent backfill to the required grade shall be performed by the CONTRACTOR.

6. After the required excavation or over-excavation for fills and embankments has been completed, the exposed surface shall be scarified to a depth of 6 inches, brought to optimum moisture content, and rolled with heavy compaction equipment to obtain 95 percent of maximum density.

B. Excavation Beneath Concrete Reservoirs

1. Excavation under reservoirs shall extend to the bottom of the drainrock layer.

2. After such excavation has been completed, the exposed surface shall be rolled with heavy compaction equipment to 95 percent of maximum density and then graded to provide a reasonably smooth surface for placement of the drainrock.

3. Areas under the reservoir upon which fill, not drain rock, is to be placed, shall be scarified to a depth of 6 inches, brought to optimum moisture content, and compacted to obtain 95 percent of maximum density.

C. Excavation Beneath Paved Areas

1. Excavation under areas to be paved shall extend to the bottom of the aggregate base or subbase, if such base is called for; otherwise it shall extend to the paving thickness.

2. After the required excavation has been completed, the top 12 inches of exposed surface shall be scarified, brought to optimum moisture content, and rolled with heavy compaction equipment to obtain 95 percent of maximum density.

3. The finished subgrade shall be even, self-draining, and in conformance with the slope of the finished pavement.

4. Areas that could accumulate standing water shall be regraded to provide a self-draining subgrade.

D. Notification of ENGINEER

1. The CONTRACTOR shall notify the ENGINEER at least 3 Days in advance of completion of any structure or roadway excavation and shall allow the ENGINEER a review period of at least one day before the exposed foundation is scarified and compacted or is covered with backfill or with any construction materials.

E. Compaction of Fill, Backfill, and Embankment Materials

1. Each layer of backfill materials as defined herein, where the material is graded such that 10 percent or more passes a No. 4 sieve, shall be mechanically compacted to the indicated percentage of density.

2. Equipment that is consistently capable of achieving the required degree of compaction shall be used, and each layer shall be compacted over its entire area while the material is at the required moisture content.
3. Each layer of coarse granular backfill materials with less than 10 percent passing the No. 4 sieve shall be compacted by means of at least 2 passes from a vibratory compactor that is capable of obtaining the required density in 2 passes.

F. Heavy Equipment

1. Equipment weighing more than 10,000 pounds shall not be used closer to walls than a horizontal distance equal to the vertical depth of the fill above undisturbed soil at that time.

2. Hand-operated power compaction equipment shall be used where the use of heavier equipment is impractical or restricted due to weight limitations.

G. Layering

1. Embankment and fill material shall be placed and spread evenly in approximately horizontal layers.

2. Each layer shall be moistened and aerated as necessary.

3. Unless otherwise approved by the ENGINEER, no layer shall exceed 6 inches of compacted thickness.

4. The embankment and fill shall be compacted in conformance with Paragraph K, below.

H. Embankments and Fills on Slopes

1. When an embankment or fill is to be constructed and compacted against hillsides or fill slopes steeper than 4:1, the slopes of the hillsides or fills shall be horizontally benched in order to key the embankment or fill to the underlying ground.

2. A minimum of 12 inches perpendicular to the slope of the hillside or fill shall be removed and re-compacted as the embankment or fill is brought up in layers.

3. Material thus cut shall be re-compacted along with the new material.

4. Hillside or fill slopes 4:1 or flatter shall be prepared in accordance with Paragraph A, above.

I. Compaction Requirements

1. The following compaction requirements shall be in accordance with ASTM D 1557 - Test Method for Laboratory Compaction Characteristics of Soils Using Modified Effort (56,000 ft-lb/ft³) (2,700 kN-m/m³) where the material is graded such that 10 percent or more passes a No. 4 sieve and in accordance with ASTM D 4253 - Test Method for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, and D 4254 - Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, where the material is coarse granular backfill materials with less than 10 percent passing the No. 4 sieve:
Location or Use of Fill or Backfill

<table>
<thead>
<tr>
<th>Location or Use of Fill or Backfill</th>
<th>Percentage of Maximum Dry Density</th>
<th>Percentage of Relative Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embankments and fills not identified otherwise</td>
<td>90</td>
<td>55</td>
</tr>
<tr>
<td>Embankments and fills beneath paved areas or structures</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Backfill beneath structures and hydraulic structures</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Topsoil</td>
<td>80</td>
<td>NA</td>
</tr>
<tr>
<td>Aggregate base or subbase</td>
<td>95</td>
<td>NA</td>
</tr>
</tbody>
</table>

3.9 PIPELINE AND UTILITY TRENCH EXCAVATION AND BACKFILL

A. General

1. Unless otherwise indicated or ordered, excavation for pipelines and utilities shall be open-cut trenches with minimum widths as indicated.

B. Trench Bottom

1. Except where pipe bedding is required, the bottom of the trench shall be excavated uniformly to the grade of the bottom of the pipe.

2. Excavations for pipe bells and welding shall be made as required.

3. Where pipe bedding is required, the bottom of the trench shall be excavated uniformly to the grade of the bottom of the pipe bedding.

C. Open Trenches

1. The maximum amount of open trench permitted in any one location shall be 500 feet or the length necessary to accommodate the amount of pipe installed in a single Day, whichever is greater.

2. Trenches shall be fully backfilled at the end of each Day or, in lieu thereof, shall be covered by heavy steel plates adequately braced and capable of supporting vehicular traffic in those locations where it is impractical to backfill at the end of each Day.

3. These requirements for backfilling or use of steel plate will be waived in cases where the trench is located further than 100 feet from any traveled roadway or occupied structure; in such cases, however, barricades and warning lights meeting appropriate safety requirements shall be provided and maintained.

D. Embankments, Fills and Structural Backfills
1. Where pipelines are to be installed in embankments, fills, or structure backfills, the fill shall be constructed to a level at least one foot above the top of the pipe before the trench is excavated.

2. Upon completion of the embankment or structural backfill, a trench conforming to the appropriate detail may be excavated and the pipe may be installed.

E. Trench Shield

1. If a moveable trench shield is used during excavation operations, the trench width shall be wider than the shield such that the shield is free to be lifted and then moved horizontally without binding against the trench sidewalls and causing sloughing or caving of the trench walls.

2. If the trench walls cave or slough, the trench shall be excavated as an open excavation with sloped sidewalls or with trench shoring, as indicated and as required by the pipe structural design.

3. If a moveable trench shield is used during excavation, pipe installation, and backfill operations, the shield shall be moved by lifting the shield free of the trench bottom or backfill and then moving the shield horizontally.

4. The CONTRACTOR shall not drag trench shields along the trench causing damage or displacement to the trench sidewalls, the pipe, or the bedding and backfill.

F. Placing and Spreading of Backfill Materials

1. Each layer of coarse granular backfill materials with less than 10 percent passing the No. 4 sieve shall be compacted by means of at least 2 passes from a vibratory compactor that is capable of achieving the required density in 2 passes and that is acceptable to the ENGINEER.

2. Where such materials are used for pipe zone backfill, vibratory compaction shall be used at vertical intervals of the lesser of one-half the diameter of the pipe; or 24 inches, measured in the uncompacted state.

3. In addition, these materials shall be subjected to vibratory compaction at the springline of the pipe and the top of the pipe zone backfill, regardless of whether that dimension is less than 24 inches or not.

4. Each layer of backfill material with greater than 10 percent passing the No. 4 sieve shall be compacted using mechanical compactors suitable for the WORK.

5. The material shall be placed and compacted under the haunch of the pipe and up each side evenly so as not to move the pipe during the placement of the backfill.

6. The material shall be placed in lifts that will not exceed 6 inches when compacted to the required density.

G. Mechanical Compaction
1. Backfill around and over pipelines that is mechanically compacted shall be compacted using light, hand-operated vibratory compactors and rollers that do not damage the pipe.

2. After completion of at least 2 feet of compacted backfill over the top of pipeline, compaction equipment weighing no more than 8,000 pounds may be used to complete the trench backfill.

H. Pipe and Utility Trench Backfill

1. Definitions
 a. **Bedding.** The bedding is defined as that portion of pipe zone backfill material between the trench subgrade and the bottom of the pipe.
 b. **Pipe Zone.** The pipe zone is defined as that portion of the vertical trench cross-section lying between a plane below the bottom surface of the pipe and a plane at a point above the top surface of the pipe as indicated.
 c. **Trench Zone.** The trench zone (located above the pipe zone) is defined as that portion of the vertical trench cross-section lying as indicated between a plane above the top surface of the pipe and a plane at a point 18 inches below the finished surface grade, or if the trench is under pavement, 18 inches below the roadway subgrade.
 d. **Final Backfill.** Final backfill is defined as backfill in the trench cross-sectional area within 6, 12, or 18 inches of finished grade, or if the trench is under pavement, backfill within 18 inches of the roadway subgrade.

2. Pipe Zone Backfill
 a. Final Trim
 1) After compacting the bedding, the CONTRACTOR shall perform a final trim using a stringline for establishing grade, such that each pipe section when first laid will be continually in contact with the bedding along the extreme bottom of the pipe.
 2) Excavation for pipe bells and welding shall be made as required.
 b. The pipe zone shall be backfilled with the indicated backfill material.
 c. Pipe zone backfill materials shall be manually spread evenly around the pipe, maintaining the same height on both sides of the pipe such that when compacted the pipe zone backfill will provide uniform bearing and side support.
 d. The CONTRACTOR shall exercise care in order to prevent damage to the pipeline coating, cathodic bonds, and the pipe itself during the installation and backfill operations.

3. Trench Zone Backfill
a. After the pipe zone backfill has been placed, backfilling of the trench zone may proceed.

I. **Identification Tape**

1. Install identification tape as indicated.

2. Terminate the tape in a precast concrete box either adjacent to or part of the valve box, manhole, vault, or other structure into which the non-metallic pipe enters or at the end of the non-metallic pipeline.

3. The termination box shall be covered with a cast iron lid.

4. The box shall be located at grade in paved areas or 6 inches above grade in unpaved areas.

J. **Trench Shield**

1. If a moveable trench shield is used during backfill operations, the shield shall be lifted to a location above each layer of backfill material prior to compaction of the layer.

2. The CONTRACTOR shall not displace the pipe or backfill while the shield is being moved.

K. **Compaction Requirements**

1. The following compaction test requirements shall be in accordance with ASTM D 1557 - Test Method for Laboratory Compaction Characteristics of Soils Using Modified Effort (56,000 ft - lb/ft³) (2,700 kN-m/m³) where the material is graded such that 10 percent or more passes a No. 4 sieve, and in accordance with ASTM D 4253 - Standard Test Method for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, and D 4254 - Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density where the material is coarse granular backfill materials with less than 10 percent passing the No. 4 sieve.

<table>
<thead>
<tr>
<th>Location or Use of Fill or Backfill</th>
<th>Percentage of Maximum Dry Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe embedment backfill for flexible pipe.</td>
<td>> 90</td>
</tr>
<tr>
<td>Pipe bedding and over-excavated zones under bedding for flexible pipe, including trench plugs.</td>
<td>> 90</td>
</tr>
<tr>
<td>Pipe embedment backfill for steel yard piping</td>
<td>> 90</td>
</tr>
<tr>
<td>Pipe zone backfill portion above embedment for flexible pipe</td>
<td>> 90</td>
</tr>
<tr>
<td>Final backfill, beneath paved areas or structures.</td>
<td>> 95</td>
</tr>
<tr>
<td>Final backfill, not beneath paved areas or structures.</td>
<td>> 90</td>
</tr>
<tr>
<td>Trench zone backfill, beneath paved areas and structures, including trench plugs.</td>
<td>> 95</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Trench zone backfill, not beneath paved areas or structures, including trench plugs.</td>
<td>> 85</td>
</tr>
</tbody>
</table>

3.10 FIELD TESTING

A. General:

1. Field soils testing will be performed by a testing laboratory of the OWNER's choice at the CONTRACTOR's expense, except as indicated below.

B. Density

1. Where soil material is required to be compacted to a percentage of maximum density, the maximum density at optimum moisture content will be determined in accordance with Method C of ASTM D 1557.

2. Where cohesionless, free draining soil material is required to be compacted to a percentage of relative density, the calculation of relative density will be determined in accordance with ASTM D 4253 and D 4254.

3. Field density in-place tests will be performed in accordance with ASTM D 1556 - Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method, ASTM D 2922 - Standard Test Methods for Density of Soil and Soil-Aggregate in Place By Nuclear Methods (Shallow Depth), or by such other means acceptable to the ENGINEER.

C. Remediation

1. In case the test of the fill or backfill shows non-compliance with the required density, the CONTRACTOR shall accomplish such remedy as may be required to ensure compliance.

2. Subsequent testing to show compliance shall be by a testing laboratory selected by the OWNER and paid by the CONTRACTOR.

D. CONTRACTOR's Responsibilities

1. The CONTRACTOR shall provide test trenches and excavations, including excavation, trench support and groundwater removal for the OWNER's field soils testing operations.

2. The trenches and excavations shall be provided at the locations and to the depths as required by the OWNER.

3. Lawn areas destroyed by test trenching and excavation shall be regraded and relandscaped with hydroseeding.

- END OF SECTION -
SECTION 31 05 19 - GEOTEXTILES

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide geotextiles, complete and in place, in accordance with the Contract Documents.

B. Definitions: The following definitions apply to the WORK of this Section:
 1. Fabric: Geotextile, a permeable geosynthetic comprised solely of textiles.
 2. Minimum Average Roll Value (MinARV): Minimum of series of average roll values representative of geotextile provided.
 3. Maximum Average Roll Value (MaxARV): Maximum of series of average roll values representative of geotextile provided.
 5. Overlap: Distance measured perpendicular from overlapping edge of one sheet to underlying edge of adjacent sheet.
 6. Seam Efficiency: Ratio of tensile strength across seam to strength of intact geotextile, when tested according to ASTM D 4884.
 7. Woven geotextile: A geotextile fabric composed of polymeric yarn interlaced to form a planar structure with uniform weave pattern.
 8. Nonwoven geotextile: A geotextile fabric composed of a pervious sheet of polymeric fibers interlaced to form a planar structure with uniform random fiber pattern.

1.2 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. The following standards are referenced in this Section:

 ASTM D 4355 Standard Test Method for Deterioration of Geotextiles by Exposure to Light, Moisture, and Heat in a Xenon-Arc Type Apparatus
 ASTM D 4491 Standard Test Methods for Water Permeability of Geotextiles by Permittivity
 ASTM D 4533 Standard Test Method for Trapezoid Tearing Strength of Geotextiles
1.3 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01 33 00 - Contractor Submittals.

B. Shop Drawings
 1. Manufacturer material specifications and product literature.
 2. Installation drawings showing geotextile sheet layout, location of seams, direction of overlap, and sewn seams.
 3. Description of proposed method of geotextile deployment, sewing equipment, sewing methods, and provisions for holding geotextile temporarily in place until permanently secured.

C. Samples
 1. Geotextile: One-piece, minimum 18-inches long, taken across full width of roll of each type and weight of geotextile. Label each with brand name and furnish documentation of lot and roll number from which each sample was obtained.
 2. Field Sewn Seam: 5-foot length of seam, 12-inches wide with seam along center, for each type and weight of geotextile.
 3. Securing Pin and Washer: 1 each.

D. Certifications
 1. Certification from geotextile manufacturer that products satisfy the indicated requirements.
 2. Field seam efficiency test results.
PART 2 -- PRODUCTS

2.1 WOVEN GEOTEXTILE

A. Woven geotextile shall be composed of polymeric yarn interlaced to form a planar structure with uniform weave pattern. Products shall be calendared or finished so that yarns will retain their relative position with respect to each other.

B. Polymeric yarn shall be long-chain synthetic polymers (polyester or polypropylene) with stabilizers or inhibitors added to make filaments resistant to deterioration due to heat and ultraviolet light exposure.

C. Sheet Edges: Selvaged or finished to prevent outer material from separating from sheet.

D. Unseamed Sheet Width: Minimum 6 feet.

E. Nominal Weight per Square Yard: 6.

F. Physical Properties: Conform to requirements below.

| PHYSICAL PROPERTY REQUIREMENTS FOR WOVEN GEOTEXTILE |
|-----------------------------------|-----------------|-----------------|
| **Property** | **Requirement** | **Test Method** |
| Apparent Opening Size (AOS) | No. 10 to No. 100 U.S. Standard Sieve Size | ASTM D 4751 |
| Water Permittivity | 0.02 to 3.34 sec.-1, MinARV | ASTM D 4491 (Falling Head) |
| Vertical Waterflow Rate | 10 to 150 gpm/sq ft, MinARV | |
| Wide Width Strip Tensile Strength | 60 to 1,500 lb/in.-width, MinARV | ASTM D 4595 |
| Wide Width Strip Elongation | 14 to 60 percent, MaxARV | |
| Trapezoidal Tear Strength | 30 to 200 lb, MinARV | ASTM D 4533 |
| Puncture Strength | 50 to 250 lb, MinARV | ASTM D 4833 |
| Abrasion Resistance | 5 to 25 percent loss, 250 cycles, MaxARV | ASTM D 4886 |
| Ultraviolet Radiation Resistance | 70 to 90 percent strength retention, MinARV after 500 hours | ASTM D 4355 |
2.2 NONWOVEN GEOTEXTILE

A. Nonwoven geotextile shall be composed of a pervious sheet of polymeric fibers interlaced to form a planar structure with uniform random fiber pattern. Products shall be calendared or finished so that yarns will retain their relative position with respect to each other.

B. Polymeric yarn shall be long-chain synthetic polymers (polyester, polypropylene, or polyethylene) with stabilizers or inhibitors added to make filaments resistant to deterioration due to heat and ultraviolet light exposure.

C. Geotextile Edges: Selvaged or finished to prevent outer material from separating from sheet.

D. Unseamed Sheet Width: Minimum 6-feet.

E. Nominal Weight per Square Yard: 12 ounces.

F. Physical Properties: Conform to requirements below.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Opening Size (AOS)</td>
<td>No. 100 to No. 140 U.S. Standard Sieve Size</td>
<td>ASTM D 4751</td>
</tr>
<tr>
<td>Water Permittivity</td>
<td>1.2 sec.¹ MinARV</td>
<td>ASTM D 4491 (Falling Head)</td>
</tr>
<tr>
<td>Vertical Waterflow Rate</td>
<td>90 gpm/sq ft, MinARV</td>
<td></td>
</tr>
<tr>
<td>Wide Width Strip Tensile Strength</td>
<td>300 MinARV</td>
<td>ASTM D 4595</td>
</tr>
<tr>
<td>Wide Width Strip Elongation</td>
<td>70 percent, MaxARV</td>
<td>ASTM D 4595</td>
</tr>
<tr>
<td>Trapezoidal Tear Strength</td>
<td>120 lb, MinARV</td>
<td>ASTM D 4533</td>
</tr>
<tr>
<td>Puncture Strength</td>
<td>130 lb, MinARV</td>
<td>ASTM D 4833</td>
</tr>
<tr>
<td>Ultraviolet Radiation Resistance</td>
<td>90 percent strength retention, MinARV after 500 hours</td>
<td>ASTM D 4355</td>
</tr>
</tbody>
</table>
2.3 SEWING THREAD

A. Sewing thread shall be polypropylene, polyester, or Kevlar thread with durability equal to or greater than durability of geotextile sewn.

2.4 SECURING PINS

A. Securing pins shall be steel rods or bars conforming to the following:

1. 3/16-inch diameter.
2. Pointed at one end; head on other end, sufficiently large to retain washer.

B. Steel washers for securing pins shall be:

1. Outside Diameter: Not less than 1-1/2 inches.
2. Inside Diameter: 1/4-inch.

C. Steel Wire Staples

1. U-shaped.
2. 10-gauge.
3. Minimum 6-inches long.

PART 3 -- EXECUTION

3.1 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver each roll with sufficient information attached to identify manufacturer and product name or number.

B. Handle products in manner that maintains undamaged condition.

C. Do not store products directly on ground. Ship and store geotextile with suitable wrapping for protection against moisture and ultraviolet exposure. Store geotextile in a way that protects it from elements. If stored outdoors, elevate and protect geotextile with waterproof cover.

3.2 LAYING GEOTEXTILE

A. Notify the ENGINEER whenever geotextiles are to be placed. Do not place geotextile prior to obtaining ENGINEER's approval of underlying materials.
B. Lay and maintain geotextile smooth and free of tension, folds, wrinkles, or creases.

3.3 ORIENTATION ON SLOPES

A. Orient geotextile with long dimension of each sheet parallel to direction of slope.

B. Geotextile may be oriented with long dimension of sheet transverse to direction of slope only if sheet width, without unsewn seams, is sufficient to cover entire slope and anchor trench and extend at least 18-inches beyond toe of slope.

3.4 JOINTS

A. Unseamed Joints

1. Unseamed joints shall be overlapped to the following dimensions unless otherwise indicated:
 b. Riprap: Minimum 18-inches.
 c. Drain Trenches: Minimum 18-inches, except overlap shall equal trench width if trench width is less than 18-inches.
 d. Other Applications: Minimum 12-inches.

B. Sewn seams shall be used wherever stress transfer from one geotextile sheet to another is necessary. Sewn seams, as approved by ENGINEER, also may be used instead of overlap at joints for applications that do not require stress transfer.

 1. Seam efficiency shall be minimum 70 percent, verified by preparing and testing minimum of one set of nondestructive samples per acre of each type and weight of geotextile provided. Test according to ASTM D 4884.

 2. Type: "J" type seams are preferred, but flat or butterfly seams are acceptable.

 3. Stitch Count: Minimum 3 to maximum 7 stitches per inch.

 5. Stitch Location: 2-inches from geotextile sheet edges, or more if necessary to develop required seam strength.

3.5 SECURING GEOTEXTILE

A. Secure geotextile during installation as necessary with sand bags or other means approved by ENGINEER.

B. Securing Pins
1. Insert securing pins with washers through geotextile, midway between edges of overlaps and 6-inches from free edges.

2. Spacing

<table>
<thead>
<tr>
<th>Slope</th>
<th>Maximum Pin Spacing, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steeper than 3:1</td>
<td>2</td>
</tr>
<tr>
<td>3:1 to 4:1</td>
<td>3</td>
</tr>
<tr>
<td>Flatter than 4:1</td>
<td>5</td>
</tr>
</tbody>
</table>

3. Install additional pins across each geotextile sheet as necessary to prevent slippage of geotextile or to prevent wind from blowing geotextile out of position.

4. Push each securing pin through geotextile until washer bears against geotextile and secures it firmly to subgrade.

3.6 PLACING PRODUCTS OVER GEOTEXTILE

A. Notify ENGINEER before placing material over geotextile. Do not cover installed geotextile prior to receiving authorization from the ENGINEER to proceed.

B. If tears, punctures, or other geotextile damage occurs during placement of overlying products, remove overlying products as necessary to expose damaged geotextile. Repair damage as indicated below.

3.7 INSTALLING GEOTEXTILE IN TRENCHES

A. Place geotextile in a way that will completely envelope granular drain material to be placed in trench and with indicated overlap at joints. Overlap geotextile in direction of flow. Place geotextile in a way and with sufficient slack for geotextile to contact trench bottom and sides fully when trench is backfilled.

B. After granular drain material is placed to grade, fold geotextile over top of granular drain material, unless otherwise indicated. Maintain overlap until overlying fill or backfill is placed.

3.8 RIPRAP APPLICATIONS

A. Overlap geotextile at each joint with upstream sheet of geotextile overlapping downstream sheet.

B. Sew joints where wave runup may occur.
3.9 GEOTEXTILE-REINFORCED EARTH WALL APPLICATIONS

A. Sew exposed joints; extend sewn seams minimum 3-feet behind face of wall.

B. Protect exposed geotextile from damage and deterioration until permanent facing is applied.

3.10 SILT FENCE APPLICATIONS

A. Install geotextile in one piece or continuously sewn to make one piece, for full length and height of fence, including portion of geotextile buried in toe trench.

B. Install bottom edge of sheet in toe trench and backfill in a way that securely anchors geotextile in trench.

C. Securely fasten geotextile to a wire mesh backing and each support post in a way that will not result in tearing of geotextile when fence is subjected to service loads.

D. Promptly repair or replace silt fence that becomes damaged.

3.11 REPAIRING GEOTEXTILE

A. Repair or replace torn, punctured, flawed, deteriorated, or otherwise damaged geotextile. Repair damaged geotextile by placing patch of undamaged geotextile over damaged area plus at least 18-inches in all directions beyond damaged area. Remove interfering material as necessary to expose damaged geotextile for repair. Sew patches or secure them with pins and washers, as indicated above for securing geotextile, or by other means approved by ENGINEER.

3.12 REPLACING CONTAMINATED GEOTEXTILE

A. Protect geotextile from contamination that would interfere, in ENGINEER's opinion, with its intended function. Remove and replace contaminated geotextile with clean geotextile.

-END OF SECTION-
SECTION 31 11 00 - SITE PREPARATION

PART 1 -- GENERAL

1.1 SUMMARY

A. In its initial move onto the Site, the CONTRACTOR shall protect existing fences, houses and associated improvements, streets, and utilities downslope of construction areas from damage due to boulders, trees, or other objects dislodged during the construction process and clear, grub, strip; and regrade certain areas, in accordance with the Contract Documents.

1.2 SITE INSPECTION

A. Prior to moving onto the Site, the CONTRACTOR shall inspect the Site conditions and review maps of the Site and off-Site pipeline routes and facilities delineating the OWNER's property and right-of-way lines.

PART 2 -- PRODUCTS (NOT USED)

PART 3 -- EXECUTION

3.1 PRIMARY SITE ACCESS

A. The CONTRACTOR shall develop any necessary access to the Site, including access barriers to prohibit entry of unauthorized persons.

B. Utility Interference: Where existing utilities interfere with the WORK, notify the utility owner and the ENGINEER before proceeding in accordance with the General Conditions.

3.2 CLEARING, GRUBBING, AND STRIPPING

A. Construction areas shall be cleared of grass and weeds to at least a depth of 6-inches and cleared of structures, pavement, sidewalks, concrete or masonry debris, trees, logs, upturned stumps, loose boulders, and any other objectionable material of any kind which would interfere with the performance or completion of the WORK, create a hazard to safety, or impair the subsequent usefulness of the WORK, or obstruct its operation. Loose boulders within 10-feet of the top of cut lines shall be incorporated in landscaping or removed from the Site. Trees and other natural vegetation outside the actual lines of construction shall be protected from damage during construction.

B. Within the limits of clearing, the areas below the natural ground surface shall be grubbed to a depth necessary to remove stumps, roots, buried logs, and other objectionable material. Septic tanks, drain fields, and connection lines and any other underground structures, debris or waste shall be removed if found on the Site. Objectionable material from the clearing and grubbing process shall be removed from the Site and wasted in approved safe locations.
C. The entire area to be affected by construction shall be stripped to a depth of 2.5-feet below the existing ground contours. The stripped materials shall be stockpiled and incorporated into landscaped areas or other non-structural embankments.

D. Unless otherwise indicated, native trees larger than 3-inches in diameter at the base shall not be removed without the ENGINEER's approval. The removal of any trees, shrubs, fences, or other improvements outside of rights-of-way, if necessary for the CONTRACTOR's choice of means and methods, shall be arranged with the owner of the property, and shall be removed and replaced, as part of the WORK.

3.3 OVEREXCAVATION, REGRADING, AND BACKFILL UNDER FILL AREAS

A. After the fill areas have been cleared, grubbed, and excavated, the areas to receive fill will require over-excavation, regrading, and backfill, consisting of the removal and/or stockpiling of undesirable soils. The ground surface shall be recontoured for keying the fill and removing severe or abrupt changes in the topography of the Site. The over-excavated volumes to a level 2.5-feet below the existing ground contours shall be backfilled.

- END OF SECTION -
PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide Controlled Low Strength Material (CLSM), complete and in place, in accordance with the Contract Documents.

B. CLSM shall be placed where indicated and may be used, if the ENGINEER approves, for the following purposes:

1. Normal CLSM with high slump, non-segregating consistency that readily flows and fills voids and difficult to reach places: pipe zone fill, trench zone fill, pipe abandonment, structure backfill, and structure cavity fill.

1.2 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01 33 00 - Contractor Submittals.

B. Shop Drawings:

1. CLSM mix designs which show the proportions and gradations of materials proposed for each type of CLSM indicated. Each mix design shall be accompanied by independent laboratory test results of the indicated properties.

2. If the CONTRACTOR proposes to provide lower strength CLSM with aggregates that do not conform to ASTM C 33 - Concrete Aggregate, Shop Drawings shall include a testing program that will be used to control the variability of the aggregates. The testing program shall be acceptable to the Engineer.

1.3 QUALITY CONTROL

A. Testing will be performed by a testing laboratory selected by the OWNER at the OWNER's expense, except as otherwise indicated.

B. If tests of the CLSM show non-compliance with the specifications, the CONTRACTOR shall make changes as may be required to achieve compliance. Performing and paying for subsequent testing to show compliance shall be the CONTRACTOR's responsibility.

C. Correlation Tests

1. The CONTRACTOR shall perform a field correlation test for each mix of CLSM used in pipe zone, trench zone, or backfill used in amounts greater than 100-cubic yards or when CLSM is required to support traffic or other live loads on the fill less than 7 Days after placing CLSM.

2. Field correlation tests shall be performed in a test pit similar in cross section to the WORK and at least 10-feet long at a location near the WORK. The proposed location shall be acceptable to the ENGINEER.
3. Laboratory and field tests shall be performed on samples taken from the same CLSM batch mix. Tests shall be performed by a laboratory at the CONTRACTOR’s expense.

4. Testing shall be performed once each 2 hours during the first 8 hours, once each 8 hours during the first week, and once each 24 hours until the CLSM mix reaches the maximum design strength.
 a. Compression testing shall be in accordance with ASTM D 4832 - Preparation and Testing of Soil-Cement Slurry Test Cylinders.
 b. Setting test shall be in accordance with ASTM C 403 - Time of Setting of Concrete Mixtures by Penetration Resistance
 c. Density tests shall be in accordance with ASTM C 138 - Unit Weight, Yield and Air Content (Gravimetric) of Concrete.

PART 2 -- PRODUCTS

2.1 CONTROLLED LOW STRENGTH MATERIAL

A. CLSM shall be a mixture of cement, pozzolan, coarse and fine aggregate, admixtures, and water, mixed in accordance with ASTM C 94 - Ready Mixed Concrete.

B. Composition: The following parameters shall be within the indicated limits and as necessary to produce the indicated compressive strengths.
 1. Mix proportions as necessary
 2. Entrained air content shall be between 20 percent minimum and 30 percent maximum.
 3. Water reducing agent content as necessary

C. Properties
 1. Density shall be between 120 PCF minimum and 145 PCF maximum
 2. Slump shall be as required by the CONTRACTOR's methods, but shall not promote segregation nor shall slump exceed 9 inches.
 3. Compressive strength at 28 Days:
 a. Normal CLSM: Between 100 psi minimum and 300 psi maximum. Unless specifically indicated otherwise, CLSM shall be Normal CLSM.

2.2 CEMENT

A. Cement shall be Type I or II in accordance with ASTM C 150 - Portland Cement.
2.3 POZZOLAN

A. Pozzolan shall be Type F or C in accordance with ASTM C 618 – Fly ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete. Pozzolan content, by weight, in Normal CLSM shall not be greater than cement content.

2.4 AGGREGATE

A. Aggregate shall consist of a well graded mixture of crushed rock, soil, or sand, with a nominal maximum size of 3/8-inch. One hundred percent shall pass the 1/2-inch sieve; no more than 30 percent shall be retained on the 3/8-inch sieve; and no more than 12 percent shall pass the number 200 sieve. If more than 5 percent of the aggregate passes the number 200 sieve, the material passing the number 200 sieve shall have a plasticity index of less than 0.73 (liquid limit-20), when tested in accordance with ASTM D 4318 - Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Aggregate shall be free from organic matter and shall not contain more alkali, sulfates, or salts than the native materials at the Site.

2.5 ADMIXTURES

A. Air entraining admixtures shall be in accordance with ASTM C 260 - Air-Entraining Admixtures for Concrete.

B. Water reducing admixtures shall be in accordance with ASTM C 494 - Chemical Admixtures for Concrete.

2.6 WATER

A. Water shall be potable, clean, and free from objectionable quantities of silt, organic matter, alkali, salt, and other impurities.

PART 3 -- EXECUTION

3.1 PREPARATION

A. Subgrade and compacted fill to receive CLSM shall be prepared according to Section 31 00 00 - Earthwork.

3.2 BATCHING, MIXING AND DELIVERY

A. Batching, mixing, and delivery of CLSM shall conform to ASTM C 94. CLSM shall be mixed at a batch plant acceptable to the ENGINEER and shall be delivered in standard transit mix trucks.

3.3 PLACEMENT

A. CLSM shall be placed by tailgate discharge, conveyor belts, pumped, or other means. CLSM shall be directed in place by vibrator, shovel, or rod to fill crevices and pockets. Avoid over-consolidation which causes separation of aggregate sizes.
B. CLSM shall be continuously placed against fresh material unless otherwise approved by the ENGINEER. When new material is placed against existing CLSM, the placement area shall be free from loose and foreign material. The surface of the existing material shall be soaked a minimum of one hour before placement of fresh material but no standing water shall be allowed when placement begins.

C. Temperature of the CLSM shall be between 50 and 90 degrees F, when placed. CLSM shall not be placed when the air temperature is below 40 degrees F. No CLSM shall be placed against frozen subgrade or other materials having temperature less than 32 degrees F.

3.4 FINISHING

A. The finish surface shall be smooth and to the grade indicated or directed by the ENGINEER. Surfaces shall be free from fins, bulges, ridges, offsets, and honeycombing. Finishing by wood float, steel trowel, or similar methods is not required.

3.5 CURING

A. CLSM shall be kept damp for a minimum of 7 Days or until final backfill is placed.

3.6 PROTECTION

A. CLSM shall be protected from freezing for 72 hours after placement.

B. No fill or loading shall be placed on CLSM until probe penetration resistance, as measured in accordance with ASTM C 803 - Standard Test Method for Penetration Resistance of Hardened Concrete, exceeds 650 psi.

C. CLSM shall be protected from running water, rain, and other damage until the material has been accepted and final fill completed.

- END OF SECTION -
SECTION 31 23 19 - DEWATERING

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall dewater trench and structure excavations, in accordance with the Contract Documents. The CONTRACTOR shall secure all necessary permits to complete the requirements of this Section of the Specifications.

1.2 CONTRACTOR SUBMITTALS

A. Prior to commencement of excavation, the CONTRACTOR shall submit a detailed plan and operation schedule for dewatering of excavations. The CONTRACTOR may be required to demonstrate the system proposed and to verify that adequate equipment, personnel, and materials are provided to dewater the excavations at all locations and times. The CONTRACTOR's dewatering plan is subject to review by the ENGINEER.

1.3 QUALITY CONTROL

A. It shall be the sole responsibility of the CONTRACTOR to control the rate and effect of the dewatering in such a manner as to avoid all objectionable settlement and subsidence.

B. All dewatering operations shall be adequate to assure the integrity of the finished project and shall be the responsibility of the CONTRACTOR.

C. Where critical structures or facilities exist immediately adjacent to areas of proposed dewatering, reference points shall be established and observed at frequent intervals to detect any settlement which may develop. The responsibility for conducting the dewatering operation in a manner which will protect adjacent structures and facilities rests solely with the CONTRACTOR. The cost of repairing any damage to adjacent structures and restoration of facilities shall be the responsibility of the CONTRACTOR.

PART 2 -- PRODUCTS

2.1 EQUIPMENT

A. Dewatering, where required, may include the use of well points, sump pumps, temporary pipelines for water disposal, rock or gravel placement, and other means. Standby pumping equipment shall be maintained on the Site.

PART 3 -- EXECUTION

3.1 GENERAL REQUIREMENTS

A. The CONTRACTOR shall provide all equipment necessary for dewatering. It shall have on hand, at all times, sufficient pumping equipment and machinery in good working condition and shall have available, at all times, competent workmen for the operation of the pumping equipment. Adequate standby equipment shall be kept available at all
times to insure efficient dewatering and maintenance of dewatering operation during power failure.

B. Dewatering for structures and pipelines shall commence when groundwater is first encountered, and shall be continuous until such times as water can be allowed to rise in accordance with the provisions of this Section or other requirements.

C. At all times, site grading shall promote drainage. Surface runoff shall be diverted from excavations. Water entering the excavation from surface runoff shall be collected in shallow ditches around the perimeter of the excavation, drained to sumps, and be pumped or drained by gravity from the excavation to maintain a bottom free from standing water.

D. Dewatering shall at all times be conducted in such a manner as to preserve the undisturbed bearing capacity of the subgrade soils at proposed bottom of excavation.

E. If foundation soils are disturbed or loosened by the upward seepage of water or an uncontrolled flow of water, the affected areas shall be excavated and replaced with drain rock.

F. The CONTRACTOR shall maintain the water level below the bottom of excavation in all work areas where groundwater occurs during excavation construction, backfilling, and up to acceptance.

G. Flotation shall be prevented by the CONTRACTOR by maintaining a positive and continuous removal of water. The CONTRACTOR shall be fully responsible and liable for all damages which may result from failure to adequately keep excavations dewatered.

H. If well points or wells are used, they shall be adequately spaced to provide the necessary dewatering and shall be sandpacked and/or other means used to prevent pumping of fine sands or silts from the subsurface. A continual check by the CONTRACTOR shall be maintained to ensure that the subsurface soil is not being removed by the dewatering operation.

I. The CONTRACTOR shall dispose of water from the WORK in a suitable manner without damage to adjacent property. CONTRACTOR shall be responsible for obtaining any permits that may be necessary to dispose of water. No water shall be drained into work built or under construction without prior consent of the ENGINEER. Water shall be filtered using an approved method to remove sand and fine-sized soil particles before disposal into any drainage system.

J. The release of groundwater to its static level shall be performed in such a manner as to maintain the undisturbed state of the natural foundation soils, prevent disturbance of compacted backfill and prevent flotation or movement of structures, pipelines, and sewers.

- END OF SECTION -
SECTION 31 35 00 - EROSION AND SEDIMENT CONTROL GENERAL

PART 1 -- GENERAL

1.1 SUMMARY

A. Work includes furnishing all labor, materials and equipment required for the installation and maintenance of both permanent and temporary erosion and sediment control measures as shown on the drawings and as specified herein.

B. Erosion and sediment control measures shall remain in place while potential for erosion exists from construction activities at the site and disposal area, during the duration of the contract and warranty period;

1. Protect and stabilize soils susceptible to erosion. This includes areas were vegetative cover cannot be achieved due to soils, slopes or time of year. The contractor shall be aware of and conform to measures necessary for the control of erosion and sediment runoff according to applicable regulations.

2. Prevent sediment or sediment laden water from entering all creeks and the storm drain systems or to be discharged from the construction site in accordance with the California State Water Resources Control Board, USEPA and other applicable regulations.

C. All temporary erosion and sediment control measures shall be installed prior to commencement of construction.

1.2 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

U.S. DEPARTMENT OF AGRICULTURE (USDA) AMS Seed Act (1940; R 1988; R 1998) Federal Seed Act

California State Water Resources Control Board, Best Management Practices for Erosion and Sediment Control

1.3 SUBMITTALS

A. Submit Erosion and Sediment Control Plans for acceptance in accordance with the provisions of Section 01 33 00 – Contractor Submittals.

1. Submit an Erosion and Sediment Control Plan for work during construction, signed and stamped by a registered Civil Engineer prior to the start of construction. Plan shall meet all federal, state, and local requirements.

2. Submit Notice of Intent (NOI).

PART 2 – PRODUCTS (NOT USED)
PART 3 -- EXECUTION

3.1 INSTALLATION

A. Install erosion and sediment control measures per manufacturer’s directions or as illustrated on the contract drawing or as identified in Section 31 35 20 – Erosion Control Barriers, Section 31 35 30 – Erosion Control Vegetative, Section 31 35 29 – Erosion Control Turbidity Curtain.

3.2 MAINTENANCE AND REMOVAL

B. Repair and reinstall temporary soil erosion control measures as necessary to ensure proper function for the duration of ground disturbing activities and through the warranty period.

C. Temporary erosion control devices shall be removed only after they have performed their intended function.

D. All pipes, end sections, drainage curbs, sand bags, sediment fences and other materials which are removed from temporary erosion control devices and not incorporated into the permanent work shall become the property of the Contractor and shall be removed from the area.

- END OF SECTION -
SECTION 31 35 20 - EROSION CONTROL BARRIER

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide erosion control barriers, complete and in place, in accordance with the Contract Documents

1.2 CONTRACTOR SUBMITTALS

A. Submittals shall be in accordance with Section 01 33 00 - Contractor Submittals.

B. Product Data: Manufacturer's catalog sheets on geotextile fabrics.

PART 2 -- PRODUCTS

2.1 FABRIC

A. Fabric may be woven or non-woven, made from polypropylene, polyethylene, or polyamid, and shall contain sufficient UV inhibitors so that it will last for 2 years in outdoor exposure.

B. Fabric shall have the following properties:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab tensile strength</td>
<td>ASTM D 4632</td>
<td>100 lb</td>
</tr>
<tr>
<td>Burst strength</td>
<td>ASTM D 3786</td>
<td>200 psi</td>
</tr>
<tr>
<td>Apparent opening size</td>
<td>ASTM D 4751</td>
<td>Between 200 and 70 sieve size</td>
</tr>
</tbody>
</table>

C. Fabric Manufacturer, or equal

1. Mirafi

2.2 POSTS

A. Posts shall be wood, at least 2 inches by 2 inches, at least 6 feet long.

B. Posts shall be steel, 1 1/2-inch, T-shaped, at least 6 feet long with protective coating.

2.3 FENCING

A. Woven wire fabric fencing shall be galvanized, mesh spacing of 6 inches, maximum 14-gauge, at least 30 inches tall.
2.4 FASTENERS

A. Fasteners to wood posts shall be steel, at least 1 1/2 inches long.

B. Fasteners to steel posts shall be galvanized clips.

PART 3 -- EXECUTION

3.1 PREPARATION

A. Provide erosion control barriers at the indicated locations and as required to prevent erosion and silt loss from the Site.

B. CONTRACTOR shall not commence clearing, grubbing, earthwork, or other activities which may cause erosion until barriers are in place.

3.2 INSTALLATION

A. Barrier systems shall be installed in such a manner that surface runoff will percolate through the system in sheet flow fashion and allow sediment to be retained and accumulated.

B. Attach the woven wire fencing to the posts that are spaced a maximum of 6 feet apart and embedded a minimum of 12 inches. Install posts at a slight angle toward the source of the anticipated runoff.

C. Trench in the toe of the filter fabric barrier with a spade or mechanical trencher so that the downward face of the trench is flat and perpendicular to the direction of flow. Lay fabric along the edges of the trench. Backfill and compact.

D. Securely fasten the fabric materials to the woven wire fencing with tie wires.

E. Reinforced fabric barrier shall have a height of 18 inches.

F. Provide the filter fabric in continuous rolls and cut to the length of the fence to minimize the use of joints. When joints are necessary, splice the fabric together only at a support post with a minimum 6-inch overlap and seal securely.

3.3 MAINTENANCE

A. Regularly inspect and repair or replace damaged components of the barrier. Unless otherwise directed, maintain the erosion control system until final acceptance; then remove erosion and sediment control systems promptly.

B. Remove sediment deposits when silt reaches a depth of 6 inches or 1/2 the height of the barrier, whichever is less. Dispose of sediments on the Site, if a location is indicated on the Drawings, or at a site arranged by the CONTRACTOR which is not in or adjacent to a stream or floodplain.

-END OF SECTION-
PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide instream trapping devices specifically designed to limit sediment transport impacts within a body of water. Turbidity curtains and other instream sediment trapping devices shall provide sedimentation protection for in-stream, bank, or upslope ground disturbance or from dredging or filling within a waterway.

B. WORK shall include furnishing all labor, materials, and equipment required for the installation and maintenance of instream sediment trapping devices, complete and in place, in accordance with the Contract Documents.

C. CONTRACTOR shall be responsible for following all applicable Federal, State, and local codes and regulations, including the California State Water Resources Control Board requirements and best management practices.

1.2 CONTRACTOR SUBMITTALS

A. Submittals shall be in accordance with Section 01 33 00 - Contractor Submittals.

B. Product Data: Manufacturer's catalog sheets on turbidity curtain fabrics.

PART 2 -- PRODUCTS

2.1 FABRIC

A. Strong heavy-weight material with ultraviolet light (UV) inhibitors.

B. Tensile strength shall be sufficient to withstand predicted flows.

C. Seams and line attachments shall be sewn or vulcanized welded into place.

D. Flotation devices shall be flexible, buoyant units contained in an individual flotation sleeve or collar attached to the curtain.

2.2 ANCHORS

A. In-stream anchors shall have a floating anchor buoy or other identifying mark.

B. Shoreline turbidity curtain anchors shall be 2- by 4-inch or 1.33-lbs/lineal foot metal stakes.

C. Bottom anchors shall hold the curtain in position and may be any of the following types: plow, fluke, mushroom, or a grappling hook.
PART 3 -- EXECUTION

3.1 PREPARATION

A. Provide erosion control barriers at the indicated locations and as required preventing erosion and silt loss from the Site.

B. CONTRACTOR shall not commence clearing, grubbing, earthwork, or other activities which may cause erosion until barriers are in place.

3.2 INSTALLATION

A. For manufactured products, install per manufacturer’s instructions.

B. Install turbidity curtains parallel to flow of the watercourse.

C. Turbidity curtain shall extend the entire depth of the watercourse.

D. In areas heavily impacted by wind generated wave action; turbidity curtains should have slack to follow the rise and fall of the water level without submerging.

E. Set upstream anchor points first, then unfurl the fabric, letting the flow carry the fabric to the downstream anchor points.

3.3 MAINTENANCE AND REMOVAL

A. Follow manufacturer instructions for fabric and material repair.

B. Remove materials at low flows and in a manner to scoop and trap sediments within the fabric.

C. Regularly inspect and repair or replace damaged components of the barrier. Unless otherwise directed, maintain the erosion control system until the disturbed area is permanently stabilized or upon final acceptance; then remove erosion and sediment control systems promptly.

D. Dewater and dispose of sediments on the Site, if a location is indicated on the Drawings, or at an approved site arranged by the CONTRACTOR which is not in or adjacent to a stream or floodplain.

- END OF SECTION -
SECTION 31 35 30 - EROSION CONTROL (VEGETATIVE)

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide erosion protection including fertilizing, seeding, and mulching for all disturbed areas that are not to be paved or otherwise treated in accordance with the Contract Documents.

PART 2 -- PRODUCTS

2.1 MATERIALS

A. **Fertilizer**: Fertilizer shall be a commercial, chemical type, uniform in composition, free-flowing, conforming to state and federal laws and suitable for application with equipment designed for that purpose. Commercial fertilizer should conform to the requirements of the California Food and Agricultural Code.

B. **Seed**: Seed shall be delivered in original unopened packages bearing an analysis of the contents. Seed shall be guaranteed 95 percent pure with a minimum germination rate of 80 percent, and shall meet California State Seed Law.

1. Seed mix shall consist of brome, perennial ryegrass, barley, fescue, wheatgrass, and clover native to the Upper Klamath watershed, or some combination of two or more of the above.

2. The seed mix shall conform to the final seed mix selected in the SWPPP.

3. The seed mix shall have weed-free certifications and Phytophthora-free certifications.

4. Seed mix shall be fast growing species that can be established with normal rainfall and without supplemental irrigation.

5. Seed mix shall be subject to the approval of the OWNER and ENGINEER.

C. **Mulch**: Mulch shall be a fibrous, wood cellulose product produced for this purpose. It shall be dyed green and contain no growth or germination inhibiting substances, and shall be manufactured so that when thoroughly mixed with seed, fertilizer, and water, in the proportions indicated it will form a homogenous slurry which is capable of being sprayed. The mulch shall be **Silva Fiber** as manufactured by Weyerhaeuser Company; **Conwood Fiber** as manufactured by Consolidated Wood Conversion Corp.; or equal.

D. Erosion Control Fabric: Erosion control fabric shall be used on all slopes 4H:1V and steeper.
1. Materials: Erosion control fabric shall be rolled, fiber matrix between biodegradable or photodegradable polypropylene nets, and shall have a design life of 12 months or greater.

2. Anchorage Devices: 6-inch biodegradable stakes from the manufacturer or staples of the proper length as recommended by the manufacturer for specific soil condition.

E. Manufacturers, or Equal

1. North American Green

PART 3 -- EXECUTION

3.1 GENERAL

A. Weather Conditions: Fertilizing, seeding, or mulching operations will not be permitted when wind velocities exceed 15 miles per hour or when the ground is frozen, unduly wet, or otherwise not in a tillable condition.

B. Soil Preparation: The ground to be seeded shall be graded in conformance with the Drawings and shall be loose and reasonably free of large rocks, roots, and other material which will interfere with the work.

C. Method of Application: Fertilizer, seed, and mulch may be applied separately (Dry Method), or they may be mixed together with water and the homogeneous slurry applied by spraying (Hydraulic Method), except that all slopes steeper than 3 units horizontal to 1 unit vertical shall be stabilized by the Hydraulic Method.

3.2 DRY METHOD

A. Fertilizing: The fertilizer shall be spread uniformly at the rate recommended by the seed supplier for the selected seed mix. The fertilizer shall be raked in and thoroughly mixed with the soil to a depth of approximately 2-inches prior to the application of seed or mulch.

B. Seeding: The seed shall be broadcast uniformly at the rate of 44 lbs/acre (approximately 1 lb per 1,000 sq ft), or as recommended by the seed supplier. After the seed has been distributed it shall be incorporated into the soil by raking or by other approved methods.

C. Mulch Application: Mulch shall be applied at the rate of 1,500 lb (air dried weight) per acre (approximately 1 lb per 30 sq ft).

3.3 HYDRAULIC METHOD

A. The hydraulic method consists of the uniform application by spraying of a homogeneous mixture of water, seed, fertilizer, and mulch. The slurry shall be prepared by mixing the ingredients in the same proportions as indicated above. The slurry shall have the proper consistency to adhere to the earth slopes without lumping or running. Mixing time of materials shall not exceed 45 minutes from the time the seeds come into contact with the water in the mixer to the complete discharge of the slurry onto the slopes, otherwise
the batch shall be recharged with seed. The mixture shall be applied using equipment containing a tank having a built-in, continuous agitation and recirculation system, and a discharge system which will allow application of the slurry to the slopes at a continuous and uniform rate. The application rates of the ingredients shall be the same as those specified for the Dry Method. The nozzle shall produce a spray that does not concentrate the slurry nor erode the soil.

3.4 EROSION CONTROL BLANKET

A. Placement

1. Biodegradable erosion control blanket shall be used on all slopes 4H:1V and steeper.

2. The erosion control shall be spread only on prepared, fertilized and seeded surfaces.

3. On all slopes, the erosion control blanket shall be laid up-and-down the slope in the direction of water flow.

4. Waste of erosion control material shall be minimized by limiting overlaps as specified and by utilizing the full length of the netting at roll ends.

B. Anchorage

1. Ends and sides of adjoining pieces of material shall be overlapped 6-inches and 4-inches respectively, and stapled. Six anchors shall be installed across ends. A common row of staples shall be used at side joints. Staple through both blankets, placing staples approximately 6-inches apart.

2. The top edge of the erosion control blanket shall be anchored in a 6-inch deep by 6-inch wide trench. Backfill and compact trench after stapling.

3. Anchorage shall be by means of 9-inch long, 2-legged staples driven vertically and full-length into the ground. The legs shall be spread 3-inches to 4-inches apart at the ground to improve resistance to pull-out. In loose soils the use of 18-inch metal/washer pins may be required to properly anchor the blankets.

4. All slopes which are 3:1 or greater shall be stapled with 2 staples per square yard in a triangular pattern. Staples shall be installed per the manufacturer's recommended staple pattern guide.

5. The erosion control blanket shall not be stretched, but should be laid loosely over the ground to avoid pulling the blanket downslope.

6. The erosion control blanket shall not be rolled out onto ground containing frost within the 9-inch penetration zone of the anchorage staples. Further, no stapling shall be undertaken while any frost exists within the staple penetration zone.
3.5 WATERING

A. Upon completion of the erosion control seeding, the entire area shall be soaked to saturation by a fine spray. The new planting shall be kept watered by a sprinkling system on the Site during dry weather or whenever necessary for proper establishment of the planting until final project acceptance. At no time shall the planting be allowed to dry out. Care shall be taken to avoid excessive washing or puddling on the surface and any such damage caused thereby shall be repaired by the CONTRACTOR.

3.6 MAINTENANCE PRIOR TO FINAL ACCEPTANCE

A. The CONTRACTOR shall maintain the planted areas in a satisfactory condition until final acceptance of the project. Such maintenance shall include the filling, leveling, and repairing of any washed or eroded areas, as may be necessary, and sufficient watering to maintain the plant materials in a healthy condition. The ENGINEER may require replanting of any areas in which the establishment of the vegetative ground cover does not appear to be developing satisfactorily.

3.7 MAINTENANCE AFTER FINAL ACCEPTANCE

A. The CONTRACTOR shall maintain the planted areas in a satisfactory condition until final acceptance of the project. Such maintenance shall include the filling, leveling, and repairing of any washed or eroded areas, as may be necessary, and sufficient watering to maintain the plant materials in a healthy condition. The ENGINEER may require replanting of any areas in which the establishment of the vegetative ground cover does not appear to be developing satisfactorily.

- END OF SECTION -
SECTION 31 37 00 - RIPRAP

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide riprap, including associated earthwork, complete and in place, in accordance with the Contract Documents.

1.2 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

ASTM C 88 Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate

AASHTO T 85 Standard Method of Test for Specific Gravity and Absorption of Coarse Aggregate

AASHTO T 210 Method of Test for Aggregate Durability Index.

1.3 CONTRACTOR SUBMITTAL

A. Furnish submittals in accordance with Section 01 33 00 – Contractor Submittals.

B. Testing certificates from a qualified testing agency shall be submitted prior to acceptance of the rock source to verify the conformity to the requirements of the Contract Documents.

PART 2 -- PRODUCT

2.1 STONES FOR RIPRAP

A. Stones shall be graded in size to produce a reasonably dense mass. Riprap shall consist of dense, natural rock fragments. Stones shall be resistant to weathering and to water action; free from overburden, spoil, shale, and organic material; and shall meet the gradation requirements below. Shale and stones with shale seams are not acceptable.

B. Riprap shall conform to the size types as follows:

1. Type I (6-inch Average Size):

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-inch</td>
<td>95 - 100</td>
</tr>
<tr>
<td>6-inch</td>
<td>25 - 75</td>
</tr>
</tbody>
</table>
2. Type II (12-inch Average Size):

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-inch</td>
<td>95 - 100</td>
</tr>
<tr>
<td>12-inch</td>
<td>25 - 75</td>
</tr>
<tr>
<td>6-inch</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>

3. Type III (18-inch Average Size):

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-inch</td>
<td>95 - 100</td>
</tr>
<tr>
<td>18-inch</td>
<td>25 - 75</td>
</tr>
<tr>
<td>13-inch</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>

4. Type IV (24-inch Average Size):

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-inch</td>
<td>95 - 100</td>
</tr>
<tr>
<td>24-inch</td>
<td>25 - 75</td>
</tr>
<tr>
<td>18-inch</td>
<td>15 - 25</td>
</tr>
<tr>
<td>12-inch</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>

C. The greatest dimension of 50 percent of the stones shall be at least two-thirds but not more than 1-1/2 times the diameter of the average size. Neither the breadth nor thickness of any piece of riprap shall be less than one-third its length. Material shall be of shapes which will form a stable protection structure of required depth. Rounded boulders or cobbles shall not be used.

D. Stones shall consist of durable, sound, hard, angular rock meeting the following requirements for durability absorption ratio, soundness test, and abrasion test:
Durability Absorption Ratio

<table>
<thead>
<tr>
<th>Durability Absorption Ratio</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than 23</td>
<td>Passes</td>
</tr>
<tr>
<td>10 to 23</td>
<td>Passes only if Durability Index is 52 or greater</td>
</tr>
<tr>
<td>Less than 10</td>
<td>Fails</td>
</tr>
<tr>
<td>Durability Absorption Ratio</td>
<td>Durability Index (Coarse)</td>
</tr>
<tr>
<td></td>
<td>% absorption + 1</td>
</tr>
</tbody>
</table>

E. The durability index and percent absorption shall be determined by AASHTO T 210 and AASHTO T 85, respectively. The minimum apparent specific gravity of the stones shall be 2.5 as determined by AASHTO T 85.

F. Stones shall have less than 10 percent loss of weight after five cycles, when tested per ASTM C 88.

G. Stones shall have a wear not greater than 40 percent, when tested per ASTM C 535.

H. Control of gradation shall be by visual inspection. The CONTRACTOR shall furnish a sample of the proposed gradation of at least 5 tons or 10 percent of the total riprap weight, whichever is less. If approved, the sample may be incorporated into the finished riprap at a location where it can be used as a frequent reference for judging the gradation of the remainder of riprap.

I. The acceptability of the stones will be determined by the ENGINEER prior to placement. Any difference of opinion between the ENGINEER and the CONTRACTOR shall be resolved by dumping and checking the gradation of two random truckloads of stones. Arranging for and the costs of mechanical equipment, a sorting site, and labor needed in checking gradation shall be the CONTRACTOR’s responsibility.

2.2 GEOTEXTILE FABRIC

A. Geotextile fabric shall conform to the requirements of Section 31 05 19 - Geotextiles.

2.3 FILTER MATERIAL

A. Filter material shall be clean and free from organic matter. It shall be crushed rock or gravel, durable and free from slaking or decomposition under the action of alternate wetting or drying. The material shall be uniformity graded and shall conform to the following gradation:

1. Type 1

<table>
<thead>
<tr>
<th>Size</th>
<th>Percentage Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-inch</td>
<td>85 – 100</td>
</tr>
</tbody>
</table>
PART 3 -- EXECUTION

3.1 SURFACE PREPARATION

A. Surfaces to receive riprap shall be smooth and firm, free of brush, trees, stumps, and other objectionable material, and shall be brought to the line and grade indicated.

B. If a boulder is encountered during excavation of areas where large riprap is to be placed, the CONTRACTOR shall excavate around the boulder. If the boulder is larger than the largest allowable stone size for that area, the CONTRACTOR shall break up the boulder to an acceptable size or remove it entirely.

C. Prior to placement of the geotextile, the surface shall be prepared to a smooth condition free of debris, depressions, or obstructions which may damage the geotextile. The geotextile shall be overlapped a minimum of 2-feet at longitudinal and transverse joints. Upstream sheets shall overlap downstream sheets. For slope placement, each strip shall overlap the next downhill strip. The geotextile shall be anchored using key trenches or aprons at the crest and toe of the slope. Pins may be used in securing the geotextile during installation. In no instance shall the geotextile be left exposed to sunlight longer than 7 Days. Overexposed geotextile shall be removed and replaced.

3.2 PLACEMENT OF FILTER BLANKET

A. Area of riprap placement shall be excavated to the bottom of the filter blanket as indicated and in accordance with Section 31 00 00 – Earthwork. After the excavation has been completed, the top 12-inches of exposed surface shall be scarified, brought to optimum moisture content, and compacted to 95 percent of maximum density. The finished grade shall be even, self-draining, and in conformance with the slope of the finished grade.

B. Placement of filter material shall be in accordance with Section 31 00 00. Filter material shall be placed, spread, and compacted in lifts not to exceed 12-inches.

C. The CONTRACTOR shall remove any portion of the filter blanket that has been disturbed to the degree that the layers become mixed. Replace the removed portion with the required sizes.

D. Filter material shall be placed as follows, unless otherwise indicated.
 1. For Type II, III and IV riprap, use 12-inches of Type 1 filter material.
 2. For Type I riprap, use 6-inches of Type 2 filter material.

E. No filter material is required if riprap is placed directly on bedrock.

<table>
<thead>
<tr>
<th>1-1/2 inch</th>
<th>45 – 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4-inch</td>
<td>10 – 25</td>
</tr>
</tbody>
</table>
3.3 PLACEMENT OF RIPRAP

A. Placement of riprap shall begin at the toe of the slope and proceed up the slope. The stones may be placed by dumping and may be spread by bulldozers or other suitable equipment as long as the underlying material is not displaced. Stones shall be placed so as to provide a minimum of voids. Smaller stones shall be uniformly distributed throughout the mass. Sufficient hand work shall be done to produce a neat and uniform surface, true to the lines, grades, and sections indicated.

B. Where riprap is placed over a geotextile fabric, the riprap shall be placed so as to avoid damage to the geotextile. Stones shall not be dropped from a height greater than 3-feet, nor shall large stones be allowed to roll downslope.

3.4 GROUTED RIPRAP

A. After the riprap has been placed, sand or fine gravel shall be swept into the interstices to fill them to within 4-inches of the average surface of the riprap. After wetting the stones, the remaining volume of the interstices shall be filled with a well-mixed grout composed of 1 part Portland cement and 3 parts of sand, mixed to a workable consistency. The grout shall be kept wet by sprinkling or covering with wet material for at least 3 Days. The grout shall be protected from stream water or any other disturbance during this curing period, and shall not be placed in freezing weather or when conditions are unfavorable.

- END OF SECTION -
SECTION 32 11 13 - A.C. PAVEMENT AND BASE

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide A.C. pavement and base, complete and in place, in accordance with the Contract Documents.

1.2 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. Commercial Standards

AASHTO M 82 Cut-Back Asphalt (Medium Curing Type)
AASHTO M 140 Emulsified Asphalt
AASHTO M 208 Cationic Emulsified Asphalt
AASHTO M 320 Standard Specification for Performance-Graded Asphalt Binder
ASTM D 242 Mineral Filler for Bituminous Paving Mixtures
ASTM D 692 Coarse Aggregate for Bituminous Paving Mixtures
ASTM D 977 Emulsified Asphalt
ASTM D 1073 Fine Aggregate for Bituminous Paving Mixtures
ASTM D 1188 Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens
ASTM D 1557 Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf per cu ft)
ASTM D 2027 Cutback Asphalt (Medium Curing Type)
ASTM D 2397 Cationic Emulsified Asphalt
ASTM D 2726 Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures.
ASTM D 6373-16 Standard Specification for Performance Graded Asphalt Binder
AI MS-2 Asphalt Mix Design Methods, 7th Edition (Asphalt Institute)

B. State Standards
1.3 CONTRACTOR SUBMITTALS

A. Submittals shall be in accordance with Section 01 33 00 - Contractor Submittals. Include job-mix formulas and other pertinent information satisfactory to the ENGINEER.

B. **Suitability Tests of Proposed Materials:** Tests for conformance with the Specifications shall be performed prior to start of the WORK. The samples shall be identified to show the name of the material, aggregate source, name of the supplier, contract number, and the segment of the WORK where the material represented by the sample is to be used. Results of all tests shall be submitted to the ENGINEER for approval. Materials to be tested shall include aggregate base, coarse and fine aggregate for paving mixtures, mineral filler, and asphalt cement.

PART 2 -- PRODUCTS

2.1 AGGREGATE BASE

A. Materials for aggregate base shall be Type GF material in accordance with Section 31 00 00 - Earthwork.

2.2 PRIME COAT

A. Prime coat shall be Type RS-2 liquid asphalt complying with the requirements of AASHTO M 82 (ASTM D 2027) and Caltrans Standard Specifications, Section 94, Asphaltic Emulsions.

2.3 TACK COAT

A. Tack coat shall be emulsified asphalt Grade SS-1 or SS-1h, CSS-1 or CSS-1h diluted with one part water to one part emulsified asphalt, undiluted asphalt Grade RS-1 or CRS-1, or paving asphalt grade 64-22. Emulsified asphalt shall comply with the requirements of AASHTO M 140 (ASTM D 977) or M 208 (ASTM D 2397); paving asphalt shall comply with the requirements of AASHTO M 226 (ASTM D 3381).

2.4 ASPHALT CEMENT

A. Asphalt Cement shall be Performance Grade 64-22 complying with the requirements of AASHTO M320 (ASTM D 6373-16).

2.5 MINERAL AGGREGATE

A. Mineral aggregate shall be crushed stone, crushed slag, crushed gravel, stone or slag screening, sand, mineral filler, or a combination of two or more of these materials. Coarse and fine aggregates shall comply with all the quality requirements, except soundness, of ASTM D 692 and D 1073, respectively. Coarse aggregate failing to comply with abrasion requirements may be used if experience has demonstrated it to be satisfactory.
B. Mineral filler shall comply with ASTM D 242.

C. Combinations of aggregates having a history of polishing shall not be used in surface courses.

2.6 ASPHALT-AGGREGATE MIXTURE

A. Asphalt-aggregate mix shall be Performance Grade 64-22, 1/2” maximum aggregate size Type A HMA per CalTrans specifications 39-2.02B(4)(b) and shall comply with Superpave HMA mix design, material specifications, and testing as described in MS-2 Asphalt Mix Design Methods by the Asphalt Institute.

2.7 PAVEMENT MARKING PAINT

A. Pavement marking paint shall be a product specifically formulated for use on asphalt concrete pavement and shall have a proven record of performance and durability.

PART 3 -- EXECUTION

3.1 SUBGRADE PREPARATION

A. The subgrade shall be prepared in accordance with Section 31 00 00 - Earthwork as applicable to roadways and embankments. The surface of the subgrade after compaction shall be hard, uniform, smooth and true to grade and cross-section. Subgrade for pavement shall not vary more than 0.02-foot from the indicated grade and cross section. Subgrade for base material shall not vary more than 0.04-foot from the indicated grade and cross section.

3.2 AGGREGATE BASE

A. Aggregate base shall be provided where indicated to the thickness indicated. Imported aggregate bases shall be delivered to the Site as uniform mixtures and each layer shall be spread in one operation. Segregation shall be avoided and the base shall be free of pockets of coarse or fine material. Where the required thickness is 6-inches or less, the base materials may be spread and compacted in one layer. Where the required thickness is more than 6-inches; the base material shall be spread and compacted in two or more layers of approximately equal thickness, and the maximum compacted thickness of any one layer shall not exceed 6-inches. The relative compaction of each layer of aggregate base shall be not less than 95 percent of maximum density when measured in accordance with ASTM D 1557. The compacted surface of the finished aggregate shall be hard, uniform, smooth and at any point shall not vary more than 0.02 foot from the indicated grade or cross-section.

3.3 PRIME COAT

A. Prior to placing of pavement a prime coat of cutback asphalt shall be applied to the compacted base or subgrade at a rate between 0.10 and 0.25 gal/sq yd.
3.4 TACK COAT

A. A tack coat shall be applied to existing paved surfaces where new asphalt concrete is to be placed on existing pavement. It shall also be applied to the contact surfaces of all cold pavement joints, curbs, gutters, manholes and the like immediately before the adjoining asphalt pavement is placed. Care shall be taken to prevent the application of tack coat material to surfaces that will not be in contact with the new asphalt concrete pavement. Diluted emulsified asphalt shall be applied at the rate of 0.05 to 0.15 gal/sq yd. Undiluted emulsified asphalt shall be applied at the rate of 0.025 to 0.075 gal/sq yd. Paving asphalt shall be applied at the rate of approximately 0.05 gal/sq yd.

3.5 ASPHALT CONCRETE

A. At the time of delivery to the Site, the temperature of mixture shall not be lower than 260 degrees F or higher than 320 degrees F, the lower limit to be approached in warm weather and the higher in cold weather.

B. Asphalt concrete shall not be placed when the atmospheric temperature is below 40 degrees F or during unsuitable weather.

C. The asphalt concrete shall be evenly spread upon the subgrade or base to such a depth that, after rolling, it will be of the required cross section and grade of the course being constructed.

D. The depositing, distributing, and spreading of the asphalt concrete shall be accomplished in a single, continuous operation by means of a self-propelled mechanical spreading and finishing machine designed specially for that purpose. The machine shall be equipped with a screed or strike-off assembly capable of being accurately regulated and adjusted to distribute a layer of the material to a definite pre-determined thickness. When paving is of a size or in a location that use of a self-propelled machine is impractical, the ENGINEER may waive the self-propelled requirement.

E. Spreading, once commenced, shall be continued without interruption.

F. The mix shall be compacted immediately after placing. Initial rolling with a steel-wheeled tandem roller, steel three-wheeled roller, vibratory roller, or a pneumatic-tired roller shall follow the paver as closely as possible. If needed, intermediate rolling with a pneumatic-tired roller shall be done immediately behind the initial rolling. Final rolling shall eliminate marks from previous rolling. In areas too small for the roller, a vibrating plate compactor or a hand tamper shall be used to achieve thorough compaction.

G. Upon completion the pavement shall be true to grade and cross-section. When a 10-ft straightedge is laid on the finished surface parallel to the center of the roadway, the surface shall not vary from the edge of the straightedge more than 1/8-in except at intersections or changes of grade. In the transverse direction, the surface shall not vary from the edge of the straightedge more than 1/4-in.

H. The relative density after compaction shall be 95 percent of the density obtained by using ASTM D 1188 or D 2726. A properly calibrated nuclear asphalt testing device shall be used for determining the field density of compacted asphalt concrete, or slabs or cores may be laboratory tested in accordance with ASTM D 1188.
3.6 PAVEMENT MARKING

A. Pavement marking paint shall be applied where indicated only when the pavement surface is dry and clean, and when the air temperature is above 40 degrees F. All equipment used in the application of pavement marking shall produce stripes and markings of uniform quality with clean and well-defined edges that conform to the details and dimensions indicated. Drips, overspray, improper markings, and paint material tracked by traffic shall be immediately removed from the pavement surface by methods previously reviewed by the ENGINEER.

- END OF SECTION -
SECTION 33 05 00 - PRECAST CONCRETE MANHOLES AND VAULTS

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide precast concrete manholes and vaults, complete and in place, in accordance with the Contract Documents.

1.2 SPECIFICATIONS, CODES AND STANDARDS

A. Commercial Standards

ASTM A 48 Gray Iron Castings
ASTM C 150 Portland Cement
ASTM C 443 Joints for Circular Concrete Sewer and Culvert Pipe, Using Rubber Gaskets
ASTM C 478 Precast Reinforced Concrete Manhole Sections
ASTM C 890 Standard Practice for Minimum Structural Design Loading for Monolithic or Sectional Precast Concrete Water and Wastewater Structures
ASTM C 913 Standard Specification for Precast Concrete Water and Wastewater Structures
ASTM C 923 Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals

1.3 CONTRACTOR SUBMITTALS

A. General: Furnish submittals in accordance with Section 01 30 00 - Contractor Submittals.

B. Shop Drawings

1. Show dimensions, locations, lifting inserts, reinforcement, and joints.

2. Structural design calculations for vaults, signed by a registered engineer.

E. Manufacturer’s Certification for Vaults: Written certification that the vault complies with the requirements of this Section.
1.4 QUALITY CONTROL

A. **Inspection:** After installation, the CONTRACTOR shall demonstrate that manholes and vaults have been properly installed, level, with tight joints, at the correct elevations and orientations, and that the backfilling has been carried out in accordance with the Contract Documents.

PART 2-- PRODUCTS

2.1 **MANHOLES**

A. The CONTRACTOR shall provide precast manhole sections and conical sections conforming to ASTM C 478 and the requirements of this Section. Adjusting rings shall be standard items from the manufacturer of the manhole sections. Minimum wall thickness of rings shall be 4-inches if steel reinforced and 6-inches if not reinforced.

B. Axial length of sections shall be selected to provide the correct total height with the fewest joints.

C. Conical sections shall be designed to support cast iron frames and covers under an H-20 loading, unless indicated otherwise.

D. Where the manhole barrel diameter is greater than 48-inches, a flat slab-transition, either concentric or eccentric, shall be used to transition to 48-inch diameter riser sections. Underside of the transition shall be at least 7-feet above the top of the bench.

E. **Design Criteria:** Manhole walls, transitions, conical sections, and base shall be designed per ASTM C 478 for the depths indicated and the following:

 1. AASHTO H-20 loading applied to the cover.
 2. Unit weight of soil of 120 pcf located above all portions of the manhole.
 3. Lateral soil pressure based on saturated soil producing 100 pcf acting on an empty manhole.
 4. Internal fluid pressure based on unit weight of 63 pcf with manhole filled from invert to cover with no balancing external soil pressure.
 5. Dead load of manhole sections fully supported by the base and transition.
 6. Additional reinforcing steel in walls to transfer stresses at openings.
 7. The minimum clear distance between the edges of any 2 wall penetrations shall be 12-inches or one-half of the diameter of the smaller penetration, whichever is greater.

F. Joints shall be sealed with O-ring gaskets conforming to ASTM C 443.
G. Concrete for base and channel formation shall be 4,000 psi concrete conforming to Section 03 30 00 - Cast-In-Place Concrete.

H. Barrel section to sewer pipe connections shall be sealed with resilient connectors complying with ASTM C 923. Mechanical devices shall be stainless steel.

I. Manhole Manufacturers, or Equal
 1. Atlantic Concrete Products, Inc., Cockeysville, MD
 2. Hanson Concrete Products, Inc., Milpitas, CA
 3. Hardwall Fabricators, Inc., N. Miami, OK
 4. Teichert Precast, Sacramento, CA

2.2 FRAMES AND COVERS

A. Castings: Castings for manhole frames and covers shall be non-rocking and shall conform to the requirements of ASTM A 48, Class 30. Unless otherwise indicated, cast iron covers and frames shall be heavy traffic type, 30 inches in diameter, with embossed lettering saying to meet the requirements of the City or the local utility company. Frame and cover shall be designed for H-20 traffic loading.

B. Castings Manufacturers, or Equal
 1. Alhambra Foundry Co., Ltd.
 2. Neenah Foundry Co.
 3. Vulcan Foundry, Inc

2.3 VAULTS

A. The CONTRACTOR shall provide precast vaults designed for the indicated applications and of the sizes indicated.

B. The minimum structural member thickness for vaults shall be 5-inches. Cement shall be Type V Portland cement as specified in ASTM C 150. The minimum 28-day concrete compressive strength shall be 4,000 psi. All reinforcing steel shall be embedded in the concrete with a minimum clear cover as recommended by ACI 318.

C. Design Loading: Vaults in areas subject to vehicular traffic shall be designed for H-20 traffic loading. Vaults in other areas shall be designed for a vertical live load of 300 psf. Lateral loads on vaults in all areas shall be calculated from:

\[
L = 90\ h, \text{ plus surcharge of } 240 \text{ psf in areas of vehicular traffic}
\]

Where \(L\) = loading in psf

\(h\) = depth of fill in feet

D. Where joints are designed in pre-cast concrete vaults, such joints shall be interlocking to
secure proper alignment between members and prevent migration of soil through the joint. Structural sections at joints shall be sized sufficiently to reinforce the section against localized distress during transportation and handling and against excess contact bearing pressures through the joint.

E. Where openings for access to the vault are required, the full clear space opening indicated shall be provided, without obstructions from brackets or supports. For large openings where brackets or supports are designed to protrude into the opening for support of required covers, such brackets or supports shall be designed to be easily removed and replaced with a minimum of effort and without cutting or welding.

E. Covers for access openings shall be provided. Frames for covers shall be fabricated from steel, galvanized after fabrication, and shall be integrally cast into the vault concrete sections. All covers shall be tight fitting to prevent the entrance of dirt and debris. Where edge seams are permitted, no gaps greater than 1/16-inch between edges will be accepted. All covers, except round, heavy-weight, cast iron manhole covers, shall have securing mechanisms to hold the covers firmly in place against the effects of repetitious live loads such as pedestrian or vehicle traffic.

E. Where penetration of the pre-cast concrete vault are required for piping, conduit, or ducts, such penetrations shall be accommodated through pre-cast openings or thin-wall knock-out sections. All openings for penetrations shall be smooth and free of surface irregularities and without exposed steel reinforcing. Vaults need not be designed to resist thrust from piping passing through the vault.

E. Warning Signs

1. The entrance to every manhole and vault shall be fitted with a permanently affixed, plastic warning sign, located above and centered on the top step. Each sign shall be in accordance with Section 10 14 00 - Signage.

2. Sign Manufacturer, or Equal
 a. W. H. Brady Company
 b. Seton Nameplate Corporation

PART -- EXECUTION

3.1 GENERAL

A. Pre-cast concrete sections shall be transported and handled with care in accordance with the manufacturer’s written recommendations. Where lifting devices are provided in pre-cast sections, such lifting devices shall be used as intended. Where no lifting devices are provided, the CONTRACTOR shall follow the manufacturer’s recommendations for lifting procedures to provide proper support during lifting.

B. Buried pre-cast concrete vaults shall be assembled and placed in excavations on properly compacted soil foundations as indicated. Pre-cast concrete vaults shall be set to grade and oriented to provide the required dimensions and clearances from pipes and other structures.
C. Prior to backfilling, all cracks and voids in pre-cast concrete vaults shall be filled with non-shrink grout or polyurethane sealant, or both. Around pipe and conduit penetrations, openings shall be sealed with polyurethane sealant. With the authorization of the ENGINEER, grout or a closed-cell flexible insulation may be used as filler material prior to placing a final bed of polyurethane sealant.

- END OF SECTION -
SECTION 33 11 11 - STEEL PIPE, SPECIALS, AND FITTINGS (AWWA C200, MODIFIED)

PART 1 -- GENERAL

1.1 SUMMARY
A. The CONTRACTOR shall provide steel pipe, specials, and fittings, complete and in place, in accordance with the Contract Documents.

B. A single pipe manufacturer shall be made responsible for furnishing steel pipe, specials, fittings, and appurtenances such as bolts and gaskets for the WORK.

C. Pipe Material Group No. 8. The piping system defined in this section is referred to in the Pipe Schedule on Contract Sheet G007 as Piping Material Group No. 8. (Note that steel Pipe of 14-inch diameter and larger, as called out on the Contract Drawings, shall be based upon innrt diameter dimensions, per Part 2.1.A of this Section.)

1.2 CONTRACTOR SUBMITTALS
A. Furnish submittals in accordance with Section 01 33 00 – Contractor Submittals.

B. Furnish the following information with Shop Drawings:
1. Certified dimensional drawings of fittings and appurtenances
2. Joint and pipe/fitting wall construction details which indicate the type and thickness of cylinder; the position, type, size, and area of reinforcement; coating and lining holdbacks, manufacturing tolerances, and other pertinent information required for the manufacture of the product
3. Joint details where deep bell or butt strap joints are required for control of temperature stresses
4. Details for elbows, wyes, tees, outlets, connections, test bulkheads, and nozzles or other specials that indicate amount and position of reinforcement
5. Fittings and specials, showing proper reinforcement to withstand the internal pressure, both circumferential and longitudinal, and the external loading conditions as indicated
6. Material lists and steel reinforcement schedules that describe materials to be utilized, including metallurgical, chemical, and physical test reports from each heat of steel to verify the steel conforms to the indicated requirements
7. Line layout and marking diagrams which indicate the specific number of each pipe and fitting, the location of each pipe, the direction of each fitting in the completed line, and the following:
 a. the pipe station and invert elevation at every change in grade or horizontal alignment
b. the station and invert elevation to which the bell end of each pipe will be laid

c. elements of curves and bends, both in horizontal and vertical alignment

d. the limits within each reach of restrained and/or welded joints or of concrete encasement

e. location and dimensional allocations for each indicated valve, fitting, and appurtenance

8. Welds

a. Submit full and complete information regarding location, type, size, and extent of welds.

b. The Shop Drawings shall distinguish between shop and field welds.

c. Shop Drawings for field welds shall indicate by welding symbols or sketches the details of the welded joints and the preparation of parent metal required to make them. Submittal shall include a complete Welding Procedure Specification (WPS) guide sheet for each category of weld (fillet weld, single-bevel butt weld, double-bevel butt weld, etc.) that defines all specific details for the supplied weld including:

1) Welding Procedure Specification (WPS) which identifies characteristics including joint and backing ring (if applicable) geometry, base metal and filler metal characteristics, pre-heating and post-heating requirements, electrical characteristics, welding technique, and a welding parameter sheet.

2) Propose Welding Procedure Qualification (WPQ) process,

3) Proposed inspection and non-destructive examination (NDE) requirements to meet the requirements of this Section.

d. Joints or groups of joints in which welding sequence or technique are especially important shall be carefully controlled to minimize shrinkage stresses and distortion.

9. Rubber gasket joint design and details

10. Drawings showing the location, design, and details of bulkheads for hydrostatic testing of the pipeline, and details for removal of test bulkheads and repair of the lining

11. Details and locations of closures for length adjustment and for construction convenience

12. Detail drawings indicating the type, number, and other pertinent details of the slings, strut, and other methods proposed for pipe handling during manufacturing, transport, and installation
13. Manufacturer's Written Quality Assurance/Control Program

C. Certifications

1. The CONTRACTOR shall furnish a certified affidavit of compliance for pipe and other products or materials in AWWA C200 - Steel Water Pipe 6 in and Larger, AWWA C205 - Cement-Mortar Protective Lining and Coating for Steel Water Pipe - 4 in and Larger-Shop Applied, AWWA C207 - Steel Pipe Flanges for Waterworks Service - Sizes 4 In Through 144 In, AWWA C208 - Dimensions for Fabricated Steel Water Pipe Fittings, AWWA C210 - Liquid–Epoxy Coating Systems for the Interior and Exterior of Steel Water Pipelines, AWWA C213 - Fusion-Bonded Epoxy Coatings for the Interior and Exterior of Steel Water Pipelines, and C222 - Polyurethane Coatings for the Interior and Exterior of Steel Water Pipelines and Fittings, and the following supplemental requirements:

 a. physical and chemical properties of steel
 b. hydrostatic test reports
 c. results of production weld tests
 d. sand, cement, and mortar tests
 e. rubber gasket tests
 f. coating adhesion test
 g. records of coating application

2. Performance and payment for sampling and testing necessary for certification are the CONTRACTOR's responsibility as part of the WORK.

D. Manufacturer's Qualifications

1. Furnish a copy of manufacturer's certification to ISO 9000, SPFA, or LRQA, and documentation of manufacturer’s experience in fabricating AWWA C200 pipe.

E. Design Calculations of Fittings and Specials

1. Furnish a copy of the design calculations for fittings and specials including miters, welds, and reinforcement, prior to manufacture of the pipe, fittings, and specials.

1.3 QUALITY CONTROL

A. Pipe Manufacturer Qualifications

1. The pipe manufacturer shall be certified to ISO 9000, the Steel Plate Fabricator's Association (SPFA), or Lloyd’s Register Quality Assurance (LRQA), and shall be experienced in fabrication of AWWA C200 pipe of similar diameters, lengths, and wall thickness to this WORK.
2. Experience shall be in the production facilities and personnel, not the name of the company that owns the production facility or employs the personnel.

B. Inspection

1. Pipe shall be subject to inspection at the place of manufacture in accordance with the provisions of AWWA C200, C205, and C214, as supplemented by the indicated requirements.

2. The CONTRACTOR shall notify the ENGINEER in writing of the manufacturing start date not less than 14 Days prior to the start of any phase of the pipe manufacture.

C. Tests

1. Except as indicated otherwise, materials used in the manufacture of the pipe shall be tested in accordance with the requirements of AWWA C200, C205, and C214 as follows and as applicable:

 a. Joint gaskets shall be tested in accordance with AWWA C200.

 b. Shop Tests

 1) After the joint configuration is completed and prior to lining with cement mortar, each length of pipe of each diameter and pressure class shall be shop-tested and certified to a pressure of at least 75 percent of the yield strength of the steel.

 2) The test pressure shall be held for 2 minutes and the pipe visually inspected to confirm that welds are sound and leak-free.

 c. In addition to the tests required in AWWA C200, weld tests shall be conducted on each 5,000-feet of production welds and at any other times there is a change in the grade of steel, welding procedure, or welding equipment.

 d. Fittings fabricated from straight pipe previously passing a hydrostatic test need not have an additional hydrostatic test, provided that the welds are tested by nondestructive means and are demonstrated to be sound.

D. Shop Testing of Steel Plate Specials

1. If any special has been fabricated from straight pipe not previously tested and is of the type listed herein (bends, wyes, crosses, tees with side outlet diameter greater than 30 percent of the main pipe diameter, and manifolds), the special shall be hydrostatically tested with a pressure equal to 1.5 times the design working pressure.

2. Specials not required to be hydrostatically tested shall be tested by liquid dye penetrant inspection method in accordance with ASTM E 165 - Standard Test Methods for Liquid Penetrant Examination, Method A, or the magnetic particle method in ASME Section VIII, Division 1, Appendix VI.
3. Reinforcing plates shall be tested by the solution method using approximately 40 psig air pressure introduced between the plates through a threaded test hole; the test hole shall be properly plugged following successful testing.

4. Weld Imperfections
 a. Weld defects, cracks, leaks, distortion, or signs of distress during testing shall require corrective measures.
 b. Weld defects shall be gouged out and re-welded.
 c. After corrections, the special shall be retested.

5. Test Heads
 a. Where welded test heads or bulkheads are used, extra length shall be provided to each opening of the special.
 b. After the removal of each test head, the special shall be trimmed back to the design points with finished plate edges ground smooth, straight, and prepared for the field joint.

6. Testing shall be performed before joints have been coated or lined.

7. Ultrasonic examination shall be performed in accordance with the following:
 a. Steel plate that will be in welded joints or welded stiffener elements shall be examined ultrasonically for laminar discontinuities where both of the following conditions exist:
 1) any plate in the welded joint has a thickness exceeding 0.50 inches.
 2) any plate in the welded joint is subject to transverse tensile stress through its thickness during the welding or service
 b. Ultrasonic examination may be waived where joints are designated to minimize potential laminar tearing.
 c. The ultrasonic examination shall be in accordance with ASTM A 578 - Straight Beam Ultrasonic Examination of Plain and Clad Steel Plates for Special Applications, with a Level I acceptance standard.

8. Plates that are not in conformance with the acceptance criteria in ASTM A 578 may be used in the WORK if the areas that contain the discontinuities are a distance at least 4 times the greatest dimension of the discontinuity away from the weld joint.

E. The CONTRACTOR shall be responsible for performing and paying for the indicated material tests.

F. The ENGINEER has the right to witness testing conducted by the CONTRACTOR provided that the CONTRACTOR's schedule is not delayed for the convenience of the ENGINEER.
G. Additional Testing

1. In addition to those tests specifically required, the ENGINEER may request additional samples of any material including mortar lining and coating for testing by the OWNER.

2. The additional samples shall be furnished as part of the WORK.

H. Field Testing

1. Field testing shall be in accordance with the requirements of Section 01 74 30 Pressure Pipeline Testing and Disinfection.

I. Welding Requirements

1. Welding procedures used to fabricate and install pipe shall be prequalified under the provisions of ANSI/AWS D1.1 - Structural Welding Code-Steel, and the ASME Boiler and Pressure Vessel Code, Section IX.

2. Welding procedures shall be required for longitudinal and girth or spiral welds for pipe cylinders, spigot and bell ring attachments, reinforcing plates and ring flange welds, and plates for lug connections.

J. Welder Qualifications

1. Welding shall be performed by skilled welders, welding operators, and tackers who have had adequate experience in the methods and materials to be used.

2. Welders shall be qualified under the provisions of ANSI/AWS D1.1 or the ASME Boiler and Pressure Vessel Code, Section IX by an independent local, approved testing agency not more than 6 months prior to commencing WORK on the pipeline.

3. Machines and electrodes similar to those used in the WORK shall be used in qualification tests.

PART 2 -- PRODUCTS

2.1 GENERAL

A. Lined and coated steel pipe and specials shall conform to AWWA C200, C205, C210, C213, and C222, subject to the following supplemental requirements:

1. The pipe, specials, and fittings shall be of the diameter and class indicated and shall be provided complete with rubber gaskets or welded joints as indicated.

2. Steel Pipe of 14-inch Diameter and Larger Based upon Inside Diameter Dimension. For pipe, specials, and fittings of 14-inch diameter and larger, the pipe diameter as indicated on the Contract Drawings is the required minimum inside diameter of the pipe, as measured from the inside face of the steel sheet to the inside face of the steel shell. Use of standard outside diameter steel
pipe dimensions is acceptable for pipe classified as pipe material No. 8 on the Contract Drawings.

3. When indicated as a minimum, wall thickness tolerance shall be as allowed by AWWA C200 or the ASTM nominal sheet or plate tolerance, whichever is less.

B. Markings

1. The manufacturer shall legibly mark pipe, specials, and fittings in accordance with the laying schedule and marking diagram.

2. Each pipe, special, and fitting shall be numbered in sequence and said number shall appear on the laying schedule and marking diagram in its proper location for installation.

3. Each pipe, fitting, and special shall be marked at each end with top field centerline.

C. Handling and Storage

1. The pipe, specials, and fittings shall be handled by use of wide slings, padded cradles, or other devices designed and constructed to prevent damage to the pipe coating and exterior.

2. The use of chains, hooks, or other equipment that might injure the pipe coating or exterior will not be permitted.

3. Stockpiled pipe, specials, and fittings shall be supported on padded skids, sand or earth berms free of rock exceeding 3 inches in diameter, sandbags, or suitable means so that the pipe including coating and lining coating will not be damaged.

4. Pipe, specials, and fittings shall not be rolled and shall be secured to prevent accidental rolling.

D. The CONTRACTOR shall replace or repair damaged pipe, specials, and fittings.

E. Strutting

1. Adequate strutting shall be provided on specials, fittings, and straight pipe in order to avoid damage to the pipe, specials, and fittings during handling, storage, hauling, and installation.

2. For mortar-lined steel pipe, specials, or fittings the following requirements shall apply:

 a. The strutting shall be placed as soon as practicable after the mortar lining has been applied and shall remain in place while the pipe, special, or fitting is loaded, transported, unloaded, installed, and backfilled at the Site.

 b. The strutting materials, size, and spacing shall be adequate to support the earth backfill plus any greater loads that may be imposed by the backfilling and compaction equipment.
c. Any pipe, special, or fitting damaged during handling, hauling, storage, or installation due to improper strutting shall be repaired or replaced.

F. Laying Length

1. The maximum pipe laying length shall be 48 feet, with shorter lengths to be provided as indicated and required.

G. Lining

1. The pipe, specials, and fittings shall have smooth, dense interior surfaces and shall be free from fractures, excessive interior surface crazing, and roughness.

H. Closures and Correction Pieces

1. Closures and correction pieces shall be provided as required such that closures may be made due to different headings in the pipe laying operation and such that corrections may be made to adjust the pipe laying to conform to the indicated pipe stationing.

2.2 MATERIALS

A. Mortar

1. Materials for mortar shall conform to the requirements of AWWA C205; mortar lining shall be Type II or V.

2. Cement in mortar lining shall not originate from kilns that burn metal-rich hazardous waste fuel, nor shall a fly ash or pozzolan be used as a cement replacement.

3. Admixtures shall contain no calcium chloride.

B. Steel for Cylinder and Fittings

1. Pipe, specials, and fittings manufactured under AWWA C200 shall satisfy the following requirements:
 a. minimum yield strength of steel: 50,000 psi for medium to high pressure pipe.
 b. manufactured by a continuous casting process
 c. fully kilned
 d. fine grain practice
 e. maximum carbon content: 0.25 percent
 f. maximum sulfur content: 0.015 percent
 g. minimum elongation: 22 percent in a 2-inch gauge length
 h. in accordance with one of the following Standards:
1) ASTM A1011 - Steel Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability

2) ASTM A572 - High Strength Low-Alloy Columbium-Vanadium Structural Steel

3) ASTM A1018 - Steel, Sheet and Strip, Heavy Thickness Coils, Hot-Rolled Carbon, Structural, High-Strength Low-Alloy Columbium or Vanadium, and High-Strength Low-Alloy with Improved Formability

2. Testing

 a. Steel equal to or greater than 0.5 inch thick used in fabricating pipe shall be tested for notch toughness using the Charpy V-Notch test in accordance with ASTM A 370 - Test Methods and Definitions for Mechanical Testing of Steel Products.

 b. The frequency of testing shall be one impact test (set of 3 specimens - transverse, not longitudinal) for each coil used in manufacturing the pipe.

 c. The testing frequency for sheets and plates shall be one impact test (set of 3 specimens) for each 50 tons of product.

 d. The steel shall withstand a minimum impact of 25 ft-lb at a temperature of 30 degrees F.

2.3 DESIGN OF PIPE

A. General

1. The pipe shall be suitable to transmit raw water under the indicated conditions.

2. The steel pipe shall have rubber-gasketed or field-welded joints as indicated on the Contract Drawings.

3. The pipe shall consist of a steel cylinder, shop-lined with Portland cement mortar and exterior coated with an Epoxy Liquid System per AWWA C210.

B. The pipe shall be designed, manufactured, tested, inspected, and marked according to applicable requirements as indicated and, except as indicated, shall conform to AWWA C200.

C. Pipe Dimensions

1. The pipe shall be of the diameter and minimum wall thickness indicated on the Contract Mechanical and Civil Drawings.

D. Fitting Dimensions

1. Fittings shall be of the diameter and class indicated.
E. Joint Design

1. Butt-strap joints or field welded butt-joints shall be used only where required for closures or where indicated.

2. Unless indicated otherwise, the standard joint design for all steel straight pipe and fittings shall be lap joint field welds and factory butt welds, where applicable. ANSI B16.42 Class 300 steel flanges shall be used for connection to valves, flow meters, and other specials as shown on the Contract drawings.

F. Lap Joints for Field Welding

1. Lap joints prepared for field welding shall be in accordance with AWWA C200.

2. The method used to form, shape, and size bell ends shall be such that the physical properties of the steel are not substantially altered.

3. Unless otherwise approved by the ENGINEER, bell ends shall be formed by an expanding press or by being moved axially over a die in such a manner as to stretch the steel plate beyond its elastic limit to form a truly round bell of suitable diameter and shape.

4. Faying surfaces of the bell and spigot shall be essentially parallel except for mitered bells, but the bell slope shall not vary more than 2 degrees from the longitudinal axis of the pipe.

5. Provide air test tap holes for double-welded (interior and exterior) lap joints.

G. Shop-applied interior linings and exterior coatings shall be held back from the ends of the pipe on field butt strap welds as indicated or as otherwise acceptable to the ENGINEER.

H. Restrained Joints

1. Restrained joints shall be located where indicated

2. Restrained joints shall be field-welded joints, either single, or inside and outside lap-weld, or butt-weld, or butt-strap as indicated.

3. Designs shall include stresses created by the greater of:
 a. a temperature differential of 40 degrees F plus Poisson's effect in combination with hoop stress, or;
 b. thrust due to bulkheads, bends, reducers, and line valves resulting from working pressure in combination with hoop stress.

4. For field-welded joints, design stresses shall not exceed 50 percent of the specified minimum yield strength of the grade of steel utilized, or 21,000 psi, whichever is less, for the part being examined when longitudinal thrust is assumed to be uniformly distributed around the circumference of the joint.
2.4 SPECIALS AND FITTINGS

A. Design

1. Except as otherwise indicated, materials, fabrication and shop testing of specials and fittings shall conform to the requirements stated above for pipe and shall conform to the dimensions of AWWA C208.

2. The minimum thickness of plate for pipe from which specials are to be fabricated shall be a minimum as shown on the Contract drawings and the greatest of those determined by the following 3 criteria:

 a. Working and Transient Pressure Design

 \[T = \frac{P_{w}D/2}{Y/S_{w}} \quad T = \frac{P_{t}D/2}{Y/S_{t}} \]

 Where:

 \[
 \begin{align*}
 T & = \text{Steel cylinder thickness in inches} \\
 D & = \text{Outside diameter of steel cylinder in inches} \\
 P_{w} & = \text{Design working pressure in psi} \\
 P_{t} & = \text{Design transient pressure in psi} \\
 Y & = \text{Specified minimum yield point of steel in psi} \\
 S_{w} & = \text{Safety factor of 2.5 at design working pressure} \\
 S_{t} & = \text{Safety factor at design transient pressure; for elbows 1.875 and 2.0 for other specials}
 \end{align*}
 \]

 b. Mainline Pipe Thickness: Plate thickness for specials shall be not less than the adjacent mainline pipe.

 c. Thickness Based on Pipe Diameter

Nominal Pipe Diameter, inches	Pipe Manifolds Piping Above Ground Piping Structures
24 and under	1/4 inch

B. Specials

1. Specials installed on saddle supports shall be designed to limit the longitudinal bending stress to a maximum of 10,000 psi.

2. Design shall be in accordance with the provisions of Chapter 7 of AWWA Manual M11.

C. Deflections and Angles
1. Moderate deflections and long radius curves may be constructed by means of beveled joint rings, by pulling standard joints, by using short lengths or pipe, or a combination of these methods provided that pulled joints shall not be used in combination with bevels.

2. The maximum total allowable angle for beveled joints shall be 5 degrees per pipe joint.

3. Bevels shall be provided on the bell ends.

4. Mitering of the spigot ends will not be accepted.

5. The maximum allowable angle for pulled joints shall be in accordance with the manufacturer's recommendations, or the angle which results from a 3/4-inch pull-out from normal joint closure, whichever is less.

6. Horizontal deflections or fabricated angles shall fall on the alignment.

7. Vertical Deflections
 a. Vertical deflections shall fall on the alignment and shall be at locations adjacent to underground obstructions, points of minimum earth cover, and pipeline outlets and structures.
 b. The pipe angle points shall match the indicated angle points.

D. Outlets, Tees, Wyes, Crosses, and Nozzles

1. Outlets 12 inches and smaller may be fabricated from Schedule 30 or heavier steel pipe in the standard outside diameters, that is, 12-3/4-inch, 10-3/4-inch, 8-5/8-inch, 6-5/8-inch, and 4-1/2-inch.

2. The minimum plate thickness for reinforcements shall be 10-gauge.

3. The outlet reinforcement design shall be in accordance with the procedures given in Chapter 13 of AWWA Manual M11, and the design pressures and factors of safety indicated above.

4. In lieu of saddle or wrapper reinforcement as provided by the design procedure in Manual M11, pipe or specials with outlets may be fabricated entirely of steel plate having a thickness equal to the sum of the pipe wall plus the required reinforcement.

5. Where Manual M11 requires the design procedure for crotch plate reinforcement, such reinforcement shall be provided.

6. Reinforcing Plates
 a. Outlets shall be fabricated such that there is always at least a 12-inch distance between the outer edge of the reinforcing plate and any field-welded joints.
b. For outlets without reinforcing plates, outlets shall penetrate the steel cylinders so that there is at least a 12-inch clearance between the outlet and any field-welded joints.

7. Tees, wyes, crosses, elbows, and manifolds shall be fabricated such that the outlet clearances and reinforcing plates from any weld joints are a minimum of 5 times cylinder thickness or 2 inches, whichever is greater.

8. Longitudinal weld joints in adjacent cylinder sections shall be oriented such that there is a minimum offset of 5 times cylinder thickness or 2 inches, whichever is greater.

9. Reinforcement
 a. Reinforcement for wyes, tees, outlets, and nozzles shall be designed in accordance with AWWA Manual M11.
 b. Reinforcement shall be designed for the design pressure indicated and shall be as indicated.

10. Specials and fittings shall be equal in pressure design strength and shall have the same lining and coating as the adjoining pipe.

11. Unless otherwise indicated, the minimum radius of elbows shall be 2.5 times the pipe diameter and the maximum miter angle on each section of the elbow shall not exceed 11-1/4 degrees.

E. Welded Fittings. Steel welding fittings shall conform to ASTM A 234 - Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service.

F. Ends for Mechanical-Type Couplings
 1. Except as otherwise indicated, where mechanical-type couplings are indicated the ends of pipe shall be banded with Type C collared ends using double fillet welds.
 2. Where pipe 12-inch and smaller is furnished in standard schedule thickness and where the wall thickness equals or exceeds the coupling manufacturer's minimum wall thickness, the pipe ends may be grooved.

2.5 PIPE INTERIOR LINING

A. The lining system required for each portion of the pipeline shall be as indicated on the Pipe Schedule given on Contract Drawing G007.

B. Cement-Mortar Lining for Shop Application
 1. Unless indicated otherwise, interior surfaces of pipe, specials, and fittings shall be cleaned and lined in the shop with cement mortar lining applied centrifugally in conformity with AWWA C205.
 2. During the lining operation and thereafter, the pipe, specials, and fittings shall be maintained in a round condition by suitable bracing or strutting.
3. The lining machines shall be of a type that has been used successfully for similar work.

4. Every precaution shall be taken to prevent damage to the lining.

5. If the lining is damaged or found defective at the Site, the damaged or unsatisfactory portions shall be replaced with lining conforming to the indicated requirements.

C. The progress of the application of mortar lining shall be regulated in order that handwork, including the repair of defective areas, is cured in accordance with the provisions of AWWA C205.

D. Cement mortar for patching shall be the same materials as the mortar for machine lining, except that a finer grading of sand and mortar richer in cement shall be used when field inspection indicates that such mix will improve the finished lining of the pipe.

E. Cement-Mortar Lining for Field Application

1. Unless otherwise indicated, steel pipe shall be mortar-lined.

2. The materials and design of in-place cement mortar lining shall be in accordance with AWWA C602 and the following supplementary requirements:
 a. Pozzolanic material shall not be used in the mortar mix.
 b. Admixtures shall contain no calcium chloride.
 c. The minimum lining thickness shall be as indicated for shop-applied cement mortar lining, and finished inside diameter after lining shall be as indicated.
 d. Temperature and shrinkage cracks in the mortar less than 1/16 inch wide need not be repaired, whereas pipe, specials, or fittings with mortar cracks wider than 1/16 inch shall be rejected.

F. The minimum lining thickness and tolerance shall be in accordance with AWWA C205.

G. Field Joints

1. The pipe shall be left bare as indicated where field welding joints occur, with lining holdbacks as indicated either in AWWA C210 or as shown on the drawing details.

2. Ends of the linings shall be left square and uniform.

3. Feathered or uneven edges will not be accepted.

H. Defective Linings

1. Defective linings, as determined by the ENGINEER, shall be removed from the pipe wall and shall be replaced to the full thickness required.

2. Defective linings shall be cut back to a square shoulder in order to avoid feather-edged joints.
I. **Hand-Applied Linings**

1. Specials and fittings that cannot be mechanically lined and coated shall be lined and coated by hand-application using the same materials as used for the pipe and in accordance with the applicable AWWA or ASTM standards and as indicated.

2. Coating and lining applied in this manner shall provide protection equal to that for the pipe.

3. Fittings may be fabricated from pipe that has been mechanically lined and/or coated.

4. Areas of lining and coating that have been damaged by such fabrication shall be repaired by hand-application.

J. **Protection of Pipe Lining/Interior**

1. For pipe, specials, and fittings with plant-applied cement-mortar linings, the CONTRACTOR shall provide a 12-mil polyethylene sheet or other suitable bulkhead on the ends of the pipe and on each opening to prevent the lining from drying out.

2. Bulkheads shall be substantial enough to remain intact during shipping and storage until the pipe is installed.

2.6 **PIPE EXTERIOR COATING**

A. **Shop Applied Prime Coating for Concrete Encased Pipe**

1. For the concrete encased portion of the permanent pipeline (Drawing C200), the exterior surfaces of pipe, fittings, and specials shall be given a shop coat of primer. The final applied primer coating shall be per the requirements of AWWA C210 and as specified in this Section, and shall be shop-applied under atmospheric / environmental conditions as required by the prime coat manufacturer. Prime coat shall meet the following:

 a. Surface Preparation: grit blast to near white metal condition, SSPC SP 10

 b. Application: two or more coats of the two-part, chemically cured epoxy primer.

 c. Inspection and testing of the lining shall be per AWWA C210 and the product Manufacturer's recommendations.

 d. During the coating operation and thereafter, the pipe, specials, and fittings shall be maintained in a round condition by suitable bracing or strutting.

 e. The coating machines shall be of a type that has been used successfully for similar Work.

 f. No holdback of primers shall be allowed on the exterior of any pipe.
B. Exterior Coating of Buried Piping

1. Pipe for buried service that will not be encased in concrete, including bumped heads, shall be coated with a minimum one-inch thickness of reinforced cement-mortar coating.

2. Unless otherwise indicated, exterior surfaces of pipe or fittings passing through structure walls shall be cement-mortar coated from the center of the wall or from the wall flange to the end of the underground portion of pipe or fitting.

3. The coating shall be reinforced with a spiral wire reinforcement or welded wire fabric in accordance with AWWA C205.

4. The welded wire fabric shall be securely fastened to the pipe with welded clips or strips of steel.

5. The wire shall be spaced 2 inches on centers and shall extend circumferentially around the pipe.

6. The ends of reinforcement strips shall be lapped 4 inches, and the free ends shall be tied or looped to assure continuity of the reinforcement.

2.7 PIPE APPURTEANCES

A. Pipe appurtenances shall be in accordance with the requirements of Division 33.

B. Access manways shall be as indicated on the Contract Drawings. Precast concrete access manholes with covers shall be as indicated in the Contract Drawings.

C. Threaded outlets shall be forged steel suitable for 3,000-psi service, and shall be as manufactured by Vogt, or equal.

PART 3 -- EXECUTION

3.1 INSTALLATION OF PIPE

A. Handling and Storage

1. Pipe, specials, and fittings shall be carefully handled and protected against damage to lining and coating/interior and exterior surfaces, and impact shocks and free fall.

2. Pipe, specials, and fittings shall not be placed directly on rough ground but shall be supported in a manner that will protect the pipe against injury whenever stored at the Site or elsewhere.

3. Pipe, specials, and fittings shall be handled and stored at the Site in accordance with the requirements indicated in Part 2, above.

4. No pipe shall be installed when the lining or coating, or interior or exterior surfaces show cracks that may be harmful as determined by the ENGINEER.
5. Such damaged lining and coating, and interior and exterior surfaces shall be repaired or a new undamaged pipe, special, or fitting shall be provided.

B. Pipe damaged prior to Substantial Completion shall be repaired or replaced.

C. The CONTRACTOR shall inspect each pipe, special, and fitting for damage.

D. The CONTRACTOR shall remove or smooth out any burrs, gouges, weld splatter, or other small defects prior to laying the pipe, special, or fitting.

E. Cleaning

1. Before the placement of pipe, specials, or fittings in the trench, each shall be thoroughly cleaned of any foreign substance that may have collected thereon and shall be kept clean thereafter.

2. For this purpose, the openings of pipes, specials, and fittings in the trench shall be closed during any interruption to the WORK.

F. Placement

1. CONTRACTOR shall avoid all laying procedures which create concentrated loads on the steel pipe. Pipe, specials, and fittings shall be laid directly:

 a. On the imported and properly compacted bedding material, or

 b. If CLSM is being utilized in the pipe zone and pipe bedding area, on soil pads or other approved compressible material such as extruded polystyrene foam insulation. Soil pads shall maintain horizontal and vertical alignment during backfilling operation, and shall have a lower compressible strength than the surrounding CLSM material

2. Only compressible blocking as specified will be permitted, and the bedding shall be such that it forms a continuous, solid bearing for the full length of the pipe, special, or fitting.

3. Excavations shall be made as needed to facilitate removal of handling devices after the item has been laid.

4. Bell holes shall be formed at the ends of the pipe to prevent point loading at the bells or couplings.

5. Excavation outside the normal trench section shall be made at field joints as needed to permit adequate access to the joints for field connection operations and for application of coating on field joints.

6. Except for short runs that may be permitted by the ENGINEER, pipes shall be laid uphill if on grades exceeding 10 percent.

7. Pipe that is laid on a downhill grade shall be blocked and held in place until sufficient support is furnished by the following pipe to prevent movement.
8. Bends shall be installed as indicated.

G. Installation Tolerances

1. Each section of pipe, special, or fitting shall be laid in the order and position on the laying diagram and in accordance with the following:

 a. Each section of pipe, special, or fitting having a nominal diameter less than 48 inches shall be laid to line and grade, within plus or minus 2 inches horizontal deviation and plus or minus one inch vertical deviation.

 b. Each section of pipe, special, or fitting having nominal diameter 48 inches and larger shall be laid to line and grade, within plus or minus 5 percent of diameter horizontal deviation and plus or minus 2.5 percent of diameter vertical deviation.

 c. In addition to the horizontal and vertical tolerances above, the pipe shall be laid so that no high or low points other than those on the laying diagram are introduced.

 d. After installation, the pipe, specials, and fittings shall not show deflection greater than:

 1) flexible-lined and flexible-coated or bare pipe, specials, and fittings: 3.0 percent

 2) flexible-lined and mortar-coated (rock-shielded) pipe, specials, and fittings: 2.25 percent

 3) mortar-lined and mortar-coated pipe, specials, and fittings: 1.5 percent

 e. The allowable deflection shall be based on the design inside diameter.

H. Test Section

1. At the beginning of pipe laying operations, the CONTRACTOR shall perform a test section to demonstrate that the methods and materials to be used will satisfy the pipe zone backfill compaction and pipe deflection criteria.

2. The maximum length of the test section shall be 500 feet.

3. The CONTRACTOR shall not proceed with production pipe laying beyond the test section without the ENGINEER's approval.

4. The entire test section length that does not comply with the Contract Documents shall be reworked as necessary to comply.

5. The ENGINEER will observe construction of the test section.

6. The OWNER will take measurements and keep records for quality assurance purposes.
7. Any change in means, methods, and trench conditions, including excavation, bedding, and pipe zone materials, in situ soils, water conditions, and backfill and compaction methods shall require another successful test section before additional production pipe installation.

I. Changes in Alignment and/or Grade

1. Where necessary to raise or lower the pipe, specials, or fittings due to unforeseen obstructions or other causes, the ENGINEER may change the alignment and/or the grade.

2. Such change shall be made by the deflection of joints, by the use of bevel adapters, or by the use of additional fittings, although in no case shall the deflection in a joint exceed 75 percent of the maximum deflection recommended by the pipe manufacturer.

3. No joint shall be misfit any amount that will be detrimental to the strength and water tightness of the finished joint.

4. In each case the joint opening, before finishing with the protective mortar inside the pipe, or prior to applying in-place mortar lining, shall be the controlling factor.

J. Struts

1. Struts in pipe 42-inch diameter and larger shall be left in place until backfilling operations have been completed.

2. Struts in pipe smaller than 42-inch may be removed immediately after laying.

3. A laboratory selected and paid by the OWNER may monitor pipe deflection by measuring pipe inside diameter before struts are removed and 24 hours after struts are removed.

4. Pipe deflection shall not exceed 1.5 percent 24 hours after the struts have been removed.

5. After the backfill has been placed, the struts shall be removed and shall remain the property of the CONTRACTOR.

K. Cold Weather Protection

1. No pipe, special, or fitting shall be installed upon a foundation into which frost has penetrated or at any time that there is a danger of the formation of ice or penetration of frost at the bottom of the excavation.

2. No pipe, special, or fitting shall be laid unless it can be established that the trench will be backfilled before the formation of ice and frost occurs.

L. Pipe, Specials, and Fitting Protection
1. The openings of pipe, specials, and fittings with shop-applied mortar lining shall be protected with suitable bulkheads to maintain a moist atmosphere and to prevent unauthorized access by persons, animals, water, or any undesirable substance.

2. The bulkheads shall be designed to prevent the drying out of the interior of the pipe, specials, and fittings.

3. The CONTRACTOR shall introduce water into the pipe to keep the mortar moist if moisture has been lost due to damaged bulkheads.

4. Means shall be provided to prevent the pipe from floating due to water in the trench from any source.

5. Pipe that has floated shall be repaired, including restoration to original condition and profile.

M. **Pipe Cleanup**

1. As pipe laying progresses, the CONTRACTOR shall keep the pipe interior free of debris.

2. The CONTRACTOR shall completely clean the interior of the pipe of sand, dirt, mortar splatter, and any other debris following completion of pipe laying, pointing of joints, and any necessary interior repairs prior to testing and disinfecting of the completed pipeline.

3.2 **WELDED JOINTS**

A. **General**

1. CONTRACTOR shall submit a Welding Procedure Specification (WPS) in accordance with ASME Section IX to define the parameters of the weld and welding procedure for each major type of weld provided for the project.

2. Prior to beginning the welding procedure, any tack welds used to position the pipe during laying shall be removed.

3. Any annular space between the faying surfaces of the bell and spigot shall be equally distributed around the circumference of the joint by shimming, jacking, or other suitable means.

4. Where more than one pass is required, each pass except the first and final ones shall be peened to relieve shrinkage stresses, and dirt, slag, and flux shall be removed before the succeeding bead is applied.

5. Prior to butt welding, the pipe and joint shall be properly positioned in the trench using line up clamps so that, in the finished joint, the abutting pipe sections shall not be misaligned more than 1/16 inch.

6. Unless double fillet welds are indicated, field welded lap joints may, at the CONTRACTOR'S option, be made on either the inside or the outside of the pipe.
7. Field welded joints shall be in accordance with AWWA C206 - Field Welding of Steel Water Pipe.

8. Where exterior welds are performed, adequate space shall be provided for welding and inspection of the joints.

9. Butt straps shall be as indicated.

10. A heat resistant shield shall be draped over at least 24-inches of coating beyond the holdback on both sides of the weld during welding to avoid damage to the coating by hot weld splatter.

11. Welding grounds shall not be attached to the coated part of the pipe.

12. Back-gouging of welds is not required for pipe applications. Interior of all V-groove welds shall be ground smooth to allow for proper field application of liner over the joint, and to prevent hydraulic vortices from forming when water passes over the weld zone.

13. Following hydraulic tests of the welded joint, the exterior joint spaces shall be field coated as indicated.

B. Butt Weld Joints for Beveled-end Pipe (Single V-Groove Bevel)

1. Single V-groove bevels may be used on steel pipe with wall thicknesses up to 0.625 inches. V-groove shall be developed for either interior or exterior joint welding, as required by the Contract Documents.

2. Single V-groove bevel end joints shall be such as to provide a complete joint penetration (CJP) weld. CONTRACTOR may utilize Prequalified welded joints for CJPs as defined in Part 8 of the AISC Steel Construction Manual or in the appropriate Section of the ASME Boiler & Pressure Vessel Code.

3. Bevel angles shall be between 30 and 35 degrees maximum. Total included angle shall be between 60 and 70 degrees.

4. Geometry of the root (face height and width opening) shall be determined by the CONTRACTOR, but shall be no less than 1/16-inch each dimension.

5. Use of backing rings for these joints is at the option of the CONTRACTOR. If no backing rings are utilized, CONTRACTOR shall provide certifications showing that Welders have the required experience in welding the “open-style” bevel joints without backing rings.

6. For pipes larger than 24-inch diameter where exterior welding is required and in cases where no backing rings are utilized, the CONTRACTOR shall provide two qualified welders to work on weld passes #1 and #2 on opposite sides of the joint, simultaneously. After weld pass #2 is completed, successive weld passes can be completed by use of only one qualified welder working on a joint at one time.
C. **Lap-Weld Joints for Bell and Spigot, “Weld Bell” End Pipe (Single or Double Fillet welds)**

1. Where single lap-weld joints are utilized (on either the pipe interior or exterior), the opposite side of the joint shall be finished with a complete, single pass circumference weld to prevent water from migrating into the interface of the joint.

2. Joint “pull deflections” at each joint for alignment purposes shall not exceed 1.0% angle or the Manufacturer’s recommended maximum pull, whichever is less.

3. Others – type here

D. **Trench Backfilling after Joint Welding**

1. After the pipe and joint are properly positioned in the trench, the length of pipe between joints shall be backfilled to at least one foot above the top of the pipe.

2. Care shall be exercised during the initial backfilling to prevent movement of the pipe and to prevent any backfill material from being deposited on the joint.

E. **Temperature Stresses**

1. To control temperature stresses, the unbackfilled joint areas of the pipe shall be shaded from the direct rays of the sun by the use of properly supported awnings, umbrellas, tarpaulins, or other suitable materials for a minimum period of 2 hours prior to the beginning of the welding operation and until the weld has been completed.

2. Shading materials at the joint area shall not rest directly on the pipe but shall be supported to allow air circulation around the pipe.

3. Shading of the pipe joints need not be performed when the ambient air temperature is below 45 degrees F.

F. **Shrinkage Control Joints**

1. At intervals not exceeding 250 feet along welded reaches of the pipeline and at the first regular lap-welded field joints outside concrete encasements and structures, the pipe shall be laid with an initial lap of not less than one inch greater than the minimum lap dimension.

2. The welding of each such shrinkage control joint shall be performed when the temperature is approximately the lowest during the 24 hour day, after at least 250 feet of pipe have been laid and the joints have been welded ahead of and in back of the shrinkage control joint, and after backfill has been completed to at least one foot above the top of the pipe ahead of and in back of the shrinkage control joint.

3. Where shrinkage control joints occur in a traveled roadway or other inconvenient location, the location of the shrinkage control joint may be adjusted, as acceptable to the ENGINEER.
4. The shrinkage control joints for the lap-welded sections of the pipeline shall be per Part 3.3.D of Section 33 11 11.

5. For the Butt-joint, single outside weld connections to existing pipe, shrinkage control joints utilizing a butt strap or other approved closure piece shall be applied, to control temperature shrinkage per the requirements of Part 3.3.D of Section 33 11 11. These butt straps shall not be placed when temperatures are above 50 degrees Fahrenheit.

G. **Inspection of Field-Welded Joints**

1. An independent testing laboratory acceptable to the ENGINEER but paid by the CONTRACTOR shall inspect the joints.

2. Inspection shall be as soon as practicable after the welds are completed.

3. Fillet welds shall be tested by the Magnetic Particle Inspection Method in accordance with ASME Section VIII, Division 1, Appendix VI.

4. **Single Bell and Spigot, Lap-Weld Joints**

 a. Single-welded lap joints refer to those joints where only an interior or exterior fillet weld is required by the Contract Drawings. If a single fillet weld only is applied to a lap joint, than all such joints shall have their opposing surface seem covered with a single pass weld to seal off the seam from water intrusion during normal operations.

5. **Double Bell and Spigot, Lap-Weld Joints**

 a. Double-welded lap joints refer to those joints where both an exterior fillet weld and full interior fillet weld are required. Such joints shall be air-tested by shop drilling and tapping for 1/4-inch national pipe thread access port in the lap or bell end of the pipe.

 b. Apply 50 psig of air or other satisfactory gas into the connection between the 2 fillet welds.

 c. Test pressure shall be measured with a minimum 4-inch diameter pressure gauge with a range no greater than 0 to 120 psig.

 d. The air test shall consist of holding the test pressure undiminished for 5 minutes.

 e. If the air test fails, paint the welds with a soap solution and mark any leaks indicated by the escaping gas bubbles.

 f. Leaking portions of the welds or defective welds shall be removed and re-welded.

 g. The amount of material removed shall be limited to that required to correct the defect.
h. After the repair is made, the joint shall be checked by repeating the original test procedure.

i. Close the threaded openings with pipe plugs or by welding.

6. Butt weld joints shall be inspected by Non-destructive Examination (NDE) processes utilizing either radiographic methods in accordance with API Standard 1104, or approved ultrasonic testing methods.

H. Repair of Welds

1. Defective welds shall be repaired by the CONTRACTOR to meet the indicated requirements.

2. Defects in welds or defective welds shall be removed, and that section of the joint shall then be re-welded.

3. Only sufficient removal of defective material that is necessary to correct the defect shall be required.

4. After the repair is made, the joint shall be checked by repeating the original test procedure.

5. Welds deficient in size shall be repaired by adding weld metal.

3.3 PREPARATION FOR FIELD COATING

A. General: Surfaces to receive protective coatings shall be prepared as indicated prior to application of coatings. The CONTRACTOR shall examine surfaces to be coated and shall correct surface defects before application of any coating material. Marred or abraded spots on shop-primed and on factory-finished surfaces shall receive touch-up restoration prior to any field coating application. Surfaces to be coated shall be dry and free of visible dust.

B. Care shall be exercised not to damage adjacent Work during blasting operations. Spraying shall be conducted under carefully controlled conditions. The CONTRACTOR shall be fully responsible for and shall promptly repair any and all damage to adjacent Work or adjoining property occurring from blasting or coating operations.

C. Protection of Painted Surfaces: Cleaning and coating shall be coordinated so that dust and other contaminants from the preparation process will not fall on wet, newly-coated surfaces, or likewise harm existing surfaces.

3.4 SURFACE PREPARATION STANDARDS

A. Steel Structures Painting Council (SSPC) Standards. The following referenced standards for surface preparation according to specifications of the Steel Structures Painting Council (SSPC) shall form a part of this specification:

1. **SSPC SP1 - Solvent Cleaning:** Removal of oil, grease, soil, salts, and other soluble contaminants by cleaning with solvent, vapor, alkali, emulsion, or steam.
2. **SSPC SP2 - Hand Tool Cleaning**: Removal of loose rust, loose mill scale, loose paint, and other loose detrimental foreign matter, by hand chipping, scraping, sanding, and wire brushing.

3. **SSPC SP3 - Power Tool Cleaning**: Removal of loose rust, loose mill scale, loose paint, and other loose detrimental foreign matter, by power tool chipping, descaling, sanding, wire brushing, and grinding.

4. **SSPC SP5 - White Metal Blast Cleaning**: Removal of all visible rust, oil, grease, soil, dust, mill scale, paint, oxides, corrosion products and foreign matter by blast cleaning.

5. **SSPC SP6 - Commercial Blast Cleaning**: Removal of all visible oil, grease, soil, dust, mill scale, rust, paint, oxides, corrosion products, and other foreign matter, except that staining shall be limited to no more than 33 percent of each square inch of surface area.

6. **SSPC SP7 Brush-Off Blast Cleaning**: Removal of all visible oil, grease, soil, dust, loose mill scale, loose rust, and loose paint.

7. **SSPC SP10 Near-White Blast Cleaning**: Removal of all visible oil, grease, soil, dust, mill scale, rust, paint, oxides, corrosion products, and other foreign matter, except that staining shall be limited to no more than 5 percent of each square inch of surface area.

8. **SSPC-SP13 Surface Preparation of Concrete**: Removal of protrusions, laitance and efflorescence, existing coatings, form-release agents, and surface contamination by detergent or steam cleaning, abrasive blasting, water jetting, or impact or power tool methods as appropriate for the condition of the surface and the requirements of the coating system.

3.5 **JOINT COATING AND LINING**

A. **General**

1. The interior and exterior joint recesses shall be thoroughly wiped clean.

2. Remove water, loose scale, dirt, and other foreign material from the inside surface of the pipe.

B. **Testing**

1. The ENGINEER will test each joint with an electrical detector, furnished by the CONTRACTOR and capable of at least a 12,000 volt output.

2. The tests will be performed using 6,000 to 7,000 volts.

3. The CONTRACTOR shall repair any holidays.

4. Re-Testing
a. When a visual inspection indicates that a portion of the coating system has sustained physical damage, the CONTRACTOR shall perform an electrical holiday test of 6,000 to 7,000 volts.

b. When the test indicates no holiday, a notation shall be applied to the area indicating the test is satisfactory.

C. Coating Repair

1. Prime Coated Pipe: Perform coating repairs on prime coated pipe in accordance with the Manufacturer’s recommendations and the requirements of AWWA C210, satisfying both requirements at a minimum.

2. Rock Shield / Mortar-Coated Pipe: Perform coating repairs on mortar-coated pipe in accordance with the requirements of AWWA C205.

D. Coating of Fittings and Specials: Fittings and specials shall be coated in accordance with AWWA C205 and C210 and the requirements specified herein.

E. Joint Lining

1. Materials of construction for mortar shall be in accordance with the requirements of AWWA C602.

2. The mortar shall be tightly packed into the joint recess and troweled flush with the interior surface, and excess shall be removed.

3. At no point shall there be an indentation or projection of the mortar exceeding 1/16 inch.

4. With pipe smaller than 24-inch in diameter, before the spigot is inserted into the bell, the bell shall be daubed with mortar.

5. The joint shall be completed and excess mortar on the inside of the joint shall be swabbed out. Visual inspection shall occur and the CONTRACTOR shall remove any loose scale, dirt, and other foreign material from the inside surface of the pipe.

6. The lap weld should be tack welded immediately after assembly to minimize movement of the joint. The CONTRACTOR shall allow the cement mortar patch to cure for a minimum of 8 hours prior to completing the required weld.

3.6 INSTALLATION OF PIPE APPURTENANCES

A. Protection of Appurtenances: Where the joining pipe is tape-coated, buried appurtenances shall be coated with cold-applied tape in accordance with Section 09 96 11 – Polyethylene Tape Coating.

B. Installation of Valves

1. Valves shall be handled in a manner to prevent any injury or damage to the valve or any part of it.
2. Joints shall be thoroughly cleaned and prepared prior to installation.

3. The CONTRACTOR shall adjust stem packing and operate each valve prior to installation to verify proper operation.

4. Valves shall be installed so that the valve stems are plumb and in the location indicated.

5. Buried valves and flanges shall be coated and protected in accordance with Section 09 96 00 – Protective Coatings.

C. **Installation of Flanged Joints**

1. Before the joint is assembled, the flange faces shall be thoroughly cleaned of foreign material with a power wire brush.

2. The gasket shall be centered and the connecting flanges drawn up watertight without unnecessarily stressing the flanges.

3. Bolts shall be tightened in a progressive diametrically opposite sequence and torqued with a suitable and calibrated torque wrench.

4. Clamping torque shall be applied to the nuts only.

5. Full-face reinforced rubber gaskets shall be applied to the inside face of blind flanges with adhesive.

D. **Insulated Joints**

1. Insulated joints and appurtenant features shall be provided as indicated.

2. The CONTRACTOR shall exercise special care when installing these joints in order to prevent electrical conductivity across the joint.

3. After the insulated joint is completed, an electrical resistance test shall be performed by the CONTRACTOR.

4. If the resistance test indicates a short circuit, the CONTRACTOR shall remove the insulating units to inspect for damage, replace all damaged portions, and reassemble the insulating joint.

5. The insulated joint shall then be retested to assure proper insulation.

E. **Flexible Coupled Joints**

1. When installing flexible couplings, care shall be taken that the connecting pipe ends, couplings, and gaskets are clean and free of dirt and foreign matter, with special attention given to the contact surfaces of the pipe, gaskets, and couplings.

2. The couplings shall be assembled and installed in conformance with the recommendations and instructions of the coupling manufacturer.
F. **Bolting**

1. Wrenches used in bolting couplings shall be of a type and size recommended by the coupling manufacturer.

2. Coupling bolts shall be tightened in such a manner as to secure a uniform annular space between the follower rings and the body of the pipe.

3. Bolts shall be tightened approximately the same amount.

4. Diametrically opposite bolts shall be tightened progressively and evenly.

5. Final tightening shall be performed with a suitable and calibrated torque wrench set for the torque recommended by the coupling manufacturer.

6. Clamping torque shall be applied to the nut only.

3.7 **CORROSION CONTROL**

A. **Joint Bonding/Electrolysis Test Stations**

1. Except where otherwise indicated, joints shall be bonded for any pipe joints that are non-welded joints.

2. The pipe shall be cleaned to bare bright metal at the point where the bond is to be installed.

3. Electrolysis test stations shall be installed where indicated on Drawings.

B. **Cathodic Protection:** Corrosion mitigation and testing materials, such as an impressed current cathodic protection system, magnesium anodes, reference electrodes, and test lead wires shall be provided where indicated.

-END OF SECTION-
PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR has the option to provide API steel pipe as an alternate pipe material to ASTM A53 for the temporary pipeline, also discussed in Section 40 23 15 – Steel Pipe (ASTM A53).

B. CONTRACTOR shall provide field-welded pipe joints as specified. All welding shall comply with 49 CFR 192 Subpart E and Washington Administrative Code WAC 480-93.

C. CONTRACTOR shall perform hydrostatic testing of each of the installed pipelines. At CONTRACTOR’S option, hydrostatic testing may be performed on the entire installed length, or on smaller, discrete segments. Each pipe segment and each welded joint shall be subject to at least one hydrostatic test.

D. CONTRACTOR shall assist with commissioning of the pipelines, as specified herein.

E. The requirements of Section 40 23 00 – Piping General apply to the Work of this Section.

1.2 REFERENCES

A. The publications listed below form a part of this Section to the extent referenced. Publications are referenced by the basic designation only.

B. AMERICAN PETROLEUM INSTITUTE (API)
 1. API 5L – Specification for Line Pipe
 2. API 6D – Specification for Pipeline Valves
 3. API 1104 – Welding of Pipelines and Related Facilities

C. ASTM INTERNATIONAL (ASTM)
 1. ASTM A193 – Standard specification for alloy steel or stainless steel bolts.
 2. ASTM A194 – Standard specification for alloy steel or stainless steel nuts

D. ASME INTERNATIONAL (ASME)
 1. ASME B16.5 – Pipe Flanges and Flanged Fittings, NPS ½ through 24 inch
 2. ASME B31.8 – Gas Transmission and Distribution Piping Systems
 3. ASME B16.9 – Standard for Factory-Made Wrought Steel Butt-welding Fittings
4. ASME B16.11 – Forged Fittings, Socket Welded and Threaded

5. ASME B16.49 – Butt-Welded Induction Bends

E. U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

F. WASHINGTON ADMINISTRATIVE CODE (WAC)

1. WAC 480-93 – Gas Company Safety Rules

1.3 DESIGN CRITERIA

A. The maximum allowable operating pressure (MAOP) shall be as shown on the Design Criteria on Contract Drawing GC001. The design pressure has been determined by 49 CFR 192.

B. The pipeline operating temperature shall be as shown on the Design Criteria contract drawing.

C. The location class of pipelines shall be as shown on the Design Criteria contract drawing.

D. The pipelines shall be capable of being pigged with inline inspection (ILI) tools or “smart pigs” as well as being pigged for cleaning.

1.4 SUBMITTALS

A. Submit the following, in accordance with Section 01 33 00 – Contractor Submittals.

1. Line layout diagrams that indicate the specific number and length of each pipe segment, the location of each pipe, the direction of each fitting or bend in the completed pipeline, and the following:

 a. The pipe station and elevation at every change in grade or horizontal alignment.

 b. Elements of curves and bends, both in horizontal and vertical alignment.

 c. Weld map drawing showing field welds, indicated by welding symbols per AWS D2.4. The weld map shall assign each weld a unique identifier that correlates the weld with the testing company’s report, which shall also use the same unique identifier for each weld. Weld maps shall include: the weld location in reference to a common location, welder(s), procedure used, results of radiographic inspection, and details of any weld repairs made or cut out.

2. Mill test reports (MTRs) for pipe and pipe flanges, showing steel grade, mechanical properties, and chemical composition. Provide mill certificates from each heat of steel to be used.
3. Detailed dimensioned drawings of flanges, elbows, and other fittings.

4. Gasket product data.

5. Pipe manufacturer’s and CONTRACTOR’S weld procedure specifications (WPS), weld procedure qualification reports (PQRs), and welder performance qualification report (WPQR). Submit joint design, transition designs, and all documents required by WAC 480-93-080.

6. CONTRACTOR’S weld inspection and non-destructive testing (NDT) procedures.

7. Pipe manufacturer’s and CONTRACTOR’S hydrostatic test reports.

9. Weld NDT reports. Also submit X-ray films of weld radiography to OWNER.

1.5 QUALITY ASSURANCE

A. Welding

1. Welding, weld procedures, and welders performing welds shall conform to the requirements of API 1104 and 49 CFR 192. Joint design bevel angle, preheating, stress relieving shall be accordance with those codes. Requirements shall conform to piping systems operating with a hoop stress of 25% or more of the specified minimum yield strength.

2. Additionally, weld procedures and welder qualifications shall conform to WAC 480-93-080.

3. Welders shall have been qualified by an independent, ENGINEER-approved testing agency not more than 6 months prior to commencing Work on the pipeline, in accordance with 49 CFR 192.

4. Welding equipment and electrodes similar to those used in the Work shall be used in the qualification tests.

5. Welding shall be in accordance with approved WPSs. Welding shall be performed by qualified welders. CONTRACTOR (for field welds) shall submit WPSs, PQRs, and WPQRs for review and approval.

6. Shielded metal-arc welding shall be used for all manual welding. Gas metal-arc and submerged metal-arc welding may be used with approval from ENGINEER prior to weld installations. Welding Backer plates / alignment rings shall not be used.

B. X-Ray Weld Inspection

1. 100% of butt welds shall be visually and radiographically tested. Submit X-ray films to the OWNER. OWNER intends to keep the X-ray films indefinitely after completion of the Contract.
2. CONTRACTOR shall furnish an independent Weld Inspector to be present whenever field welding is being performed. Weld Inspector qualifications shall be reviewed and approved by the ENGINEER. CONTRACTOR’S Weld Inspector shall submit qualifications of its testing personnel for ENGINEER review and approval. Contractor shall pay all costs of providing the independent Weld Inspector.

3. Weld Inspector shall oversee weld procedure qualification and welder performance qualification and assure that both are in full compliance with the requirements of this specification. Weld inspector shall certify compliance with the requirements of the specification.

4. Inspection of field welds shall be in conformance with 49 CFR 192 and API 1104. Acceptance criteria shall be as specified in 49 CFR 192 and API 1104.

C. Weld Repair

1. Each weld that is unacceptable under 49 CFR 192 shall be removed or repaired. Cracks shall be removed, not repaired. Arc burn shall be removed, not simply repaired.

2. Each weld to be repaired shall have the defect removed down to sound metal and the segment to be repaired shall be preheated if conditions exist that would adversely affect the quality of the weld repair. After repair, the repaired weld must be inspected to ensure its acceptability.

3. Weld repair shall be in accordance with written weld repair procedures that have been qualified under 49 CFR 192. Repair procedures shall provide a repaired weld with the same minimum mechanical properties as those specified by the original weld procedure.

D. Safety Standards

1. Comply with the safety standards specified in 49 CFR 192 and WAC 480-93.

PART 2 -- PRODUCTS

2.1 PIPE MATERIAL AND CONSTRUCTION

A. The delivery line and return line pipe shall be API 5L steel pipe, Product Specification Level (PSL) 2, Grade X52. Size shall be as shown on the Drawings. Thickness shall be Schedule 10:

1. 24-inch Schedule 10 shall have 0.250-inch wall.

2. Longitudinal joints shall be electric resistance welded (ERW) or the pipe shall be seamless.

B. CONTRACTOR may select the PSL 2 seamless pipe to replace the PSL 2 ERW pipe specified, at the OWNER’s option.

C. Pipe ends shall be furnished with single-bevels from the factory for field welding. Submit
certificates of conformance demonstrating that the pipe conforms with API specification 5L.

D. Submit mill test reports (MTRs)

2.2 PIPE JOINTS

A. Pipe joints shall be field-welded in accordance with Part 3 of this Section. As such, ends of shop-fabricated pipe segments shall be beveled for welding.

B. Flanged joints shall be used where indicated on the Drawings. Flanged joints shall be in accordance with Section 40 23 00 – Piping General.

2.3 PIPE FITTINGS

A. Bends in piggable segments of the pipeline shall be induction bends in accordance with ASME B16.49. Minimum bend radius of piggable segments shall be 3.0 times the nominal diameter. Bends to be cut in the field shall be segmentable, meaning they shall meet diameter and ovality tolerances throughout the elbow, not just at the ends.

B. Bends in non-piggable segments of the pipeline may be either induction bends per ASME B16.49, or forged steel elbows in accordance with ASME B16.9. Minimum bend radius of non-piggable segments shall be 1.5 times the nominal diameter.

C. Tees shall be in accordance with ASME B16.9.

2.4 SHOP HYDROSTATIC TESTS

A. Pipe shall be hydrostatically tested in the shop in accordance with API 5L.

2.5 IDENTIFICATION LABELS FOR ABOVE-GROUND PIPING

A. CONTRACTOR shall provide printed labels to identify content of pipe and arrows to show direction of flow. Labels shall be made of plastic sheet and mounted to the piping with pressure-sensitive adhesive. Labels shall be in accordance with the requirements of 49 CFR 192.707.

2.6 LINING AND COATING SYSTEMS

A. Pipelines shall not be internally lined or coated.

PART 3 -- EXECUTION

3.1 INSTALLATION OF PIPE

A. Delivery, Storage, and Handling

1. Plug or cap pipe ends during transportation and storage to minimize dirt and moisture entry. Pipe shall not be subject to abrasion or concentrated external loads. Dented pipe segments shall be discarded and not used.
2. Pipe shall be handled by wide slings, padded cradles, or other devices designed to prevent damage to the pipe. Chains, hooks, or other equipment that might injure the pipe will not be permitted.

3. Pipe shall be supported on padded skids, sandbags, or other suitable supports so that the pipe will not be damaged. Pipe shall not be rolled and shall be secured to prevent accidental rolling.

4. CONTRACTOR shall repair or replace damaged pipe segments.

B. General: Install pipeline in accordance with 49 CFR 192 and WAC 480-93. For buried pipe, depth of cover below grade shall be no less than 18 inches.

C. Excavating and Backfilling:
 1. Perform excavating and backfilling of pipe trench in accordance with Contract Drawings and Section 31 00 00 – Earthwork.

D. Cleaning: Before placement of pipe in the trench, pipe shall be thoroughly cleaned of any foreign substances in or on the pipe. As pipe laying progresses, CONTRACTOR shall keep the pipe interior free of debris. Pipe openings in the trench shall be closed during any interruption to the Work.

E. Pipe Laying:
 1. Cut pipe to actual dimensions and assemble to prevent residual stresses.
 2. Piping cold-bent in the field shall be bent to a minimum radius of 18D, where “D” is the nominal pipe diameter. The pipe shall be bent no more than 2 degrees in any individual bending action (“bite”) and multiple bites shall be at least 3 inches apart. The pipe shall not wrinkle or kink when bent.

F. Test Section:
 1. At the beginning of pipe laying operations, CONTRACTOR shall install a test section to demonstrate that his/her proposed methods and materials will satisfy the pipe zone backfill compaction and pipe deflection criteria.
 2. The maximum length of test section shall be 500 feet. The ENGINEER will observe construction of the test section.
 3. CONTRACTOR shall not proceed with production pipe laying beyond the test section without ENGINEER’S approval.

G. Field Welding:
 1. Submit welders’ qualifications. Submit WPSs, PQRs, and WPQRs
 2. Each welding procedure shall be recorded in detail, including the results of the qualifying tests. This record must be retained and followed whenever the procedure is used.
3. Prior to beginning the welding procedure, any tack welds used to position the pipe during laying shall be removed.

4. Prior to butt welding, the pipes shall be properly positioned so that the abutting pipe sections in the finished joint shall meet the alignment requirements of API 1104.

5. Field welds shall be tested in accordance with Part 3.5 of this Section.

3.2 INSPECTION AND FIELD TESTING

A. Field Weld Inspection

1. Field butt welds shall be inspected by the CONTRACTOR’s weld inspector using an ENGINEER-approved visual and radiographic non-destructive testing procedure.

2. Repair and removal of any defects shall be as authorized by the ENGINEER. Arc burn shall be removed, not simply repaired. Cracks shall be ground out and re-welded.

B. Field Hydro Testing: Pipe shall be leak tested and hydrostatically tested in accordance with Section 01 74 00 – Pressure Pipeline Testing

-END OF SECTION-
SECTION 40 23 00 - PIPING, GENERAL

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide the piping systems indicated, complete and operable, in accordance with the Contract Documents.

B. The provisions of this Section shall apply to all piping sections in Divisions 33 and 40.

C. Pipe Fabrication Drawings. The Contract Drawings define the general layout, configuration, routing, method of support, pipe size, and pipe type. The contract drawings are not pipe construction or fabrication drawings. The CONTRACTOR shall provide detailed pipe fabrication and pipe laying submittals in accordance with the requirements of the individual pipe material specification sections.

D. Pipe Supports and Spacing. Where pipe supports and spacing are indicated on the Drawings and are referenced to a standard detail, the CONTRACTOR shall use that detail. Where pipe supports are not indicated on the Drawings, it is the CONTRACTOR'S responsibility to develop the details necessary to design and construct piping systems to accommodate the specific equipment provided, and to provide spacers, adapters, and connectors for a complete and functional system.

1.2 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01 33 00 - Contractor Submittals.

B. Shop Drawings: Shop Drawings shall contain information as required in the individual pipe material specification section as well as the following information:

1. Layout and Fabrication Drawings: Layout drawings including necessary details, dimensions, and material lists for pipe joints, fittings, specials, bolts and nuts, gaskets, valves, appurtenances, anchors, and guides. Fabrication drawings shall indicate spacers, pipe adapters and couplings, connectors, fittings, and location of pipe supports to accommodate the equipment and valves in a complete and functional system.

2. Modular Seals for Pipe Penetrations: Manufacturer's information sheets showing materials and installation procedures.

3. Where applicable, all pipe coupling systems, including standard sleeve couplings, flange coupling adaptors, welded-ring restrained couplings, and/or grooved joint products shall be shown on shop drawings and product submittals and shall be specifically identified with the applicable Manufacturer's style or series number.

C. Samples: The CONTRACTOR shall provide and pay for any pipe material sampling and product testing as necessary and as required in the individual pipe material specifications.

D. Certifications
1. Necessary certificates, test reports, and affidavits of compliance shall be obtained by the CONTRACTOR.

2. A certification from the pipe fabricator that each pipe length will be manufactured subject to the fabricator’s or a recognized Quality Control Program. An outline of the Quality Control Program shall be submitted to the ENGINEER for review prior to the manufacture of any pipe.

PART 2 -- PRODUCTS

2.1 GENERAL

A. Extent of Work: Pipes, fittings, and appurtenances shall be provided in accordance with the requirements of the applicable Sections of Divisions 33 and 40 and as indicated.

B. Pipe Supports: Pipes shall be adequately supported, restrained, and anchored in accordance with Section 40 23 02 - Pipe Supports, and as indicated on the Contract Drawings.

C. Interior Linings: Application, thickness, and curing of pipe interior linings shall be in accordance with the applicable Sections of Division 33, unless otherwise indicated.

D. Exterior Coatings: Application, thickness, and curing of exterior coatings on buried pipe shall be in accordance with the applicable Sections of Division 33, unless otherwise indicated. For pipes above ground or in structures, exterior coatings of such pipe shall be in accordance with the applicable Sections of Division 33 and those coating systems as identified in Section 09 96 00 - Protective Coatings.

E. Pressure Rating: Piping systems shall be designed for the maximum expected pressure as defined in Section 01 74 30 - Pressure Pipe Testing and Disinfection, or as indicated on the Contract Drawing, Piping Schedule, whichever is greater.

F. Inspection: Pipe shall be subject to inspection at the place of manufacture. During the manufacture, the OWNER and ENGINEER shall be given access to areas where manufacturing is in progress and shall be permitted to make inspections necessary to confirm compliance with requirements.

G. Tests: Except where otherwise indicated, materials used in the manufacture of the pipe shall be tested in accordance with the applicable specifications and standards. Welds shall be tested as indicated. The CONTRACTOR shall be responsible for performing material tests.

H. Welding Requirements: Qualification of welding procedures used to fabricate pipe shall be in accordance with the provisions of AWS D1.1 - Structural Welding Code. Welding procedures shall be submitted for the ENGINEER's review.

I. Welder Qualifications: Welding shall be done by skilled welders and welding operators who have adequate experience in the methods and materials to be used. Welders shall be qualified under the provisions of AWS D1.1 or the ASME Boiler and Pressure Vessel Code, Section 9, by an independent local, approved testing agency not more than 6 months prior to commencing WORK on the piping. Machines and electrodes similar to
those used in the WORK shall be used in qualification tests. Qualification testing of welders and materials used during testing is part of the WORK.

2.2 PIPE FLANGES

A. **General:** Flanges shall have flat faces and shall be attached with bolt holes straddling the vertical axis of the pipe unless otherwise indicated. Attachment of the flanges to the pipe shall conform to the applicable requirements of AWWA C207. Flange faces shall be perpendicular to the axis of the adjoining pipe. Flanges for miscellaneous small diameter pipes shall be in accordance with the standards indicated for these pipes.

B. **Pressure Ratings**

1. 150 psi or less: Flanges shall conform to either AWWA C207 - Steel Pipe Flanges for Waterworks Service--Sizes 4 In. Through 144 In., Class D, or ASME B16.5 - Pipe Flanges and Flanged Fittings, 150 lb class.

2. 150 psi to 275 psi: Flanges shall conform to either AWWA C207 Class E or Class F, or ASME B16.5 150 lb class.

3. 275 psi to 700 psi: Flanges shall conform to ASME B16.5, 300 lb class.

4. Selection based on test pressure: AWWA flanges shall not be exposed to test pressures greater than 125 percent of rated capacity. For higher test pressures, the next higher rated AWWA flange or an ANSI-rated flange shall be selected.

C. **Blind Flanges:** Blind flanges shall be in accordance with AWWA C207, or as indicated for miscellaneous small pipes. Blind flanges for pipe sizes 10-inches and greater shall be provided with lifting eyes in the form of welded or screwed eye bolts.

D. **Flange Coating:** Machined faces of metal blind flanges and pipe flanges shall be coated with a temporary rust-inhibitive coating to protect the metal until the installation is completed.

E. **Flange Bolts:** Bolts and nuts shall conform to Section 05 50 00 - Miscellaneous Metalwork, unless noted otherwise on the Contract Drawings. All-thread studs may be used on valve flange connections where space restrictions preclude the use of regular bolts.

F. **Insulating Flange Sets:** Insulating flange sets shall be provided where indicated. Each insulating flange set shall consist of an insulating gasket, insulating sleeves and washers, and a steel washer. Insulating sleeves and washers shall be one piece when flange bolt diameter is 1.5 inch or smaller and shall be made of acetal resin. For bolt diameters larger than 1.5 inches, insulating sleeves and washers shall be 2 piece and shall be made of polyethylene or phenolic material.

1. Steel washers shall be in accordance with ASTM A 325 - Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength.

2. Insulating gaskets shall be full-face.
3. Insulated flanges shall have bolt holes 1/4-inch diameter greater than the bolt diameter.

4. Insulating flange sets shall be as manufactured by JM Red Devil, Type E, Maloney Pipeline Products Co, PSI Products, Inc., or equal

G. Flange Gaskets

1. Gaskets for flanged joints used in general water and wastewater service shall be full-faced type, with material and thickness in accordance with AWWA C207, suitable for temperatures to 700 deg F, a pH of one to 11, and pressures to 1,000 psig. Blind flanges shall have gaskets covering the entire inside face of the blind flange and shall be cemented to the blind flange. Ring gaskets shall not be permitted unless otherwise indicated. Flange gaskets shall be as manufactured by John Crane, Style 2160, Garlock, Style 3000, or equal.

2. Gaskets for flanged joints used in chemicals, air, solvents, hydrocarbons, steam, chlorine and other fluids shall be made of materials compatible with the service, pressure, and temperature.

3. Gaskets for flanged joints used in water with chloramines shall be Gylon, Style 3500 as manufactured by Garlock, by Crane, or equal.

2.3 MECHANICAL-TYPE COUPLINGS (GROOVED OR BANDED PIPE)

A. General: Cast mechanical-type couplings shall be provided where indicated. The couplings shall conform to the requirements of AWWA C606 - Grooved and Shouldered Joints. Bolts and nuts shall conform to the requirements of Section 05 50 00. Gaskets for mechanical-type couplings shall be compatible with the piping service and fluid utilized, in accordance with the coupling manufacturer's recommendations. The wall thickness of grooved piping shall conform to the coupling manufacturer's recommendations to suit the highest expected pressure. To avoid excessive load on equipment caused by pipe movement due to steady state or transient pressure conditions, equipment connections with mechanical-type couplings shall have rigid grooved couplings or flexible type coupling with harness in sizes where rigid type couplings are not available, unless thrust restraint is provided by other means. Mechanical type couplings shall be bonded. The CONTRACTOR shall have the coupling manufacturer's service representative verify the correct choice and application of couplings and gaskets, and the workmanship, to assure a correct installation. To assure uniform and compatible piping components, grooved fittings, couplings, and valves shall be furnished by the same manufacturer as the coupling. Grooving tools shall be from the same manufacturer as the grooved components.

B. Manufacturers of couplings for steel pipe, or equal

1. Victaulic Style 41 or 44 (banded, flexible)

2. Victaulic Style 177N (grooved, flexible, for sizes 2 to 8 inch)

3. Victaulic Style 77 (grooved, flexible, for sizes 10 to 12 inch)
4. Victaulic Style AGS W77 (grooved, flexible, for sizes 14 to 72 inch)

5. Victaulic Style 107N or HP-70 (AGS grooved, rigid, for sizes 2 to 12 inch)

6. Victaulic Style AGS W07 (AGS grooved, rigid, for sizes 14 to 48 inch)

2.4 SLEEVE-TYPE COUPLINGS

A. **General:** Sleeve-type couplings shall be provided where indicated. The CONTRACTOR will not be allowed to substitute a sleeve-split coupling, or any other type in lieu of sleeve coupling unless approved by the ENGINEER.

B. **Construction:** Sleeve couplings shall be in accordance with AWWA C219 - Standard for Bolted Sleeve-Type Couplings for Plain-End Pipe. Couplings shall be steel with steel bolts, without pipe stop. Couplings shall be of sizes to fit the pipe and fittings indicated. The middle ring shall be not less than 1/4-inch thick or at least the same wall thickness as the pipe to which the coupling is connected. If the strength of the middle ring material is less than the strength of the pipe material, the thickness of the middle ring shall be increased to have the same strength as the pipe. The coupling shall be either 5- or 7-inches long for sizes up to and including 30-inches and 10-inches long for sizes greater than 30-inches, for standard steel couplings, and 16-inches long for long-sleeve couplings. The followers shall be single-piece contoured mill sections welded and cold-expanded as required for the middle rings, and of sufficient strength to accommodate the number of bolts necessary to obtain adequate gasket pressures without excessive rolling. The shape of the follower shall be of such design as to provide positive confinement of the gasket. Bolts and nuts shall conform to the requirements of Section 05500. Buried sleeve-type couplings shall be epoxy-coated at the factory as indicated.

C. **Pipe Preparation:** Where indicated, the ends of the pipe shall be prepared for flexible steel couplings. Plain ends for use with couplings shall be smooth and round for a distance of 12-inches from the ends of the pipe, with outside diameter not more than 1/64-inch smaller than the nominal outside diameter of the pipe. The middle ring shall be tested by cold-expanding a minimum of one percent beyond the yield point, to proof-test the weld to the strength of the parent metal. The weld of the middle ring shall be subjected to air test for porosity.

D. **Gaskets**

1. Gaskets for sleeve-type couplings shall be rubber-compound material that will not deteriorate from age or exposure to air under normal storage or use conditions. Gaskets for wastewater and sewerage applications shall be Buna "N," Grade 60, or equivalent suitable elastomer. The rubber in the gasket shall meet the following specifications:

 a. **Color:** Black
 b. **Surface:** Non-blooming
 c. **Durometer Hardness:** 75 ± 5
 d. **Tensile Strength:** 1,000 psi minimum
e. Elongation: 175 percent minimum

2. The gaskets shall be immune to attack by impurities normally found in water or wastewater. Gaskets shall meet the requirements of ASTM D 2000 - Classification System for Rubber Products in Automotive Applications, AA709Z, meeting Suffix B13 Grade 3, except as noted above. Where sleeve couplings are used in water containing chloramine or other fluids which attack rubber materials, gasket material shall be compatible with the piping service and fluid utilized.

3. Gasket materials used in water with chloramines shall be Gylon Style 3500 by Garlock or by Crane, or equal.

E. Piping Connection to Equipment: Where piping connects to mechanical equipment such as pumps, compressors, and blowers, the piping shall be brought to the equipment connection aligned and perpendicular to the axis of the flange or fitting for which the piping is to be connected. The piping shall not impose excessive stress to the equipment connection to cause misalignment of the equipment. The CONTRACTOR shall assign the responsibility to the equipment manufacturer to review the piping connection to the equipment and submit any modifications to the ENGINEER for review.

F. Insulating Sleeve Couplings: Where insulating couplings are required, both ends of the coupling shall have a wedge-shaped gasket which assembles over a sleeve of an insulating compound material compatible with the fluid service in order to obtain insulation of coupling metal parts from the pipe.

G. Restrained Joints: Sleeve-type couplings on pressure lines shall be harnessed unless thrust restraint is provided by other means. Harnesses shall be designed by the pipe manufacturer in accordance with AWWA Manual M11, or as indicated. Harness sets shall be designed for the maximum test pressure of the pipe in which they are installed. Where harness sets are installed near the suction and discharge of the pump, harness bolts shall have zero elongation to prevent misalignment of the pump imparted by the thrust within the piping system.

H. Manufacturers, or equal

1. Dresser, Style 38
2. Ford Meter Box Co., Inc., Style FC1 or FC3
3. Smith-Blair, Style 411

2.5 SLEEVE SPLIT-TYPE COUPLINGS (Victaulic Depend-O-Lok, or equal)

A. General: Where indicated sleeve-split type couplings shall be furnished.

B. Construction: Couplings shall be split-type, consisting of one or 2 piece housing, gasket assembly, bolts and nuts, and end rings. The double arch cross section that closes around the pipe ends shall be smooth to allow for expansion or contraction requirements. The pipe ends with steel end rings affixed shall provide restraint requirements. As the coupling closes, it shall confine the elastomeric gasket beneath the arches of the sleeve to create a radial seal. The axial seal shall squeeze the closure...
plates as the bolts pull the coupling snug around the pipe. The coupling shall permit angular pipe deflection, flexibility, contraction and expansion as designed by the manufacturer. The coupling housing shall be designed for internal pressure and external loads as determined by the design procedures of AWWA M-11. The coupling shell thickness of the steel coupling shall be calculated using the formula:

\[T = \frac{PwDy}{2Fs} \]

where:
- \(T \) = steel coupling thickness, inches
- \(Dy \) = pipe outside diameter, inches
- \(Pw \) = Design working pressure, psi
- \(Fs \) = 50 percent of minimum yield point of steel, psi

1. Coupling design calculations shall be stamped and signed by a registered engineer and shall be included in the Shop Drawing submittal for couplings.

2. The sealing members shall comprise of two “O”-ring gaskets and an elastomer sealing pad bonded to sealing plate. Internal pressure shall not be required to make the seal.

C. Materials

1. Unless otherwise indicated, coupling housing material shall be the same material as the piping. Carbon steel couplings shall be fabricated from ASTM A 36. Stainless steel couplings shall be fabricated from ASTM A 240, T-304, 304L, 316, or 316L.

2. Carbon steel end rings shall conform to ASTM A 108 Grade 1018. Stainless steel end rings shall conform to ASTM A 276 T-316L.

3. Bolts and nuts shall be in conformance with Section 05 50 00.

4. Gaskets shall be EPDM conforming to ASTM D 2000 for air service up to 240 degrees F. Gaskets for general water or sewerage service within the temperature range of –20 to 180 degrees F shall be isoprene or EPDM conforming to ASTM D 2000.

5. Carbon steel couplings shall be fusion bond epoxy coated inside and outside of the coupling in accordance with Section 09 96 00. Couplings installed underground shall be provided with Depend-O-Wrap tape or equal. Application of wrapping material shall be in conformance with AWWA C209.

D. Pipe Preparation

1. Ends of pipes shall be prepared for the flexible split sleeve type couplings inspected and approved by the coupling manufacturer. The pipe outside diameter and roundness tolerances shall comply with tolerances listed in AWWA C219.

2. Plain ends for use with couplings shall be smooth and round for a distance of 12-inches from end of the pipe.
3. End rings shall be furnished with couplings when restraint is required. Carbon steel end rings shall be ASTM A 108 Grade 1018. Stainless steel end rings shall conform to ASTM A 276 T-316L.

4. Where the split-type coupling is used to take up thermal expansion or contraction (Depend-O-Lok Style 230) at the pipe joint, one end ring shall be fixed to one end of the pipe to keep the coupling in the proper location.

5. Where the split-type coupling is used for a fully restrained pipe joint (Depend-O-Lok Style 232) at the pipe joint, one end ring shall be welded to each of the pipe ends to fit beneath the coupling and shall be protected by the coating. Welding design and specification shall be in conformance with the coupling manufacturer's recommendation.

E. Manufacturer, or equal

1. Victaulic, Depend-O-Lok

2.6 FLANGE COUPLING ADAPTERS

A. Flange coupling adapters shall be provided where indicated. The CONTRACTOR will not be allowed to substitute any other type in lieu of flange coupling adapter unless approved by the ENGINEER. The coupling shall be rated as indicated.

B. Construction: Flange coupling adapter body shall be fabricated from steel ASTM A 512 - Cold-Drawn Buttweld Carbon Steel Mechanical Tubing or A 513 - Electric-Resistance Welded Carbon and Alloy Steel Mechanical Tubing with steel bolts, without pipe stop. Flange shall be in accordance with AWWA C207. Couplings shall be of sizes to fit the pipe and fittings indicated. The body shall be not less than 1/4-inch thick or at least the same wall thickness as the pipe to which the coupling is connected. If the strength of the body material is less than the strength of the pipe material, the thickness of the middle ring shall be increased to have the same strength as the pipe. The follower flange shall be fabricated from steel, ASTM A 576 - Steel Bars, Carbon, Hot Wrought, Special Quality or AISI C1012. The shape of the follower shall be of such design as to provide positive confinement of the gasket. Flange coupling adapters installed in piping system rated for positive pressure, the coupling shall be restrained with harness bolts or tie rods. Other means of restraining the coupling such as set screws will not be acceptable. Bolts and nuts shall conform to the requirements of Section 05 50 00. Buried couplings shall be epoxy-coated at the factory as indicated.

C. Gaskets: Gaskets for flange coupling adapters shall be rubber-compound material that will not deteriorate from age or exposure to air under normal storage or use conditions. Gaskets for wastewater and sewerage applications shall be Buna "N," Grade 60 NSF approved, or equivalent suitable elastomer.

1. The rubber in the gasket shall meet the following specifications:
 a. Color - Jet Black
 b. Surface - Non-blooming
c. Durometer Hardness - 74 ± 5

d. Tensile Strength - 1,000 psi Minimum

e. Elongation - 175 percent Minimum

2. The gaskets shall be immune to attack by impurities normally found in water or wastewater. Gaskets shall meet the requirements of ASTM D 2000 - Classification System for Rubber Products in Automotive Applications, AA709Z, meeting Suffix B13 Grade 3, except as noted above. Where flange coupling adapters are used in water containing chloramine or other fluids which attack rubber materials, gasket material shall be compatible with the piping service and fluid utilized.

3. Gasket materials used in water with chloramines shall be Gylon Style 3500 by Garlock or by Crane, or equal.

D. **Piping Connection to Equipment:** Where piping connects to mechanical equipment such as pumps, compressors, and blowers, the piping shall be brought to the equipment connection aligned and perpendicular to the axis of the flange or fitting for which the piping is to be connected. The piping shall not impose excessive stress to the equipment connection to cause misalignment of the equipment. The CONTRACTOR shall assign the responsibility to the equipment manufacturer to review the piping connection to the equipment and submit any modifications to the ENGINEER for review.

E. **Restrained Joints:** Flange coupling adapters on pressure lines shall be harnessed unless thrust restraint is provided by other means. Harnesses shall be designed by the pipe manufacturer in accordance with AWWA Manual M11, or as indicated. Harness sets shall be designed for the maximum test pressure of the pipe in which they are installed. Where harness sets are installed near the suction and discharge of the pump, harness bolts shall have zero elongation to prevent misalignment of the pump imparted by the thrust within the piping system.

F. **Manufacturers,** or equal

1. Smith-Blair, Model 975
2. JCM, Model 309

2.7 **EXPANSION JOINTS**

A. Piping subject to expansion and contraction shall be provided with sufficient means to compensate for such movement without exertion of undue forces to equipment or structures. This may be accomplished with expansion loops, bellow-type expansion joints, or sliding-type expansion joints. Expansion joints shall be flanged end, stainless steel, Monel, rubber, or other materials best suited for each individual service. The CONTRACTOR shall submit detailed calculations and manufacturer's Shop Drawings of proposed expansion joints, piping layouts, and anchors and guides, including information on materials, temperature, and pressure ratings.
2.8 MODULAR MECHANICAL SEALS FOR PIPING PENETRATIONS

A. Where indicated and where required to prevent flow of water or air, the passages of piping through wall sleeves and cored openings shall be sealed with modular interlocking link mechanical closures. Individual links shall be constructed of EPDM rubber, be suitable for temperatures between minus 40 and plus 250 deg F, and be shaped to fill the annular space between the outside of the pipe and the inside of the wall sleeve or cored opening.

1. Links shall be assembled with type 316 stainless steel bolts and nuts to form a continuous rubber belt around the pipe.

2. Pressure plates under each bolt and nut shall be fabricated of a corrosion-resistant composite material.

3. Sizing and installation of sleeves and assemblies shall be in accordance with the manufacturer’s recommendations.

4. Modular mechanical seals for pipe penetrations shall be Link Seal by Thunderline Corporation, or equal

PART 3 -- EXECUTION

3.1 MATERIAL DELIVERY, STORAGE, AND PROTECTION

A. Piping materials, fittings, valves, and accessories shall be delivered in a clean and undamaged condition and stored off the ground for protection against oxidation caused by ground contact. Defective or damaged materials shall be replaced with new materials.

3.2 GENERAL

A. Piping, fittings, and appurtenances shall be installed in accordance with the requirements of applicable Sections of Division 33 and Division 40. Proprietary manufactured couplings shall be installed in accordance with the coupling manufacturer’s recommendation.

B. Care shall be taken to insure that piping flanges, mechanical-type couplings, sleeve-type couplings, flexible connectors, and expansion joints are properly installed as follows:

1. Gasket surfaces shall be carefully cleaned and inspected prior to making up the connection. Each gasket shall be centered properly on the contact surfaces.

2. Connections shall be installed to prevent inducing stress to the piping system or the equipment to which the piping is connected. Contact surfaces for flanges, couplings, and piping ends shall be aligned parallel, concentric, and square to each axis at the piping connections.

3. Bolts shall be initially hand-tightened with the piping connections properly aligned. Bolts shall be tightened with a torque wrench in a staggered sequence to the AISC recommended torque for the bolt material.
4. After installation, joints shall meet the indicated leakage rate. Flanges shall not be deformed nor cracked.

C. **Lined Piping Systems:** The lining manufacturer shall take full responsibility for the complete, final product and its application. Pipe ends and joints of lined pipes at screwed flanges shall be epoxy-coated to assure continuous protection.

D. **Protective Coatings for Buried Couplings (rigid and flexible).** Where pipe couplings are buried, all such couplings shall be given a liquid epoxy coating in the factory (unless otherwise specified) and shall be protected in the ground with a field applied use of a cross-linked polyolefin backed, heat-shrunk protective wrapping (*Canusa Aqua-Shield* or equal).

E. **Core Drilling:** Where core drilling is required for pipes passing through existing concrete, core drilling locations shall be determined by radiograph of concrete construction to avoid damage to embedded raceways and reinforcing bars.

F. **Cleanup:** After completion of the WORK, cuttings, joining and wrapping materials, and other scattered debris shall be removed from the Site. The entire piping system shall be handed over in a clean and functional condition.

- END OF SECTION -
PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide identification for exposed piping and valves, complete and in place, in accordance with the Contract Documents.

1.2 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. Commercial Standards

 ANSI A13.1 Scheme for the Identification of Piping Systems

1.3 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01 33 00 - Contractor Submittals.

B. **Shop Drawings**: A list of suggested wording for each valve tag, prior to fabrication.

C. Samples
 1. One sample of each type of identification device.
 2. Sample of each proposed color required by the pipe color schedule.

PART 2 -- PRODUCTS

2.1 IDENTIFICATION OF PIPING

A. Except as indicated below for very short pipe lengths, identify exposed piping larger than 2-inches nominal size for the pipe contents and direction of flow.

 1. Marker Type
 a. Adhesive: Vinyl or polyester sheet with UV-resistant ink, shaped similar to pipe curvature and coated with pressure sensitive adhesive.
 2. Marker Area: Sized per pipe size according to ANSI A13.1; color from the table below.
 3. Lettering: Sized per pipe size according to ANSI A13.1; color from the table below.
 4. Arrows: at least 2 arrows at each marker area, showing direction of flow.

B. Pipe identification shall be as manufactured by **Brady, Seton**, or equal.
2.2 EXISTING IDENTIFICATION SYSTEMS

A. In installations where existing piping identification systems have been established, the CONTRACTOR shall follow the existing system. Where existing identification systems are incomplete, utilize the existing system as far as practical and supplement with the indicated system.

2.3 IDENTIFICATION OF VALVES AND SHORT PIPE LENGTHS

A. Identifying devices for valves and the sections of pipe that are too short to be identified with markers and arrows shall be identified with metal or plastic tags.

B. Metal tags shall be stainless steel with embossed lettering. Plastic tags shall be solid black plastic laminate with white embossed letters. Tags shall be designed to be firmly attached to the valves or short pipes or to the structure immediately adjacent to such valves or short pipes.

C. Wording on the valve tags shall describe the exact function of each valve.

PART 3 -- EXECUTION

3.1 GENERAL

A. Markers and identification tags shall be installed in accordance with the manufacturer's printed instructions, and shall be neat and uniform in appearance. Tags and markers shall be readily visible from all normal working locations.

3.2 VALVE TAGS

A. Valve tags shall be permanently attached to the valve or structure by means of 2 stainless steel bolts or screws.

3.3 MARKER LOCATIONS

A. Each pipe shall be marked at:

1. Intervals of 20-feet in straight runs.

2. Within 2-feet of turns, elbows, and valves.

3. On the upstream side of tees, branches, and other distribution points.

3.4 IDENTIFICATION COLORS

A. Conform to the following color codes.

Color Schedule
<table>
<thead>
<tr>
<th>Pipe Contents</th>
<th>Pipe Color</th>
<th>Marker Color</th>
<th>Letter Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW Raw water</td>
<td></td>
<td>green</td>
<td>white</td>
</tr>
</tbody>
</table>

- END OF SECTION -
SECTION 40 23 15 - STEEL PIPE (ASTM A53 / A106, MODIFIED)

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide A53 steel pipe and appurtenances for the temporary pipeline, complete and in place, in accordance with the Contract Documents.

B. The CONTRACTOR may provide API Steel Pipe as an alternate pipe material to ASTM A53 for the temporary pipeline per Section 33 11 12.

C. The requirements of Section 40 23 00 - Piping, General apply to the WORK of this Section.

D. Pipe Material Group No. 6. The piping system defined in this section is referred to in the Pipe Schedule on Contract Sheet G007 as Piping Material Group No. 6.

PART 2 -- PRODUCTS

2.1 PIPE MATERIAL

A. Temporary Water Service: Unless otherwise indicated, black steel pipe shall conform to ASTM A 53 - Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless or ASTM A 106 - Seamless Carbon Steel Pipe for High Temperature Service, Grade B, and shall be Schedule 10, as indicated in the Piping Schedule.

2.2 PIPE JOINTS

A. Black steel pipe for general service shall have welded joints, or flanged joints. Where indicated, black steel pipe shall have grooved ends for shouldered couplings or plain ends for sleeve-type couplings.

B. Where pressure conditions permit, black and galvanized steel pipe may have push-on joints for compression type fittings. For high pressure service these joints shall be harnessed.

2.3 FITTINGS

A. Common Use: The following fittings shall be provided for galvanized or black steel pipe, as indicated in the Piping Schedule:

 1. Butt welding fittings conforming to ASME B 16.9 - Factory-Made Wrought Steel Butt Welding Fittings, Schedule 10, as indicated.

 2. Flanged cast iron fittings conforming to ASME B 16.1 - Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800.
3. Flanged steel fittings conforming to ASME B 16.5 - Pipe Flanges and Flanged Fittings, Steel Nickel Alloy and Other Special Alloys.

B. Special Applications

1. High tensile alloy steel corrosion-resistant bolts and nuts shall be used with each set of flanged unions. Unions shall be rated for 500 lb. CWP service pressure, reducing-type, straight-type or blind-type, as required for the installation. Blind unions shall be provided as cleanouts where indicated, and straight unions shall be provided adjacent to each threaded valve or piece of equipment. Unions shall be as manufactured by Henry Valve Company, Vogt Valve Co., or equal.

PART 3 -- EXECUTION

3.1 INSTALLATION

A. General: Pipes shall be installed in a neat and workmanlike manner, properly aligned, and cut from measurements taken at the Site to avoid interferences with structural members, architectural features, openings, and equipment. Exposed pipes shall afford maximum headroom and access to equipment, and where necessary, piping shall be installed with sufficient slopes for venting or drainage of liquids and condensate to low points. Installation shall be free from defects.

B. Supports and Anchors: Piping shall be firmly supported with fabricated or commercial hangers or supports in accordance with Section 40 23 02 - Pipe Supports. Where necessary to avoid stress on equipment or structural members, the pipes shall be anchored or harnessed. Expansion joints and guides shall compensate for pipe expansion due to temperature differences.

C. Valves and Unions: Water piping to fixtures, groups of fixtures, and equipment shall be provided with a shutoff valve and union, unless the valve has flanged ends. Low points in water systems shall have drainage valves. Unions shall be provided at threaded valves, equipment, and other devices requiring occasional removal or disconnection.

3.2 PIPE PREPARATION

A. Prior to installation, each pipe length shall be carefully inspected, be flushed clean of any debris or dust, and be straightened if not true. Fittings shall be equally cleaned before assemblage.

3.3 PIPE JOINTS

A. Welded Joints: Welded joints shall conform to the specifications and recommendations of ASME B 31.1 - Power Piping. Welding shall be done by skilled and qualified welders per Section 40 23 00 - Piping, General.
3.4 INSPECTION AND FIELD TESTING

A. **Inspection:** Finished installations shall be carefully inspected for proper supports, anchoring, interferences, and damage to pipe, fittings, and coating. Any damage shall be repaired.

B. **Field Testing:** Prior to enclosure or burying, piping systems shall be pressure tested as required in the Piping Schedule for a period of not less than one hour without exceeding the tolerances listed in the Piping Schedule. Where no pressures are indicated, the pipes shall be subject to 1-1/2 times the maximum working pressure. The CONTRACTOR shall furnish test equipment, labor, materials, and devices as part of the WORK. For additional testing requirements, refer to Section 01 74 30 - Pressure Pipe Testing and Disinfection.

1. Leakage may be determined by loss of pressure, soap solution, chemical indicator, or other positive and accurate method. Fixtures, devices, or other accessories which are to be connected to the lines and which would be damaged if subjected to the test pressure shall be disconnected and ends of the branch lines plugged or capped as required during the testing procedures.

2. Leaks shall be repaired, and the system shall be re-tested until no leaks are found.

- END OF SECTION -
SECTION 43 25 00 - VALVES, GENERAL

PART 1 – GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide valves, actuators, and appurtenances, complete and operable, in accordance with the Contract Documents.

B. The provisions of this Section shall apply to valves and valve actuators except where otherwise indicated. Valves and actuators in particular locations may require a combination of units, sensors, limit switches, and controls indicated in other Sections of the Specifications.

C. Where a valve is to be supported by means other than the piping to which it is attached, the CONTRACTOR shall obtain from the valve manufacturer a design for support and foundation. The design, including drawings and calculations sealed by an engineer, shall be submitted with the Shop Drawings. When the design is approved, the support shall be provided.

D. Unit Responsibility: A single manufacturer shall be made responsible for coordination of design, assembly, testing, and furnishing each valve; however, the CONTRACTOR shall be responsible to the OWNER for compliance with the requirements of each valve section. Unless indicated otherwise, the responsible manufacturer shall be the manufacturer of the valve.

E. Single Manufacturer: Where 2 or more valves of the same type and size are required, the valves shall be furnished by the same manufacturer.

1.2 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01 33 00 - Contractor Submittals.

B. Shop Drawings: Shop Drawings shall contain the following information:

1. Valve name, size, Cv factor, pressure rating, identification number (if any), and specification section number.

2. Complete information on valve actuator, including size, manufacturer, model number, limit switches, and mounting.

3. Cavitation limits for control valves.

4. Assembly drawings showing part nomenclature, materials, dimensions, weights, and relationships of valve handles, handwheels, position indicators, limit switches, integral control systems, needle valves, and control systems.

5. Valve Labeling: A schedule of valves to be provided with stainless steel tags, indicating in each case the valve location and the proposed wording for the tag.
C. **Technical Manual:** The Technical Manual shall contain the required information for each valve.

D. **Spare Parts List:** A Spare Parts List shall contain the required information for each valve assembly, where indicated.

E. **Factory Test Data:** Where indicated, signed, dated, and certified factory test data for each valve requiring certification shall be submitted before shipment of the valve. The data shall also include certification of quality and test results for factory-applied coatings.

PART 2 -- PRODUCTS

2.1 **PRODUCTS**

A. **General:** Valves and gates shall be new and of current manufacture. Shut-off valves 6-inches and larger shall have actuators with position indicators. Gate valves 18-inches and larger or where chain wheel is required, shall be furnished with spur gear and hand wheel. Buried valves shall be provided with valve boxes and covers containing position indicators and valve extensions. Manual shut-off valves mounted higher than 7-feet above working level shall be provided with chain actuators.

B. **Protective Coating:** The exterior surfaces of valves and the wet interior surfaces of ferrous valves of sizes 4-inches and larger shall be coated with Fusion Bonded Epoxy (FBE). The valve manufacturer shall certify in writing that the required coating has been applied and tested in the manufacturing plant prior to shipment, in accordance with these Specifications. Flange faces of valves shall not be epoxy coated.

C. **Valve Labeling:** Except when such requirement is waived by the ENGINEER in writing, a label shall be provided on shut-off valves and control valves except for hose bibbs and chlorine cylinder valves. The label shall be of 1/16-inch plastic or stainless steel, minimum 2-inches by 4-inches in size, as indicated in Section 40 23 01 - Piping Identification, and shall be permanently attached to the valve or on the wall adjacent to the valve as directed by the ENGINEER.

D. **Valve Testing:** As a minimum, unless otherwise indicated or recommended by the reference standards, valves 3-inches in diameter and smaller shall be tested in accordance with manufacturer’s standard and 4-inches in diameter and larger shall be factory tested as follows:

1. **Hydrostatic Testing:** Valve bodies shall be subjected to internal hydrostatic pressure equivalent to twice the water rated pressure of the valve. Metallic valve rating pressures shall be at 100 degrees F and plastic valves shall be 73 degrees, or at higher temperature according to type of material. During the hydrostatic test, there shall be no leakage through the valve body, end joints, or shaft seals, nor shall any part of the valve be permanently deformed. The duration shall be sufficient time to allow visual examination for leakage. Test duration shall be at least 10 minutes.

2. **Seat Testing:** Valves shall be tested for leaks in the closed position with the pressure differential across the seat equal to the water rated pressure of the valve. The duration of test shall be sufficient time to allow visual examination for leakage.
Test duration shall be at least 10 minutes. Leakage past the closed valve shall not exceed 1 fluid ounce per hour per inch diameter for metal seated valves. Resilient-seated valves shall be drop-tight.

3. **Performance Testing:** Valves shall be shop-operated from fully closed to fully open position and reverse under no-flow conditions in order to demonstrate the valve assembly operates properly.

E. **Certification:** Prior to shipment, the CONTRACTOR shall submit for valves over 12-inches in size, certified, notarized copies of the hydrostatic factory tests, showing compliance with the applicable standards of AWWA, ANSI, or ASTM.

F. **Valve Marking:** Valve bodies shall be permanently marked in accordance with MSS SP25 - Standard Marking Systems for Valves, Fittings, Flanges, and Unions.

2.2 **MATERIALS**

A. **General:** Materials shall be suitable for the intended application. Materials in contact with potable water shall be listed as compliant with NSF Standard 61. Materials not indicated shall be high-grade standard commercial quality, free from defects and imperfections that might affect the serviceability of the product for the purpose for which it is intended. Unless otherwise indicated, valve and actuator bodies shall conform to the following requirements:

1. **Cast Iron:** Close-grained gray cast iron, conforming to ASTM A 48 - Gray Iron Castings, Class 30, or to ASTM A 126 - Gray Iron Castings for Valves, Flanges, and Pipe Fittings.

2. **Ductile Iron:** ASTM A 536 - Ductile Iron Castings, or to ASTM A 395 - Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated Temperatures.

3. **Steel:** ASTM A 216 - Steel Castings, Carbon Suitable for Fusion Welding for High-Temperature Service, or to ASTM A 515 - Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service.

4. **Bronze:** ASTM B 62 - Composition Bronze or Ounce Metal Castings, and valve stems not subject to dezincification shall conform to ASTM B 584 - Copper Alloy Sand Castings for General Applications.

5. **Stainless Steel:** Stainless steel valve and operator bodies and trim shall conform to ASTM A 351 - Steel Castings, Austenitic, for High-Temperature Service, Grade CF8M, or shall be Type 316 stainless steel.

6. **PVC:** Poly vinyl chloride materials for valve body, flanges, and cover shall conform to Cell Classification 12454.

7. **CPVC:** Chlorinated poly vinyl chloride materials for valve body, flanges, and cover shall conform to Cell Classification 23447.

8. **NSF Standard 14:** Materials shall be listed for use in contact with potable water.
2.3 VALVE CONSTRUCTION

A. **Bodies:** Valve bodies shall be cast, molded (in the case of plastic valves), forged, or welded of the materials indicated, with smooth interior passages. Wall thicknesses shall be uniform in agreement with the applicable standards for each type of valve, without casting defects, pinholes, or other defects that could weaken the body. Welds on welded bodies shall be done by certified welders and shall be ground smooth. Valve ends shall be as indicated, and be rated for the maximum temperature and pressure to which the valve will be subjected.

B. **Valve End Connections:** Unless otherwise indicated, valves 2-1/2 inches diameter and smaller may be provided with threaded end connections. Valves 3-inches and larger shall have flanged end connections.

C. **Bonnets:** Valve bonnets shall be clamped, screwed, or flanged to the body and shall be of the same material, temperature, and pressure rating as the body. The bonnets shall have provision for the stem seal with the necessary glands, packing nuts, or yokes.

D. **Stems:** Valve stems shall be of the materials indicated, or, if not indicated, of the best commercial material for the specific service, with adjustable stem packing, O-rings, Chevron V-type packing, or other suitable seal. Where subject to dezincification, bronze valve stems shall conform to ASTM B 62, containing not more than 5 percent of zinc or more than 2 percent of aluminum, with a minimum tensile strength of 30,000 psi, a minimum yield strength of 14,000 psi, and an elongation of at least 10 percent in 2 inches. Where dezincification is not a problem, bronze conforming to ASTM B 584 may be used, except that zinc content shall not exceed 16 percent.

E. **Stem Guides:** Stem guides shall be provided, spaced 10-feet on centers unless the manufacturer can demonstrate by calculation that a different spacing is acceptable. Submerged stem guides shall be 304 stainless steel.

F. **Internal Parts:** Internal parts and valve trim shall be as indicated for each individual valve. Where not indicated, valve trim shall be of Type 316 stainless steel or other best suited material.

G. **Nuts and Bolts:** Nuts and bolts on valve flanges and supports shall be in accordance with Section 05 50 00 - Miscellaneous Metalwork.

2.4 VALVE ACCESSORIES

A. Valves shall be furnished complete with the accessories required to provide a functional system.

2.5 SPARE PARTS

A. The CONTRACTOR shall furnish the required spare parts suitably packaged and labeled with the valve name, location, and identification number. The CONTRACTOR shall also furnish the name, address, and telephone number of the nearest distributor for the spare parts of each valve. Spare parts are intended for use by the OWNER, after expiration of the correction of defects period.
2.6 MANUFACTURERS

A. **Manufacturer's Qualifications:** Valve manufacturers shall have a successful record of not less than 5 years in the manufacture of the valves indicated.

PART 3 -- EXECUTION

3.1 VALVE INSTALLATION

A. **General:** Valves, actuating units, stem extensions, valve boxes, and accessories shall be installed in accordance with the manufacturer’s written instructions and as indicated. Gates shall be adequately braced to prevent warpage and bending under the intended use. Valves shall be firmly supported to avoid undue stresses on the pipe.

B. **Access:** Valves shall be installed with easy access for actuation, removal, and maintenance and to avoid interference between valve actuators and structural members, handrails, or other equipment.

C. **Valve Accessories:** Where combinations of valves, sensors, switches, and controls are indicated, the CONTRACTOR shall properly assemble and install such items so that systems are compatible and operating properly. The relationship between interrelated items shall be clearly noted on Shop Drawing submittals.

- END OF SECTION -
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 43 25 02 - BUTTERFLY VALVES

PART 1 -- GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide butterfly valves and appurtenances, complete and operable, in accordance with the Contract Documents.

B. The requirements of Section 43 25 00 - Valves, General apply to this Section.

1.2 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with Section 01 33 00 – Contractor Submittals.

B. Shop Drawings

1. Complete Shop Drawings of butterfly valves and actuators.

2. Drawings showing valve port diameter complete with dimensions, part numbers, and materials of construction.

3. Dynamic seating and unseating torque for motor actuated valves.

4. Certified statement of proof-of-design tests from the valve manufacturer. Valve manufacturer shall state that the valves proposed for this project will be manufactured with identical basic type of seat design and materials of construction to the prototype evaluated under the proof of design testing.

5. Manufacturer's certification that the valve complies with applicable provisions of AWWA C504 – Rubber-Seated Butterfly Valves.

1.3 QUALITY ASSURANCE

A. Valves shall be subjected to performance, leakage, and hydrostatic tests in accordance with procedures and acceptance criteria established by AWWA C504.

PART 2 -- PRODUCTS

2.1 RUBBER SEATED BUTTERFLY VALVES, 300 PSI SERVICE (AWWA)

A. General: Butterfly valves for steady-state water working pressures and steady-state differential pressure up to 300 psi and for freshwater service having a pH range from 6 to 10 and temperature range from 33 to 125 degrees F shall conform to AWWA C504. Valves shall be designed and manufactured in accordance with the intent of AWWA C504 except valves shall be suitable for 300 psi service and as indicated herein.

B. Valves shall be of the body type, pressure class, end joint, and actuator indicated.

C. One prototype for each size of valve to be provided shall be subjected to proof-of-design tests in accordance with the procedures established by AWWA C504. Results of proof-
of-design tests and certification by a company officer shall be submitted to the ENGINEER with the Shop Drawings.

D. **Construction:** Unless otherwise indicated, materials of construction shall be in accordance with AWWA C504, suitable for the service. The seats shall be positively clamped or bonded into the disc or body of the valve, but cartridge-type seats that rely on a high coefficient of friction for retention shall not be acceptable. Seat material shall be guaranteed to last for at least 75 percent of the number of cycles in the AWWA C504 proof-of-design test without premature damage.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Materials Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Bodies</td>
<td>Ductile Iron, ASTM A536 Gr. 65-45-12</td>
</tr>
<tr>
<td>End flanges</td>
<td>Same material as valve bodies. Flanged connections shall have flange drilling in accordance with ASNI B16.42 for Class 300 iron flanges or AWWA C207 Class F.</td>
</tr>
<tr>
<td>Valve shafts</td>
<td>Stainless steel, ASTM A564 17-4 PH Stainless Steel</td>
</tr>
<tr>
<td>Valve discs</td>
<td>Same material as valve bodies.</td>
</tr>
<tr>
<td>Rubber seats</td>
<td>Resilient sheets shall be reinforced Buna-N</td>
</tr>
<tr>
<td>Seat mating surfaces</td>
<td>Stainless steel, Type 316</td>
</tr>
<tr>
<td>Clamps and retaining rings</td>
<td>Type 316 retaining rings and cap screws.</td>
</tr>
<tr>
<td>Valve bearings</td>
<td>Thrust bearings shall be factory-set bronze thrust bearing. Shaft and sleeve bearings shall be self-lubricated Teflon-lined, fiberglass-backed bearings.</td>
</tr>
<tr>
<td>Shaft seals</td>
<td>Shaft seals shall be of the V-type secured with a bolted gland plate to allow actuator servicing.</td>
</tr>
<tr>
<td>Painting and coating</td>
<td>Coated internally and externally with fusion bonded epoxy.</td>
</tr>
</tbody>
</table>

E. **Manual Actuators:** Unless otherwise indicated, manually-actuated butterfly valves shall be equipped with a handwheel and 2-inch square actuating nut and position indicator. Screw-type (traveling nut) actuators will not be permitted for valves 30-inches in diameter and larger.

F. **Worm Gear Actuators:** Valves 30-inches and larger, as well as submerged and buried valves, shall be equipped with worm-gear actuators, lubricated and sealed to prevent entry of dirt or water into the housing.

G. **Manufacturers, or Equal**

1. VALMATIC BFV 2700HP
PART 3 -- EXECUTION

3.1 INSTALLATION

A. Exposed butterfly valves shall be installed with a means of removing the complete valve assembly without dismantling the valve or operator. Installation shall be in accordance with Section 43 25 00 – Valves, General.

- END OF SECTION -
SECTION 43 25 42 – MISCELLANEOUS VALVES

PART 1 – GENERAL

1.1 SUMMARY

A. The CONTRACTOR shall provide miscellaneous valves and appurtenances, complete and operable, in accordance with the Contract Documents.

B. The requirements of Section 43 25 00 – Valves, General, apply to this Section.

1.2 CONTRACTOR SUBMITTALS

A. Furnish submittals in accordance with the requirements of Section 01 33 00 – Contractor Submittals.

PART 2 – PRODUCTS

2.1 AIR-VACUUM AND AIR-RELEASE VALVES

A. Air and Vacuum Valves: Air and vacuum valves shall be capable of venting large quantities of air while pipelines are being filled, and allowing air to re-enter while pipelines are being drained. They shall be of the size indicated, with flanged or screwed ends to match piping. Bodies shall be of high-strength cast iron. The float, seat, and moving parts shall be constructed of Type 316 stainless steel. Seat washers and gaskets shall be of a material insuring water tightness with a minimum of maintenance. Valves shall be designed for minimum 300 psi water-working pressure, unless otherwise indicated.

B. Air-Release Valves: Air-release valves shall vent accumulating air while system is in service under pressure and be of the size indicated. Valves shall meet the same general requirements as indicated for air and vacuum valves except that the vacuum feature will not be required. Valves shall be designed for a minimum water-working pressure of 300 psi, unless otherwise indicated.

C. Combination Air Valves: Combination air valves shall combine the characteristics of air and vacuum valves and air release valves by exhausting accumulated air in systems under pressure and releasing or re-admitting large quantities of air while a system is being filled or drained, respectively. Valves shall have the same general requirements as indicated for air and vacuum valves.

D. Manufacturers, or Equal

1. APCO (Valve and Primer Corporation)
2. Crispin Valves
3. GA Industries
4. Val-Matic (Valve and Manufacturing Corporation)
PART 3 -- EXECUTION

3.1 INSTALLATION

A. Valves shall be installed in accordance with the manufacturer's printed recommendations, and with Section 43 25 00.

B. Air and vacuum release valves, shall have piped outlets to the nearest acceptable drain, firmly-supported, and installed in such a way as to avoid splashing and wetting of floors and obstruction of traffic.

- END OF SECTION -
This page intentionally left blank.
Geotechnical Data Report

Prepared for:
Klamath River Renewal Corporation

Prepared by:
KRRC Technical Representative:

AECOM Technical Services, Inc.
300 Lakeside Drive, Suite 400
Oakland, California 94612

CDM Smith
1755 Creekside Oaks Drive, Suite 200
Sacramento, California 95833
This page intentionally left blank.
Table of Contents

1. Introduction ... 9
 1.1 Purpose and Scope ... 9
 1.2 Report Organization .. 9

2. Field Investigations .. 13
 2.1 Subsurface Investigations ... 13
 2.1.1 Soil and Rock Borings .. 13
 2.1.2 Piezometers ... 16
 2.1.3 Field Hydraulic Conductivity (Packer) Testing ... 16
 2.1.4 Borehole Geophysical Surveys ... 17

3. Laboratory Testing .. 20

4. Limitations ... 25

List of Tables

| Table | Boring Summary Table |

List of Figures

Figure 1 Completed Geotechnical Borings (Overview and Sheets 1 through 8)

Appendices

Appendix A: Boring Logs

Appendix B: Packer Test Data

Appendix C: Televiewer Data

Appendix D: Laboratory Test Data

Appendix E: Core Box Photographs
Acronyms and Abbreviations

GDR Geotechnical Data Report
psi pound(s) per square inch
SPT Standard Penetration Test
bgs below ground surface
KRRP Klamath River Renewal Project
ModCal Modified California
HDD horizontal directional drilling
Chapter 1: Introduction
This page intentionally left blank.
1. INTRODUCTION

1.1 Purpose and Scope

This Geotechnical Data Report (GDR) includes the results of the field investigation conducted from February 2018 through January 2019, and associated laboratory and geophysical testing.

1.2 Report Organization

After this introductory section, the GDR is organized as follows:

- Section 2: Describes the investigations at Copco and Iron Gate Reservoirs, at Jenny Creek, Camp Creek, Lakeview, Dry Creek, Fall Creek, and Scotch Creek Bridges, and along the proposed City of Yreka replacement water line. The investigations included soil and rock borings, piezometer construction, downhole geophysical testing, and field hydraulic conductivity testing.
- Section 3: Describes the laboratory testing.
- Section 4: Discusses the limitations of the work.

The data collected during the investigations is presented in Appendices A through E.
This page intentionally left blank.
Chapter 2: Field Investigations
This page intentionally left blank.
2. FIELD INVESTIGATIONS

2.1 Subsurface Investigations

AECOM performed geotechnical investigations for the Klamath River Renewal Project between February 2018 and January 2019. The geotechnical investigations are described below. The field investigations were conducted in general conformance with the following ASTM standards:

1. Rock core drilling, ASTM D2113
2. Soil logging, ASTM D2488
3. Standard penetration test (SPT) sampling, ASTM D1586
4. Thin-walled (Shelby) tube sampling, ASTM D1587
5. Preserving and transporting of soil samples, ASTM D4220

2.1.1 Soil and Rock Borings

Forty-eight soil and/or rock core borings were drilled between February 1, 2018 and January 23, 2019. Boring locations are shown on Figure 1 Sheets 1 through 8 and summarized in Table 1 – Borings Summary Table.

The borings were drilled by Taber Drilling of West Sacramento, California, Gregg Drilling of Martinez, California, and/or Pitcher Drilling of East Palo Alto, CA. The locations of the borings were surveyed with a hand-held GPS unit with an approximate accuracy of ±15 feet. The coordinate locations for the borings are shown on the boring logs in State Plane Zone 1 coordinates.

Drilling footage totaled 2163.4 linear feet at the Copco Reservoir, Iron Gate Reservoir, City of Yreka Water line, and bridge abutment borings. The borings ranged in depth from 10.5 to 120 feet below ground surface (bgs). All but two borings were drilled vertically; two borings (B-202 and B-206) were drilled at an angle of 60° below horizontal.

The 2.5-inch HQ-3 core, 1.375-inch I.D. Standard Penetration Test (SPT), 2.5-inch I.D. Modified California (ModCal), and 2.0-inch I.D. California drive samples were photographed, labeled, bagged, or boxed (for rock cores), and stored onsite prior to transport of the samples to Tonon USA in Austin, TX, Cooper Testing Laboratory in Palo Alto, CA, or Inspection Services Inc. of Berkeley, CA. Pitcher barrel, Osterberg, and Shelby Tube samples were sealed with paraffin and carefully transported to the laboratory for testing.
City of Yreka Water Line Borings

Nine borings (B-201 to B-203, B-205 through B-208, BI-02 and BI-03) totaling 696.2 linear feet were drilled along a proposed tunnel alignment to determine subsurface geologic conditions for the replacement of the existing City of Yreka waterline by Horizontal Directional Drilling (HDD) or micro tunnel drilling. These boring locations are shown on Figure 1, Sheet 4, and the boring logs are presented in Appendix A.

The borings were drilled from February 21st to 23rd, August 14th to September 21st, 2018, and January 8th to January 11th, 2019. The boring logs and core box photographs are presented in Appendix A and Appendix E, respectively. Borings were advanced using hollow stem auger, rotary wash, and/or rock core drilling methods, and sampling methods included HQ-3 core, SPT, and a ModCal drive sampler. Blows per each 6-inches of driven sample were recorded.

Three of the borings (B-201, B-202, and B-206) were drilled by Pitcher Drilling Company of East Palo Alto, CA with a track-mounted Fraste XL drill rig. Three additional borings (B-205, B-207, and B-208) were drilled by Gregg Drilling of Martinez, CA with a truck-mounted B-53 drill rig. Three borings (BI-02, BI-03, and B-203) were drilled by Taber Drilling of West Sacramento, CA with BI-02 being drilled using a truck-mounted CME-55 and BI-03 and B-203 being drilled using a barge-mounted CME-45 drill rig.

Copco No. 1 Rim Stability

A subsurface investigation with laboratory testing was performed at Copco No. 1 reservoir to characterize and analyze the stability of the fluvio-lacustrine terrace deposits (diatomite) present around the reservoir rim and within the reservoir bed. Twenty-one hollow stem auger and rotary wash borings, described below, were completed as part of the rim stability investigation. The boring locations are shown on Figure 1, Sheets 6 through 8, and boring logs are presented in Appendix A.

Eleven rotary wash borings, BC-01 through BC-10 and BC-8a, were performed by Taber Drilling using a barge-mounted CME 45 between February 1st and 14th, 2018. The boring depths ranged from 11.5 to 96.5 feet below ground surface.

On land, along the Copco Reservoir Rim, five borings (BC-11 through BC-15) were drilled by Gregg Drilling, between October 2nd and 18th, 2018, using a truck-mounted Mobile B-53 (BC-13 through BC-15) and a track-mounted Geoprobe (BC-11 and BC-12). The borings were advanced to bedrock (10.5 to 42 feet bgs). BC-15 encountered bedrock within 1 foot of the surface; where the boring was terminated, and no boring log or laboratory test data is included as part of this GDR.

Soil samples were obtained in BC-01 to BC-15 using SPT, ModCal, and 3-inch diameter thin-walled Shelby tubes. The tubes were advanced by direct push or with a hydraulically activated piston sampler (Osterberg). Blows per each 6-inches of driven sample and hydraulic gage down pressure for undisturbed samples were recorded.

Five additional over-water borings (BC-16 through BC-20) were completed between January 13th and 14th, 2019. BC-16 through BC-20 were drilled without sampling to bedrock, with the goal of identifying the top of
bedrock. Bedrock was inferred when the driller noted significantly harder drilling conditions. Bedrock was sampled with an SPT sampler at the bottom of each exploration to confirm that bedrock was encountered.

Iron Gate Rim Stability

One boring, BI-01 shown on Figure 1, Sheet 3, was completed to characterize landslide history of a feature identified in aerial photograph at Iron Gate reservoir. Two other borings, BI-02 and BI-03 shown on Figure 1, Sheet 4, provided data for the rim stability analysis of Iron Gate, and are described in the City of Yreka Water Line section above.

The one rotary wash boring was drilled on February 20th, 2018 to 22.2 feet below ground surface with a barge-mounted CME-45 by Taber Drilling. The material was sampled with a ModCal or SPT; blows per 6-inches were recorded.

Bridge Abutment Borings

Seventeen borings were planned at the abutments of bridges requiring replacement or improvement during the Klamath River Renewal Project:

- Camp Creek Bridge (four borings, BC-01, BC-02, BC-03, and BC-20), See Figure 1, Sheet 2
- Jenny Creek Bridge (four borings, BC-04, BC-05, BC-06, and BC-07), See Figure 1, Sheet 3
- Lakeview Bridge (two borings, B-08 and B-10), See Figure 1, Sheet 1
- Fall Creek Bridge (two borings, B-13 and B-14), See Figure 1, Sheet 5
- Daggett Bridge (three borings, B-15, B-16, and B-17), See Figure 1, Sheet 4
- Scotch Creek Bridge (two borings, B-18 and B-19), See Figure 1, Sheet 2

The boring locations are shown on Figure 1, Sheets 1 through 5, and boring logs are presented in Appendix A.

Fourteen of the borings were drilled by Gregg Drilling between September 25 and October 18, 2018 with a truck-mounted Mobile B-53 drill rig to depths between 21.2 and 56.9 feet below ground surface. The borings were advanced with hollow stem auger, rotary wash, and/or HQ-3 rock coring. Soil was sampled with a ModCal or SPT; blows per 6 inches of driven sample were recorded.

Three additional borings, B-15 through B-17, were drilled by Taber Drilling with a barge-mounted CME-45 drill rig and a truck-mounted CME-75 between January 12th and 23rd, 2019. The depths of these borings ranged from 24.5 to 51.5 feet below grade. The borings were advanced using solid stem auger, rotary wash, and HQ-3 rock coring. Soil was sampled with a ModCal or SPT; blows per six inches of driven sample were recorded.
2.1.2 Piezometers

Two vibrating wire piezometers (VWP) were installed in each of the inclined borings B-202 and B-206, as shown in Table 1. In B-202, the VWPs were installed at 24.2 feet and at 62.4 bgs (28 and 72 lineal feet on boring trajectory). The VWPs were installed at 21.7 feet and another at 79.7 feet (at 25 and 92 lineal feet on boring trajectory) in B-206. All four VWPs were installed with recording dataloggers. Groundwater level data from the VWPs will be reported as an addendum to this report.

Borings were tremie-backfilled with neat cement grout to the ground surface without installation of a screen or sand sock.

2.1.3 Field Hydraulic Conductivity (Packer) Testing

Nine hydraulic conductivity (packer) tests were performed as part of the geotechnical investigation: seven by Taber Drilling with one in each of borings BI-02 and BI-03, and five in boring B-203 and two by Pitcher Drilling in boring B-206. The tests were performed to characterize hydraulic conductivities of the rock along the new HDD or micro-tunnel alignment for the City of Yreka water line. Results of the packer tests are presented in Appendix B.

Single Pneumatic Packer Tests

For borings BI-02, BI-03, and B-203, testing with a single pneumatic packer was used in a down-stage method, meaning that each successive packer test was performed as the hole was drilled deeper. An In-situ Level Troll 300 water pressure data logger installed in the packer assembly with a surface readout was used to monitor water pressures within the test intervals of the boreholes. Test interval lengths were 20.0 feet.

Prior to conducting the hydraulic conductivity testing, each borehole was conditioned by circulating clear water to remove cuttings and traces of polymer-based drilling fluid. Drill rods were then lifted off the bottom of the hole approximately 20 feet to expose the test section of the borehole.

For each interval a maximum test pressure \((P_{\text{max}})\) of 1 psi/foot of depth to the center of the test section was used to reduce the potential for hydrofracturing of the formation. When the packer assembly was in place and inflated, the testing commenced. Testing generally consisted of a five-step test at varying pressures approximately equal to \(\frac{1}{2} P_{\text{max}}, \frac{3}{4} P_{\text{max}}, P_{\text{max}}, \frac{3}{4} P_{\text{max}},\) and \(\frac{1}{2} P_{\text{max}}\). At each step, the pressure was held constant until a steady rate of flow could be maintained, which was then monitored for approximately five minutes. At the completion of the fifth step, the packer was deflated, removed from the borehole and drilling resumed.

Double Pneumatic Packer Tests

For boring B-206, an upstage technique was used after completion of drilling, with two pneumatic packers sealing off 10-foot intervals of the borehole for testing. A vibrating wire pressure transducer installed in the packer assembly with a surface readout was used to monitor water pressure during the test. Clean water was circulated in the boring after drilling to remove cuttings and traces of drilling fluid.
As for the single pneumatic packer tests discussed above, the maximum test pressure (P_{max}) of 1 psi/foot of depth to the center of the test section was used to prevent hydrofracturing of the formation. Due to poor performance of the flow metering equipment and hydraulic response of the formation at the test intervals, testing consisted of a one-step test at P_{max}. The pressure was held constant until a steady rate of flow could be maintained, which was then monitored for approximately five minutes. After the two consecutive tests (85 to 95 feet, and then 75 to 85 feet), the packer was deflated and removed from the borehole. Additional tests were not performed in this borehole due to failure of the pressure monitoring equipment. The boring was subsequently backfilled by tremie-grouting.

2.1.4 Borehole Geophysical Surveys

Televiewer Logging

To identify the orientation and width of planar geologic structural features encountered by the borings, borehole acoustic televiewer logging was performed in two borings drilled along the proposed water tunnel alignment (B-202 and B-206). Televiewer logging was performed by NORCAL Geophysical Consultants, Inc. and the results of which are presented in Appendix C.
Chapter 3: Laboratory Testing
This page intentionally left blank.
3. LABORATORY TESTING

Representative soil samples obtained from the exploratory borings were tested by Cooper Testing Labs in Palo Alto, California and Inspection Services Inc. in Berkeley, California. Representative rock samples were also obtained from the borings and tested by Tonon Laboratory in Austin, Texas and Cooper Testing Labs in Palo Alto, California. Laboratory test reports are presented in Appendix D.

The following geotechnical tests were performed on soils samples from borings:

1. Moisture Content, ASTM D2216
2. Atterberg Limits, ASTM D4318
3. Consolidated Undrained triaxial Compression Strength Tests, ASTM D4767
4. Unconsolidated Undrained triaxial Compression Strength Tests, ASTM D2850
5. Consolidation, ASTM D2435
6. Grain-Size Distribution Analysis, ASTM D422
7. Percent Passing No. 200, ASTM D1140
8. Moisture-Density tests, ASTM D7263b
9. X-rays of Samples
10. Corrosion Testing (pH and Minimum Resistivity (CT 643), Sulfate (CT 147), and Chloride (CT 422))

The following geotechnical tests were performed on rock core samples from borings:

1. Brazilian Tensile Strength Test, ASTM D3967
2. Moisture Content, ASTM D2216
3. Cerchar Abrasiveness tests, ASTM D7625
4. Point Load tests, ASTM D5731
5. Mohs Hardness
6. Unconfined Compressive Strength tests, ASTM D7012
7. Punch Penetration testing, Colorado Schools of Mines – 13
8. Bulk Density tests, ISRM 1977
9. Petrographic Analyses
This page intentionally left blank.
Chapter 4: Limitations
This page intentionally left blank.
4. LIMITATIONS

This GDR references geotechnical data obtained from various phases of geotechnical investigation programs and serves as a source of geotechnical information for the Klamath River Renewal Project.

Groundwater levels presented reflect conditions observed at the time of measurement and are expected to vary over time. The conditions indicated in boring logs and geophysical surveys represent only the subsurface conditions at the locations of the borings. The actual subsurface conditions are expected to vary between those locations.

This report does not interpret the available data. It is the Contractor’s responsibility to become familiar with the data in this GDR. The Contractor shall make its own interpretation of this data and shall assume full responsibility for its interpretation.

AECOM represents that the work described in this GDR were conducted in a manner consistent with the standard of care ordinarily applied as the state of practice in the profession within the limits prescribed by our client. No other warranties, either expressed or implied, are included or intended in this GDR.
This page intentionally left blank.
<table>
<thead>
<tr>
<th>BORING NUMBER</th>
<th>LOCATION</th>
<th>BORING TYPE</th>
<th>DEPTH (feet)</th>
<th>BEARING/PLUNGE</th>
<th>PIEZO INSTALLED</th>
<th>IN-SITU TESTING</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-01</td>
<td>Camp Creek</td>
<td>soil/core</td>
<td>25.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-02</td>
<td>Camp Creek</td>
<td>soil</td>
<td>31.4</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-03</td>
<td>Camp Creek</td>
<td>soil/core</td>
<td>27.3</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-04</td>
<td>Jenny Creek</td>
<td>soil/core</td>
<td>31.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-05</td>
<td>Jenny Creek</td>
<td>soil/core</td>
<td>50.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-06</td>
<td>Jenny Creek</td>
<td>soil/core</td>
<td>56.9</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-07</td>
<td>Jenny Creek</td>
<td>soil/core</td>
<td>31.8</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-08</td>
<td>Lakeview Bridge</td>
<td>soil/core</td>
<td>52.8</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-10</td>
<td>Lakeview Bridge</td>
<td>soil/core</td>
<td>52.2</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-13</td>
<td>Fall Creek</td>
<td>core</td>
<td>21.1</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-14</td>
<td>Fall Creek</td>
<td>core</td>
<td>28.6</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-15</td>
<td>Daggett Bridge</td>
<td>soil/core</td>
<td>51.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-16</td>
<td>Daggett Bridge Over Water</td>
<td>soil/core</td>
<td>41.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-17</td>
<td>Daggett Bridge</td>
<td>soil/core</td>
<td>41.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-18</td>
<td>Scotch Creek</td>
<td>soil</td>
<td>28.3</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-19</td>
<td>Scotch Creek</td>
<td>soil/core</td>
<td>37.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-20</td>
<td>Camp Creek</td>
<td>soil/core</td>
<td>47.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Bridge Foundation</td>
</tr>
<tr>
<td>B-201</td>
<td>Upper Irongate</td>
<td>soil/core</td>
<td>50.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Water Line</td>
</tr>
<tr>
<td>B-202</td>
<td>Upper Irongate</td>
<td>soil/core</td>
<td>100.5</td>
<td>Vertical</td>
<td>NA</td>
<td>VWP T</td>
<td>Water Line</td>
</tr>
<tr>
<td>B-203</td>
<td>Upper Irongate</td>
<td>soil/core</td>
<td>120.0</td>
<td>Vertical</td>
<td>NA</td>
<td>HC</td>
<td>Water Line</td>
</tr>
<tr>
<td>B-205</td>
<td>Upper Irongate - Copco Road</td>
<td>soil/core</td>
<td>62.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Water Line</td>
</tr>
<tr>
<td>B-206</td>
<td>Upper Irongate - Copco Road</td>
<td>soil/core</td>
<td>100.0</td>
<td>Vertical</td>
<td>NA</td>
<td>VWP T, HC</td>
<td>Water Line</td>
</tr>
<tr>
<td>B-207</td>
<td>Upper Irongate - Copco Road</td>
<td>soil/core</td>
<td>81.1</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Water Line</td>
</tr>
<tr>
<td>B-208</td>
<td>Upper Irongate</td>
<td>soil/core</td>
<td>80.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Water Line</td>
</tr>
<tr>
<td>BC-01</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>30.4</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-02</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>64.6</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-03</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>96.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-04</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>73.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-05</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>20.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-06</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>15.4</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-07</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>15.9</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-08</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>11.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-08a</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>85.2</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-09</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>70.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-10</td>
<td>Copco - Over Water</td>
<td>soil</td>
<td>43.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-11</td>
<td>Copco Road</td>
<td>soil</td>
<td>10.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-12</td>
<td>Copco Road</td>
<td>soil</td>
<td>16.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-13</td>
<td>Copco Road</td>
<td>soil</td>
<td>42.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-14</td>
<td>Copco Road</td>
<td>soil</td>
<td>15.4</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-15</td>
<td>Copco Road</td>
<td>soil</td>
<td>1.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-16</td>
<td>Copco Rim</td>
<td>soil</td>
<td>64.8</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-17</td>
<td>Copco Rim</td>
<td>soil</td>
<td>37.4</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-18</td>
<td>Copco Rim</td>
<td>soil</td>
<td>34.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-19</td>
<td>Copco Rim</td>
<td>soil</td>
<td>37.5</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BC-20</td>
<td>Copco Rim</td>
<td>soil</td>
<td>19.0</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BI-01</td>
<td>Irongate Rim - Over Water</td>
<td>soil</td>
<td>22.2</td>
<td>Vertical</td>
<td>NA</td>
<td>NA</td>
<td>Rim Stability</td>
</tr>
<tr>
<td>BI-02</td>
<td>Irongate - Fall Creek</td>
<td>soil/core</td>
<td>67.0</td>
<td>Vertical</td>
<td>NA</td>
<td>HC</td>
<td>Water Line</td>
</tr>
<tr>
<td>BI-03</td>
<td>Irongate - Over Water</td>
<td>soil/core</td>
<td>35.1</td>
<td>Vertical</td>
<td>NA</td>
<td>HC</td>
<td>Water Line</td>
</tr>
</tbody>
</table>

NOTES: 1) HC = hydraulic conductivity, T = televiewer, VWP = vibrating wire piezometer, NA = not applicable
FIGURE 1
Planned and Completed Geotechnical Borings Overview
FIGURE 1
Planned and Completed
Geotechnical Borings
Sheet 2 of 8
FIGURE 1
Planned and Completed Geotechnical Borings
Sheet 5 of 8
FIGURE 1
Planned and Completed Geotechnical Borings
Sheet 7 of 8
Key to Log of Soil Boring

Project: Klamath River Dam Removal Project
Project Location: Klamath River
Project Number: 60537920

COLUMN DESCRIPTIONS

<table>
<thead>
<tr>
<th>1</th>
<th>Elevation: Elevation in feet referenced to specified datum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Depth: Depth in feet below the ground surface.</td>
</tr>
<tr>
<td>3</td>
<td>Sample Type: Type of soil sample collected at depth interval shown; sampler symbols are explained below.</td>
</tr>
<tr>
<td>4</td>
<td>Sample Number: Sample identification number.</td>
</tr>
<tr>
<td>5</td>
<td>Sampling Resistance: Number of blows required to advance driven sampler 12 inches beyond first 6-inch interval, or distance noted, using a 140-lb hammer with a 30-inch drop; or down-pressure for pushed sampler.</td>
</tr>
<tr>
<td>6</td>
<td>Recovery: Percentage of driven or pushed sample length recovered; “NA” indicates data not recorded.</td>
</tr>
<tr>
<td>7</td>
<td>Graphic Log: Graphic depiction of subsurface material encountered; typical symbols are explained below.</td>
</tr>
</tbody>
</table>

TYPICAL MATERIAL GRAPHIC SYMBOLS

- **FAT CLAY (CH)**
- **LEAN CLAY WITH ORGANICS (CL)**
- **LEAN CLAY with SAND (CL)**
- **POORLY GRADED GRAVEL (GP)**
- **SANDY LEAN CLAY (CL)**
- **SANDY LEAN CLAY with GRAVEL (CL)**
- **SANDY FAT CLAY with GRAVEL (CH)**
- **SANDY FAT CLAY (CH)**
- **LEAN CLAY with GRAVEL and SAND (CL)**
- **LEAN CLAY with GRAVEL (CL)**
- **CLAYEY GRAVEL (GC)**
- **CLAYEY GRAVEL with SAND (GC)**
- **GRAVELLY LEAN CLAY (CL)**
- **POORLY GRADED GRAVEL with CLAY (GP-GC)**
- **POORLY GRADED GRAVEL with SAND (GP)**
- **WELL GRADED GRAVEL WITH SAND (GW)**

TYPICAL SAMPLER GRAPHIC SYMBOLS

- **2.5-inch I.D. Modified California Shelby Tube**
- **Standard Penetration Test**
- **2.0-inch I.D. California Shelby Tube**

GENERAL NOTES

- **-Check By:** Soil and core samples reviewed in-person by Project Geologist.
- **-Reviewed By:** Soil and core samples reviewed via run photos or core box photos in office by Project Engineer.
COLUMN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Depth: Distance (in feet) below the collar of the borehole.</td>
</tr>
<tr>
<td>3</td>
<td>Run No.: Number of the individual coring interval.</td>
</tr>
<tr>
<td>4</td>
<td>Box No.: Number of the core box which contains core from the corresponding runs.</td>
</tr>
<tr>
<td>5</td>
<td>Recovery: Amount in percent of core recovered from coring interval; calculated as length of core recovered divided by length of run.</td>
</tr>
<tr>
<td>6</td>
<td>Fractures per Foot: (Fracture Frequency) The number of naturally occurring fractures in each foot of core; does not include mechanical breaks (induced by drilling) or healed fractures. “NA” indicates not applicable due to lack of core recovery or soil-like nature of rock.</td>
</tr>
<tr>
<td>7</td>
<td>R Q D: (Rock Quality Designation) Amount (in percent) of intact core (pieces of sound core greater than 4 inches in length) in each coring interval; calculated as the sum of lengths of intact core divided by length of core run.</td>
</tr>
<tr>
<td>8</td>
<td>Fracture Drawing: Sketch of the naturally occurring fractures and mechanical breaks, showing the angle of the fractures relative to the cross-sectional axis of the core. “NR” indicates no recovery.</td>
</tr>
<tr>
<td>9</td>
<td>Fracture Number: Location of each naturally occurring fracture (numbered) and mechanical break (labeled “M”). Naturally occurring fractures are described in Column 11 (keyed by number) using descriptive terms defined on Sheet 2 (Items a through g).</td>
</tr>
</tbody>
</table>

TYPICAL MATERIAL GRAPHIC SYMBOLS

- **SILT with SAND and GRAVEL (ML)**
- **CLAYEY SAND to SANDY LEAN CLAY (SC-CL)**
- **SILTY SAND with GRAVEL (SM)**
- **WELL GRADED SAND with GRAVEL (SW)**
- **SANDY SILT (ML)**
- **CLAYEY SAND with GRAVEL (SC)**
- **POORLY GRADED SAND (SP)**
- **ORGANIC SILT WITH SAND (OL)**
- **GRAVELLY FAT CLAY with SAND (CH)**
- **SILTY SAND (SM)**
- **SILTY to CLAYEY SAND with GRAVEL (SM-SC)**
- **POORLY GRADED SAND with GRAVEL (SP)**
- **POORLY GRADED SAND with SILT (SP-SM)**

OTHER GRAPHIC SYMBOLS

- **R Q D, %**
- **Elevation, feet**
- **Depth, feet**
- **Run No.**
- **Box No.**
- **Recovery, %**
- **Fractures per Foot**
- **R Q D, %**
- **Fracture Drawing**
- **Run No.**
- **Box No.**
- **Recovery, %**
- **Blows / 6 in.**
- **Drill Time (Rate)**
- **Type of soil sample collected at depth interval shown; sampler symbols are explained below.**
- **Sample Number:** Sample identification number.
- **Btu / ft**
- **Sample Type:** Type of soil sample collected at depth interval shown; sampler symbols are explained below.
- **Comments and observations during drilling or sampling made by driller or field personnel.**
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Key to Log of Core Boring
Sheet 3 of 4

COLUMN DESCRIPTIONS

1. **Elevation:** Elevation (in feet) referenced to mean sea level (MSL).
2. **Depth:** Distance (in feet) below the collar of the borehole.
3. **Run No.:** Number of the individual coring interval.
4. **Box No.:** Number of the core box which contains core from the corresponding run.
5. **Recovery:** Amount (in percent) of core recovered from the coring interval; calculated as length of core recovered divided by run length.
6. **Fractures per Foot:** (Fracture Frequency) The number of naturally occurring fractures in each foot of core; does not include mechanical breaks (induced by drilling) or healed fractures. "NA" indicates not applicable due to lack of core recovery.
7. **R Q D:** (Rock Quality Designation) Amount (in percent) of intact core (pieces of sound core greater than 4 inches in length) in the coring interval; calculated as the sum of lengths of intact core divided by the run length. RQD value with "*" indicates moderately weathered / altered rock that does not meet soundness requirements, but provides an indication of rock quality with respect to degree of fracturing.
8. **Fracture Drawing:** Sketch of the naturally occurring fractures and mechanical breaks, showing the angle of the fractures relative to the cross-sectional axis of the core. "NR" indicates no recovery.
9. **Fracture Number:** Location of each naturally occurring fracture (numbered) and mechanical break (labeled "M"). Naturally occurring fractures are described in Column 11 (keyed by number) using descriptive terms defined on Sheet 2 (items a through g).
10. **Lithology:** A graphic log of material encountered using symbols to represent differing soil and rock types; symbols are explained below.
11. **Description:** Lithologic description in this order: rock type, color, texture, grain size, weathering, strength, and other features; descriptive terms are defined on Sheet 2. A detailed description of overburden material is not necessarily provided. Also, abbreviated description of fractures numbered in Column 9 using terms defined on Sheet 2.
12. **Drill Time (Rate):** Time (in 24-hour clock) marking start and finish of each run; drill rate (in feet per hour) is reported in brackets.
13. **Field Notes and Other Tests:** Comments regarding drilling and sampling made by driller or field personnel. Tested rock specimen intervals and a record of tests performed using the abbreviations listed below.

TYPICAL MATERIAL GRAPHIC SYMBOLS

- **ASPHALT**
- **ANDESITE**
- **BASALT**
- **BOULDERS and COBBLES**
- **BOULDER**
- **DIATOMITE**
- **DIATOMITE WITH ELASTIC SILT**
- **VOLCANIC BRECCIA**
- **VOLCANIC CINDER**
- **VOLCANIC CLAYSTONE**
- **VOLCANIC CONGLOMERATE**
- **VOLCANIC MUDSTONE**
- **VOLCANIC SANDSTONE**
- **VOLCANIC SILTSTONE/CLAYSTONE**
- **VOLCANIC SILTSTONE**
- **VOLCANIC SILTY SANDSTONE**

OTHER GRAPHIC SYMBOLS

- **Static Water Level**
- **First water encountered at time of drilling**
- **Inferred or transitional contact**
- **Change in material properties within a stratum**

LABORATORY TEST ABBREVIATIONS

- **PL:** Point Load Index Test (psi)
- **UC:** Unconfined Compressive Strength test (psi)

Material descriptions and stratum lines are interpretive; field descriptions may have been modified to reflect lab test results. Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced, and are not warranted to be representative of subsurface conditions at other locations or times.
KEY TO DESCRIPTIVE TERMS USED ON CORE LOGS

DISCONTINUITY DESCRIPTORS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Dip of discontinuity, measured relative to a plane normal to the core axis.</td>
</tr>
<tr>
<td>b</td>
<td>Discontinuity Type:</td>
</tr>
<tr>
<td>F</td>
<td>Fault</td>
</tr>
<tr>
<td>J</td>
<td>Joint</td>
</tr>
<tr>
<td>Sh</td>
<td>Shear</td>
</tr>
<tr>
<td>Fo</td>
<td>Foliation</td>
</tr>
<tr>
<td>V</td>
<td>Vein</td>
</tr>
<tr>
<td>B</td>
<td>Bedding</td>
</tr>
<tr>
<td>c</td>
<td>Aperture (inches):</td>
</tr>
<tr>
<td>W</td>
<td>Wide (0.5-2.0)</td>
</tr>
<tr>
<td>MW</td>
<td>Moderately Wide (0.1-0.5)</td>
</tr>
<tr>
<td>N</td>
<td>Narrow (0.05-0.1)</td>
</tr>
<tr>
<td>VN</td>
<td>Very Narrow (<0.05)</td>
</tr>
<tr>
<td>T</td>
<td>Tight (0)</td>
</tr>
<tr>
<td>d</td>
<td>Type of Infilling:</td>
</tr>
<tr>
<td>Bi</td>
<td>Biotite</td>
</tr>
<tr>
<td>Cl</td>
<td>Clay</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcite</td>
</tr>
<tr>
<td>Ch</td>
<td>Chlorite</td>
</tr>
<tr>
<td>Ep</td>
<td>Epidote</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron Oxide</td>
</tr>
<tr>
<td>H</td>
<td>Healed</td>
</tr>
<tr>
<td>My</td>
<td>Mylonite</td>
</tr>
<tr>
<td>CR</td>
<td>Crushed Rock</td>
</tr>
<tr>
<td>e</td>
<td>Amount of Infilling:</td>
</tr>
<tr>
<td>Su</td>
<td>Surface Stain</td>
</tr>
<tr>
<td>Sp</td>
<td>Spotty</td>
</tr>
<tr>
<td>Pa</td>
<td>Partially Filled</td>
</tr>
<tr>
<td>Fi</td>
<td>Filled</td>
</tr>
<tr>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>f</td>
<td>Surface Shape of Joint:</td>
</tr>
<tr>
<td>Pl</td>
<td>Planar</td>
</tr>
<tr>
<td>Wa</td>
<td>Wavy</td>
</tr>
<tr>
<td>St</td>
<td>Stepped</td>
</tr>
<tr>
<td>Ir</td>
<td>Irregular</td>
</tr>
<tr>
<td>g</td>
<td>Roughness of Surface:</td>
</tr>
<tr>
<td>Slk</td>
<td>Slickensided [surface has smooth, glassy finish with visual evidence of striations]</td>
</tr>
<tr>
<td>S</td>
<td>Smooth [surface appears smooth and feels so to the touch]</td>
</tr>
<tr>
<td>SR</td>
<td>Slightly Rough [asperities on discontinuity surfaces are distinguishable and can be felt]</td>
</tr>
<tr>
<td>R</td>
<td>Rough [ridges and side-angle steps are evident; asperities are clearly visible; surface feels very abrasive]</td>
</tr>
<tr>
<td>VR</td>
<td>Very Rough [near-vertical steps and ridges occur on discontinuity surface]</td>
</tr>
</tbody>
</table>

ROCK FRACTURING

<table>
<thead>
<tr>
<th>Description</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensely Fractured</td>
<td>Fractures spaced less than 2 inches apart</td>
</tr>
<tr>
<td>Highly Fractured</td>
<td>Fractures spaced 2 inches to 1 foot apart</td>
</tr>
<tr>
<td>Moderately Fractured</td>
<td>Fractures spaced 1 foot to 3 feet apart</td>
</tr>
<tr>
<td>Slightly Fractured</td>
<td>Fractures spaced 3 feet to 10 feet apart</td>
</tr>
<tr>
<td>Massive</td>
<td>Fracture spacing greater than 10 feet</td>
</tr>
</tbody>
</table>

ROCK WEATHERING / ALTERATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original minerals of rock have been entirely decomposed to secondary minerals, and original rock fabric is not apparent; material can be easily broken by hand</td>
<td></td>
</tr>
<tr>
<td>Original minerals of rock have been almost entirely decomposed to secondary minerals, although original fabric may be intact; material can be granulated by hand</td>
<td></td>
</tr>
<tr>
<td>More than half of the rock is decomposed; rock is weakened so that a minimum 2-inch-diameter sample can be broken readily by hand across rock fabric</td>
<td></td>
</tr>
<tr>
<td>Rock is discolored and noticeably weakened, but less than half is decomposed; a minimum 2-inch-diameter sample cannot be broken readily by hand across rock fabric</td>
<td></td>
</tr>
<tr>
<td>Rock is slightly discolored, but not noticeably lower in strength than fresh rock</td>
<td></td>
</tr>
<tr>
<td>Rock shows no discoloration, loss of strength, or other effect of weathering/alteration</td>
<td></td>
</tr>
</tbody>
</table>

ROCK STRENGTH

<table>
<thead>
<tr>
<th>Description</th>
<th>Recognition</th>
<th>Approximate Uniaxial Compressive Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Weak Rock</td>
<td>Can be indented by thumbnail</td>
<td>150 - 700</td>
</tr>
<tr>
<td>Very Weak Rock</td>
<td>Can be peeled by pocket knife</td>
<td>700 - 3,600</td>
</tr>
<tr>
<td>Weak Rock</td>
<td>Can be peeled with difficulty by pocket knife</td>
<td>3,600 - 7,200</td>
</tr>
<tr>
<td>Moderately Strong Rock</td>
<td>Requires one hammer blow to fracture</td>
<td>7,200 - 14,500</td>
</tr>
<tr>
<td>Strong Rock</td>
<td>Requires many hammer blows to fracture</td>
<td>14,500 - 36,000</td>
</tr>
<tr>
<td>Very Strong Rock</td>
<td>Can only be chipped with hammer blows</td>
<td>>36,000</td>
</tr>
<tr>
<td>Extremely Strong Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Start 9:00 9/27/2018; hang auger 0.0-5.0 ft. pp = 2.75 tsf

Hollow stem auger 5.0 ft. to 9.0 ft. pp = 2.25 tsf

Auger refusal at 9.0 ft.; advance 4.5-inch casing to 9.0 ft., and switch to rotary wash drilling with 3.75-inch tricone bit.

75% fluid circulation
Sheet 2 of 2

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>-2332</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>GRAVEL and COBBLES in a SANDY LEAN CLAY matrix; GRAVEL and COBBLES are subrounded Basalt --ALLUVIUM--(continued)</td>
</tr>
<tr>
<td>14</td>
<td>-2332</td>
<td>4</td>
<td>80</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>VOLCANIC BRECCIA; dark reddish brown (10R 3/4); highly weathered; very weak; highly fractured; friable --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
</tr>
<tr>
<td>15</td>
<td>-2330</td>
<td>5</td>
<td>NA</td>
<td>87</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Becomes greyish brown (SYR 3/2)</td>
</tr>
<tr>
<td>16</td>
<td>-2330</td>
<td>6</td>
<td>94</td>
<td>88*</td>
<td>0</td>
<td>0</td>
<td>Intensely fractured</td>
<td>Becomes greyish brown (SYR 3/2)</td>
</tr>
<tr>
<td>17</td>
<td>-2328</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-2326</td>
<td>7</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1: 15, V, T-VN, H+Uk, Fi, Pl, ?</td>
</tr>
<tr>
<td>19</td>
<td>-2324</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2: 60, J, N-W, Sd, Fi, Wa, ?</td>
</tr>
<tr>
<td>20</td>
<td>-2322</td>
<td>9</td>
<td>50</td>
<td>NA</td>
<td>0</td>
<td>NA</td>
<td>>6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-2320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL DEPTH = 25.5 FEET</td>
</tr>
<tr>
<td>22</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Recovery, %</th>
<th>Blows / 6 in.</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- 75% fluid circulation
- Rock does not meet soundness criteria for RQD calculation

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Soil Boring B-02
Sheet 1 of 2

Date(s) Drilled: 10/12/2018
Logged By: P. Respess
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger
Drill Bit Size/Type: 6-inch flight auger
Total Depth of Borehole: 31.4 feet

Drill Rig Type: Truck Mounted Mobile B-53
Drilling Contractor: Gregg Drilling
NAVD 88 Ground Surface Elevation: 2340 feet

Groundwater Level(s): 13.5 feet below ground surface
Sampling Method(s): SPT
Hammer Type: Automatic hammer;
Data: 140 lbs, 30-inch drop

Borehole Backfill: Cement grout to ground surface
Borehole Location: Camp Creek Bridge
Coordinate Location: N 2602747, E 6443180

Elevation feet

Depth, feet

MATERIAL DESCRIPTION

POORLY GRADED GRAVEL with SAND (GP); medium dense to dense; fine to coarse GRAVEL to BOULDERS; fine to coarse grained SAND; some no plasticity FINES; occasional GRAVEL and COBBLE

POORLY GRADED GRAVEL (GP); dense; fine to coarse GRAVEL and COBBLES; fine to coarse grained SAND; little no plasticity FINES; moist

LEAN CLAY (CL); medium stiff; brown; medium plasticity FINES; trace fine grained SAND; occasional GRAVEL and COBBLE

BOULDER, basalt

BOULDER, basalt

SILTY SAND with GRAVEL (SM); very dense; GRAVEL up to 1-inch; fine to coarse grained SAND; no plasticity FINES

SA: G=32%; S=53%; F=15%

REMARKS AND OTHER TESTS

Start 9:00 9/27/2018; hollow stem auger 0-31ft.

Logged from auger cuttings and rig chatter

Rig chatter indicated rocky layer
Log of Soil Boring B-02

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Samples

<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance (feet)</th>
<th>Recovery (%)</th>
<th>Graphic Log</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2285</td>
<td>30</td>
<td>S-02</td>
<td>50/0</td>
<td>0</td>
<td></td>
<td></td>
<td>[As Above] --ALLUVIUM-- (continued)</td>
</tr>
</tbody>
</table>

BASALT: dark grey; slightly weathered to fresh; moderately strong
--TERTIARY to QUATERNARY INTRUSIVE BASALT--
TOTAL DEPTH = 31.4 FEET

Remarks and Other Tests

- S-02 attempted at 31.4; logged from flake in shoe
Log of Soil and Core Boring B-03

Project Number: 60537920

Date(s) Drilled: 10/12/2018-10/16/2018
Logged By: P. Respess
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, Rotary Wash, HQ-3 Rock Core
Drill Bit: 6-inch flight auger, 3 7/8-inch tricone, 3 7/8-inch diamond core bit
Total Depth of Borehole: 27.3 feet

Drill Rig Type: Truck Mounted Mobile B-53
Drilling Contractor: Gregg Drilling
NAVD 88 Ground Surface Elevation: 2341 feet

Groundwater Level: Not encountered before rotary wash drilling
Hammer Data: Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill: Cement grout to ground surface

Date(s) Drilled: 10/12/2018-10/16/2018
Truck Mounted Mobile B-53
Cement grout to ground surface

Hammer Data: Automatic hammer; 140 lbs, 30-inch drop

MATERIAL DESCRIPTION
POORLY GRADED GRAVEL with SAND (GP); medium dense to dense; fine to coarse GRAVEL to BOULDERS; fine to coarse grained SAND; some no plasticity FINES; dry to moist --FILL--

BOULDER and COBBLES; 3.0-4.8 ft.; BOULDER --ALLUVIUM--
BOULDER
BOULDER and COBBLES
BOULDER and COBBLES
BOULDER and COBBLES
BOULDER and COBBLES

FIELD NOTES AND TEST RESULTS
Start 12:00 10/12/2018; hang auger 0.0-5.0 ft.

End of day 10/12/2018
Begin day 10/15/2018
Switch to rotary wash drilling with 3 7/8-inch tricone bit

Advance 4.5-inch casing to 5 ft.
BOULDER and COBBLES--ALLUVIUM--(continued)

VOLCANIC SILTSTONE; reddish brown to olive grey; moderately to highly weathered; very weak to weak; very thinly laminated; locally clayey
--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)--

becomes moderately weathered; weak

1: J, 30, N, Cl, Fi, Pt, S-SR (dissolution voids along joint)
2: J, 10-15, VN, Cl, Fi, Pt-Wa, S-SR

TOTAL DEPTH = 27.3 FEET

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

Reddish clay cuttings
Rig chatter at 20 ft. indicates rocky layer

S-01 One liner retained (16-16.5 ft.)
S-02 One liner retained (21-21.5 ft.)
End of day 10/15/2018
Begin day 10/16/2018
Advance 4.5-inch casing to 22 ft.
Switch to HQ-3 rock coring at 22.3 ft.

26.3-27.3 ft. driller reports harder drilling condition
Log of Soil and Core Boring B-04

Sheet 1 of 3

Date(s) Drilled: 9/25/2018
Logged By: S. Janowski
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, HQ-3 Rock Core
Drill Bit Size/Type: 6-inch flight auger, HQ-3 wireline diamond bit
Total Depth of Borehole: 31.5 feet

Drill Rig Type: Truck Mounted Mobile B-53
Drilling Contractor: Gregg Drilling
NAVD 88 Ground Surface Elevation: 2343 feet

Groundwater Level: Not encountered before rotary wash drilling
Sampling Methods: 2.5-inch ID Mod Cal, HQ Core Barrel
Hammer Data:
- Automatic hammer;
- 140 lbs, 30-inch drop

Borehole Backfill: Cement grout to ground surface
Borehole Location: Jenny Creek Bridge
Coordinate Location: N 2603560 E 6452773

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Lithology</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2342</td>
<td>2-inches ASPHALT roadway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2340</td>
<td>POORLY GRADED SAND with GRAVEL (SP); greenish grey (10G 5/1); 40% subangular GRAVEL up to 1-inch; 60% medium grained SAND; moist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2338</td>
<td>SANDY LEAN CLAY with GRAVEL (CL); very stiff to hard; brown (10YR 4/3); 60% low plasticity FINES; 20% subangular gravel up to 2-inches; 20% fine grained SAND; moist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2336</td>
<td>ROAD BASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2334</td>
<td>ROAD FILL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2332</td>
<td>Becomes brown (10YR 5/3 with subangular to subrounded GRAVEL up to 1 1/2-inches, effervescent, with rootlets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2330</td>
<td>CLAYEY GRAVEL with SAND (GC); very stiff; brown (10YR 4/3); 60% subrounded COBBLES and GRAVELS; 30% low plasticity FINES; 10% medium grained SAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2328</td>
<td>ALLUVIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2326</td>
<td>Becomes basalt COBBLES up to 5 inches in a clayey matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Start 9:30 9/25/2018**
- **Hand Auger 0-5ft.**
 - **pp = 3.25 tsf**
- **Auger refusal at 9.5ft.; advance 4.5-inch casing to 9.5ft.**
 - **pp = 3.0 tsf**
- **Switch to HQ coring at 11ft. with wireline diamond bit; advance 4.5-inch casing to 9.0ft.**
 - **pp = >4.5 tsf**
Log of Soil and Core Boring B-04

Project Number: 60537920

Project Location: Copco and Iron Gate Reservoirs

Project: Klamath River Renewal Project

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td>NA</td>
<td></td>
<td>64</td>
<td>NA</td>
<td>CLAYEY GRAVEL with SAND (GC); very stiff; brown (10YR 4/3); 60% subrounded COBBLES and GRAVELS; 30% low plasticity FINES; 10% medium grained SAND --ALLUVIUM--(continued)</td>
</tr>
<tr>
<td>-2328</td>
<td></td>
<td>2</td>
<td>64</td>
<td>NA</td>
<td>72</td>
<td>NA</td>
<td>Becomes greyish red (5YR 4/2) to brownish black (5YR 2/1), basalt BOULDERS with minor matrix and subrounded GRAVELS infilling void spaces with some vesicles up to 3/4-inches.</td>
</tr>
<tr>
<td>-2326</td>
<td></td>
<td>3</td>
<td>72</td>
<td>NA</td>
<td></td>
<td></td>
<td>BASALT; olive grey (5Y 3/2); completely weathered, very weakly decomposed and easily friable by hand --TERTIARY to QUATERNARY INTRUSIVE BASALT--</td>
</tr>
<tr>
<td>-2324</td>
<td></td>
<td>4</td>
<td>40</td>
<td>NA</td>
<td>70</td>
<td>0</td>
<td>Becomes dusky yellow green (5Y 3/2) and pale reddish brown (10Y 5/4), highly to completely weathered, highly to intensely fractured</td>
</tr>
<tr>
<td>-2322</td>
<td></td>
<td>5</td>
<td>70</td>
<td>0</td>
<td></td>
<td></td>
<td>Bit blocked off during run</td>
</tr>
<tr>
<td>-2320</td>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>Bit blocked off during run</td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1157</td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1232</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1257</td>
<td>1257</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1310</td>
<td>1303</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1319</td>
<td>1431</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- Driller indicated good fluid return while pump running but rapid fluid level drop between runs
- Bit blocked off during run

Report: GEO_CORE+SOIL NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-04
MATERIAL DESCRIPTION

- **BASALT**: dusky yellow green (5Y 5/2) and pale reddish brown (10Y 5/4); highly to completely weathered; highly to intensely fractured; very weak; No Recovery likely in completely weathered zones

FIELD NOTES AND TEST RESULTS

- **TOTAL DEPTH**: 31.5 FEET

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>30</td>
<td>NA</td>
</tr>
<tr>
<td>-2312</td>
<td>31</td>
<td>NR</td>
</tr>
</tbody>
</table>

- **Recovery, %**: [13]
- **Drill Time**: 1445, 1455
- **Bit blocked off during run**: [7]
Log of Soil and Core Boring B-05

Date(s) Drilled: 9/26/2018
Logged By: S. Janowski
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: Not encountered before rotary wash drilling

Sampled MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
<th>Field Notes and Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2.5</td>
<td>2-inches ASPHALT roadway</td>
<td>NA</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start 8:30 9/26/2018 hand auger 0-5ft.</td>
</tr>
<tr>
<td>2.5 to 5</td>
<td>POORLY GRADED SAND with GRAVEL (SP); greenish grey (10G 5/1); 60% medium grained SAND; 40% subangular GRAVEL up to 1-inch; moist</td>
<td>1</td>
<td>NA</td>
<td>15</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pocket Pen = 3.5 tsf</td>
</tr>
<tr>
<td>5 to 10</td>
<td>SANDY LEAN CLAY (CL); very stiff; brown (10YR 1/2); low plasticity FINES; fine to medium grained SAND; subangular GRAVEL up to 2-inches; moist</td>
<td>2</td>
<td>NA</td>
<td>20</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log of Soil and Core Boring B-05

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled: 9/26/2018
Logged By: S. Janowski
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: Not encountered before rotary wash drilling

Sampled MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
<th>Field Notes and Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2.5</td>
<td>2-inches ASPHALT roadway</td>
<td>NA</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start 8:30 9/26/2018 hand auger 0-5ft.</td>
</tr>
<tr>
<td>2.5 to 5</td>
<td>POORLY GRADED SAND with GRAVEL (SP); greenish grey (10G 5/1); 60% medium grained SAND; 40% subangular GRAVEL up to 1-inch; moist</td>
<td>1</td>
<td>NA</td>
<td>15</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pocket Pen = 3.5 tsf</td>
</tr>
<tr>
<td>5 to 10</td>
<td>SANDY LEAN CLAY (CL); very stiff; brown (10YR 1/2); low plasticity FINES; fine to medium grained SAND; subangular GRAVEL up to 2-inches; moist</td>
<td>2</td>
<td>NA</td>
<td>20</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log of Soil and Core Boring B-05

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled: 9/26/2018
Logged By: S. Janowski
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: Not encountered before rotary wash drilling

Sampled MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
<th>Field Notes and Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2.5</td>
<td>2-inches ASPHALT roadway</td>
<td>NA</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start 8:30 9/26/2018 hand auger 0-5ft.</td>
</tr>
<tr>
<td>2.5 to 5</td>
<td>POORLY GRADED SAND with GRAVEL (SP); greenish grey (10G 5/1); 60% medium grained SAND; 40% subangular GRAVEL up to 1-inch; moist</td>
<td>1</td>
<td>NA</td>
<td>15</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pocket Pen = 3.5 tsf</td>
</tr>
<tr>
<td>5 to 10</td>
<td>SANDY LEAN CLAY (CL); very stiff; brown (10YR 1/2); low plasticity FINES; fine to medium grained SAND; subangular GRAVEL up to 2-inches; moist</td>
<td>2</td>
<td>NA</td>
<td>20</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log of Soil and Core Boring B-05

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled: 9/26/2018
Logged By: S. Janowski
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: Not encountered before rotary wash drilling

Sampled MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
<th>Field Notes and Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2.5</td>
<td>2-inches ASPHALT roadway</td>
<td>NA</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start 8:30 9/26/2018 hand auger 0-5ft.</td>
</tr>
<tr>
<td>2.5 to 5</td>
<td>POORLY GRADED SAND with GRAVEL (SP); greenish grey (10G 5/1); 60% medium grained SAND; 40% subangular GRAVEL up to 1-inch; moist</td>
<td>1</td>
<td>NA</td>
<td>15</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pocket Pen = 3.5 tsf</td>
</tr>
<tr>
<td>5 to 10</td>
<td>SANDY LEAN CLAY (CL); very stiff; brown (10YR 1/2); low plasticity FINES; fine to medium grained SAND; subangular GRAVEL up to 2-inches; moist</td>
<td>2</td>
<td>NA</td>
<td>20</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log of Soil and Core Boring B-05

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled: 9/26/2018
Logged By: S. Janowski
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: Not encountered before rotary wash drilling

Sampled MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
<th>Field Notes and Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2.5</td>
<td>2-inches ASPHALT roadway</td>
<td>NA</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start 8:30 9/26/2018 hand auger 0-5ft.</td>
</tr>
<tr>
<td>2.5 to 5</td>
<td>POORLY GRADED SAND with GRAVEL (SP); greenish grey (10G 5/1); 60% medium grained SAND; 40% subangular GRAVEL up to 1-inch; moist</td>
<td>1</td>
<td>NA</td>
<td>15</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pocket Pen = 3.5 tsf</td>
</tr>
<tr>
<td>5 to 10</td>
<td>SANDY LEAN CLAY (CL); very stiff; brown (10YR 1/2); low plasticity FINES; fine to medium grained SAND; subangular GRAVEL up to 2-inches; moist</td>
<td>2</td>
<td>NA</td>
<td>20</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Log of Soil and Core Boring B-05

Sheet 2 of 4

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Lithology

Depth, feet
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>COBBLES and GRAVELS in a washed-out CLAY matrix; brown (10YR 4/3) --ALLUVIUM--(continued)</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Bit blocked off during run</td>
</tr>
<tr>
<td>15</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>40</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>50</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>UCS = 14975 psi</td>
</tr>
<tr>
<td>21</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>80</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Basalt BOULDER; greyish red (5RP 4/2); slightly weathered; strong</td>
</tr>
<tr>
<td>23</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>COBBLES and GRAVELS in a washed-out CLAY matrix; very dark grey (10YR 3/1)</td>
</tr>
<tr>
<td>25</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>73</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Basalt COBBLES and BOULDERS are non vesiculated to vesiculated with vesicles up to 1/2-inch</td>
</tr>
<tr>
<td>28</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, 10hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1112</td>
<td>1115</td>
<td>60-75% drill fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[24]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1120]</td>
<td>1126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[60]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[17]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1129]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1134]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[20]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1202]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1236]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1242]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1331]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Log of Soil and Core Boring B-05

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 3 of 4

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2312</td>
<td>29</td>
<td>1</td>
<td>43</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2310</td>
<td>31</td>
<td>9</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2308</td>
<td>33</td>
<td>10</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2306</td>
<td>34</td>
<td>11</td>
<td>85</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2304</td>
<td>36</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2302</td>
<td>38</td>
<td>12</td>
<td>43</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2300</td>
<td>40</td>
<td>13</td>
<td>45</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2298</td>
<td>42</td>
<td>14</td>
<td>57</td>
<td>NA</td>
<td>NA</td>
<td>0% Fluid return</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

CobbleS and GRAVELS in a washed-out CLAY matrix; brown (10YR 4/3) --ALLUVIUM--(continued)

SOIL SAMPLES

- **Type**
- **Number**
- **Blows / 6 in.**
- **Recovery, %**
- **Drill Time [Rate, ft/hr]**

FIELD NOTES AND TEST RESULTS

- **Report:** GEO/Core+SOIL_NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-05
Rock Core

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D., %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NA</td>
<td>57</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>COBBLES and GRAVELS in a washed-out CLAY matrix; brown (10YR 4/3) --ALLUVIUM--(continued)</td>
</tr>
<tr>
<td>14</td>
<td>NA</td>
<td>65</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>0% Fluid return</td>
</tr>
<tr>
<td>15</td>
<td>NA</td>
<td>65</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>1620</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>1626</td>
</tr>
</tbody>
</table>

Soil Samples

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Notes and Test Results

- Bit blocked off during run

TOTAL DEPTH = 50.0 FEET
Log of Soil and Core Boring B-06

Date(s) Drilled: 10/8/2018-10/9/2018
Logged By: P. Respess
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, Rotary Wash, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: 13.7 feet below ground surface

SANDY LEAN CLAY (CL); stiff; yellowish brown; >50% medium plasticity FINES; fine to coarse grained SAND; GRAVEL up to 2-inches; dry to moist

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2338</td>
<td>SANDY LEAN CLAY (CL); stiff; yellowish brown; >50% medium plasticity FINES; fine to coarse grained SAND; GRAVEL up to 2-inches; dry to moist</td>
<td></td>
</tr>
<tr>
<td>2336</td>
<td>SILTY SAND (SM); loose; brownish grey; fine to medium grained SAND; little coarse grained SAND and wood fragments; wet</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

Start 9:10 10/8/2018; hollow stem auger 0-16.5ft.
S-01 One liner retained (5-5.5ft.)
Smother drilling at 9.0ft.
S-02 One liner retained (10.5-11ft.)
SA: S=75%; F=25%
SILTY SAND (SM); loose; brownish grey; fine to medium grained SAND; little coarse grained SAND and wood fragments; wet

POORLY GRADED GRAVEL (GP); medium dense; brownish grey; rounded GRAVEL, COBBLES, and BOULDERS; SAND and CLAY infilling; wet

BOULDER

CLAY, yellowish brown

CLAY, reddish brown

Switch to rotary wash drilling with 3 7/8-inch tricone bit; advance 4.5-inch casing to 19ft.

Logged from cuttings

30-60% Fluid return (higher in boulders)
CLAYEY GRAVEL with SAND (GC); medium dense; brownish grey; rounded GRAVEL, COBBLES, and BOULDERS; SAND and CLAY infilling; wet

S-04 One liner retained (31-31.5ft.)
SA: G=53%; S=22%; F=25%
Advance 4.5-inch casing to 30ft.

S-05 One liner retained (41-41.4ft.)
Advance 4.5-inch casing to 40ft.

Total fluid loss at 44ft. (0% fluid return)
Log of Soil and Core Boring B-06

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>POORLY GRADED GRAVEL (GP); medium dense; brownish grey; rounded GRAVEL, COBBLES, and BOULDERS; SAND and CLAY infilling; wet —ALLUVIUM—</td>
</tr>
<tr>
<td>46</td>
<td>VOLCANIC SILTSTONE/CLAYSTONE; olive grey; moderately to highly weathered; weak; thinly laminated —TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)—</td>
</tr>
<tr>
<td>47</td>
<td>VOLCANIC SILTSTONE/CLAYSTONE; reddish brown; moderately weathered; very weak to weak; thinly laminated</td>
</tr>
<tr>
<td>48</td>
<td>VOLCANIC SILTY SANDSTONE; light yellowish brown; highly to moderately weathered; fine to medium grained; becomes bluish grey at 51.8ft.</td>
</tr>
<tr>
<td>49</td>
<td>BASALT; slightly weathered; moderately strong —TERTIARY to QUATERNARY INTRUSIVE BASALT—</td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- S-06 One liner retained (46-46.5ft.)
 SA: G=93%; S=7%
 Advance 4.5-inch casing to 45ft.
- S-07 Two liner retained (50.5-51.0 51.0-51.5ft.)
 Advance 4.5-inch casing to 50ft.; driller reports consistent olive grey clayey cuttings at 47.5ft.; switch to HQ-3 rockcore at 52ft.

TOTAL DEPTH = 56.9 FEET
Log of Soil and Core Boring B-07

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled: 10/4/2018-10/5/2018
Logged By: B. Kozlowicz
Reviewed By: B. Aldridge

Drilling Method: Hollow Stem Auger, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Drill Bit Size/Type: 6-inch flight auger, 3 7/8-inch diamond core bit
Drilling Contractor: Gregg Drilling
Total Depth of Borehole: 31.8 feet
NAVD 88 Ground Surface Elevation: 2338 feet

Groundwater Level: Not encountered before rotary wash drilling
Sampling Methods: 2.5-inch ID ModCal, HQ Core Barrel
Hammer Data: Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill: Cement grout to ground surface
Borehole Location: Jenny Creek
Coordinate Location: N 2603568, E 6453234

Lithology

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2328</td>
<td>1</td>
<td>25</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>VOLCANIC SANDSTONE BOULDER; dark grey; slightly weathered; very strong; fine to medium grained</td>
<td></td>
</tr>
<tr>
<td>-2326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2318</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description

- **POORLY GRADED SAND with GRAVEL (SP); loose to medium dense; light olive brown (2.5Y 5/3); 60% fine to medium grained SAND; 35% angular GRAVEL up to 2-inches; 5% no plasticity FINES; dry**
- **VOLCANIC SANDSTONE; grey; fine grained; moderately weathered**
- **CLAYEY GRAVEL with SAND (GC); dark yellowish to olive brown; subangular to subrounded GRAVEL up to 1.5-inches**
- **VOLCANIC SANDSTONE BOULDER; dark grey; slightly weathered; very strong; fine to medium grained**

Soil Samples

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S-01</td>
<td>28</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Start 15:00 10/4/2018 hand auger 0-4.5ft.**
- **End of day 10/4/2018.**
- **Begin day 10/5/2018 Advance 4.5-inch casing to 6.8ft.**
- **Hollow stem auger 5-7ft.**
- **Hard rocky drilling 6-7ft.**
- **Advance 4.5-inch casing to 9ft.**
- **0% Fluid Return**
Continued 0% Fluid Return

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

Report: GEO_CORE+SOIL_NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 - B-07
<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Elevation, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>38</td>
<td>32</td>
</tr>
<tr>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>41</td>
<td>35</td>
</tr>
<tr>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>44</td>
<td>38</td>
</tr>
<tr>
<td>45</td>
<td>39</td>
</tr>
</tbody>
</table>

Run No. 6 1 100 3 16

Box No.

Recovery, %

Fractures per Foot

R Q D, %

Fracture Drawing Number

Lithology

Total Depth = 31.8 Feet

Soil Sample Description

- **VOLCANIC SANDSTONE; dark reddish brown (2.5YR 3/4) to dark red (2.5YR 3/6), grades to fine to medium grained**

TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)

Shoe: Disturbed

FIELD NOTES AND TEST RESULTS

- **Report:** GEO/Core+Soil_No Pack_With Lith; File: KLAMATH_MASTER.GPJ; 6/20/2019

Project: Klamath River Renewal Project

Project Number: 60537920

Project Location: Copco and Iron Gate Reservoirs

Sheet: 3 of 3
Log of Soil and Core Boring B-08

Project Number: 60537920
Project Location: Copco and Iron Gate Reservoirs
Project: Klamath River Renewal Project

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Reviewed By</th>
<th>Drilling Method</th>
<th>Drill Rig Type</th>
<th>Groundwater Level</th>
<th>Borehole Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/16/2018</td>
<td>P. Respass</td>
<td>B. Aldridge</td>
<td>Hollow Stem Auger, Rotary Wash, HQ-3 Rock Core</td>
<td>Truck Mounted Mobile B-53</td>
<td>Not encountered before rotary wash drilling</td>
<td>Lakeview Bridge</td>
<td>N 2587323 E 6441439</td>
</tr>
</tbody>
</table>

Drill Rig: Truck Mounted Mobile B-53
Drilling Contractor: Gregg Drilling
Sample Methods: 2.0-inch ID California Sampler, SPT, HQ Core Barrel
Hammer Data: Automatic hammer; 140 lbs, 30-inch drop

Total Depth of Borehole: 52.8 feet

Drill Rig Type: 3 7/8-inch tricone; 3 7/8-inch diamond HQ bit
Drilling Method: 3 7/8-inch tricone; 3 7/8-inch diamond HQ bit

Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: Not encountered before rotary wash drilling

Groundwater Level: Not encountered before rotary wash drilling

Borehole Backfill: Cement grout to ground surface

Field Notes and Test Results

- **Start:** 11:30 am
 10/16/2018: Hollow stem auger 0-3ft.

- **Switch:** 11:30 am
 10/16/2018: Rotary wash drilling at 3ft.

- **Advance:** 4.5-inch casing to 10ft.
Log of Soil and Core Boring B-08

Sheet 2 of 4

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2178</td>
<td></td>
<td>Rocky layer becomes greyish green</td>
</tr>
<tr>
<td>2176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2174</td>
<td></td>
<td>Rocky layer</td>
</tr>
<tr>
<td>2172</td>
<td></td>
<td>Rocky layer</td>
</tr>
<tr>
<td>2170</td>
<td></td>
<td>POORLY GRADED GRAVEL with SAND (GP) to POORLY GRADED SAND with GRAVEL (SP); dense; brown; fine to medium, locally coarse grained SAND; fine to coarse GRAVEL; wet</td>
</tr>
<tr>
<td>2168</td>
<td></td>
<td>VOLCANIC CONGLOMERATE; medium grey; slightly weathered to fresh; moderately strong to strong; highly fractured; fine grained with rounded clasts up to 2 1/2-inches; well cemented with mechanical breaks along fractures</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- GRAVELLY FAT CLAY with SAND (CH); very stiff; olive brown; medium to high plasticity FINES; trace fine grained SAND; occasional fine to coarse GRAVEL; wet

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>4</td>
<td>69; PL=22</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>S02</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S03</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S04</td>
<td>50/5</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- 02 advanced with weight of hammer to 8-inches then pushed to 18-inches with 100 psi without liners
- SA: G=6%; S=12%; F=80%
- Advance 4.5-inch casing to 20ft; bluish grey cuttings
- S-03 driven without liners
- Driller notes smooth drilling below 23.5ft.
- Advance 4.5-inch casing to 25ft.
- Basalt chip in cuttings; steady drilling
VOLCANIC CONGLOMERATE; medium grey; slightly weathered to fresh; moderately strong to strong; highly fractured; fine grained with rounded clasts up to 2 1/2-inches; well cemented with mechanical breaks along fractures --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)-- (continued)

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2158</td>
<td>1</td>
<td></td>
<td>100</td>
<td>0</td>
<td>89</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>-2156</td>
<td>1</td>
<td></td>
<td>100</td>
<td>0</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2154</td>
<td>2</td>
<td></td>
<td>100</td>
<td>1</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2152</td>
<td>1</td>
<td></td>
<td>100</td>
<td>1</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2150</td>
<td>1</td>
<td></td>
<td>100</td>
<td>1</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

Switch to HQ-3 rock coring at 35ft.

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIAL DESCRIPTION

1. **VOLCANIC SANDSTONE**: light to medium grey; slightly weathered to fresh; moderately strong; highly fractured; fine grained with angular, white clasts up to 5 mm

 TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)

2. **VOLCANIC CONGLOMERATE**: medium grey; slightly weathered to fresh; moderately strong to strong; highly fractured; fine grained with rounded clasts up to 2 1/2-inches; well cemented with mechanical breaks along fractures

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-48</td>
<td>VOLCANIC SANDSTONE</td>
</tr>
<tr>
<td>48-52</td>
<td>VOLCANIC CONGLOMERATE</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **UCS**: 15268 psi
- **TOTAL DEPTH**: 52.8 FEET

Report: GEO_CORE+SOIL_NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-08
Log of Soil and Core Boring B-10

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Reviewed By</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/17/2018-10/18/2018</td>
<td>P. Respess</td>
<td>B. Aldridge</td>
<td>52.2 feet</td>
</tr>
</tbody>
</table>

Drilling Method: Rotary Wash, HQ-3 Rock Core
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level: Not encountered before rotary wash drilling
Borehole Backfill: Cement grout to ground surface

Drill Rig Details:
- **Drill Rig Type:** Truck Mounted Mobile B-53
- **Drill Rig Details:** Automatic hammer; 140 lbs, 30-inch drop

Drill Site Details:
- **Location:** Lakeview Bridge
- **Elevation:** 2194 feet N 2587076 E 6441583

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2192</td>
<td></td>
<td>-FILL-</td>
</tr>
<tr>
<td>-2190</td>
<td>CLAYEY SAND (SC); medium dense, reddish brown; fine to coarse grained SAND; medium to high plasticity FINES; trace to some GRAVEL; moist</td>
<td></td>
</tr>
<tr>
<td>-2188</td>
<td>POORLY GRADED GRAVEL with SAND (GP); medium dense to dense; greyish brown; fine to coarse grained SAND; fine to coarse, angular to rounded GRAVEL with COBBLES and BOULDERS; dry</td>
<td></td>
</tr>
<tr>
<td>-2186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2182</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Start:** 10:10
- **Date:** 10/17/2018
- **Method:** rotary wash drilling 0-29.5

- **Too cobbley for drive sample at 10ft.**
POORLY GRADED GRAVEL with SAND (GP); medium dense to dense; greyish brown; fine to coarse grained SAND; fine to coarse, angular to rounded GRAVEL with COBBLES and BOULDERS; dry

--FILL--(continued)

VOLCANIC CONGLOMERATE; medium grey; slightly weathered to fresh; moderately strong to strong; rounded clasts up to 2 1/2-inches in a fine grained matrix; moderately fractured with mechanical breaks around clasts; well cemented

--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)--

Advance 4.5-inch casing to 23.5 ft.
VOLCANIC CONGLOMERATE; medium grey; slightly weathered to fresh; moderately strong to strong; rounded clasts up to 2 1/2-inches in a fine grained matrix; moderately fractured with mechanical breaks around clasts; well cemented

VOLCANIC SANDSTONE; light to medium grey; slightly weathered; strong; fine grained with white clasts up to 6 mm

VOLCANIC SANDSTONE; light to medium grey; slightly weathered; strong; fine grained with white clasts up to 6 mm

VOLCANIC SANDSTONE; light to medium grey; slightly weathered; strong; fine grained with white clasts up to 6 mm

VOLCANIC SANDSTONE; light to medium grey; slightly weathered; strong; fine grained with white clasts up to 6 mm

Switch to HQ-3 rock coring at 29.5ft.

Driller reports hard drilling at 33.4ft.

End of day 10/17/2018

Begin day 10/18/2018
Log of Soil and Core Boring B-10

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 4 of 4

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>2148</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>m</td>
<td>m</td>
<td>1</td>
<td>VOLCANIC CONGLOMERATE; medium grey; slightly weathered to fresh; moderately strong to strong; rounded clasts up to 2 1/2-inches in a fine grained matrix; moderately fractured with mechanical breaks around clasts; well cemented</td>
<td>(continued)</td>
</tr>
<tr>
<td></td>
<td>2146</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2144</td>
<td>7</td>
<td>82</td>
<td>71</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>VOLCANIC SANDSTONE; light to medium grey; slightly weathered; strong; fine grained with white clasts up to 6 mm</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 52.2 FEET

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2148</td>
<td>VOLCANIC CONGLOMERATE; medium grey; slightly weathered to fresh; moderately strong to strong; rounded clasts up to 2 1/2-inches in a fine grained matrix; moderately fractured with mechanical breaks around clasts; well cemented</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Drill Time (Rate, ft/hr):** 0830
- **Recovery, %:** 0847

Elevation, feet

- 45
- 2148
- 2146
- 2144
- 2142
- 2140
- 2138
- 2136
- 2134
- 61
Log of Core Boring B-13

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Reviewed By</th>
<th>Drilling Method</th>
<th>Drill Bit Size/Type</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/3/2018</td>
<td>B. Kozlowicz</td>
<td>B. Aldridge</td>
<td>HQ-3 Rock Core</td>
<td>3 3/4-inch diamond core bit</td>
<td>21.1 feet</td>
</tr>
</tbody>
</table>

Drill Rig Type
Truck Mounted Mobile B-53
Drilling Contractor
Gregg Drilling
Groundwater Level
Not encountered before HQ rock coring
Sampling Methods
HQ Core Barrel
Inclination from Horizontal/True North Bearing
Vertical

<table>
<thead>
<tr>
<th>Driller</th>
<th>Bentonite cement grout to ground surface</th>
<th>Location</th>
<th>Fall Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logged By</td>
<td>Bentonite cement grout to ground surface</td>
<td>Coordinate Location</td>
<td>N 2606346 E 6463221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2494</td>
<td>0</td>
<td>1-inch ASPHALT WELL GRADED SAND with GRAVEL (SW); medium dense to dense; dark yellowish brown (10YR 4/4); fine to coarse grained SAND; angular to rounded GRAVEL up to 2-inches --ROAD BASE--</td>
</tr>
<tr>
<td>-2492</td>
<td>1</td>
<td>BASALT; very dark grey to black; slightly to moderately weathered; strong; highly fractured with iron staining along fracture surfaces; porphyritic; vesicular; with plagioclase phenocrysts up to 1/4-inch and irregular vesicles up to 1/2-inch --TERTIARY to QUATERNARY INTRUSIVE BASALT--</td>
</tr>
<tr>
<td>-2490</td>
<td>2</td>
<td>Becomes dark yellowish brown, locally highly weathered with CLAYEY SAND, with rootlets</td>
</tr>
<tr>
<td>-2488</td>
<td>3</td>
<td>Becomes highly to locally completely weathered to a CLAYEY SAND/SANDY CLAY with trace small gravel and strong, slightly weathered corestones of BASALT</td>
</tr>
<tr>
<td>-2486</td>
<td>4</td>
<td>CLAYEY SAND/SANDY CLAY</td>
</tr>
<tr>
<td>-2484</td>
<td>5</td>
<td>Highly fractured with SANDY CLAY infilling</td>
</tr>
</tbody>
</table>

Packer Test Intervals
<table>
<thead>
<tr>
<th>Interval</th>
<th>Drill Time, 24-hr</th>
<th>[Drill Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1252</td>
<td>12/30</td>
<td></td>
</tr>
<tr>
<td>1256</td>
<td>12/30</td>
<td></td>
</tr>
<tr>
<td>1324</td>
<td>Auger refusal at 3.5ft.; switch to HQ rock coring with 3 3/4-inch diamond bit</td>
<td>0% fluid return</td>
</tr>
</tbody>
</table>

NA

Report: GEO_CORE_OAK_C; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-13
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Quarter Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>68</td>
<td>5</td>
<td>19</td>
<td>NA</td>
<td>BASALT: very dark grey to black; slightly to locally completely weathered; strong; highly to intensely fractured; porphyritic; vesicular; with plagioclase phenocrysts up to 2/5-inches and irregular vesicles up to 1/2-inch; fractures are wide and infilled with CLAYEY SAND/SANDY CLAY and small GRAVEL—TERTIARY to QUATERNARY INTRUSIVE BASALT—(continued)</td>
</tr>
</tbody>
</table>

FIELD NOTES AND OTHER TESTS

- **continued 0% fluid return**
- **Bit blocked off during run**
- **UCS = 6528 psi**

TOTAL DEPTH = 21.1 FEET
Log of Soil and Core Boring B-14

Date(s) Drilled: 10/4/2018

Logged By: B. Kozlowicz

Reviewed By: B. Aldridge

Drilling Method: HQ-3 Rock Core

Drill Rig Type: Truck Mounted Mobile B-53

Groundwater Level: Not encountered before HQ rock coring

Borehole Backfill: Bentonite cement grout to ground surface

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2494</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>NA</td>
<td>0</td>
<td>NR</td>
<td></td>
<td>WELL GRADED GRAVEL with SAND (GW); loose to medium dense; dark yellowish brown (10YR 4/4); angular to subangular GRAVEL up to 3-inches; fine to coarse grained SAND; trace no plasticity FINES</td>
</tr>
<tr>
<td>2492</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>NA</td>
<td>0</td>
<td>NR</td>
<td></td>
<td>SANDY LEAN CLAY (CL); stiff; very dark brown (7.5YR 2.5/3); 60% low plasticity FINES; 40% fine to medium grained SAND; trace angular, coarse grained SAND; trace fine GRAVEL</td>
</tr>
<tr>
<td>2490</td>
<td>4</td>
<td>NA</td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td>FAT CLAY with SAND (CH); very stiff; dark brown (7.5YR 3/3); medium plasticity FINES; fine to medium SAND; rare angular GRAVEL</td>
</tr>
<tr>
<td>2488</td>
<td>6</td>
<td>NA</td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td>COBBLES and BOULDERS with CLAYEY SAND and GRAVEL; dark greenish grey and olive to reddish brown; slightly weathered, moderately strong volcanic sandstone COBBLES</td>
</tr>
<tr>
<td>2486</td>
<td>8</td>
<td>NA</td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td>CHANNEL ALLUVIUM; COBBLES and BOULDERS become dusky red, fine grained, slightly weathered, very intrusive volcanic</td>
</tr>
<tr>
<td>2484</td>
<td>10</td>
<td>3</td>
<td>60</td>
<td>NA</td>
<td>25</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2482</td>
<td>12</td>
<td>4</td>
<td>7</td>
<td>NA</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Start 9:00 10/4/2018 hand auger 0-2ft.**
- **Auger refusal at 2.3ft.; switch to HQ rock coring with 3 3/4-inch diamond bit**
- **Run 1 bagged**
- **Two liners retained**
- **80-100% fluid return**
- **Coarse grained SAND in cuttings**
Log of Soil and Core Boring B-14

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 2 of 2

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2480</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>0</td>
<td>PORPHYRITIC ANDESITE; very dark greyish brown (10YR 3/2); highly weathered; very weak; locally friable; with steeply dipping vein infilled with very pale yellow, fine grained SAND --TERTIARY VOLCANICS, undifferentiated--</td>
</tr>
<tr>
<td>-2478</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>Becomes dark reddish brown and very pale yellow, weak to extremely weak, highly to completely altered; with irregular chlorite alteration and vitreous quartz crystals up to 1/4-inch</td>
</tr>
<tr>
<td>-2476</td>
<td>18</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Becomes moderately to locally highly weathered, moderately strong, highly fractured</td>
</tr>
<tr>
<td>-2474</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2472</td>
<td>22</td>
<td>7</td>
<td>0</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2470</td>
<td>24</td>
<td>8</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>-2468</td>
<td>26</td>
<td>9</td>
<td>0</td>
<td>63</td>
<td>0</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>-2466</td>
<td>28</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 28.6 FEET

MATERIAL DESCRIPTION

- **PORPHYRITIC ANDESITE:** very dark greyish brown (10YR 3/2); highly weathered; very weak; locally friable; with steeply dipping vein infilled with very pale yellow, fine grained SAND

- **TERTIARY VOLCANICS, undifferentiated:**
 - Becomes dark reddish brown and very pale yellow, weak to extremely weak, highly to completely altered; with irregular chlorite alteration and vitreous quartz crystals up to 1/4-inch

- **Becomes moderately to locally highly weathered, moderately strong, highly fractured**

- **Becomes highly to completely weathered, extremely weak, friable**

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, 10/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2478</td>
<td>1</td>
<td>Soil</td>
<td>6</td>
<td>100% fluid return</td>
<td>1124</td>
</tr>
<tr>
<td>-2476</td>
<td>2</td>
<td>Soil</td>
<td>10</td>
<td>6</td>
<td>1124</td>
</tr>
<tr>
<td>-2474</td>
<td>3</td>
<td>Soil</td>
<td>8</td>
<td>6</td>
<td>1124</td>
</tr>
<tr>
<td>-2472</td>
<td>4</td>
<td>Soil</td>
<td>8</td>
<td>6</td>
<td>1124</td>
</tr>
<tr>
<td>-2470</td>
<td>5</td>
<td>Soil</td>
<td>8</td>
<td>6</td>
<td>1124</td>
</tr>
<tr>
<td>-2468</td>
<td>6</td>
<td>Soil</td>
<td>8</td>
<td>6</td>
<td>1124</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- Fast drilling 18.6 to 20.5ft likely no recovery zone

TOTAL DEPTH = 28.6 FEET
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Soil and Core Boring B-15

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>1/22/2019-1/23/2019</th>
<th>Logged By</th>
<th>S. Janowski</th>
<th>Checked By</th>
<th>P. Respess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling Method</td>
<td>Solid Stem Auger, HQ-3 Rock Core</td>
<td>Drill Bit Size/Type</td>
<td>4-inch solid stem auger, 4-inch diamond coring bit</td>
<td>Total Depth of Borehole</td>
<td>51.5 feet</td>
</tr>
<tr>
<td>Drill Rig Type</td>
<td>Truck Mounted CME 75</td>
<td>Drilling Contractor</td>
<td>Taber Drilling</td>
<td>NAVD 88 Ground Surface Elevation</td>
<td>2344 feet</td>
</tr>
<tr>
<td>Groundwater Level</td>
<td>11.7' 1/23/2019</td>
<td>Sampling Methods</td>
<td>2.5-inch ID ModCal, SPT, HQ Core Barrel</td>
<td>Hammer Data</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
</tr>
<tr>
<td>Borehole Backfill</td>
<td>Cement grout to ground surface</td>
<td>Borehole Location</td>
<td>North end of Daggett Road Bridge</td>
<td>Coordinate Location</td>
<td>N 2602349 E 6462482</td>
</tr>
</tbody>
</table>

Field Notes and Test Results

MATERIAL DESCRIPTION

- **SANDY LEAN CLAY with GRAVEL (CL);** very stiff; moist; dark brown (10yr3/3); 20% subrounded to rounded GRAVEL to 3/4"; 20% fine- to medium-grained SAND; 60% medium plasticity FINES

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
</table>

- **CLAYEY GRAVEL with SAND (SC);** very dense; moist; yellowish brown to dark brown; interbedded layers of gravel with clay and sand

FIELD NOTES AND TEST RESULTS

- **Fill estimate based on height of slope embankment**

- **pp=3.0 tsf**
Log of Soil and Core Boring B-15

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2330</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2328</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2326</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2324</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2322</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2320</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2318</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2316</td>
<td>71</td>
<td>27</td>
<td>27</td>
<td>0</td>
</tr>
</tbody>
</table>

Material Description

- **CLAYEY GRAVEL** with SAND (SC); very dense; moist; yellowish brown to dark brown; interbedded layers of gravel with clay and sand —ALLUVIUM— (continued)

- **BASALT BOULDERS** and COBBLES in SAND & GRAVEL matrix; medium dark gray (N4) to dark gray (N3); strong; some boulders are scoriaceous, matrix washed out —ALLUVIUM—

Soil Samples

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, 10/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA: G=42%; S=27%; F=31%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Notes and Test Results

- **Rig chatter**
- **End of day 1/22/2019**
- **Begin day 1/23/2019; AM water level=11.7' bgs; Switch to HQ rock core**
- **0926**
- **0936**
- **0933**

Rock does not meet soundness criteria for RQD calculation
<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>-2314</td>
<td>3</td>
<td>1</td>
<td>71</td>
<td>5</td>
<td>27°</td>
<td>1</td>
<td>VOLCANICLASTIC BRECCIA; light olive gray (5Y5/2); moderately weathered; weak; highly to intensely fractured; angular clasts to 1/2"</td>
</tr>
<tr>
<td>30</td>
<td>-2312</td>
<td>3</td>
<td>4</td>
<td>100</td>
<td>82</td>
<td>1</td>
<td>1</td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated); 1: 20°, J, MW, Sd, Sp, Wa, R</td>
</tr>
<tr>
<td>31</td>
<td>-2310</td>
<td>4</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Becomes slightly fractured</td>
</tr>
<tr>
<td>32</td>
<td>-2308</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>-2306</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>-2304</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-2302</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-2300</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[68]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[60]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[75]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[43]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

*Rock does not meet soundness criteria for RQD calculation

MATERIAL DESCRIPTION

1: 20°, J, MW, Sd, Sp, Wa, R
2: 60°, J/Sh, MW, Fe+Mn+Sd, Su+Sp, Wa, R
Becomes grayish blue-green (SBG5/2); slightly weathered; moderately strong
Becomes grayish blue-green (SBG5/2); slightly weathered
Becomes moderately fractured
Becomes weak to very weak
FIELD NOTES AND TEST RESULTS

LOG OF SOIL AND CORE BORING B-15

- **Project Number:** 6053920
- **Project Location:** Copco and Iron Gate Reservoirs
- **Project:** Klamath River Renewal Project

MATERIAL DESCRIPTION

- **Lithology:** Volcaniclastic Breccia; grayish blue-green (5BG5/2); slightly weathered; weak to very weak; highly fractured; angular clasts to mostly to 1/2", occasionally to 1.5".

Soil Samples

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2298</td>
<td>6</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2296</td>
<td>6</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2294</td>
<td>6</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2292</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2290</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2288</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2286</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2284</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2282</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2280</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2278</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2276</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2274</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2272</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>-2270</td>
<td>2</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>M</td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 51.5 FEET

- Grout mix: 30 gallons of water, six 47# bags of cement, no bentonite

Grout mix: 30 gallons of water, six 47# bags of cement, no bentonite
Log of Soil and Core Boring B-16

Date(s) Drilled: 1/12/2019
Logged By: P. Respess
Checked By: S. Janowski

Drilling Method: Rotary Wash, HQ-3 Rock Core
Drill Rig Type: Barge Mounted CME-45
Groundwater Level: 12 feet above ground surface
Borehole Location: 12' downstream of Daggett Road bridge

Total Depth of Borehole: 24.5 feet
NAVD 88 Ground Surface Elevation: 2319 feet
Borehole Backfill: Bentonite cement grout to ground surface
Coordinate Location: N 2602237, E 6462573

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Material Description</th>
</tr>
</thead>
</table>
| -2318 | 0 | | | VOLCANICLASTIC BRECCIA; gray-green; completely weathered; extremely weak; fine-grained matrix; dark gray-black angular clasts up to 1/4"-1/2"; slightly fractured with widely-spaced natural fractures; numerous mechanical breaks
| | | | | --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) --
| -2316 | 3 | 1 | 100 | Becomes moderately to slightly weathered; moderately strong; slightly fractured; multi-colored clasts up to 2"
| | | | | Broken mechanical
| -2314 | 6 | 2 | 100 | 1: 20°, J, N, No, No, Wa, SR
| -2312 | 9 | 3 | 100 |
| -2310 | 12 | 4 | |
| -2308 | 15 | 5 | |

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Recovery, %</th>
<th>Blows / 6 in.</th>
<th>Drill Time [Rate, ft/hr]</th>
<th>FIELD NOTES AND TEST RESULTS</th>
</tr>
</thead>
</table>
| | 1 | 100 | 3 | 1025 | 12' of water in river at time of drilling
| | 1 | 100 | 15 | 1029 | 3" HWT casing driven to 14' (refusal) Tricone to 15' and continue with HQ core High Water Circulation Return (WCR)

Report: GEO_Core+SOIL_NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-16

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log Sheet: 1 of 2
Log of Soil and Core Boring B-16

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 2 of 2

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2306</td>
<td></td>
<td>1</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
<td>VOLCANICLASTIC BRECCIA; gray-green; moderately to slightly weathered; moderately strong; slightly fractured; multi-colored clasts up to 2"; numerous mechanical breaks. Becomes clasts up to 3-4" at 13.8' -- TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) -- (continued)</td>
</tr>
<tr>
<td>-2304</td>
<td></td>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>High WCR</td>
</tr>
<tr>
<td>-2302</td>
<td></td>
<td>4</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
<td>[150]</td>
</tr>
<tr>
<td>-2300</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>[75]</td>
</tr>
<tr>
<td>-2298</td>
<td></td>
<td>5</td>
<td></td>
<td>96</td>
<td>0</td>
<td>96</td>
<td></td>
<td>[1049]</td>
</tr>
<tr>
<td>-2294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 24.5 FEET

15 gallons of grout: 6 sack mix with 5% bentonite
Driller felt change during advancement

Material Description

- **Gravelly Clay** with Sand (CL); stiff; moist; dark brown (7.5YR 3/3); subangular to subrounded gravel to 1/2"; medium-grained sand; medium plasticity fines

- **Sandy Gravel** (GP); very dense; moist; brown; subangular to subrounded gravel to 2.25"; medium- to coarse-grained sand

- **Volcaniclastic Breccia**

Soil Samples

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (min), R.Q.D. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1-2</td>
<td>5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2-1</td>
<td>2-2</td>
<td>42</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Field Notes and Test Results

- Driller adds water to facilitate advancement

- Driller felt change during advancement
<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D., %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2326</td>
<td></td>
<td>1</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>M</td>
<td>VOLCANICLASTIC BRECCIA: greenish-gray (5G6/1); slightly weathered; moderately strong; slightly fractured; angular clasts to 1/2" in fine matrix --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) -- (continued)</td>
</tr>
<tr>
<td>-2324</td>
<td></td>
<td>1</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>-2322</td>
<td></td>
<td>2</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>-2320</td>
<td></td>
<td>2</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>-2318</td>
<td></td>
<td>3</td>
<td></td>
<td>100</td>
<td>84</td>
<td>1</td>
<td>M</td>
<td>Very weak 1: 20°, J, VN, Cl+Sd, Sp, Pl, S-SR</td>
</tr>
<tr>
<td>-2316</td>
<td></td>
<td>2</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>M</td>
<td>Weak</td>
</tr>
<tr>
<td>-2314</td>
<td></td>
<td>4</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>-2312</td>
<td></td>
<td>4</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>504/4"</td>
<td>100</td>
<td>1110</td>
<td>[45]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1147</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- UCS = 2130 psi
- Switch to HQ core
LOG OF SOIL AND CORE BORING B-17

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 3 of 3

LOG OF SOIL AND CORE BORING B-17

Sheet 3 of 3

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td></td>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>VOLCANICLASTIC BRECCIA; greenish-gray (5G6/1); slightly weathered; moderately strong; slightly fractured; angular clasts to 1/2" in fine matrix --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)-- (continued)</td>
</tr>
<tr>
<td>-2310</td>
<td></td>
<td>4</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
<td>Coarser clasts to 2"</td>
</tr>
<tr>
<td>-2308</td>
<td></td>
<td>5</td>
<td></td>
<td>100</td>
<td>0</td>
<td>86</td>
<td></td>
<td>Light brownish gray (5YR6/1); moderately weathered; weak; highly fractured</td>
</tr>
<tr>
<td>-2306</td>
<td></td>
<td>3</td>
<td></td>
<td>100</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1.5" Clast</td>
</tr>
<tr>
<td>-2304</td>
<td></td>
<td>6</td>
<td></td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
<td>Abundant mechanical fractures</td>
</tr>
<tr>
<td>-2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL DEPTH = 41.5 FEET</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grout mix: 20 gallons of water, five 47# bags of cement, no bentonite

UCS = 2985 psi
Log of Soil Boring B-18

Date(s) Drilled: 10/11/2018
Logged By: P. Respess
Reviewed By: B. Aldridge
Drilling Method: Hollow Stem Auger
Drill Rig Type: Truck Mounted Mobile B-53
Groundwater Level(s): 15.0 feet below ground surface (10/11/2018)
Sampling Method(s): 2.5-inch ID ModCal, SPT
Borehole Location: Scotch Creek
Backfill: Cement grout to ground surface
Total Depth = 28.3 FEET

MATERIAL DESCRIPTION

- **0.0 to 2.5 feet:** 2.5-inches ASPHALT roadway
- **2.5 to 15.0 feet:** SANDY LEAN CLAY (CL); medium stiff to stiff; reddish brown; 80-90% medium plasticity FINES; 10-20% fine to coarse grained SAND; occasional GRAVEL and COBBLE
- **15.0 to 23.4 feet:** POORLY GRADED GRAVEL with SAND (GP); medium dense; varied dark grey with purple, red, and yellowish brown; fine to coarse angular GRAVEL, COBBLES, and BOULDERS; fine to coarse grained SAND
- **23.4 to 28.3 feet:** BOULDERS, basalt

REMARKS AND OTHER TESTS

- Driller indicates hard rock at 18ft.
- Driller indicates smooth, consistent drilling 22-25ft.

PROJECT: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920
Field Notes and Test Results

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Lithology</th>
<th>LOSS</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>POORLY GRADED GRAVEL with SAND (GP); dark grey with some yellow brown; fine to coarse angular GRAVEL, COBBLES, and BOUDLERS; fine to coarse grained SAND; trace to little low plasticity FINES; moist to wet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SANDY SILT (ML); soft to medium stiff; dark grey; fine grained SAND; low plasticity FINES; trace GRAVEL; wet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CLAYEY GRAVEL with SAND (GC); medium dense; dark grey with some yellow brown; fine to coarse angular GRAVEL, COBBLES, and BOUDLERS; fine to coarse grained SAND; low plasticity FINES; moist to wet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ALLUVIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>BOUDLER, basalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>VOLCANIC SILTY CLAYSTONE/SILTSTONE; reddish purple; slightly weathered; weak; very thinly laminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-03</td>
<td>One liner retained (16-16.5 ft.)</td>
<td>S3</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>S-04</td>
<td>One liner retained (21-21.5 ft.)</td>
<td>S4</td>
<td>12</td>
<td>21</td>
<td>12</td>
</tr>
</tbody>
</table>

** switches to rotary wash drilling with 3 7/8-inch tricone bit; yellowish brown clayey cuttings with rounded gravel 24.5-28 ft.**

Reddish purple clayey and rock cuttings
Log of Soil and Core Boring B-19

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 3 of 3

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2316</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
<td>VOLCANIC SILTY CLAYSTONE/SILTSTONE; reddish purple; slightly weathered; weak; very thinly laminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
</tr>
<tr>
<td>-2316</td>
<td></td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td></td>
<td>Becomes weak to moderately strong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2314</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>VOLCANIC SILTY CLAYSTONE/SILTSTONE; reddish purple; slightly weathered; weak; very thinly laminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
</tr>
<tr>
<td>-2312</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2310</td>
<td></td>
<td>2</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td></td>
<td>VOLCANIC SILTY CLAYSTONE/SILTSTONE; reddish purple; slightly weathered; weak; very thinly laminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
</tr>
<tr>
<td>-2308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, 10/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0550/3</td>
<td>1150</td>
<td>Switch to HQ rock coring with 3 7/8-inch diamond bit; all breaks mechanical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- TOTAL DEPTH = 37.5 FEET
- 0.7 ft. of core slipped out of core barrel; left in hole prior to grouting
Log of Soil and Core Boring B-20

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>10/10/2018</th>
<th>Logged By</th>
<th>P. Respess</th>
<th>Reviewed By</th>
<th>B. Aldridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling Method</td>
<td>Hollow Stem Auger, Rotary Wash, HQ-3 Rock Core</td>
<td>Drill Bit Size/Type</td>
<td>3 7/8-inch tricone; 3 7/8-inch #6 HQ bit</td>
<td>Total Depth of Borehole</td>
<td>47.0 feet</td>
</tr>
<tr>
<td>Drill Rig Type</td>
<td>Truck Mounted Mobile B-53</td>
<td>Drilling Contractor</td>
<td>Gregg Drilling</td>
<td>NAVD 88 Ground Surface Elevation</td>
<td>2340 feet</td>
</tr>
<tr>
<td>Groundwater Level</td>
<td>14.5 feet below ground surface 10/10/2018</td>
<td>Sampling Methods</td>
<td>2.5-inch ID ModCal, SPT, HQ Core Barrel</td>
<td>Hammer Data</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
</tr>
<tr>
<td>Borehole Backfill</td>
<td>Cement grout to ground surface</td>
<td>Borehole Location</td>
<td>Camp Creek</td>
<td>Coordinate Location</td>
<td>N 2602768 E 6443160</td>
</tr>
</tbody>
</table>

ROCK CORE

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5-inches Aggregate base</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POORLY GRADED GRAVEL (GP); dense; fine to coarse GRAVEL and COBBLES, little no plasticity FINES; moist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FILL--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAT CLAY (CH); medium stiff; brown; medium plasticity FINES; trace fine grained SAND; occasional GRAVEL and COBBLES; moist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SANDY LEAN CLAY (CL); medium stiff; brown; medium plasticity FINES; fine to coarse grained SAND; rare GRAVEL; moist</td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-01</td>
<td>1</td>
<td>3</td>
<td></td>
<td>5</td>
<td>6</td>
<td>Field Notes and Test Results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start 9:00 10/10/2018; hollow stem auger 0-28ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-01 One liner retained (5.5-6ft.) LL=87; PL=24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Number</th>
<th>Type</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-02</td>
<td>4</td>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
<td>Field Notes and Test Results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-02 One liner retained (10.5-11ft.) SA: G=3%; S=33%; F=64%</td>
</tr>
</tbody>
</table>

Report: GEO CORE+SOIL NO PACK WITH LITH. FINE KI LAMATH MASTER.GPJ 6/20/2019 B-20
SANDY LEAN CLAY (CL); medium stiff; brown; medium plasticity FINES; fine to coarse grained SAND; rare GRAVEL; moist

SANDY CLAY to CLAYEY SAND (CL-SC); medium stiff; olive brown; ~ 50% medium plasticity FINES; ~50% fine to coarse grained SAND and fine GRAVEL

POORLY GRADED GRAVEL with SAND (GP); medium dense to dense; fine to coarse grained SAND; fine to coarse GRAVEL with COBBLES and BOULDERS, wet

CLAYEY SAND (SC); medium dense; fine to coarse grained SAND; fine GRAVEL with COBBLES and BOULDERS, wet

- FILL -- (continued)
BOULDER: 28.29.5 ft.

POORLY GRADED GRAVEL with SAND (GP); medium dense to dense; fine to coarse grained SAND; fine to coarse GRAVEL with COBBLES and BOULDERS

BASEMENT, dark grey; slightly weathered; moderately strong; with Fe staining around joints; chlorite and quartz infilling; numerous healed fractures

--TERTIARY to QUATERNARY INTRUSIVE BASALT--

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Elevation, feet</th>
<th>Lithology</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BOULDER: 28-29.5 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POORLY GRADED GRAVEL with SAND (GP); medium dense to dense; fine to coarse grained SAND; fine to coarse GRAVEL with COBBLES and BOULDERS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BASEMENT, dark grey; slightly weathered; moderately strong; with Fe staining around joints; chlorite and quartz infilling; numerous healed fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>--TERTIARY to QUATERNARY INTRUSIVE BASALT--</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

1: 60, J, N, Fe+Ch, Pa, Wa-Pi, SR
2: 70-90, J, VN, Fe, Pa, Wa, SR
3: 70, J, Vn, Qz, Pa, Wa, SR
4: 60, V, VN, Qz, Pa-Sp, Wa-Pi, SR
5: 40, J, VN, Qz+Ch, Fi, Wa, ?
6: 40, J, VN, Ch, Pa-Su, Pi-Wa, SR

1: 40, J, VN, Ch, Fi, Pi, ?

Skip sample; rig behavior indicates gravel and cobbles

Switch to HQ rock coring with 3 7/8-inch diamond bit UCS = 343 psi

Skip sample; rig behavior indicates gravel and cobbles
MATERIAL DESCRIPTION

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BASALT; dark grey; slightly weathered; moderately strong; with Fe staining around joints; chlorite and quartz infilling; numerous healed fractures --TERTIARY to QUATERNARY INTRUSIVE BASALT-- (continued)</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2: 60, J, V, W (20mm), Ch, Fl, Wa, ?</td>
</tr>
<tr>
<td>-2294</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3: 60, J, N, Ch, Sp, SR, ?</td>
</tr>
<tr>
<td>-2292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4: 70, J, VN, Ch, Sp, SR</td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 47.0 FEET

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, 10hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

UCS = 7517 psi

1400
Start 10:00 8/23/2018

Trash barrel drilling to 3.5 ft. Trash barrel sample at 1.5 ft bagged.

Begin rotary wash drilling at 3.5 ft with 5-inch tricone bit. Switch to 5-inch rock bit at 5 ft.

2 liners retained. LL=52; PL=23; SA: G=6.1%; S=42.4%; F=51.5%

Rig chatter

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2322</td>
<td>FAT CLAY (CH); medium stiff; brown (10YR 4/3); 85% high plasticity FINES; 15% fine grained SAND; trace angular GRAVEL up to 1/4-inch; moist; cohesive</td>
</tr>
<tr>
<td>2324</td>
<td>With streaks of very pale brown (10YR 8/4); GRAVEL up to 1/2-inch</td>
</tr>
<tr>
<td>2326</td>
<td>Becomes brown (10YR 4/3); GRAVEL is volcanic tuff and basalt</td>
</tr>
<tr>
<td>2328</td>
<td>--ALLUVIUM--</td>
</tr>
<tr>
<td>2330</td>
<td>SANDY FAT CLAY (CH); very stiff; very dark greyish brown (10YR 3/4) with mottled yellow; 52% high plasticity FINES; 42% medium to coarse grained SAND; 6% angular GRAVEL up to 1 1/4-inch; trace organics (roots); dry</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

Start 10:00 8/23/2018
Trash barrel drilling to 3.5 ft.
Trash barrel sample at 1.5 ft bagged.
Trash barrel sample at 3-3.5 ft bagged.
Begin rotary wash drilling at 3.5 ft with 5-inch tricone bit
Switch to 5-inch rock bit at 5 ft.
2 liners retained. LL=52; PL=23; SA: G=6.1%; S=42.4%; F=51.5%

Rig chatter
Field Notes and Test Results

- **Elevation, feet:** 23.20
- **Depth, feet:** 13
- **Run No:** 1
- **Box No:** NA
- **Recovery, %:** 70
- **Fractures:** NA
- **Fracture Drawing:** NA
- **Number:** NA

Material Description

- **FAT CLAY (CH):** medium stiff; brown (10YR 4/3); 85% high plasticity FINES; 15% fine grained SAND; trace angular GRAVEL up to 1/4-inch; moist; cohesive

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S03</td>
<td>7</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S04</td>
<td>10</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S05</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- 3 liners retained
- Possible slough
- High water take 25.5ft to 29.5 ft.
- Move to 5-inch casing to 23ft.

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.20</td>
<td>13</td>
<td>1</td>
<td>NA</td>
<td>70</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>23.18</td>
<td>12</td>
<td>2</td>
<td>NA</td>
<td>90</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>23.16</td>
<td>11</td>
<td>3</td>
<td>85</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>23.14</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>1</td>
<td>80</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

LITHOLOGY

- **FAT CLAY (CH):** medium stiff; brown (10YR 4/3); 85% high plasticity FINES; 15% fine grained SAND; trace angular GRAVEL up to 1/4-inch; moist; cohesive

CLAYEY GRAVEL with SAND (GC): medium dense; brown (10YR 4/3); 55% angular basaltic GRAVEL up to 1 1/4-inch; 30% angular coarse grained SAND; 15% low plasticity FINES; wet

BOULDERS and COBBLES: dark bluish grey with white filled vesicles; round to angular COBBLES; some fine to coarse grained SAND; trace FINES; GRAVEL is slightly weathered, strong to very strong basalt

RIVER ALLUVIUM

- Round to angular basaltic GRAVEL and COBBLES up to 5-inches; occasional brecciated tuff

BASALT (see next page): 1: 25, J, VN, Fe, Su, Pi, SR
- 2: 25, J, W, Fe+Sd, Fi, Pi, R

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S03</td>
<td>7</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S04</td>
<td>10</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S05</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- 3 liners retained
- Possible slough
- High water take 25.5ft to 29.5 ft.
Log of Soil and Core Boring B-201

Sheet 3 of 4

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2304</td>
<td>5</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>80</td>
<td>BASALT; moderate bluish grey; slightly weathered; moderately strong to very strong; highly fractured; fine grained; with CaCO3 filled vesicles and occasional green phenocrysts -- TERTIARY to QUATERNARY INTRUSIVE BASALT --</td>
</tr>
<tr>
<td>-2302</td>
<td>6</td>
<td>100</td>
<td>5</td>
<td>4</td>
<td></td>
<td>Becomes slightly to moderately weathered with brown staining along joints; intensely fractured</td>
</tr>
<tr>
<td>-2300</td>
<td>NA</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>Becomes light bluish grey; moderately to highly weathered/alterated; moderately strong, with 1/2-inch wide Calcite vein</td>
</tr>
<tr>
<td>-2298</td>
<td>7</td>
<td>60</td>
<td>>6</td>
<td>0</td>
<td></td>
<td>Becomes highly to completely weathered, highly oxidized, yellowish brown</td>
</tr>
<tr>
<td>-2296</td>
<td>2</td>
<td>100</td>
<td>3</td>
<td>25*</td>
<td></td>
<td>Brown, moderately weathered, moderately strong</td>
</tr>
<tr>
<td>-2294</td>
<td>9</td>
<td>100</td>
<td>4</td>
<td>20*</td>
<td></td>
<td>Becomes dark yellowish brown to pale tan, completely weathered, very weak, highly fractured, granular, partially decomposed to clay</td>
</tr>
<tr>
<td>-2292</td>
<td>10</td>
<td>100</td>
<td>4</td>
<td>20*</td>
<td></td>
<td>Becomes highly to completely weathered, moderately strong to strong, fine grained matrix</td>
</tr>
<tr>
<td>-2290</td>
<td>11</td>
<td>100</td>
<td>5</td>
<td>60*</td>
<td></td>
<td>Intensely fractured/broken, abundant oxidation</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Boring: B-201**
- **Depth, feet:** 29 to 45
- **Elevation, feet:** 2930 to 33
- **Recovery, %:** 100
- **Fractures per Foot:** 4 to 60

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4]</td>
<td>1346</td>
<td></td>
<td>1459</td>
</tr>
<tr>
<td>[5]</td>
<td></td>
<td></td>
<td>Less but continued water take</td>
</tr>
<tr>
<td>[0]</td>
<td></td>
<td></td>
<td>0830</td>
</tr>
<tr>
<td>[4]</td>
<td></td>
<td></td>
<td>0956</td>
</tr>
<tr>
<td>[4]</td>
<td></td>
<td></td>
<td>1045</td>
</tr>
<tr>
<td>[4]</td>
<td></td>
<td></td>
<td>1055</td>
</tr>
<tr>
<td>[4]</td>
<td></td>
<td></td>
<td>1154</td>
</tr>
<tr>
<td>[4]</td>
<td></td>
<td></td>
<td>1206</td>
</tr>
<tr>
<td>[4]</td>
<td></td>
<td></td>
<td>1234</td>
</tr>
<tr>
<td>[8]</td>
<td></td>
<td></td>
<td>1246</td>
</tr>
</tbody>
</table>

Report GEO_CORE+SOIL NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-201

Log of Soil and Core Boring B-201

Sheet 3 of 4

Report GEO_CORE+SOIL NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-201
Log of Soil and Core Boring B-201

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 6053920

Sheet 4 of 4

![Image of the log sheet](image_url)

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D. %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2286</td>
<td>48</td>
<td>11</td>
<td>100</td>
<td>60°</td>
<td>4</td>
<td>6</td>
<td></td>
<td>BASALT; bluish grey, slightly to locally moderately weathered; strong; highly fractured; fine grained with calcite filled vesicles; brownish orange oxidation along fractures --TERTIARY to QUATERNARY INTRUSIVE BASALT-- (continued)</td>
</tr>
<tr>
<td>-2286</td>
<td>49</td>
<td>12</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td>3</td>
<td></td>
<td>Becomes dark bluish grey, slightly weathered, very strong, with white, round to angular infilling, possible flow direction of ~60°</td>
</tr>
<tr>
<td>-2288</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td>1: 40, J, MW, Ca+Fe, Fl+Su, Pl, SR</td>
</tr>
<tr>
<td>-2288</td>
<td>49</td>
<td>12</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td>3</td>
<td></td>
<td>2: 80-90, J, VN, Fe+Ca, Su+Pa, Fl-Ir, R</td>
</tr>
<tr>
<td>-2288</td>
<td>50</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3: 60, J, N-MW, Fe+Ca, Su+Fl, Pl, R</td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 50.5 FEET

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
</table>

FIELD NOTES AND TEST RESULTS

- 1323
- 1332
- 1349
SANDY FAT CLAY with GRAVEL (CH); stiff; dark brown (10YR 3/3) to very dark greyish brown (10YR 3/2); 70% high plasticity FINES; 15% angular GRAVEL up to 1/4-inch; 15% coarse grained SAND; dry; GRAVEL is volcanic tuff; some organics (grass and roots) --ALLUVIUM--

With increasing SAND; becomes brown (10YR 4/3); dry to moist

Advance 4-inch casing to 9ft.
Switch to rotary wash drilling with 3 7/8-inch tricone bit.

6-inch trash barrel to 8.5ft.
Rig chatter; possible boulder at 13-14ft. Switch to HQ coring at 14ft with 4-inch #6 diamond coring bit.

Coarse material from Run 1 - 14 retained in core box.

Driller notes softer material at 21.5ft. Minor fluid loss.

Driller notes softer material at 21.5ft. Minor fluid loss.

With increasing GRAVEL and decreasing SAND; abundant grey to black basaltic COBBLES fragments.

BOULDERs and COBBLES; bluish grey; 60% angular GRAVEL up to 2-inches; 30% medium to coarse grained SAND; 10% medium plasticity FINES; BOULDERs (fragments) and COBBLES are fresh to slightly weathered, rounded, very strong porphyritic BASALT up to 10-inches; MATRIX is fine grained with quartz and trace pyrite phenocrysts weathered to a POORLY GRADED SAND with GRAVEL and CLAY; --RIVER ALLUVIUM--

With basaltic BOULDERs (fragments) up to 1-foot; rounded to angular GRAVEL, coarse grained SAND, and medium plasticity FINES.

With basaltic BOULDERs (fragments) and COBBLES up to 5-inches; abundant rounded GRAVEL.

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Fracture Drawing</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With increasing GRAVEL and decreasing SAND; abundant grey to black basaltic COBBLES fragments.</td>
</tr>
<tr>
<td></td>
<td>BOULDERs and COBBLES; bluish grey; 60% angular GRAVEL up to 2-inches; 30% medium to coarse grained SAND; 10% medium plasticity FINES; BOULDERs (fragments) and COBBLES are fresh to slightly weathered, rounded, very strong porphyritic BASALT up to 10-inches; MATRIX is fine grained with quartz and trace pyrite phenocrysts weathered to a POORLY GRADED SAND with GRAVEL and CLAY; --RIVER ALLUVIUM--</td>
</tr>
<tr>
<td></td>
<td>With basaltic BOULDERs (fragments) up to 1-foot; rounded to angular GRAVEL, coarse grained SAND, and medium plasticity FINES.</td>
</tr>
<tr>
<td></td>
<td>With basaltic BOULDERs (fragments) and COBBLES up to 5-inches; abundant rounded GRAVEL.</td>
</tr>
</tbody>
</table>
Increasing fluid loss. Advance 4-inch casing to 29.5 ft.

Swivel breaks at 32.5 ft; End of day 8/19/2018
Begin day 8/20/2018

Drill fluid becomes brownish grey. Some fluid loss.

Switch to 4" carbonado bit at 40.5 ft; pale brown, tuff-like material in bit

Becomes round to angular COBBLES up to 4-inches, abundant fine GRAVEL, coarse grained SAND, with some brown, no plasticity FINES

With basalt and very strong brecciated tuff COBBLES

BOULDERS and COBBLES; bluish grey; 60% angular GRAVEL up to 2-inches; 30% medium to coarse grained SAND; 10% medium plasticity FINES; BOULDERS (fragments) and COBBLES are fresh to slightly weathered, rounded, very strong BASALT up to 10-inches; MATRIX is fine grained with quartz and trace pyrite phenocrysts weathered to a POORLY GRADED SAND with GRAVEL and CLAY; with boulders and cobbles up to 8-inches at 28.2'

RIVER ALLUVIUM—(continued)
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Core Boring B-202
Sheet 4 of 7

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Length Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

VOLCANIC BRECCIA; light grey; highly to completely weathered; very weak with strong clasts; slightly fractured; locally friable; fine grained matrix with angular to subrounded strong, black clasts up to 3/4-inch and extremely weak, green clasts up to 1 1/4-inch

FIELD NOTES AND OTHER TESTS

- Minor fluid loss.
- End of day 8/20/2018
- Begin day 8/21/2018
- 60.5-61.4 ft; completely weathered to a residual soil, extremely weak, friable, with soil-like texture, clasts up to 1/2-inch
ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run</th>
<th>Box</th>
<th>Elevation, feet</th>
<th>Lithology</th>
<th>Fractures per Foot</th>
<th>Fracture Number</th>
<th>Recovery, %</th>
<th>R Q D, %</th>
<th>Packer Test Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>VOLCANIC BRECCIA; light bluish grey; completely weathered; extremely weak with strong clasts; slightly fracted; locally friable; fine grained matrix with angular to subrounded strong, black clasts up to 3/4-inch and extremely weak, green clasts up to 1 1/4-inch</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1412</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
<td>0</td>
<td>m</td>
<td>0</td>
<td>0</td>
<td>1429</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>Highly weathered, with strong, black clasts up to 3/4-inch and very soft, green clasts up to 1 1/4-inch, extremely weak/friable</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>1: 0, J, MW, No, No, P/Sr, R (mechanical)</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>Weaker zone</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>Becomes highly to completely weathered; increased clast size and percentage, larger subrounded basaltic clasts</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>With subangular clasts</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>1 to 2-inch thick, planar green clast</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Becomes very light bluish grey, with basaltic clasts up to 1.5-inch and filled vesicles</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planar green clast</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: 50-60, J, VN, No, No, P/Sr (mechanical)</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2: S, J, VN, No, No, P/Sr (mechanical)</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planar green clast</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Becomes light greenish grey; decreasing percentage of clasts</td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>m</td>
<td>80</td>
<td>0</td>
<td>1442</td>
</tr>
</tbody>
</table>

FIELD NOTES AND OTHER TESTS

- **Project:** Klamath River Renewal Project
- **Project Location:** Copco and Iron Gate Reservoirs
- **Project Number:** 60537920

Packer Test Intervals

- 0.1' of Run 20 recovered with Run 21

Report: GEO_CORE_OAK_C; File: KLAMATH_MASTER.GPJ; 6/20/2019

End of day 8/21/2018

Begin day 8/22/2018

0.2' of Run 20 recovered with Run 21
MATERIAL DESCRIPTION

- **VOLCANIC BRECCIA**: light greenish grey; highly to completely weathered; locally friable; fine grained matrix with angular to subrounded strong, black clasts and extremely weak, green clasts up to 23mm.

- With increased clast size and percentage; matrix is extremely weak matrix with strong basaltic clasts and decomposed green clasts.

- With stronger matrix.

- With weaker matrix.

1. 0-5, J, N, No, No, Pl, SR (mechanical)

FIELD NOTES AND OTHER TESTS

- Top of Run 24 mechanically broke when transferring to core box.

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture</th>
<th>Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>78</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>-2264</td>
<td>79</td>
<td>23</td>
<td>100</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2262</td>
<td>82</td>
<td>24</td>
<td>100</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2260</td>
<td>84</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2258</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2256</td>
<td>88</td>
<td>25</td>
<td>100</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2254</td>
<td>91</td>
<td>26</td>
<td>86</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2252</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **UCS 82.0-82.8 = 612 psi**

- **Top of Run 24** mechanically broke when transferring to core box.
Log of Core Boring B-202

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>2250</td>
<td>5</td>
<td>2</td>
<td>86</td>
<td>86</td>
<td></td>
<td>With trace gravel</td>
<td>VOLCANIC MUDSTONE: dusky to very dusky red (2.5 YR 3/2 TO 2.5/2); slightly weathered; weak to very weak; slightly fractured; fine grained with occasional gravel up to 1/2-inch. --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) --(continued)</td>
</tr>
</tbody>
</table>
| 94 | 2248 | 6 | NA | NA | NA | | Without gravel; increasing strength | 1: 40, J, N, Ci, Fi, Pi, ?
| | 2246 | | | | | | | 2: 20-30, J, N-W, Ci + Gravel, Pa-No, Ir-Pi, R |
| -2250 | 2244 | 27 | 100 | 100 | 0 | 0 | | 1: 10, J/V, N-MW, H+Ci, Fi, Pi, ?
| | | | | | | | | 2: 70, J, ?, No, No, Pi, ? (mechanical) |
| -2248 | 2242 | 28 | 93 | 0 | 86 | | | 1: 40, J, W, Ci+Sd, Pa, Pi, R |
| -2246 | 2240 | | | NA | NA | | | |

TOTAL DEPTH = 100.5 FEET

Televiwer and caliper survey by NorCal Geophysics 8/22/2018. Install two VWPs at 28ft and 72ft with neat cement grout to ground surface with 3ft above-ground monument.

FIELD NOTES AND OTHER TESTS

<table>
<thead>
<tr>
<th>Packer Test Intervals</th>
<th>Drill Time, 24-hr [Drill Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report: GEO_CORE_OAK_C
File: KLAMATH_MASTER.GPJ
Date: 6/20/2019
B-202
Log of Soil and Core Boring B-203

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920
Sheet 1 of 8

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>1/8/2019-1/11/2019</th>
<th>Logged By</th>
<th>P. Respess</th>
<th>Checked By</th>
<th>S. Janowski</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Drilling Method</th>
<th>Rotary Wash, HQ-3 Rock Core</th>
<th>Drill Bit Size/Type</th>
<th>3-7/8-inch tricone, 3 3/4-inch diamond coring bit #10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Rig Type</td>
<td>Barge Mounted CME-45</td>
<td>Drilling Contractor</td>
<td>Taber Drilling</td>
</tr>
<tr>
<td>Groundwater Level</td>
<td>25 feet above ground surface</td>
<td>Sampling Methods</td>
<td>SPT, HQ Core Barrel</td>
</tr>
<tr>
<td>Borehole Completion</td>
<td>Bentonite cement grout to ground surface</td>
<td>Location</td>
<td>Coordinate Location</td>
</tr>
</tbody>
</table>

| Total Depth of Borehole | 120.0 feet |
| NAVD 88 Ground Surface Elevation | 2305 feet |

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2304</td>
<td>0</td>
</tr>
<tr>
<td>-2302</td>
<td>2</td>
</tr>
<tr>
<td>-2300</td>
<td>4</td>
</tr>
<tr>
<td>-2298</td>
<td>6</td>
</tr>
<tr>
<td>-2296</td>
<td>8</td>
</tr>
<tr>
<td>-2294</td>
<td>10</td>
</tr>
<tr>
<td>-2292</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Number</th>
<th>Fracture Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>16</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **SILTY SAND with GRAVEL and COBBLES (SM); various lithologies; shell fragments; rounded clasts**
- **ALLUVIUM (Qal)**
- **BASALT COBBLE**
- **VOLCANICLASTIC BRECCIA; yellow-brown; highly weathered; very weak; angular clasts up to 1/4”-1”**
- **TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)**
- **Becomes grayish blue-green (5BG5/2)**

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Elev.</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time, hr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2304</td>
<td>1</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Mudline is 24” below reservoir level**
 End of day 1/8/2019

- **Mudline is 25” below reservoir level**
 Begin day 1/9/2019

- **Tricone to 2’ switch to HQ-3**

Advance 5" HWT casing to 8’

Change HQ drill bit; no advancement; change to tricone advancement

0% Water Circulation Return (WCR)
<table>
<thead>
<tr>
<th>ROCK CORE</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run No.</td>
<td>Elevation, feet</td>
</tr>
<tr>
<td></td>
<td>Depth, feet</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>-2290</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-2286</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>-2282</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>-2280</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>-2278</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

VOLCANICLASTIC BRECCIA: grayish blue-green (5BG5/2); highly weathered; very weak; angular clasts up to 1/4"-1"; TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) (continued)

- Broken
- Becomes slightly weathered; moderately strong; slightly fractured
- Moderately weathered; weak

SOIL SAMPLES

- Good WCR; blue-green clayey cuttings
- Change HQ drill bit to increase recovery
- Blue-green clayey cuttings

FIELD NOTES AND TEST RESULTS

- Drill Time
- Rate, ft/hr
- Recovery, %
- Elevation, feet
- SOIL SAMPLES
- MATERIAL DESCRIPTION
- Box No.
- Recovery, %
- Fractures per foot
- R Q D. %
- Fracture Number
- Run No.
- Blows / 6 in.
- Recovery, %
- Packer Test
- Intervals
- Fracture Drawing
- R Q D, %
- Depth, feet
- Rock Type
- Type
- Number
- Recovery, %
- Field Notes and Test Results
- Notes
- Notes
- Notes
- Notes
<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>8</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2274</td>
<td>31</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2272</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2270</td>
<td>33</td>
<td>9</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2268</td>
<td>34</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2266</td>
<td>35</td>
<td>10</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2264</td>
<td>36</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2262</td>
<td>37</td>
<td>11</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2260</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

VOLCANICLASTIC BRECCIA: grayish blue-green (5BG5/2); slightly weathered; moderately strong; angular clasts up to 1/4"-1"; slightly fractured. TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) -- (continued)

Becomes moderately weathered; weak to very weak

Becomes very to extremely weak

Becomes weak to very weak

BASALT: grayish red purple (5RP4/2); highly weathered; very to extremely weak

SOIL SAMPLES

- Recovery, %
- Drill Time

FIELD NOTES AND TEST RESULTS

- Good WCR
- Red-brown cuttings

Report: GEO_CORE+SOIL_17B_PACK; File: KLAMATH_MASTER.GPJ; 6/20/2019

Log of Soil and Core Boring B-203

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 3 of 8
MATERIAL DESCRIPTION

BASALT; grayish red purple (5RP4/2); highly weathered; very to extremely weak; slightly fractured; mechanically broken to 47.8'
—TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)— (continued)

VOLCANICLASTIC BRECCIA; dark greenish gray to greenish gray (5G4/1-6/1); slightly weathered; weak; slightly fractured; angular clasts up to 1/4"-1"; abundant calcite inclusions and veins

BASALT; medium bluish gray (5B5/1) to dark gray (N3); slightly weathered; moderately strong; abundant calcite inclusions

END OF DAY 1/9/2019
BEGIN DAY 1/10/2019

50% WCR

FIELD NOTES AND TEST RESULTS
MATERIAL DESCRIPTION

VOLCANICLASTIC BRECCIA: dark greenish gray to greenish gray (5G4/1-6/1); slightly weathered; moderately strong, angular clasts up to 1/4”-2”; highly to moderately fractured; abundant calcite inclusions and veinlets. --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)-- (continued)

1: 40°, J, N, Ca, Pa, Ir-St, SR-R

1: 35°, J, VN-N, No, No, Pl-Wa, SR

2: 60°, J, VN, No, No, Wa, SR

3: 70°, J, N-MW, Ca, Pa, Wa, SR

BASALT; dark gray (N3); slightly weathered; moderately strong; highly to locally intensely fractured; abundant calcite inclusions

2: 60°, J, VN, No, No, Wa, SR

3: 70°, J, N-MW, Ca, Pa, Wa, SR

4: 70°, J/Sh, VN, Ca, Pa, Pl-Wa, S-Sk

5: 60°, J, VN, Ca, Pa, Pl-Wa, S-Sk

Mechanically broken

1: 80°, J, VN-N, Ca+Ch?, Pa, Pl-Wa, S-SR

2: 60°, J, VN-N, Ca+Ch?, Pa, Wa, SR

3: 50°, J, VN, No, No, Pl-Wa, SR-S

4: 50°, J, VN-N, Ca, Pa, Wa, SR

5: 60°, J, VN, Ca, Pa, PI, W

Becomes medium dark gray (N4)

Becomes dark gray (N3)

Weak; mechanically broken

SOIL SAMPLES

FIELD NOTES AND TEST RESULTS

Continued 0% WCR
Log of Soil and Core Boring B-203

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Drawing</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>5</td>
<td>6</td>
<td>100</td>
<td>76</td>
<td>M</td>
<td></td>
<td>BASALT; dark gray (N3); slightly weathered; moderately strong; highly to locally intensely fractured; abundant calcite inclusions; with numerous healed fractures (not logged) — TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) — (continued)</td>
</tr>
<tr>
<td>-2226</td>
<td>19</td>
<td>100</td>
<td>76</td>
<td>M</td>
<td>M</td>
<td></td>
<td>3: 55°, J, VN, Ca, Sp, Wa, S-SR</td>
</tr>
<tr>
<td>-2224</td>
<td>3</td>
<td>100</td>
<td>90</td>
<td>M</td>
<td>M</td>
<td></td>
<td>4: 60°, J, VN-N, Ca, Sp, Wa, S-SR</td>
</tr>
<tr>
<td>-2222</td>
<td>0</td>
<td>100</td>
<td>90</td>
<td>M</td>
<td>M</td>
<td></td>
<td>5: 40°, J, VN, Ca, Sp, Pi-Wa, SR</td>
</tr>
<tr>
<td>-2220</td>
<td>2</td>
<td>100</td>
<td>90</td>
<td>M</td>
<td>M</td>
<td></td>
<td>6: 30°, J, VN, Ca, Sp, Pi-Wa, SR</td>
</tr>
<tr>
<td>-2218</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>7: 40°, J, VN-N, Ca, Sp, Pi-Wa, SR</td>
</tr>
<tr>
<td>-2216</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>M</td>
<td>M</td>
<td></td>
<td>8: 40°, J, VN-N, Ca, Sp, Pi-Wa, SR</td>
</tr>
<tr>
<td>-2214</td>
<td>2</td>
<td>100</td>
<td>50</td>
<td>M</td>
<td>M</td>
<td></td>
<td>9: 50°, J, VN-N, Ca, Sp, Pi-Wa, SR</td>
</tr>
<tr>
<td>-2212</td>
<td>1</td>
<td>100</td>
<td>50</td>
<td>M</td>
<td>M</td>
<td></td>
<td>10: 75°, J, VN-N, Ca, Sp, Pi-Wa, SR</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **3**: 55°, J, VN, Ca, Sp, Wa, S-SR
- **4**: 60°, J, VN-N, Ca, Sp, Wa, S-SR
- **5**: 40°, J, VN, Ca, Sp, Pi-Wa, SR
- **6**: 30°, J, VN, Ca, Sp, Pi-Wa, SR
- **7**: 40°, J, VN-N, Ca, Sp, Pi-Wa, SR
- **8**: 40°, J, VN-N, Ca, Sp, Pi-Wa, SR
- **9**: 50°, J, VN-N, Ca, Sp, Pi-Wa, SR
- **10**: 75°, J, VN-N, Ca, Sp, Pi-Wa, SR

- **Mechanically broken**
- **Weak; intensely fractured with slickensides (shear zone)**

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Packard Test Intervals</th>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time Rate, 10/hr</th>
</tr>
</thead>
</table>

FIELD NOTES AND TEST RESULTS

- **Continued 0% WCR**
<table>
<thead>
<tr>
<th>ROCK CORE</th>
<th>MATERIAL DESCRIPTION</th>
<th>SOIL SAMPLES</th>
<th>FIELD NOTES AND TEST RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>VOLCANICLASTIC BRECCIA; grayish blue-green (5BG5/2); slightly weathered; moderately strong; highly to moderately fractured; abundant calcite inclusions and veinlets; with numerous healed fractures (not logged)</td>
<td></td>
<td>Continued 0% WCR</td>
</tr>
<tr>
<td>94</td>
<td>--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
<td></td>
<td>[38]</td>
</tr>
<tr>
<td>95</td>
<td>3: 70°, J, VN-N No, No, Wa-Ir, SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>VOLCANICLASTIC BRECCIA; grayish blue-green (5BG5/2) and grayish blue green (5BG5/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>1: 40°, J, VN-N, No, No, Pi-Wa, S-SR</td>
<td></td>
<td>[33]</td>
</tr>
<tr>
<td>98</td>
<td>Becomes mottled very dusky purple (5RP2/2) and grayish blue green (5BG5/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Mechanically broken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2: 50°, J, N, No, No, Wa, SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>1: 30°, J, N, No, No, Pi-Wa, SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>2: 40°, J, VN-N, No, No, Pi-Wa, SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>3: 50°, J, N, No, No, Pi-Wa, SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>4: 70°, J, VN-N, Ca, Sp/Pa, Pi, S-SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>5: 70°, V, N, Ca, Fi, Pi, S?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Porphrytic Basalt; dark gray to grayish black (N3-N2); slightly weathered to fresh; moderately strong to strong; abundant white phenocrysts (feldspar?) and healed calcite fractures and veins; highly fractured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>1: 30°, J, VN-N, No, No, Wa, S-SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>2: 20°, J, VN-N, Ca7?+Ch7, Sp, Pi-Wa, S-SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>3: 80°, J/V, N, Ca7?+Ch7, Fi, Pi, S-SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Becomes slightly fractured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation, feet</td>
<td>Depth, feet</td>
<td>Run No.</td>
<td>Box No.</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>109</td>
<td>109</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>110</td>
<td>109-110</td>
<td>Faster drilling</td>
<td>109-110'</td>
</tr>
<tr>
<td>-2194</td>
<td>-2194</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>-2192</td>
<td>-2192</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>-2190</td>
<td>-2190</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>-2188</td>
<td>-2188</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>-2186</td>
<td>-2186</td>
<td>27</td>
<td>92</td>
</tr>
<tr>
<td>-2184</td>
<td>-2184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2182</td>
<td>-2182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2180</td>
<td>-2180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2178</td>
<td>-2178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2176</td>
<td>-2176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2174</td>
<td>-2174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2172</td>
<td>-2172</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>109-110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2194-2190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2188-2186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2184-2182</td>
<td>27</td>
<td>92</td>
<td>76</td>
</tr>
</tbody>
</table>

FIELD NOTES AND RESULTS

- Faster drilling 109-110'
- Continued 0% WCR
- Slower drilling to TD

Report: GEO_CORE+SOIL_17B_PACK; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-203
Log of Soil and Core Boring B-205

Project Number: 60537920

Date(s) Drilled: 9/12/2018

Logged By: K. Zeiger

Checked By: P. Respess

Total Depth of Borehole: 62.0 feet

NAVD 88 Ground Surface Elevation: 2359 feet

Hammer Data: Automatic hammer; 140 lbs, 30-inch drop

Drill Rig Type: Truck Mounted Mobile B-53

Drilling Method: Rotary Wash, HQ-3 Rock Core

Drill Bit Size/Type: 3 7/8-inch PDC drag bit, 3 3/4-inch carbide tooth bit

Sampling Methods: 2.5-inch ID ModCal; HQ Core Barrel

Groundwater Level: 21.7 feet bgs 9/13/2018

Borehole Location: Iron Gate Reservoir along Copco Road

Backfill: Cement grout to ground surface

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2358</td>
<td>CLAYEY GRAVEL (GC); dense; dark brown (10YR 3/2); 70% angular GRAVEL up to 1-inch; 25% low plasticity FINES; 5% organics; dry; GRAVEL is volcanic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>--COLLUVIUM--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boulder (fragments)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boulder (fragments)</td>
<td></td>
</tr>
<tr>
<td>-2356</td>
<td>CLAYEY GRAVEL with SAND (GC); medium dense; dark brown (7.5YR 3/2); 35% high plasticity FINES; 40% subangular GRAVEL up to 1-inch; 25% fine grained SAND; dry; cohesive; gravel is chert and rhyolite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>--COLLUVIUM/RESIDUAL SOIL--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At 9ft.: becomes moist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With gravel up to 2.5-inches</td>
<td></td>
</tr>
<tr>
<td>-2350</td>
<td>GRAVELLY FAT CLAY (Ch); hard; dark brown (7.5 YR 3/2); 65% high plasticity FINES; 35% subangular GRAVEL to 1-inch; moist; cohesive</td>
<td></td>
</tr>
<tr>
<td>-2348</td>
<td>One liner retained (11-11.5ft.)</td>
<td></td>
</tr>
<tr>
<td>-2346</td>
<td>Lithology transition logged from cuttings</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>22</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S02</td>
<td>14</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Borehole Backfill: Cement grout to ground surface

Groundwater Level: 21.7 feet bgs 9/13/2018

Groundwater Location: Iron Gate Reservoir along Copco Road

Drill Rig Type: Truck Mounted Mobile B-53

Drilling Method: Rotary Wash, HQ-3 Rock Core

Drill Bit Size/Type: 3 7/8-inch PDC drag bit, 3 3/4-inch carbide tooth bit

Sampling Methods: 2.5-inch ID ModCal; HQ Core Barrel

Date(s) Drilled: 9/12/2018

Logged By: K. Zeiger

Checked By: P. Respess

Total Depth of Borehole: 62.0 feet

NAVD 88 Ground Surface Elevation: 2359 feet

Hammer Data: Automatic hammer; 140 lbs, 30-inch drop

Drill Rig Type: Truck Mounted Mobile B-53

Drilling Method: Rotary Wash, HQ-3 Rock Core

Drill Bit Size/Type: 3 7/8-inch PDC drag bit, 3 3/4-inch carbide tooth bit

Sampling Methods: 2.5-inch ID ModCal; HQ Core Barrel

Groundwater Level: 21.7 feet bgs 9/13/2018

Borehole Location: Iron Gate Reservoir along Copco Road

Backfill: Cement grout to ground surface
Log of Soil and Core Boring B-205

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 2 of 5

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2346</td>
<td>13</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2344</td>
<td>15</td>
<td>1</td>
<td>52</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td></td>
<td>GRAVELLY FAT CLAY (CH); hard; dark brown (7.5 YR 3/2); 65% high plasticity FINES; 35% subangular GRAVEL to 1-inch; moist; cohesive</td>
</tr>
<tr>
<td>-2342</td>
<td>17</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td></td>
<td>POORLY GRADED GRAVEL with CLAY and SAND (GP-GC); very dense; light olive grey (5Y 5/2); 60% rounded GRAVEL up to 1 1/2-inches; 30% low plasticity FINES; 10% medium grained SAND; dry; cohesive; gravel is weathered in place</td>
</tr>
<tr>
<td>-2340</td>
<td>19</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td></td>
<td>VOLCANIC CONGLOMERATE; light olive grey (5Y 5/2); highly weathered; very weak; fine grained with rounded to angular clasts up to 1/2-inch</td>
</tr>
<tr>
<td>-2338</td>
<td>21</td>
<td>1</td>
<td>52</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Becomes medium bluish grey (5B 5/1); moderately weathered; weak to very weak; massive</td>
</tr>
<tr>
<td>-2336</td>
<td>23</td>
<td>2</td>
<td>100</td>
<td>0</td>
<td>34°</td>
<td>0</td>
<td></td>
<td>Becomes highly weathered; very weak</td>
</tr>
<tr>
<td>-2342</td>
<td>25</td>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Light olive grey (5Y 5/2)</td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Recovery, %</th>
<th>Blows / 6 in.</th>
<th>Drill Time [Rate, ft/hr]</th>
<th>FIELD NOTES AND TEST RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S03</td>
<td>23</td>
<td>100</td>
<td>50/2"</td>
<td></td>
<td>Driller reports hard consistent drilling 15.5-19.0 ft. Cuttings are dry gravelly</td>
</tr>
<tr>
<td>S04</td>
<td>2/6"</td>
<td>50</td>
<td>1406</td>
<td></td>
<td>Advance 4-inch casing to 19.5 ft. Switch to HQ-3 rock coring.</td>
</tr>
</tbody>
</table>

*Rock does not meet soundness criteria for RQD calculation

Report: GEO_CORE+SOIL_NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-205
ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing</th>
<th>R Q D, %</th>
<th>Fracture Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2330</td>
<td>29</td>
<td>1</td>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>VOLCANIC CONGLOMERATE; medium bluish grey (5B 5/1); highly weathered; very weak; massive; fine grained with rounded to angular clasts up to 1/2-inch; chlorite rich matrix (?) -- TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) -- (continued)</td>
</tr>
<tr>
<td>-2328</td>
<td>31</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1: 5, J, MW, No, No, Wa, SR (likely mechanical)</td>
</tr>
<tr>
<td>-2326</td>
<td>33</td>
<td>4</td>
<td>4</td>
<td>100</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>2: 35, J, MW, No, No, Wa, SR (likely mechanical)</td>
</tr>
<tr>
<td>-2324</td>
<td>35</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>3: 20, J, MW, No, No, Wa, SR (likely mechanical)</td>
</tr>
<tr>
<td>-2322</td>
<td>37</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Run 4 broken during removal from core barrel (all fractures mechanical?)</td>
</tr>
<tr>
<td>-2320</td>
<td>39</td>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>[75]</td>
</tr>
<tr>
<td>-2318</td>
<td>41</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Broken while placing in box</td>
</tr>
<tr>
<td>-2316</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>With clasts up to 3/4-inch</td>
</tr>
<tr>
<td>-2314</td>
<td>45</td>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Completely weathered to clay; extremely weak</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **SOIL SAMPLES**
 - **Type**:
 - **Number**:
 - **Blows / 6 in.**:
 - **Recovery, %**:
 - **Drill Time (Rate, 10/hr)**:

- **Log of Soil and Core Boring B-205**

- **Project Number**: 60537920
- **Project Location**: Copco and Iron Gate Reservoirs
- **Project**: Klamath River Renewal Project

Report: GEO_CORE+SOIL_NO PACK_WITH LITH; **File**: KLAMATH_MASTER.GPJ; **6/20/2019**
Log of Soil and Core Boring B-205

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2298</td>
<td>61</td>
<td>10</td>
<td>5</td>
<td>96</td>
<td>1</td>
<td>20°</td>
<td></td>
<td>VOLCANIC BRECCIA; dusky brown (5YR 2/2); highly weathered; weak; highly fractured; with angular clasts up to 1-inch; TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)—(continued)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL DEPTH = 62.0 FEET</td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 62.0 FEET

FIELD NOTES AND TEST RESULTS

- **Blows / 6 in.:** 745
- **R Q D, %:** 45, J, N, Ca, Sp, Pl, SR
- **SOIL SAMPLES**
 - **Type:**
 - **Number:**
 - **Recovery, %:**
 - **Drill Time (Rate, ft/hr):** 1653

Report: GEO_CORE+SOIL_NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-205

Sheet 5 of 5
Log of Core Boring B-206

Sheet 1 of 7

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>8/14/2018 - 8/16/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logged By</td>
<td>T. Vande Voorde</td>
</tr>
<tr>
<td>Checked By</td>
<td>B. Kozlowicz/K. Zeiger</td>
</tr>
<tr>
<td>Drilling Method</td>
<td>Rotary Wash, HQ-3 Rock Core</td>
</tr>
<tr>
<td>Drill Bit Size/Type</td>
<td>3 7/8-inch tricone; 4-inch #13 diamond coring bit; 4-inch carbonado coring bit</td>
</tr>
<tr>
<td>Drilling Contractor</td>
<td>Pitcher Drilling Company</td>
</tr>
<tr>
<td>Groundwater Level</td>
<td>7.4 feet bgs 8/17/2018</td>
</tr>
<tr>
<td>Sampling Methods</td>
<td>HQ Core Barrel</td>
</tr>
<tr>
<td>Total Depth of Borehole</td>
<td>2337 feet</td>
</tr>
<tr>
<td>NAVD 88 Ground Surface Elevation</td>
<td>2337 feet</td>
</tr>
<tr>
<td>Inclination from Horizontal/True North Bearing</td>
<td>60°/295°</td>
</tr>
<tr>
<td>Location</td>
<td>Iron Gate Reservoir; W of Fall Creek boat ramp</td>
</tr>
<tr>
<td>Coordinate Location</td>
<td>N 2602022 E 6461272</td>
</tr>
</tbody>
</table>

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2328</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

SANDY FAT CLAY with GRAVEL (CH); dry; dark brown (10YR 3/3) with trace mottled yellow (10YR 7/6); 75% high plasticity FINES; 15% subangular to rounded GRAVEL up to 1 1/4-inch; 10% fine to coarse grained SAND; little organic material (roots)

--ALLUVIUM--

With angular basaltic and some volcanic tuff GRAVEL up to 1 1/2-inch

FIELD NOTES AND OTHER TESTS

Trash barrel to 10ft.

Begin rotary wash drilling at 10 ft. with 3 7/8-inch tricone bit; Drill fluid is light grey

Rig chatter.
Begin HQ rock core at 20' with 4-inch carbonado bit. Run 1 not retained.

Switch to 4-inch #13 diamond coring bit at 23' ft.

Reviewer note: All healed veins and fractures were mechanically broken by core handling.

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-14.5</td>
<td>SANDY FAT CLAY with GRAVEL (CH); dry; dark brown (10YR 3/3); with trace mottled yellow (10YR 7/8); 75% high plasticity FINES; 15% subangular to rounded GRAVEL up to 1 1/2-inch; 10% fine to coarse grained SAND; trace organic material (roots)--ALLUVIUM-- (continued)</td>
</tr>
<tr>
<td></td>
<td>Weathered light yellow and greenish brown tuff fragments in cuttings</td>
</tr>
<tr>
<td></td>
<td>Basalt and volcanic tuff fragments in cuttings</td>
</tr>
<tr>
<td></td>
<td>BOULDER: 2-foot rounded basalt boulder; possible rounded basaltic COBBLES near bottom of run</td>
</tr>
<tr>
<td></td>
<td>BASALT: grey to bluish grey (5B 6/1); slightly to moderately weathered; strong; highly fractured; abundant healed joints with calcite infilling; aphanitic matrix with feldspar phenocrysts up to 1/4-inch; with 1/2 to 1-inch weathering rind on joints--TERTIARY to QUATERNARY INTRUSIVE BASALT--</td>
</tr>
<tr>
<td></td>
<td>Without weathering rings</td>
</tr>
</tbody>
</table>

FIELD NOTES AND OTHER TESTS

1222 Begin HQ rock core at 20'ft. with 4-inch carbonado bit.

1305 Switch to 4-inch #13 diamond coring bit at 23'.

1442 Reviewer note: All healed veins and fractures were mechanically broken by core handling.
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BASALT; grey to bluish grey (5B 6/1); slightly weathered; strong; highly fractured; abundant healed joints with calcite infilling; aphanitic matrix with feldspar phenocrysts up to 1/4-inch</td>
<td></td>
</tr>
<tr>
<td>--TERTIARY to QUATERNARY INTRUSIVE BASALT--</td>
<td>(continued)--</td>
</tr>
<tr>
<td>1: 40, J, VN, Ca, Sp, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>2: 60, J, VN, Ca, F, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>3: 65, J, VN, H+Ca, Sp, ?, ? (possible mechanical)</td>
<td></td>
</tr>
<tr>
<td>4: 40-50, J, VN-T, Ca+Mn, Sp, PI, SR</td>
<td></td>
</tr>
<tr>
<td>5: 65, J, VN, H+No, No, Ir, ?</td>
<td></td>
</tr>
<tr>
<td>6: 60, J, N, Uk, Pa, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>7: 50, J, VN, Fe, Su, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>1: 50, J, N, Ca, Sp, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>2: 45-50, J, VN-MW, Ca+Mn, F, Pl, S + with 90° sil</td>
<td></td>
</tr>
<tr>
<td>3: 15, J, N, Ca+Mn, Pa, Ir, ?</td>
<td></td>
</tr>
<tr>
<td>... Ca+Mn, Sp, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>5: 65, J, VN, Ca, Sp, Pl, SR (with MN staining)</td>
<td></td>
</tr>
<tr>
<td>6: 40, J, VN, Ca, Fi+Sp, Pl, SR (with MN staining)</td>
<td></td>
</tr>
<tr>
<td>7: 70, J, VN-MW, H+Ca, Fi, Pl, ?</td>
<td></td>
</tr>
<tr>
<td>8: 5, J, N, Ca, Fi, Pl, ?</td>
<td></td>
</tr>
<tr>
<td>9: 80, J, ?, Ca+Mn, Sp, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>1: 25, J, N, Ca, Pa, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>2: 70-80, J, Mn, Sp, St/Ir, R</td>
<td></td>
</tr>
<tr>
<td>3: 40, J, T-VN, Ca?, Sp, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>4: 60, J, No, No, Pl, S-SR</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>5: 60, J/Sh, MW, CR+Sh+Ca, Fi, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>6: 60, J/Sh, MW, CR+Sh+Ca, Fi, Pl, SR (with MN staining)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3: 55, J, Ca, Fi-Pa, Pl, SR</td>
<td></td>
</tr>
<tr>
<td>4: 60, V, ?, Ca?, Fi, Pl, ?</td>
<td></td>
</tr>
<tr>
<td>5: 70, J, ?, Ca, Pa, Pl, SR</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND OTHER TESTS

- **End of day**: 8/14/2018
- **Begin day**: 8/15/2018
- **Drill fluid becomes light grey greenish grey at 35ft.**
- **Lost all circulation at 42.5 ft.**
Log of Core Boring B-206

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Elevation, feet
Depth, feet

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>>6</td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>BASALT; grey to bluish grey (5B 6/1); slightly weathered; strong; intensely fractured; abundant healed joints with calcite infilling; aphanitic matrix with feldspar phenocrysts up to 1/4-inch--TERTIARY to QUATERNARY INTRUSIVE BASALT--(continued)--</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>6</td>
<td>50</td>
<td></td>
<td>1</td>
<td>Becomes moderately fractured; with healed fractures</td>
</tr>
</tbody>
</table>
| 4 | 90 | 6 | 30 | 100 | 2 | 6:
| 5 | 100 | 0 | 100 | | 7:

FIELD NOTES AND OTHER TESTS

B-206

47.4-48.7ft.: Mohs Hardness = 3-4; UCS = 20,886 psi

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Core Boring B-206

Sheet 5 of 7

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1-3</td>
<td>13</td>
<td>96</td>
<td>100</td>
<td>2</td>
<td>100</td>
<td>1</td>
<td>BASALT; grey to bluish black (5B 2.5/1); slightly weathered; strong; moderate to highly fractured; abundant healed joints with calcite infilling; aphanitic matrix with feldspar phenocrysts up to 1/4-inch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--TERTIARY to QUATERNARY INTRUSIVE BASALT--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(continued)</td>
</tr>
<tr>
<td>65</td>
<td>1-2</td>
<td>14</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>1: 70, J, VN, H+Ca?, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2: 55, J, N, Ca, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3: 80, J, T-N, H+Ca?, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4: 60, J, N, Ca+Fe; Fi+Sp, Pl, SR</td>
</tr>
<tr>
<td>66</td>
<td>1-2</td>
<td>15</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td>100</td>
<td>3</td>
<td>5: 50, J, VN, H+No, No, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6: 80, J, VN, H+Ca, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7: 85, J, VN, Ca, Pa, Pl, ?</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **BASALT**: grey to bluish black (5B 2.5/1); slightly weathered; strong; moderate to highly fractured; abundant healed joints with calcite infilling; aphanitic matrix with feldspar phenocrysts up to 1/4-inch.
- **TERTIARY to QUATERNARY INTRUSIVE BASALT--**

Packer Test Intervals

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Number</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1-3</td>
<td>13</td>
<td>96</td>
<td>100</td>
<td>2</td>
<td>100</td>
<td></td>
<td>1</td>
<td>1: 70, J, VN, H+Ca?, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2: 55, J, N, Ca, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3: 80, J, T-N, H+Ca?, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4: 60, J, N, Ca+Fe; Fi+Sp, Pl, SR</td>
</tr>
<tr>
<td>65</td>
<td>1-2</td>
<td>14</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td>100</td>
<td></td>
<td>5</td>
<td>5: 50, J, VN, H+No, No, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6: 80, J, VN, H+Ca, Fi, Pl, ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7: 85, J, VN, Ca, Pa, Pl, ?</td>
</tr>
</tbody>
</table>

FIELD NOTES AND OTHER TESTS

- **Mohs Hardness = 3-4**
- **UCS = 15,739 psi**

Report: GEO_CORE_OAK_C
File: KLAMATH_MASTER.GPJ
6/20/2019
B-206

End of day 8/15/2018
Begin day 8/16/2018

Rock does not meet soundness criteria for RQD calculation
Packer test #2 from 75.0 to 85.0
Switch to 4-inch carbonado bit

Packer test #1 from 85.0 to 95.0

Volcanic breccia; greenish grey with grey and black clasts; moderately weathered; moderately strong to strong; highly fractured; medium grained matrix with angular clasts up to 1-inch; some calcite veins

Tertiary volcanics (Bogus Mountain Beds, undifferentiated) -- (continued)

4: 50-60, J, VN-T, Ca?, Fi, Pl, ?
5: 70, V, MW, Uk, Fi, Pl, ?

With planar, 70° fabric

6: 70, J, VN, Ca, Pa, Pi, SR

Becomes highly weathered/alkalized; weak to very weak; locally crushed

1: 30, J, VN, No, No, Pi, ? (possibly mechanical)

With decreasing clast size

Becomes locally moderately strong to strong; moderately to locally highly weathered/alkalized; intensely fractured

With fewer breccia clasts

1: 0-10, J, VN, No, No, Pl-Ir, ? (possibly mechanical)
2: 25, J, Vn, Mn?, Fi, Pl, ? (surface staining around joint)
3: 0, J, VN, Mn?, Su, St-Pi, ? (surface staining around joint)
Log of Core Boring B-206

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Total Depth = 100.0 Feet

Televiwer and caliper survey by NorCal Geophysics 8/16/2018. Install two VWP’s at 25ft and 92ft with neat cement grout to ground surface with 12” flush mount monument.

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology Description</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Field Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2256 93</td>
<td>VOLCANIC BRECCIA; greenish grey with grey and black clasts; moderately to highly weathered; moderately strong; moderately fractured; medium to coarse grained matrix with angular clasts up to 1/2-inch</td>
<td>75°</td>
<td>3</td>
<td>(continued)</td>
</tr>
<tr>
<td>-2254 94</td>
<td>Becomes brownish grey; very slightly weathered; strong to moderately strong; with elongated inclusions along fabric</td>
<td>0</td>
<td>100°</td>
<td>[7]</td>
</tr>
<tr>
<td>-2252 97</td>
<td>Becomes very light bluish grey; moderately strong; matrix supported</td>
<td>1</td>
<td>1</td>
<td>[7]</td>
</tr>
<tr>
<td>-2250 100</td>
<td>Becomes brownish grey; fewer clasts</td>
<td></td>
<td>1</td>
<td>1300</td>
</tr>
</tbody>
</table>

ROCK CORE

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>75°</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>100</td>
<td>0°</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>100</td>
<td>0°</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND OTHER TESTS
Log of Soil and Core Boring B-207

Date(s) Drilled: 9/13/2018-9/18/2018
Logged By: K. Zeiger/B. Kozlowicz
Checked By: P. Respess

Drilling Method: Rotary Wash, HQ-3 Rock Core
Drill Bit Size/Type: 2 7/8-inch ID HQ Bit

Drill Rig Type: Truck Mounted Mobile B-53
Drilling Contractor: Gregg Drilling

Groundwater Level: 23.1 feet bgs 9/14/2018
Sampling Methods: 2.5-inch ID ModCal, HQ Core Barrel

Borehole Backfill: Cement grout to ground surface
Borehole Location: Iron Gate Reservoir along Copco Road

Total Depth of Borehole: 81.1 feet
NAVD 88 Ground Surface Elevation: 2359 feet

Hammer Type: Automatic hammer;
Data: 140 lbs, 30-inch drop

Coordinate Location: N 2602272 E 6461618

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2356</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2354</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2352</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2350</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2348</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2346</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology:
- **CLAYEY GRAVEL (GC):** loose; brown (7.5YR 4/3); 70% angular to rounded GRAVEL up to 2 inches; 30% low plasticity FINES; dry; gravel is chert, rhyolite, and other volcanics; abundant roots

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2358</td>
<td>ROAD FILL</td>
</tr>
<tr>
<td>-2356</td>
<td></td>
</tr>
<tr>
<td>-2354</td>
<td></td>
</tr>
<tr>
<td>-2352</td>
<td></td>
</tr>
<tr>
<td>-2350</td>
<td></td>
</tr>
<tr>
<td>-2348</td>
<td></td>
</tr>
<tr>
<td>-2346</td>
<td></td>
</tr>
</tbody>
</table>

Material Description:
- **GRAVELY LEAN CLAY (CL):** medium stiff; brown (10YR 4/3); 60% low plasticity FINES; 40% angular GRAVEL up to 1 inch; dry; with roots and rootlets

FIELD NOTES AND TEST RESULTS

- **Start:** 12:00 9/13/2018 with Hollow Stem Auger to 15.2 ft.; K. Zeiger logging
- **One liner retained (11.0-11.5 ft.)**
<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>VOLCANIC BRECCIA; grey (7.5YR 5/1); slightly weathered; strong; cemented fine grained matrix with angular volcanic clasts up 4 inches; highly fractured</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- Switch to HQ coring with 2 7/8 inch HQ bit at 15.2 ft.
- 0.3 ft. of Run 2 recovered with Run 3.
- HQ inner barrel stuck in rods after Run 2 pull rods to retrieve.
<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>100</td>
<td>>6</td>
<td>46°</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>VOLCANIC BRECCIA; light yellowish brown (10YR 6/4); moderately weathered; moderately strong; locally crushed; highly fractured</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>>6</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) -- (continued)</td>
</tr>
</tbody>
</table>

- **Lost all circulation at 35.0 ft.**
- **End of day 9/13/2018**
- **Begin day 9/14/2018**
- **Driller noted ‘harder’ drilling conditions**
- **1500 gallons of water used in Run 7**
- **Advance 4-inch casing to 29 ft.**
Log of Soil and Core Boring B-207

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 4 of 6

Field Notes and Test Results

Depth, feet	**Elevation, feet**	**Lithology**
45 | 46 | VOLCANIC BRECCIA; light yellowish brown (10YR 6/4); completely weathered to a CLAYEY SAND; extremely weak; locally crushed |
52 | 53 | At 46ft.: becomes very dark greenish grey (5BG 3/1) and greenish grey (5G 6/1); moderately weathered; moderately strong; intensely fractured |
57 | 58 | Becomes slightly to moderately weathered, moderately strong |
61 | 62 | Clast weathering out of matrix |

Soil Samples

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
</table>

Rock Core

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R.Q.D. %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>8</td>
<td>2</td>
<td>40</td>
<td>>6</td>
<td>0</td>
<td></td>
<td>VOLCANIC BRECCIA; light yellowish brown (10YR 6/4); completely weathered to a CLAYEY SAND; extremely weak; locally crushed</td>
</tr>
<tr>
<td>52</td>
<td>10</td>
<td>66</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>11</td>
<td>100</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At 46ft.: becomes very dark greenish grey (5BG 3/1) and greenish grey (5G 6/1); moderately weathered; moderately strong; intensely fractured.

1. 20, J, N, Sa, Pa, Pi, S
2. 50, J, T, No, No, Pi, S

At 47ft.: becomes very dark greenish grey (5BG 3/1), highly weathered, very weak, with angular clasts weathering out of soft matrix

Slightly weathered, strong clast

1. 10, J, N, No, No, Wa, SR
2. 45, J, N, No, No, Wa, SR
3. 55, J, T, No, No, Wa, SR
4. 30, J, N, No, No, PI, S (clast boundary)
5. 20, J, T, No, No, Wa, SR

Crushed

With calcite veins

1. 65, J, N, No, No, Wa, SR
2. 30, J, N, No, No, Wa-St, SR
3. 10, J, T, No, No, Wa-Pi, SR

Becomes slightly to moderately weathered, moderately strong

Becomes slightly fractured

Clast weathering out of matrix

1. 85, J, MW, No, No, Wa-St, R
2. 10, J, MW, No, No, Wa-St, R
3. 15, J, N, No, No, Wa, SR
4. 50, V, N, H+Ca, Fi, ?, ?
5. 30, V, MW, H+Ca, Fi, Wa, ?
Log of Soil and Core Boring B-207

Sheet 5 of 6

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>11</td>
<td>VOLCANIC BRECCIA; very dark greenish grey (5BG 3/1) and greenish grey (5G 6/1); slightly to locally moderately weathered; moderately strong; slightly fractured; fine grained matrix with angular to subangular clasts of porphyritic basalt up to 1.5 inches</td>
</tr>
<tr>
<td>62</td>
<td>4</td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) (continued)</td>
</tr>
<tr>
<td>-2296</td>
<td>12</td>
<td>Becomes moderately weathered, weak to very weak along fracture zones with irregular, subvertical anastomosing calcite veins and small, angular clasts</td>
</tr>
<tr>
<td>-2294</td>
<td>13</td>
<td>Becomes highly fractured with clasts up to 2.5 inches</td>
</tr>
<tr>
<td>-2292</td>
<td>14</td>
<td>Becomes slightly fractured, strong</td>
</tr>
<tr>
<td>-2288</td>
<td>15</td>
<td>Very strong, dark gray basalt with calcite</td>
</tr>
<tr>
<td>-2284</td>
<td>16</td>
<td>Very strong, dark gray porphyritic basalt</td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>ROCK CORE</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- End of day 9/14/2018
- Begin day 9/18/2018
- B. Koslowicz logging
- Water level at 28.8 ft. 9/19/2018

50% fluid circulation

1401
0840
50% fluid circulation
<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>16</td>
<td>100</td>
<td>85</td>
<td>1</td>
<td>1</td>
<td></td>
<td>VOLCANIC BRECCIA; very dark greenish grey (5BG 3/1) to greenish grey (5G 6/1) and dark grey; slightly weathered; strong; slightly fractured; fine grained matrix with angular to subangular clasts of porphyritic basalt up to 1 inch</td>
</tr>
<tr>
<td>-2280</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated); (continued)</td>
</tr>
<tr>
<td>-2278</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Very strong, dark grey porphyritic basalt</td>
</tr>
<tr>
<td>-2276</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL DEPTH = 81.1 FEET</td>
</tr>
<tr>
<td>-2274</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2272</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2270</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2268</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2266</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2264</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2262</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2260</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2258</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2256</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2254</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2252</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1128</td>
<td>[14]</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS
Log of Soil and Core Boring B-208

Project Details
- **Project:** Klamath River Renewal Project
- **Project Location:** Copco and Iron Gate Reservoirs
- **Project Number:** 60537920

Log Details
- **Date(s) Drilled:** 9/18/2018-9/21/2018
- **Logged By:** B. Kozlowicz/T. Vande Voorde
- **Checked By:** B. Kozlowicz
- **Total Depth of Borehole:** 80.0 feet
- **Groundwater Level:** 14.1 feet bgs 9/19/2018
- **Borehole Backfill:** Cement grout to ground surface

Drilling Method
- **Drilling Method:** Hollow Stem Auger, HQ-3 Rock Core
- **Drill Rig:** Truck Mounted Mobile B-53
- **Drill Bit Size/Type:** 6-inch flight auger, 4-inch diamond core bit, 4-inch drag bit
- **Drilling Contractor:** Gregg Drilling
- **NAVD 88 Ground Surface Elevation:** 2338 feet
- **Sampling Methods:** 2.5-inch ID ModCal, HQ Core Barrel
- **Hammer Data:** Automatic hammer; 140 lbs, 30-inch drop
- **Borehole Location:** Iron Gate Reservoir; Dagget Road
- **Coordinate Location:** N 2601173 E 6460942

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2338</td>
<td></td>
<td>CLAYEY SAND with GRAVEL (SC); loose to medium dense; dark brown (10YR 3/3); 40% low plasticity FINES; 40% fine to coarse grained SAND; 20% angular to subrounded GRAVEL and COBBLES up to 3 inches; dry</td>
</tr>
<tr>
<td>-2336</td>
<td></td>
<td>SANDY LEAN CLAY (CL); very stiff; 70% medium plasticity FINES; 30% fine to medium grained SAND; trace small GRAVEL; moist</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS
- **Date:** 9/18/2018
- **Time:** Start 15:50
- **Boring Method:** Hollow Stem Auger
- **Logging:** B. Kozlowicz
Log of Soil and Core Boring B-208

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 2 of 6

Soil Samples

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-02</td>
<td>6</td>
<td>33</td>
<td>8</td>
<td>Rig chatter</td>
</tr>
<tr>
<td>S-03</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Notes and Test Results

- **Rig chatter**
- **Switch to HQ coring** with 4-inch #2 diamond bit at 2.0 ft. Advance 4.5-inch casing to 19.0 ft. End of Day 9/18/2018

Begin Day 9/19/2018; T. VandeVoorde logging; 0% fluid return

- **Advance 4.5-inch casing to 24 ft.**

Material Description

- **SANDY LEAN CLAY (CL);** very stiff; 70% medium plasticity FINES; 30% fine to medium grained SAND; trace small GRAVEL; moist

Soil Core Boring

- **Elevation, feet:**
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21
 - 22
 - 23
 - 24
 - 25
 - 26
 - 27
 - 28
 - 29

Lithology

- SANDY LEAN CLAY with GRAVEL (CL); medium stiff, with rounded to subangular GRAVEL; wet

With washed, subrounded to rounded GRAVEL; some angular to coarse grained SAND; COBBLES are vesicular up to 6 inches

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>SANDY LEAN CLAY (CL); very stiff; 70% medium plasticity FINES; 30% fine to medium grained SAND; trace small GRAVEL; moist</td>
</tr>
<tr>
<td>32</td>
<td>SANDY LEAN CLAY with GRAVEL (CL); medium stiff, with rounded to subangular GRAVEL; wet</td>
</tr>
<tr>
<td>100</td>
<td>GRAVEL and COBBLES with SANDY LEAN CLAY/CLAYEY SAND; washed, rounded COBBLES and BOULDERS (fragments) up to 6 inches</td>
</tr>
<tr>
<td>15</td>
<td>SANDY LEAN CLAY with GRAVEL (CL); medium stiff, with rounded to subangular GRAVEL; wet</td>
</tr>
<tr>
<td>15</td>
<td>GRAVEL and COBBLES with SANDY LEAN CLAY/CLAYEY SAND; washed, rounded COBBLES and BOULDERS (fragments) up to 6 inches</td>
</tr>
</tbody>
</table>

Report: GEO_CORE+SOIL_NO PACK WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-208
LOG OF SOIL AND CORE BORING B-208

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920
Sheet 3 of 6

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>NA</td>
<td>NA</td>
<td>NR</td>
<td>GRAVEL and COBBLES with SANDY LEAN CLAY/CLAYEY SAND; washed, rounded vesicular COBBLES and BOULDERS (fragments) up to 6 inches; washed, subrounded to rounded GRAVEL; some angular to coarse grained SAND.</td>
</tr>
<tr>
<td>-2308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>5</td>
<td>14</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NR</td>
<td>COBBLES become angular to rounded</td>
</tr>
<tr>
<td>-2302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>6</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NR</td>
<td>Coarse black and light brown SAND in cuttings</td>
</tr>
<tr>
<td>-2298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL SAMPLES</td>
<td>46</td>
<td>66</td>
<td>Advance 4.5-inch casing to 29 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1314</td>
<td>Angular coarse grained SAND recovered from cuttings possibly from non-recovery zones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1316</td>
<td>Driller notes bagged for review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1535</td>
<td>1319</td>
<td>Initially no recovery for Run 5; run recored and bagged for review</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- At 30ft: With vesicular, basaltic GRAVEL and COBBLES up to 3 inches
- Initially no recovery for Run 5; run recored and bagged for review
- Driller notes change in cuttings with increased brown fine grained SAND or FINES; change in color of drilling fluid from grey to brown
MATERIAL DESCRIPTION

GRAVEL and COBBLES with SAND, rounded, basaltic COBBLES; angular, vesicular basaltic GRAVEL; some medium to coarse grained SAND; 45-46 ft. fine-grained, basaltic BOUDLER with 1-2 mm feldspar phenocrysts --RIVER ALLUVIUM-- (continued)

With more rounded COBBLES and BOULDERS; variable volcanic lithologies of basaltic, andesite, and tuff

VOLCANIC BRECCIA; dark, dusky purple and bluish grey; moderately weathered; extremely weak; fine grained matrix with strong clasts

--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) --

Strong, volcanic breccia clast in shoe

Becomes very dusky red (2.5YR 2.5/2) to dark reddish brown (2.5YR 2.5/4); moderately to highly weathered, very weak breccia clasts in a friable, completely weathered, extremely weak matrix; locally recovered as CLAYEY SAND with GRAVEL

FIELD NOTES AND TEST RESULTS

Continued 20-30% fluid return

Drilling fluid becomes dark brown

Advance 4.5-inch casing to 54 ft. End of day 9/19/2018 Begin day 9/20/2018

Switch to new #2 diamond bit at 59 ft.
Log of Soil and Core Boring B-208

Sheet 5 of 6

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>R Q D, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>61</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>VOLCANIC BRECCIA; dark brown to dusky purple; moderately to highly weathered; extremely weak; fine grained, sandy matrix with basaltic breccia clasts. --TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated).--(continued)</td>
<td></td>
</tr>
<tr>
<td>-2276</td>
<td>62</td>
<td>15</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>With breccia clasts up to 1/2 inch; locally very weak</td>
<td></td>
</tr>
<tr>
<td>-2274</td>
<td>64</td>
<td>16</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Becomes moderately weathered; moderately strong; locally extremely weak; moderately fractured</td>
<td></td>
</tr>
<tr>
<td>-2272</td>
<td>66</td>
<td>17</td>
<td>90</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Medium to coarse grained VOLCANIC SANDSTONE; brownish purple to greenish grey (10GY 5/1)</td>
<td></td>
</tr>
<tr>
<td>-2270</td>
<td>68</td>
<td>18</td>
<td>100</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Greenish grey to dark greenish grey</td>
<td></td>
</tr>
<tr>
<td>-2268</td>
<td>70</td>
<td>19</td>
<td>86</td>
<td>>6</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>With increasing number of breccia clasts</td>
<td></td>
</tr>
<tr>
<td>-2266</td>
<td>72</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Greenish grey</td>
<td></td>
</tr>
<tr>
<td>-2264</td>
<td>74</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Becomes highly to intensely fractured; matrix becomes clayey</td>
<td></td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- Continued 20-30% fluid return; hard drilling (1500 psi down pressure)
- Switch to 4-inch drag bit at 60 ft.
- Drilling fluid becomes light grey
- Drilling fluid becomes brown/purple

Lithology Identification

- VOLCANIC BRECCIA: dark brown to dusky purple; moderately to highly weathered; extremely weak; fine grained, sandy matrix with basaltic breccia clasts.
- TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated).--(continued)
Log of Soil and Core Boring B-208

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Sheet 6 of 6

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td></td>
<td>19</td>
<td>3</td>
<td>86</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2260</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOLCANIC BRECCIA; dark reddish grey (10YR 3/1); moderately weathered; extremely weak; highly fractured</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>20</td>
<td>38</td>
<td>NA</td>
<td>0</td>
<td></td>
<td></td>
<td>-TERtiARY VOLCAnicS (BOgUS MOUNTAIN BedS, undifferentiated)--(continued)</td>
</tr>
</tbody>
</table>

- 3: 65, J, VN, No, No, SR, Pl
- 4: 10, J, W, No, No, Ir, SR

Becomes <10% clasts; 90% clayey matrix

TOTAL DEPTH = 80.0 FEET

MATERIAL DESCRIPTION

- VOLCANIC BRECCIA; dark reddish grey (10YR 3/1); moderately weathered; extremely weak; highly fractured

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>65</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>1331</td>
<td>1420</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- [29]
- [1331]
- [1420]

Report: GEO_CORE+SOIL_NO PACK_WITH LITH; **File:** KLAMATH_MASTER.GPJ; **6/20/2019**
MATERIAL DESCRIPTION

- **SILT with SAND and GRAVEL (ML)**; very soft; very dark gray to black (2.5Y 3/1 to 2.5/1); fine to coarse grained SAND; subangular to rounded GRAVEL; sand and gravel consist of diatomite clasts--**RECENT LAKE SEDIMENT**--

- **DIATOMITE**; light olive brown (2.5Y 5/4); highly weathered; extremely weak; highly fractured; friable--**LACUSTRINE DIATOMACEOUS TERRACE (Ql)**--

- **BASALT**; black (10Y 2.5/1); highly to completely weathered; friable--**TERTIARY to QUATERNARY INTRUSIVE BASALT**--

REMARKS AND OTHER TESTS

- Sampler fell 18 inches on last blow
- Advance 6-inch casing to 6 feet with hammer (hard/stiff at about 3.5 feet)
- Advance 6-inch casing to 8 feet with hammer
- LL=33; PL=25
- End of day 16:45, Begin day 08:30
- Advance 6-inch casing to 11 feet with hammer
- LL=85; PL=51
- SA: G=0%; S=1%; F=99%
- Cuttings become dark greenish gray sandy clay; slower drilling
<table>
<thead>
<tr>
<th>Elevation, feet (feet)</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance (feet)</th>
<th>Recovery</th>
<th>Graphic Log</th>
<th>Material Description</th>
<th>Water Content, %</th>
<th>Plasticity Index</th>
<th>Fines Content (%<200 Sieve)</th>
<th>Remarks and Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>60</td>
<td>Sub</td>
<td>2565</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>55</td>
<td>Sub</td>
<td>2560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>50</td>
<td>Sub</td>
<td>2555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>Sub</td>
<td>2550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>Sub</td>
<td>2545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>Sub</td>
<td>2540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>30</td>
<td>Sub</td>
<td>2535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 30.4 FEET
Log of Soil Boring BC-02

Sheet 1 of 2

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>2/5/2018</th>
<th>Logged By</th>
<th>B. Kozlowicz</th>
<th>Checked By</th>
<th>D. Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling Method</td>
<td>Rotary Wash</td>
<td>Drill Bit Size/Type</td>
<td>4-inch Tricone</td>
<td>Total Depth of Borehole</td>
<td>64.6 feet</td>
</tr>
<tr>
<td>Drill Rig Type</td>
<td>Barge Mounted CME-45</td>
<td>Drilling Contractor</td>
<td>Taber Drilling</td>
<td>NAVD 88 Ground Surface Elevation</td>
<td>2600 feet</td>
</tr>
<tr>
<td>Groundwater Level(s)</td>
<td>9.4 feet above ground surface (2/5 at 9:00)</td>
<td>Sampling Method(s)</td>
<td>2.5-inch ID ModCal, SPT, 3-inch Shelby Tube</td>
<td>Hammer Data</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
</tr>
<tr>
<td>Borehole Backfill</td>
<td>Bentonite cement grout to 10 feet bgs</td>
<td>Borehole Location</td>
<td>Copco Reservoir</td>
<td>Coordinate Location</td>
<td>N 2608331 E 6476958</td>
</tr>
</tbody>
</table>

Graphics and Table

<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance</th>
<th>Recovery Feet</th>
<th>Graphic Log</th>
<th>Water Content, %</th>
<th>Plasticity Index</th>
<th>Fines Content (%<200)</th>
<th>Remarks and Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S01</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>S02</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S03</td>
<td>18</td>
<td>10</td>
<td>18</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S04</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S05</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>S06</td>
<td>200 psi</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>S07</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SANDY LEAN CLAY (CL); very soft; very dark gray (2.5Y 3/1) to black (2.5Y 2.5/1); trace fine rounded gravel

CLAYEY GRAVEL with SAND (GC); stiff/medium dense; very dark grayish brown (10YR 3/2); subangular to rounded fine to coarse gravel up to 2 inches in diameter; fines to coarse sand

DIATOMITE; olive to olive yellow (5Y 4/3 to 2.5Y 6/6); moderately to highly weathered; extremely weak; highly fractured; with sub-horizontal bedding and irregular sub-vertical fractures; friable

DIATOMITE with ELASTIC SILT; greenish gray (10Y 5/1); soft to extremely weak; highly fractured; friable

DIATOMITE with ELASTIC SILT; greenish gray (10Y 5/1); soft to extremely weak; highly fractured; friable

Remarks and Other Tests

- Drove sampler for extra 6 inches (last three blowcounts reported)
 - SA: G=52%; S=20%; F=28%
 - Advance 6-inch casing to 3.8 feet with hammer

- Drove sampler for extra 6 inches (last three blowcounts reported)
 - Advance 6-inch casing to 8.8 feet with hammer

- LL=105; PL=59%
 - SA: S=1%; F=99%

- TX-ICU
 - About 50% WCR

- S-07: Two liners retained (25-25.5ft., 25.5-26ft)
 - About 25% to 50% WCR
MATERIAL DESCRIPTION

DIATOMITE: olive to olive yellow (5Y 4/3 to 2.5Y 6/6); moderately to highly weathered; extremely weak; highly fractured; with sub-horizontal bedding and irregular sub-vertical fractures; friable --LACUSTRINE DIATOMACEOUS TERRACE (Ql)-- (continued)

BASALT; black (10Y 2.5/1); slightly weathered; strong; recovered as angular gravel up to 1-inch in diameter --TERTIARY to QUATERNARY INTRUSIVE BASALT--

REMARKS AND OTHER TESTS

Cuttings become very dark gray

S-10: Two liners retained (55-55.5 ft., 55.5-56 ft.)

Harder drilling, small black basalt chips in cuttings

TOTAL DEPTH = 64.6 FEET
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance (feet)</th>
<th>Elevation feet</th>
<th>Depth, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>1 2 3</td>
<td>2</td>
<td>2550</td>
<td>2580</td>
</tr>
<tr>
<td>S02</td>
<td>4 3 2</td>
<td>0.6</td>
<td>2575</td>
<td>2580</td>
</tr>
<tr>
<td>R1</td>
<td></td>
<td></td>
<td>2570</td>
<td>2580</td>
</tr>
<tr>
<td>S03</td>
<td>6 3 2</td>
<td>0.1</td>
<td>2565</td>
<td>2580</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td></td>
<td>2560</td>
<td>2580</td>
</tr>
<tr>
<td>S04</td>
<td>6 4 5</td>
<td>1.0</td>
<td>2555</td>
<td>2580</td>
</tr>
<tr>
<td>S05</td>
<td>3 3 4</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORGANIC SILT WITH SAND (OL); very soft; very dark grayish brown (2.5Y 3/2); RECENT LAKE SEDIMENT

SANDY LEAN CLAY (CL); soft; black (2Y 2.5/2); fine grained sand; trace rounded gravel; small angular rock fragments; and fine rootlets; COLLUVIUM/RESIDUAL SOIL

POORLY GRADED GRAVEL with CLAY (GP-GC); subrounded gravel up to 2.5-inch in diameter of varied volcanic lithology and clayey infill

DIATOMITE; light olive brown (2.5Y 5/3); very soft; locally clayey with vesicular basalt GRAVEL; bedding/fractures not present; LACustrine DIATOMACEOUS TERRACE (Ql)

DIATOMITE with ELASTIC SILT; dark grayish brown (2.5Y 4/2); massive/soft to very soft; LACustrine DIATOMACEOUS TERRACE (Ql)

REMARKS AND OTHER TESTS

- Sampler settled 1-foot; drove sampler for extra 6 inches (last three blowcounts reported) LL=48; PL=25; SA=G=3%; S=30%; F=67%
- Advanced 6-inch casing to 4 feet (stiff from 3 feet)
- Hard chattering drilling
- Switch to rock core bit with SPT sampler
- Faster drilling from 10.5 to 11.5 feet
- Return fluid becomes olive
- Advanced 6-inch casing to 14 feet with hammer
- Switch back to tricone bit
DIATOMITE with ELASTIC SILT; dark grayish brown (2.5Y 4/2); massive/soft to very soft

- LACUSTRINE DIATOMACEOUS TERRACE (QI)—(continued)

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance</th>
<th>Recovery, feet</th>
<th>WATER CONTENT, %</th>
<th>PLASTICITY INDEX</th>
<th>FINE CONTENT (%<#200Sieve)</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520</td>
<td>S06</td>
<td>200 to 400 psi</td>
<td>2.5</td>
<td></td>
<td>85</td>
<td>90</td>
<td>TX-ICU</td>
<td>Cutting very dark greenish gray</td>
</tr>
<tr>
<td>2525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TX-ICU</td>
<td></td>
</tr>
<tr>
<td>2530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth, feet</td>
<td>Material Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-70</td>
<td>DIATOMITE with ELASTIC SILT; dark greenish gray (10Y 4/1); massive/soft to very soft; 1 to 2-inch beds/lenses of very dark gray to black clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-80</td>
<td>--LACUSTRINE DIATOMACEOUS TERRACE (Q) --(continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-90</td>
<td>With trace rounded GRAVEL (possibly slough)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS AND OTHER TESTS

- End of day 2/6/2018
- Begin day 2/7/2018
- Cuttings greenish black
- Driller out of rods
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Sampling Method(s)</th>
<th>Recovery (%)</th>
<th>Remarks and Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>2595</td>
<td>S01</td>
<td>4-inch Tricone</td>
<td>57</td>
<td>Becomes organic rich and softer/looser with increased nonplastic fines</td>
</tr>
<tr>
<td>2590</td>
<td>S02</td>
<td>2.5-inch ID ModCal, SPT, 3-inch Shelby Tube</td>
<td>100</td>
<td>--RECENT LAKE SEDIMENT--</td>
</tr>
<tr>
<td>2585</td>
<td>S03</td>
<td></td>
<td>87</td>
<td>--LACUSTRINE DIATOMACEOUS TERRACE (Ql)--></td>
</tr>
<tr>
<td>2580</td>
<td>S04</td>
<td></td>
<td>100</td>
<td>WEAKLY CEMENTED DIATOMITE GRAVEL; medium dense; light olive brown (2.5Y 5/4); angular diatomite GRAVEL; weakly cemented and friable with sub-horizontal bedding and sub-vertical fractures</td>
</tr>
<tr>
<td>2575</td>
<td>S05</td>
<td></td>
<td>100</td>
<td>DIATOMITE with ELASTIC SILT; soft to completely weathered; light greenish gray (5GY 7/1)</td>
</tr>
<tr>
<td>2570</td>
<td>S06</td>
<td></td>
<td>100</td>
<td>Becomes mottled with very pale brown (10YR 8/3) and light greenish gray (5GY 7/1) with 10 degree bedding</td>
</tr>
</tbody>
</table>

REMARKS AND OTHER TESTS

<table>
<thead>
<tr>
<th>Water Content, %</th>
<th>Plasticity Index (F<#200Sieve)</th>
<th>Fines Content (%<200Sieve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-inch casing settles to 1.5 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 SA: G=5%; S=51%; F=44%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampler advanced 1 foot on first blow and 2.5 feet on second blow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance 6-inch casing to 5.5 feet with hammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 SA: G=3%; S=39%; F=58%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drove sampler for extra 6 inches (last three blowcounts reported)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance 6-inch casing to 11 feet (resistance at 11 feet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 Advance 6-inch casing to 12.5 feet with hammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA: G=9%; S=50%; F=41%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 TX-ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155 TX-ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost circulation to 27.5 feet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphic Log

- 6-inch casing settles to 1.5 feet
- 44 SA: G=5%; S=51%; F=44%
- Sampler advanced 1 foot on first blow and 2.5 feet on second blow
- Advance 6-inch casing to 5.5 feet with hammer
- 58 SA: G=3%; S=39%; F=58%
- Drove sampler for extra 6 inches (last three blowcounts reported)
- Advance 6-inch casing to 11 feet (resistance at 11 feet)
- Advance 6-inch casing to 12.5 feet with hammer
- SA: G=9%; S=50%; F=41%
- TX-ICU
- TX-ICU
- 105 TX-ICU
- 155 TX-ICU
- TX-ICU
- Lost circulation to 27.5 feet

Log of Soil Boring BC-04

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled: 2/1/2018
Logged By: B. Kozlowicz
Checked By: D. Simpson

Drilling Method: Rotary Wash
Drill Bit Size/Type: 4-inch Tricone

Drill Rig Type: Barge Mounted CME-45
Drilling Contractor: Taber Drilling

Groundwater Level(s): 11.8 feet above ground surface (2/1)
Sampling Method(s): 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube

Total Depth of Borehole: 73.5 feet
NAVD 88 Ground Surface Elevation: 2597 feet

Hammer: Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill: Bentonite cement grout to 10 feet bgs
Borehole Location: Copco Reservoir
Coordinate Location: N 2604812 E 6472949
DIATOMITE with ELASTIC SILT: soft to completely weathered; light greenish grey (10YR 8/3) mottled with very pale brown (10YR 8/3) and light greenish gray (5GY 7/1) with 10 degree bedding

--LACUSTRINE DIATOMACEOUS TERRACE (Ql)-- (continued)

Becomes completely weathered to a FAT CLAY; with 0.25-inch very dark gray (5Y 3/1) 10-degree beds (varves?)

With vertical dark grey stained (Mn?) fractures

DIATOMITE; highly to completely weathered; pale yellow to olive yellow (2.5Y 6/6 to 2.5Y 8/4) with orange oxidation stain/motting; fine grained vitreous gypsum crystals along very dark gray (5Y 3/1) sub-vertical fractures

--LACUSTRINE DIATOMACEOUS TERRACE (Ql)--

Final hammer blow advanced sampler 2-inches
DIATOMITE; highly to completely weathered; pale yellow to olive yellow (2.5Y 6/6 to 2.5Y 8/4) with orange oxidation stain/mottling; fine grained vitreous gypsum crystals along very dark gray (5Y 3/1) sub-vertical fractures
---LACUSTRINE DIATOMACEOUS TERRACE (Ql)---

ANDESITE(?); dark grey and reddish brown; moderately to highly weathered; medium strong; fine to medium grained
---TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)---

TOTAL DEPTH = 73.5 FEET

Hard drilling, very dark gray to black volcanic fragments in cuttings
MATERIAL DESCRIPTION

- S01: 0 0 35
 - Material: SILTY SAND with GRAVEL (SM); very loose; very dark grayish brown (2.5Y 3/2); greenish gray clayey diatomite GRAVEL up to 1-inch in diameter; nonplastic FINES
 - Remarks: Sampler advanced 2 feet under hammer weight

- S02: 4 10 20
 - Material: Clayey gravel made up of mostly DIATOMITE clasts up to 0.75 inches in diameter
 - Remarks: Drove sampler for extra 6 inches (last three blowcounts reported)

- S03: 2 1 100
 - Material: LEAN CLAY (CL); very stiff; very dark gray to very dark greenish gray (10Y 3/1 to 2.5Y 3/1); low to medium plasticity FINES; trace of totally weathered GRAVEL of diatomite and organics
 - Remarks: Advance 6-inch casing to 5 feet with hammer

- S04: 200 to 400 psi
 - Material: VOLCANIC SANDSTONE; yellowish brown (10YR 5/6); highly to completely weathered; very weak; locally clayey
 - Remarks: TX-ICU

- S05: 32 50/5
 - Material: VOLCANIC SANDSTONE; yellowish brown (10YR 5/6); highly to completely weathered; very weak; locally clayey
 - Remarks: TX-ICU

TOTAL DEPTH = 20.5 FEET
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Soil Boring BC-06
Sheet 1 of 1

Date(s) Drilled: 2/2/2018
Logged By: B. Kozlowicz
Checked By: D. Simpson

Drilling Method: Rotary Wash
Drill Rig Type: Barge Mounted CME-45

Groundwater Level(s): 29.2 feet above ground surface (2/2 at 13:00)
Sampling Method(s): 2.5-inch ID ModCal, SPT

Drill Bit Size/Type: 4-inch Tricone
Drilling Contractor: Taber Drilling

Total Depth of Borehole: 15.4 feet
NAVD 88 Ground Surface Elevation: 2578 feet

Groundwater Level(s): 29.2 feet above ground surface (2/2 at 13:00)

Groundwater Level(s): 29.2 feet above ground surface (2/2 at 13:00)

Borehole Backfill: Bentonite cement grout to 10 feet bgs
Borehole Location: Copco Reservoir
Coordinate Location: N 26°05'11" E 64°7'60"

MATERIAL DESCRIPTION

0 5 10 15 20 25 30

--RECENT LAKE SEDIMENT--
LEAN CLAY with SAND (CL); stiff; olive gray to dark olive gray (5Y 4/2 to 5Y 3/2); 20% fine grained SAND; 80% low to medium plasticity FINES; trace fine angular volcanic GRAVEL and wood debris/roots up to 1-inch

--COLLUVIUM--

VOLCANIC SANDSTONE; dark greenish gray to black (5GY 4/1 to GLEY1 2.5/N); moderately to slightly weathered

--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)--

TOTAL DEPTH = 15.4 FEET

REMARKS AND OTHER TESTS

Advance 6-inch casing to 5ft. with hammer from 2 to 5ft.

Harder drilling with gravelly cuttings

Hard, slow drilling at 15ft.
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Sampling Resistance (feet)</th>
<th>Recovery (feet)</th>
<th>Graphic Log</th>
<th>Remarks and Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2560</td>
<td>S01</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2575</td>
<td>S02</td>
<td>5</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2580</td>
<td>S03</td>
<td>2</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2585</td>
<td>S04</td>
<td>9</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2590</td>
<td>S05</td>
<td>20</td>
<td>50/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECENT LAKE SEDIMENTS
- FAT CLAY with SAND (CH); medium stiff; very dark gray (10YR 3/1); fine to medium grained SAND; medium to high plasticity FINES; trace rootlets
- COLLUVIUM/RESIDUAL SOIL
 - Wood/roots up to 1-inch in size

**CLAYEY SAND (SC); loose; very dark grayish brown (10YR 3/2); medium to coarse grained SAND; medium plasticity FINES; trace fine GRAVEL with some diatomite clasts
- COLLUVIUM/RESIDUAL SOIL
 - Angular diatomite gravel and wood fibers in cutting to about 13 ft.
 - Advance 6-inch casing to 10 ft. with hammer

**POORLY GRADED SAND with SILT and GRAVEL (SP-SM); loose to medium dense; coarse grained SAND; dark greenish gray (10YR 4/1) subrounded to rounded diatomite GRAVEL up to 1-inch in diameter in shoe
- COLLUVIUM/RESIDUAL SOIL
 - With shell hash

**VOLCANIC SANDSTONE; very weak; light olive brown to strong brown (2.5Y 5/4 to 7.5YR 5/8); highly to completely weathered; with irregular 5 to 10-degree bedding
- TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)

TOTAL DEPTH = 15.9 FEET
Sample Description

- **Depth**: 0 to 11.5 feet

Samples

- **S01**
 - 4 feet depth
 - ORGANIC SILT to ORGANIC CLAY (OL/OH); very soft; dark olive gray (5Y 3/2) with coarse organic debris
 - **Plasticity Index**: NP
 - **Fines Content (%<#200Sieve)**: 31
- **S02**
 - 22 feet depth
 - WELL GRADED GRAVEL with SAND (GW); very dense; very dark grayish brown to black (10YR 3/2 to 10YR 2 1/2); broken rounded GRAVEL up to 1.5 inches in diameter; medium to coarse grained SAND; trace low plasticity FINES
 - **Plasticity Index**: NP
 - **Fines Content (%<#200Sieve)**: 47

Remarks and Other Tests

- Advance 6-inch casing to 3 feet with hammer
- Very hard drilling with volcanic rock chips in cuttings; switched to 2 7/8-inch drag but Blow counts affected by large particles
MATERIAL DESCRIPTION

ORGANIC SILT (OL); very soft; very dark brown (10YR 2/2)

---RECENT LAKE SEDIMENT---

CLAYEY SAND to SANDY LEAN CLAY (SC-CL); loose/medium dense; black (10YR 2/1); fine to medium grained SAND; medium plasticity FINES; trace fine rounded GRAVEL

---COLLUVIUM/RESIDUAL SOIL---

CLAYEY GRAVEL with SAND (GC); very dense; dark yellowish brown to very dark gray (10YR 4/6 to 10YR 3/1); subangular to rounded GRAVEL and COBBLES up to 3 inches in diameter in a SANDY LEAN CLAY to CLAYEY SAND matrix

--FLUVIO-LACUSTRIANE TERRACE DEPOSIT WITH GRAVEL (Qtg)--

DIATOMITE; light yellowish brown (2.5Y 6/4); extremely weak; with irregular 45 to 90-degree fractures with some iron staining and 0 to 15-degree fractures

--LACUSTRIANE DIATOMACEOUS TERRACE (Qtg)--

REMARKS AND OTHER TESTS

Sampler sank to 4ft.; drove sampler for extra 18 inches (last three blow counts reported, previous blows were 2-2-7)

Hard chattering drilling from 7 to 11ft. Advance 6-inch casing to 8ft. with hammer

Fast smooth drilling with olive brown diatomite cuttings

Advance 6-inch casing to 14ft. with hammer
DIATOMITE WITH ELASTIC SILT; olive gray (5Y 4/2) and greenish black (10Y 2.5/1); very soft/extremely weak; 0.25 to 0.5-inch alternating beds—LACUSTRINE DIATOMACEOUS TERRACE (Ql)—

Cuttings become greenish gray

Cuttings become olive gray and greenish gray
DIATOMITE WITH ELASTIC SILT; olive gray (5Y 4/2) and greenishblack (10Y 2.5/1); very soft/extremely weak; 0.25 to 0.5-inch alternating beds

---LACUSTRINE DIATOMACEOUS TERRACE (Q)---

With 0.1-0.2-inch irregular subhorizontal bedding
With 0.5-inch dark reddish brown (5YR 2.5/2) CLAY bed at 20°

BASALT; black (10Y 2.5/1); slightly weathered; strong; recovered as angular gravel up to 1-inch in diameter

---TERTIARY to QUATERNARY INTRUSIVE BASALT---

TOTALDEPTH = 85.2 FEET
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Soil Boring BC-09

Sheet 1 of 3

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/13/2018</td>
<td>B. Kozlowicz</td>
<td>D. Simpson</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drilling Method</th>
<th>Drill Bit Size/Type</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Wash, HQ-3 Rock Core</td>
<td>4-inch Tricone, 4-inch diamond #2 bit</td>
<td>70.5 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drill Rig Type</th>
<th>Drilling Contractor</th>
<th>NAVO 88 Ground Surface Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge Mounted CME-45</td>
<td>Taber Drilling</td>
<td>2602 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groundwater Level(s)</th>
<th>Sampling Method(s)</th>
<th>Hammer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8 feet above ground surface (2/13 at 9:00)</td>
<td>2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole Backfill</th>
<th>Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bentonite cement grout to 10 feet bgs</td>
<td>Copco Reservoir</td>
<td>N 2602526 E 6483561</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **RECENT LAKE SEDIMENT**
- **FAT CLAY with SAND (CH); medium stiff; brown (10YR 4/3)**
- **ALLUVIUM/RESIDUAL SOIL**
- CLAYEY GRAVEL (GC); dark gray (10YR 4/1) and yellowish brown (10YR 5/6); cored and wash subrounded to rounded basalt GRAVEL and COBBLES; some CLAYEY SAND matrix observed
- FLUVIO-LACUSTRINE TERRACE DEPOSIT WITH GRAVEL (Qtg)-
- DIATOMITE with ELASTIC SILT; medium stiff/weak; dark yellowish brown (10YR 4/4); trace fine grained SAND
- --LACUSTRINE DIATOMACEOUS DEPOSIT (Qi)--

REMARKS AND OTHER TESTS

- Sampler advanced 2 feet under weight of hammer
- Set casing to 2 feet; hard driving at 2 feet (casing bouncing); switched to core bit
- Advance 6-inch casing to 4.5 feet

SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Elevation feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance (feet)</th>
<th>Recovery (%<200 Sieve)</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>0</td>
<td>R01</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>R02</td>
<td>5</td>
<td>R02</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>S03</td>
<td>10</td>
<td>S02</td>
<td>9</td>
<td>9</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>S04</td>
<td>15</td>
<td>S03</td>
<td>3</td>
<td>3</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>S05</td>
<td>20</td>
<td>S04</td>
<td>200 psi</td>
<td>74</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Drill Rig Type

- Barge Mounted CME-45

Drilling Contractor

- Taber Drilling

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Location

- Copco Reservoir

Coordinate Location

- N 2602526 E 6483561

Drilling Method

- Rotary Wash, HQ-3 Rock Core

Drill Bit Size/Type

- 4-inch Tricone, 4-inch diamond #2 bit

Total Depth of Borehole

- 70.5 feet

Drill Rig Type

- Barge Mounted CME-45

Drilling Contractor

- Taber Drilling

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill

- Bentonite cement grout to 10 feet bgs

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copco Reservoir</td>
<td>N 2602526 E 6483561</td>
</tr>
</tbody>
</table>

Remarks and Other Tests

- Sampler advanced 2 feet under weight of hammer
- Set casing to 2 feet; hard driving at 2 feet (casing bouncing); switched to core bit
- Advance 6-inch casing to 4.5 feet

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Drill Rig Type

- Barge Mounted CME-45

Drilling Contractor

- Taber Drilling

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill

- Bentonite cement grout to 10 feet bgs

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copco Reservoir</td>
<td>N 2602526 E 6483561</td>
</tr>
</tbody>
</table>

Remarks and Other Tests

- Sampler advanced 2 feet under weight of hammer
- Set casing to 2 feet; hard driving at 2 feet (casing bouncing); switched to core bit
- Advance 6-inch casing to 4.5 feet

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill

- Bentonite cement grout to 10 feet bgs

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copco Reservoir</td>
<td>N 2602526 E 6483561</td>
</tr>
</tbody>
</table>

Remarks and Other Tests

- Sampler advanced 2 feet under weight of hammer
- Set casing to 2 feet; hard driving at 2 feet (casing bouncing); switched to core bit
- Advance 6-inch casing to 4.5 feet

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill

- Bentonite cement grout to 10 feet bgs

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copco Reservoir</td>
<td>N 2602526 E 6483561</td>
</tr>
</tbody>
</table>

Remarks and Other Tests

- Sampler advanced 2 feet under weight of hammer
- Set casing to 2 feet; hard driving at 2 feet (casing bouncing); switched to core bit
- Advance 6-inch casing to 4.5 feet

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill

- Bentonite cement grout to 10 feet bgs

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copco Reservoir</td>
<td>N 2602526 E 6483561</td>
</tr>
</tbody>
</table>

Remarks and Other Tests

- Sampler advanced 2 feet under weight of hammer
- Set casing to 2 feet; hard driving at 2 feet (casing bouncing); switched to core bit
- Advance 6-inch casing to 4.5 feet

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill

- Bentonite cement grout to 10 feet bgs

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copco Reservoir</td>
<td>N 2602526 E 6483561</td>
</tr>
</tbody>
</table>

Remarks and Other Tests

- Sampler advanced 2 feet under weight of hammer
- Set casing to 2 feet; hard driving at 2 feet (casing bouncing); switched to core bit
- Advance 6-inch casing to 4.5 feet

Groundwater Level(s)

- 5.8 feet above ground surface (2/13 at 9:00)

Sampling Method(s)

- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube, HQ Core Barrel

Hammer Data

- Automatic hammer; 140 lbs, 30-inch drop

Borehole Backfill

- Bentonite cement grout to 10 feet bgs
DIATOMITE with ELASTIC Silt; extremely weak/soft; greenish gray (10Y 5/1); trace fine grained SAND -- LACUSTRINE DIATOMACEOUS DEPOSIT (QI) -- (continued)

Sampler advanced an additional 6 inches by pushing.

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance</th>
<th>Recovery, feet</th>
<th>Graphic Log</th>
<th>Water Content, %</th>
<th>Plasticity Index</th>
<th>Fines Content (%<#200Sieve)</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540</td>
<td>2545</td>
<td>S06</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2545</td>
<td>2550</td>
<td>S07</td>
<td>3</td>
<td>3</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2550</td>
<td>2555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2555</td>
<td>2560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2560</td>
<td>2565</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2565</td>
<td>2570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIAL DESCRIPTION

DIATOMITE with ELASTIC SILT; extremely weak/soft; greenish gray (10Y 5/1); trace fine grained SAND—LACUSTRINE DIATOMACEOUS DEPOSIT (Ql)—(continued)

SAMPLES

<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance</th>
<th>Recovery (feet)</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>2535</td>
<td>200 to 400 psi</td>
<td>S09</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS AND OTHER TESTS

- Water Content, %: 92
- Plasticity Index: 96
- Fines Content (%<#200Sieve): Consol
- Consol: TX-ICU
- Consol: TX-ICU

TOTAL DEPTH = 70.5 FEET
Log of Soil Boring BC-10

Project:
- **Klamath River Renewal Project**
- **Project Location:** Copco and Iron Gate Reservoirs
- **Project Number:** 60537920

Date(s) Drilled:
- 2/7/2018 - 2/8/2018

Logged By:
- B. Kozlowicz

Checked By:
- D. Simpson

Drilling Method:
- Rotary Wash

Drill Rig Type:
- Barge Mounted CME-45

Groundwater Level(s):
- 29.3 feet above ground surface (2/7 at 14:40)

Drilling Contractor:
- Taber Drilling

Sampling Method(s):
- 2.5-inch ID ModCal, SPT, 3-inch Shelby Tube

Hammer:
- Automatic hammer; 140 lbs, 30-inch drop

Sampling Resistance:
- 1 SA: G=85%; S=15%; F=<1%

Advance:
- 6-inch casing to 14 feet with hammer

Bentonite cement grout to 10 feet bgs

Borehole Location:
- Copco Reservoir

Coordinate Location:
- N 2604959 / E 6472871

Sampling Number:
- S01, S02, S03

Graphical Log:

<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance</th>
<th>Recovery (feet)</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2555</td>
<td>25</td>
<td>S01</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-2550</td>
<td>26</td>
<td>S01</td>
<td>26</td>
<td>26</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-2545</td>
<td>19</td>
<td>S01</td>
<td>19</td>
<td>19</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-2560</td>
<td>15</td>
<td>S02</td>
<td>10</td>
<td>10</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>-2565</td>
<td>5</td>
<td>S02</td>
<td>5</td>
<td>5</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>-2570</td>
<td>5</td>
<td>S02</td>
<td>5</td>
<td>5</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>-2575</td>
<td>10</td>
<td>S02</td>
<td>10</td>
<td>10</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>-2580</td>
<td>5</td>
<td>S03</td>
<td>5</td>
<td>5</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>-2585</td>
<td>4</td>
<td>S03</td>
<td>4</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>-2590</td>
<td>6</td>
<td>S03</td>
<td>6</td>
<td>6</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Remarks and Other Tests:
- Set 6-inch casing to 4 feet (very soft to 2.5 feet)
- Hard, chattering drilling
- Clayey diatomite curving; switched back to tricone bit
- Advance 6-inch casing to 14 feet with hammer

Material Description

- **RECENT LAKE SEDIMENT**
- **COLLUVIMUM/RESIDUAL SOIL/SLOPE WASH**
- **WELL GRADED GRAVEL with SAND (GW); dense; dark brown (10YR 3/3); subangular to rounded GRAVEL up to 3 inches in diameter consisting of various volcanic lithologies**
- **FLUVIO-LACUSTRINE TERRACE DEPOSIT WITH GRAVEL (Qtg)**
- **DIATOMITE with ELASTIC SILT; olive (5Y 5/3); medium stiff/extremely weak; with trace oxidation**
- **LACUSTRINE DIATOMACEOUS TERRACE (Ql)**
- Becomes light olive brown (2.5Y 5/4) and olive brown (5Y 5/3) with 0.1 to 0.5 inch 10-degree bedding and some oxidation stains
MATERIAL DESCRIPTION

DIATOMITE with ELASTIC SILT; medium stiff/extremely weak; light olive brown (2.5Y 5/4) and olive brown (5Y 5/3); with 0.1 to 0.5 inch 10-degree bedding and some oxidation stains

--LACUSTRINE DIATOMACEOUS TERRACE (Q)-- (continued)

VOLCANIC CINDER; very dark brown (10YR 2/2); very weak/dense to very dense; medium to coarse grained weakly welded sand; friable with coresstones and weakly expressed 10 to 15-degree bedding

--TERTIARY VOLCANIC (BOGUS MOUNTAIN BEDS, undifferentiated) --

ANDESITE; reddish brown (5YR 5/3); strong brown (7.5YR 5/6); and dusky purple; highly to completely weathered; very weak; coarse grained

--TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated) --

TOTAL DEPTH = 43.0 FEET

REMARKS AND OTHER TESTS

<table>
<thead>
<tr>
<th>Water Content, %</th>
<th>Plasticity Index</th>
<th>Fines Content (%<#200Sieve)</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Harder drilling</td>
</tr>
</tbody>
</table>
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Sampling Method(s)</th>
<th>Recovery (%)</th>
<th>Remarks and Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>S01</td>
<td>6-inch flight auger</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>S02</td>
<td>2.5-inch ID ModCal, SPT</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td>TOTAL DEPTH = 10.5 FEET</td>
</tr>
</tbody>
</table>

ROAD BASE

DIATOMITE: pale yellow (2.5Y 7/3); moderately weathered; with occasional subvertical fractures and trace small rootlets

QUATERNARY DIATOMITE (Qd)

POORLY GRADED GRAVEL? (GP); very dark grey; with slightly weathered basalt fragments

RESIDUAL SOIL/COLLUVIUM

VOLCANIC BEDROCK?: olive grey and reddish to yellowish brown; completely weathered; extremely weak; friable

COMPLETELY WEATHERED VOLCANIC BEDROCK

Becomes yellowish red

REMARKS AND OTHER TESTS

- Start 10/18/2018 with hollow stem auger
- Rig chatter at 2 ft.
- Auger refusal at 3.5 ft; move 30 ft. west of initial boring location and redrill
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Soil Boring BC-12

Sheet 1 of 1

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/17/2018</td>
<td>B. Kozlowicz</td>
<td>B. Aldridge</td>
</tr>
</tbody>
</table>

Drilling Method
Hollow Stem Auger/Direct Push

Drill Rig Type
Truck Mounted Marl M2.5 DP

Groundwater Level(s)
Not encountered

Drill RigType
2.5-inch ID ModCal, SPT

Groundwater Level(s)
Not encountered

Drilling Contractor
Gregg Drilling

Rig Data
NAVD 88 Ground Surface Elevation = 2642 feet

Drill Rig Type
Geoprobe Hydraulic Hammer

Drilling Method
Hollow Stem Auger/Direct Push

Drill Bit Size/Type
6-inch flight auger

Total Depth of Borehole
16.5 feet

Borehole Backfill
Bentonite cement grout to ground surface

Borehole Location
Copco Road/Reservoir Rim

Coordinate Location
N 2605101 E 6481855

MATERIAL DESCRIPTION

Elevation, feet

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Sampling Resistance</th>
<th>Recovery, feet</th>
<th>Graphic Log</th>
<th>Type</th>
<th>Water Content, %</th>
<th>Plasticity Index</th>
<th>Fines Content (%<200)</th>
<th>Remarks and Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start 14:00 10/18/2018 with hollow stem auger</td>
</tr>
<tr>
<td>2640</td>
<td>S-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-01 bagged Smooth drilling 0-4.7ft. Rig chatter 4.7-5.5ft. Smooth drilling 5.5-9ft.</td>
</tr>
<tr>
<td>2635</td>
<td>S-02</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-03 Three liners retained (8.5-9, 9-9.5, 9.5-10ft.)</td>
</tr>
<tr>
<td>2630</td>
<td>S-03</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL DEPTH = 16.5 FEET</td>
</tr>
</tbody>
</table>

REMARKS

- Material Description:
 - **S-01**: Peaty silty to clayey sand with gravel (SM-SC); medium dense; brown (10YR 5/5); with angular gravel up to 3-inches
 - **S-02**: Clayey sand to sandy lean clay (SC-CL); loose to medium dense; dark brown (10YR 3/3); with angular gravel up to 2-cms; low plasticity fines; moist
 - **S-03**: Poorly graded sand (SP); loose to medium dense; yellowish brown (10YR 5/4); with small, subangular diatomite gravel; fine to medium grained sand; dry
 - Volcanic breccia; very dense; greyish brown (10YR 5/2) to olive brown (2.5Y 4/4); highly to completely weathered; very weak; friable; medium to coarse grained; possibly porphyritic andesite
 - Tertiary volcanics (Bogus Mountain Beds, undifferentiated)

Remark
Start 14:00 10/18/2018 with hollow stem auger
Material Description

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (ft)</th>
<th>Water Content (%)</th>
<th>Plasticity Index</th>
<th>Fines Content (%<#200Sieve)</th>
<th>Remarks and Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-01</td>
<td>1600 psi</td>
<td>100</td>
<td></td>
<td></td>
<td>Start 13:30 10/2/2018 with hand auger</td>
</tr>
<tr>
<td>S-02</td>
<td>1560 psi</td>
<td>95</td>
<td></td>
<td></td>
<td>Hollow stem auger 5 to 42ft.</td>
</tr>
<tr>
<td>S-03</td>
<td>1500 psi</td>
<td>90</td>
<td></td>
<td></td>
<td>TX-ICU</td>
</tr>
<tr>
<td>S-04</td>
<td>1400 psi</td>
<td>100</td>
<td></td>
<td></td>
<td>TX-UU</td>
</tr>
</tbody>
</table>

Remarks and Other Tests

- 2-inches ASPHALT
- POORLY GRADED GRAVEL with SAND (GP); dense; brown (10YR 4/4); angular GRAVEL up to 3 inches; dry
- ROAD BASE
- LEAN CLAY with SAND (CL); stiff; dark brown (10YR 3/4); low to medium plasticity FINES; fine to coarse grained SAND; trace small GRAVEL; with rootlets
- QUERNARY DIATOMITE
- DIATOMITE; pale yellow (2.5Y 7/3); moderately weathered; with occasional subvertical fractures and trace small rootlets
- Becomes pale yellow (2.5Y 7/3); slightly weathered, extremely weak, without fractures or roots
- With Fe + Mn stained vertical fracture surfaces
- Bentonite cement grout to ground surface

Log of Soil Boring BC-13

- **Project:** Klamath River Renewal Project
- **Project Location:** Copco and Iron Gate Reservoirs
- **Project Number:** 60537920
- **Date Drilled:** 10/2/2018
- **Logged By:** B. Kozlowicz
- **Checked By:** B. Aldridge
- **Drilling Method:** Hollow Stem Auger
- **Drill Rig Type:** Truck Mounted Mobile B-53
- **Groundwater Level(s):** Not encountered
- **Sampling Method(s):** 3.0-inch Shelby Tube, SPT
- **Borehole Backfill:** Bentonite cement grout to ground surface
- **Coordinate Location:** N 2604508 E 6475654
- **Total Depth of Borehole:** 42.0 feet
- **NAVD 88 Ground Surface Elevation:** 2673 feet
- **Drill Bit Size/Type:** 6-inch flight auger
- **Drilling Contractor:** Gregg Drilling
- **Drill Rig Type:** Truck Mounted Mobile B-53
- **Sampling Method(s):** 3.0-inch Shelby Tube, SPT
- **Hammer Data:** Automatic hammer; 140 lbs, 30-inch drop
DIATOMITE: pale yellow (2.5Y 7/3); dry; slightly weathered; extremely weak; massive; with trace orange mottling

---QUATERNARY DIATOMITE--- (continued)

LEAN CLAY with SAND (CL): stiff; dark yellowish brown (10YR 3/4); with trace rootlets

---COLLUVIUM/RESIDUAL SOIL---

CLAYEY SAND (SC): very dense/extremely weak; olive and dark yellowish brown to reddish brown; with weakly expressed 20° foliation/bedding

---COMPLETELY WEATHERED VOLCANICLASTIC BEDROCK---

TOTAL DEPTH = 42.0 FEET
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Type</th>
<th>Sampling Method(s)</th>
<th>Drill Rig Type</th>
<th>Drilling Method</th>
<th>Drilling Contractor</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-inches</td>
<td>ASPHALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200 psi</td>
<td>S-01</td>
<td>1200 psi</td>
<td>Hollow Stem Auger</td>
<td></td>
<td>Gregg Drilling</td>
<td>15.4 feet</td>
</tr>
<tr>
<td>1500 psi</td>
<td>S-02</td>
<td>1500 psi</td>
<td>Truck Mounted Mobile B-53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600 psi</td>
<td>S-03</td>
<td>1600 psi</td>
<td></td>
<td>Hollow Stem Auger</td>
<td>Gregg Drilling</td>
<td></td>
</tr>
<tr>
<td>50/5</td>
<td>S-05</td>
<td>50/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-inches</td>
<td>ASPHALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POORLY GRADED GRAVEL with SAND (GP); medium dense; dark yellowish brown; with angular GRAVEL up to 3-inches; dry</td>
<td>6-inch flight auger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLCANIC BEDROCK; yellowish to reddish brown; highly to completely weathered; very dense/very weak</td>
<td>Hollow stem auger 5 to 15.4 ft.</td>
<td>TX-ICU</td>
<td>TX-UU</td>
<td>TX-UU</td>
<td>TX-ICU</td>
<td>Drilling becomes hard</td>
</tr>
</tbody>
</table>

REMARKS AND OTHER TESTS

- Start 10:00 10/2/2018 with hand auger 0-5ft.
- Hollow stem auger 5 to 15.4 ft. TX-ICU
- TX-UU
- TX-UU
- TX-ICU
- Drilling becomes hard

GRAPHIC LOG

- **TOTAL DEPTH = 15.4 FEET**

LOG OF SOIL BORING BC-14

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920
Log of Soil Boring BC-14
Sheet 1 of 1
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Soil Boring BC-16

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14/2019</td>
<td>P. Respess</td>
<td>S. Janowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drilling Method</th>
<th>Drill Bit Size/Type</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Wash</td>
<td>4-inch Tricone</td>
<td>64.8 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drill Rig Type</th>
<th>Drilling Contractor</th>
<th>NAVD 88 Ground Surface Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge Mounted CME-45</td>
<td>Taber Drilling</td>
<td>2592 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groundwater Level(s)</th>
<th>Sampling Method(s)</th>
<th>Hammer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 feet above ground surface (1/14/2019)</td>
<td>2.5-inch ID ModCal</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole Backfill</th>
<th>Borehole Location</th>
<th>Coordinate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bentonite cement grout to ground surface</td>
<td>Copco Lake</td>
<td>N 2604576 E 6472913</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>SAMPLES</th>
<th>GRAPHIC LOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2590</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2565</td>
<td></td>
</tr>
<tr>
<td>-2570</td>
<td></td>
</tr>
<tr>
<td>-2575</td>
<td></td>
</tr>
<tr>
<td>-2580</td>
<td></td>
</tr>
<tr>
<td>-2585</td>
<td></td>
</tr>
<tr>
<td>-2590</td>
<td></td>
</tr>
</tbody>
</table>

SILTY CLAY (CL-ML): soft; wet; grayish brown; apparent mix of diatomite and topsoil/colluvium

---SLUMPED BANK MATERIAL---

DIATOMITE: greenish gray; soft

Remarks and Other Tests: Boring logged from cuttings
<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance (feet)</th>
<th>Graphic Log</th>
<th>MATERIAL DESCRIPTION</th>
<th>Water Content, %</th>
<th>Plasticity Index</th>
<th>Fines Content (%<#200Sieve)</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIATOMITE; greenish gray; soft</td>
<td></td>
<td></td>
<td></td>
<td>--continued--</td>
</tr>
<tr>
<td>35</td>
<td>2555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOLCANICLASTIC SANDSTONE; medium gray; completely to highly weathered; weak; angular to subangular, fine- to medium-grained clasts</td>
<td></td>
<td></td>
<td></td>
<td>Harder drilling</td>
</tr>
<tr>
<td>40</td>
<td>2550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rig repair 1315-1335</td>
</tr>
<tr>
<td>45</td>
<td>2545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bottom liner retained</td>
</tr>
<tr>
<td>50</td>
<td>2540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>2535</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>2525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 64.8 FEET

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920
Log of Soil Boring BC-16
Sheet 2 of 2
MATERIAL DESCRIPTION

- **SILTY CLAY (CL-ML); soft; wet; brown to grayish brown; apparent mix of diatomite and topsoil/colluvium --SLUMPED BANK MATERIAL--**

- **DIATOMITE; greenish gray; soft**

REMARKS AND OTHER TESTS

- Boring logged from cuttings
DIATOMITE; greenish gray; soft

VOLCANICLASTIC SANDSTONE; grayish brown; completely to highly weathered; weak; angular to subangular, fine- to medium-grained clasts

TOTAL DEPTH = 37.4 FEET

Bottom liner retained
Log of Soil Boring BC-18

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled
1/14/2019

Logged By
P. Respess

Checked By
S. Janowski

Drilling Method
Rotary Wash

Drill Rig Type
Barge Mounted CME-45

Drilling Contractor
Taber Drilling

Groundwater Level(s)
8 feet above ground surface (1/14/2019)

Sampling Method(s)
2.5-inch ID ModCal

Hammer Data
Automatic hammer; 140 lbs, 30-inch drop

Drill Bit Size/Type
4-inch Tricone

Drill Rig Type
2.5-inch ID ModCal

Project Number:
60537920

Sample Log (Elevation and Depth, feet)

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Depth, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2595</td>
<td>0</td>
</tr>
<tr>
<td>2590</td>
<td>5</td>
</tr>
<tr>
<td>2585</td>
<td>10</td>
</tr>
<tr>
<td>2580</td>
<td>15</td>
</tr>
<tr>
<td>2575</td>
<td>20</td>
</tr>
<tr>
<td>2570</td>
<td>25</td>
</tr>
<tr>
<td>2565</td>
<td>30</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **Silty Clay (CL-ML):** soft; wet; brown to grayish brown; apparent mix of diatomite and topsoil/colluvium; tree root fragments
 --SLUMPED BANK MATERIAL--

- **Diatomite:** greenish gray to yellowish brown; soft

REMARKS AND OTHER TESTS

Boring logged from cuttings

Borehole Backfill: Bentonite cement grout to ground surface

Borehole Location: Copco Lake

Coordinate Location: N 2604477 E 6475056
DIATOMITE; greenish gray to yellowish brown; soft

VOLCANICLASTIC SANDSTONE; grayish brown; completely to highly weathered; weak; angular to subangular, fine- to medium-grained clasts

TOTAL DEPTH = 34.5 FEET

---continued---

<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance</th>
<th>Recovery (feet)</th>
<th>Graphic Log</th>
<th>Water Content, %</th>
<th>Plasticity Index</th>
<th>Fines Content (%<#200Sieve)</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2565</td>
<td>1</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2560</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bottom liner retained</td>
</tr>
<tr>
<td>2555</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL DEPTH = 34.5 FEET
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Log of Soil Boring BC-19

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/13/2019</td>
<td>P. Respess</td>
<td>S. Janowski</td>
</tr>
</tbody>
</table>

Drilling Method
- Rotary Wash

Drill Rig Type
- Barge Mounted CME-45

Drill Bit Size/Type
- 4-inch Tricone

Drilling Contractor
- Taber Drilling

Total Depth of Borehole
- 37.5 feet

Groundwater Level(s)
- 7 feet above ground surface (1/13/2019)

Sampling Method(s)
- 2.5-inch ID ModCal

Drill Rig Type
- 2.5-inch ID ModCal

Borehole Backfill
- Bentonite cement grout to ground surface

Borehole Location
- Copco Lake

Coordinate Location
- N 2604654 E 6475303

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>SAMPLES</th>
<th>Graphic Log</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>Boring logged from cuttings</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Silty Clay (CL-ML):** soft; wet; brown to grayish brown; apparent mix of diatomite and topsoil/colluvium
 --- SLUMPED BANK MATERIAL ---

- **Diatomite:** light gray; soft; occasional fine- to coarse-grained sand

Elevation (feet)
- 2595
- 2590
- 2585
- 2580
- 2575
- 2570

Figure Notes:
- Automatic hammer; 140 lbs, 30-inch drop.
DIATOMITE; light gray; soft; occasional fine- to coarse-grained SAND

VOLCANICLASTIC SANDSTONE; light to medium gray; completely to highly weathered; weak; angular to subangular, fine- to medium-grained clasts

---continued---

TOTAL DEPTH = 37.5 FEET

REMARKS AND OTHER TESTS

Two bottom liners retained.
Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

Date(s) Drilled: 1/14/2019
Logged By: P. Respess
Checked By: S. Janowski

Drilling Method: Rotary Wash
Drill Bit Size/Type: 4-inch Tricone
Total Depth of Borehole: 19.0 feet

Drill Rig Type: Barge Mounted CME-45
Drilling Contractor: Taber Drilling
NAVD 88 Ground Surface Elevation: 2597 feet

Groundwater Level(s): 9 feet above ground surface (1/14/2019)
Sampling Method(s): 2.5-inch ID ModCal
Hammer Data: Automatic hammer; 140 lbs., 30-inch drop

Borehole Backfill: Bentonite cement grout to ground surface
Borehole Location: Copco Lake
Coordinate Location: N 2606433 E 6479381

SAMPLES

<table>
<thead>
<tr>
<th>Elevation feet</th>
<th>Depth, feet</th>
<th>Type</th>
<th>Number</th>
<th>Sampling Resistance (ft)</th>
<th>Recovery (ft)</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2595</td>
<td>-2595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2590</td>
<td>-2590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2585</td>
<td>-2585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2580</td>
<td>-2580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2575</td>
<td>-2575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2570</td>
<td>-2570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2565</td>
<td>-2565</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2560</td>
<td>-2560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2555</td>
<td>-2555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2550</td>
<td>-2550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2545</td>
<td>-2545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2540</td>
<td>-2540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **DIATOMITE:** greenish gray to light yellowish brown; soft
- **BASALT?**; dark gray to black; hard; aphanitic

TOTAL DEPTH = 19.0 FEET

REMARKS AND OTHER TESTS

- Boring logged from cuttings
- Hard drilling
Log of Soil Boring BI-01

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/20/2018</td>
<td>K. Zeiger</td>
<td>B. Kozlowicz</td>
<td>22.2 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drilling Method</th>
<th>Drill Bit Size/Type</th>
<th>Hammer Method</th>
<th>Drilling Rig Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Wash</td>
<td>4-inch Tricone</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
<td>Barge Mounted CME-45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drill Rig Type</th>
<th>Drilling Contractor</th>
<th>Groundwater Level(s)</th>
<th>Sampling Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge Mounted CME-45</td>
<td>Taber Drilling</td>
<td>11.8 feet above ground surface</td>
<td>2.5-inch ID ModCal, SPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groundwater Level(s)</th>
<th>Drilling Rig Type</th>
<th>Hammer Data</th>
<th>Driller notes change at 11.5ft., Volcanics in cuttings</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8 feet above ground surface</td>
<td>2.5-inch ID ModCal, SPT</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
<td>Driller notes change at 11.5ft., Volcanics in cuttings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole Backfill</th>
<th>Hammer Data</th>
<th>Driller notes change at 11.5ft., Volcanics in cuttings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement grout to ground surface</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
<td>Driller notes change at 11.5ft., Volcanics in cuttings</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **S-1:** Sampler sank under weight of rods 12.5-14.5 ft. and pushed 14.1-17.5 ft.
 - LEAN CLAY with ORGANICS (CL); very soft; wet; dark red brown (5YR 3/4); twigs and roots
 - RECENT LAKE SEDIMENT

- **S-2:** Advance 5-inch casing 7.5 ft.
 - LEAN CLAY (CL); stiff; dry; dark red brown (5YR 3/4); trace rootlets; CaCO3 ribbons; developed soil texture
 - COLLUVIUM/RESIDUAL SOIL

- **S-3:** Begin rotary wash drilling
 - BASALT; dark red brown (5YR 2.5/2); fresh; strong
 - TERTIARY to QUATERNARY INTRUSIVE BASALT

- **S-4:** Driller notes change at 11.5 ft., Volcanics in cuttings
 - VOLCANIC BRECCIA; mottled dark gray (2.5Y 4/1) and light yellow brown (2.5Y 6/4); slightly weathered; moderately strong; coarse grained with quartz phenocrysts
 - TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)

- **S-5:** Driller notes bedrock drilling conditions from 12 ft. to 17.5 ft.
 - VOLCANIC BRECCIA; mottled dark gray (2.5Y 4/1) and light yellow brown (2.5Y 6/4); slightly weathered; moderately strong; coarse grained with quartz phenocrysts
 - TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)

- **S-6:**
 - VOLCANIC BRECCIA; mottled dark gray (2.5Y 4/1) and light yellow brown (2.5Y 6/4); slightly weathered; moderately strong; coarse grained with quartz phenocrysts
 - TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)

TOTAL DEPTH = 22.2 FEET
Log of Soil and Core Boring BI-02

Sheet 1 of 5

Project: Klamath River Renewal Project
Project Location: Copco and Iron Gate Reservoirs
Project Number: 60537920

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>2/22/2018 - 2/23/2018</th>
<th>Logged By</th>
<th>K. Zeiger</th>
<th>Checked By</th>
<th>B. Kozlowicz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling Method</td>
<td>Rotary Wash, HQ-3 Rock Core</td>
<td>Drill Bit Size/Type</td>
<td>4-inch solid stem auger, 3-7/8 inch tricone, 4-inch #2 diamond coring bit</td>
<td>Total Depth of Borehole</td>
<td>67.0 feet</td>
</tr>
<tr>
<td>Drill Rig Type</td>
<td>Truck Mounted CME 75</td>
<td>Drilling Contractor</td>
<td>Taber Drilling</td>
<td>NAVD 88 Ground Surface Elevation</td>
<td>2334 feet</td>
</tr>
<tr>
<td>Groundwater Level</td>
<td>4.8 feet below ground surface (2/22/2018)</td>
<td>Sampling Methods</td>
<td>2.5-inch ID ModCal, HQ Core Barrel</td>
<td>Hammer Data</td>
<td>Automatic hammer; 140 lbs, 30-inch drop</td>
</tr>
<tr>
<td>Borehole Backfill</td>
<td>Cement grout to ground surface</td>
<td>Borehole Location</td>
<td>Iron Gate Reservoir; near Fall Creek Boat Ramp</td>
<td>Coordinate Location</td>
<td>N 2602024 E 6461383</td>
</tr>
</tbody>
</table>

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
<th>Material Description</th>
<th>R Q D, %</th>
<th>Drill Time Rate, ft/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2334</td>
<td>SANDY FAT CLAY (CH); stiff; very dark brown (7.5YR 2.5/3); moist; high plasticity fines; 10 percent rounded gravel up to 1-inch in diameter</td>
<td>--OLD ALLUVIUM- FLOOD PLAIN DEPOSIT--</td>
<td>NA</td>
<td>14:30 Ll=78; Pl=28 Sa: G=11%; S=21%; F=68%</td>
</tr>
<tr>
<td>-2328</td>
<td>SANDY FAT CLAY (CH); stiff; dry; brown (7.5YR 4/3); high plasticity fines; fine grained sand; trace rounded gravel up to 0.25 inches in diameter; CaCO3 ribbons</td>
<td>--OLDER ALLUVIUM/RESIDUAL SOIL--</td>
<td>NA</td>
<td>14:40 Ll=68; Pl=28 Sa: G=5%; S=33%; F=69%</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

REPORT: GEO_CORE+SOIL_NO PACK WITH LITH; FILE: KLAMATH_MASTER.GPJ; 6/20/2019 BI-02
Log of Soil and Core Boring BL-02

Sheet 2 of 5

ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>-2320</td>
<td>1</td>
<td>NA</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-2318</td>
<td>17</td>
<td>NA</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-2316</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-2314</td>
<td>1</td>
<td>17</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-2312</td>
<td>2</td>
<td>100</td>
<td>48°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-2310</td>
<td>1</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-2308</td>
<td>3</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-2306</td>
<td>1</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **SANDY FAT CLAY (CH);** stiff; dry; brown (7.5YR 4/3); low plasticity fines; fine grained sand; trace rounded gravel up to 0.25 inches in diameter; CaCO₃ ribbons.
 - OLDER ALLUVIUM/RESIDUAL SOIL— (continued)

- **SANDY FAT CLAY (CH);** medium stiff to stiff; brown (7.5YR 5/4); fine grain sand; high plasticity fines; trace rounded gravel up to 1-inch.
 - OLDER ALLUVIUM/RESIDUAL SOIL—

- **VOLCANIC BRECCIA;** green gray (10Y 6/1); highly to completely weathered; extremely weak; intensely fractured with angular breccia clasts up to 1-inch; fine to medium grained matrix.
 - TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)—

- **Becomes moderately to slightly weathered; weak to moderately strong; moderately fractured; rough; irregular fractures likely mechanical along weathered contacts of breccia clasts.

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Blows / 6 in.</th>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCK CORE</td>
<td>6</td>
<td>15:00</td>
<td>6</td>
<td>15:00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **First water at 14.0 feet; after 20 minutes at 4.8 feet**
- **L=51; PL=27 SA, G=48%, S=40%; F=52%;**
- **Advance 4-inch casing to 14 feet**
- **Switch to rotary wash**
- **Refusal with tricone bit; switch to HQ rock core**
- **Clayey volcanics cuttings**
- **100% fluid return**
- **Rock does not meet soundness criteria for RQD calculation**

Report: GEO_CORE+SOIL_NO PACK_WITH LITH; **File:** KLAMATH_MASTER.GPJ; **6/20/2019**

Log of Soil and Core Boring BL-02

Project Number: 60537920

Project Location: Copco and Iron Gate Reservoirs

Project: Klamath River Renewal Project
Material Description

Volcanic Breccia; green gray (10Y 6/1); moderately to slightly weathered; weak to moderately strong; moderately fractured with angular breccia clasts up to 1-inch; medium grained matrix.

- **Tertiary Volcanics (Bogus Mountain Beds, undifferentiated)**

(continued)

Field Notes and Test Results

- *Mechanically broken from placement in box.*
- *100% fluid return.*

Soil Samples

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>VOLCANIC BRECCIA; green gray (10Y 6/1); moderately to slightly weathered; weak to moderately strong; moderately fractured with angular breccia clasts up to 1-inch; medium grained matrix.</td>
</tr>
<tr>
<td>-2304</td>
<td></td>
</tr>
<tr>
<td>-2302</td>
<td></td>
</tr>
<tr>
<td>-2306</td>
<td></td>
</tr>
<tr>
<td>-2308</td>
<td></td>
</tr>
<tr>
<td>-2310</td>
<td></td>
</tr>
<tr>
<td>-2312</td>
<td></td>
</tr>
<tr>
<td>-2314</td>
<td></td>
</tr>
<tr>
<td>-2316</td>
<td></td>
</tr>
<tr>
<td>-2318</td>
<td></td>
</tr>
<tr>
<td>-2320</td>
<td></td>
</tr>
<tr>
<td>-2322</td>
<td></td>
</tr>
<tr>
<td>-2324</td>
<td></td>
</tr>
<tr>
<td>-2326</td>
<td></td>
</tr>
<tr>
<td>-2328</td>
<td></td>
</tr>
<tr>
<td>-2330</td>
<td></td>
</tr>
<tr>
<td>-2332</td>
<td></td>
</tr>
<tr>
<td>-2334</td>
<td></td>
</tr>
<tr>
<td>-2336</td>
<td></td>
</tr>
<tr>
<td>-2338</td>
<td></td>
</tr>
<tr>
<td>-2340</td>
<td></td>
</tr>
<tr>
<td>-2342</td>
<td></td>
</tr>
<tr>
<td>-2344</td>
<td></td>
</tr>
<tr>
<td>-2346</td>
<td></td>
</tr>
<tr>
<td>-2348</td>
<td></td>
</tr>
<tr>
<td>-2350</td>
<td></td>
</tr>
<tr>
<td>-2352</td>
<td></td>
</tr>
<tr>
<td>-2354</td>
<td></td>
</tr>
<tr>
<td>-2356</td>
<td></td>
</tr>
<tr>
<td>-2358</td>
<td></td>
</tr>
<tr>
<td>-2360</td>
<td></td>
</tr>
<tr>
<td>-2362</td>
<td></td>
</tr>
<tr>
<td>-2364</td>
<td></td>
</tr>
<tr>
<td>-2366</td>
<td></td>
</tr>
<tr>
<td>-2368</td>
<td></td>
</tr>
<tr>
<td>-2370</td>
<td></td>
</tr>
<tr>
<td>-2372</td>
<td></td>
</tr>
<tr>
<td>-2374</td>
<td></td>
</tr>
<tr>
<td>-2376</td>
<td></td>
</tr>
<tr>
<td>-2378</td>
<td></td>
</tr>
<tr>
<td>-2380</td>
<td></td>
</tr>
<tr>
<td>-2382</td>
<td></td>
</tr>
<tr>
<td>-2384</td>
<td></td>
</tr>
<tr>
<td>-2386</td>
<td></td>
</tr>
<tr>
<td>-2388</td>
<td></td>
</tr>
<tr>
<td>-2390</td>
<td></td>
</tr>
<tr>
<td>-2392</td>
<td></td>
</tr>
<tr>
<td>-2394</td>
<td></td>
</tr>
<tr>
<td>-2396</td>
<td></td>
</tr>
<tr>
<td>-2398</td>
<td></td>
</tr>
<tr>
<td>-2400</td>
<td></td>
</tr>
<tr>
<td>-2402</td>
<td></td>
</tr>
</tbody>
</table>

Soil Samples

- **Depth, feet**
- **Lithology**
- **Elevation, feet**
- **Number**
- **R Q D, %**
- **Drill Time [Rate, ft/hr]**
- **Recovery, %**
- **Blows / 6 in.**

Log of Soil and Core Boring BI-02

Project: Klamath River Renewal Project

Project Location: Copco and Iron Gate Reservoirs

Project Number: 60537920
ROCK CORE

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
<th>Fracture Number</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>46</td>
<td>-2288</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>8</td>
<td></td>
<td>100</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>50</td>
<td>-2286</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>52</td>
<td>-2284</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>54</td>
<td>-2282</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>56</td>
<td>-2280</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>58</td>
<td>-2278</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>60</td>
<td>-2276</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIOUS</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

VOLCANIC BRECCIA; green gray (10Y 6/1); moderately to slightly weathered; weak to moderately strong; moderately fractured; angular breccia clasts up to 1-inch; fine to medium grained matrix.

- TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)

3: 10-30, J, MW, No, No, Wa-Ir, SR-R
4: 30, J, N, No, No, Wa-Pi, SR

Becomes strong; slightly fractured

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Recovery, %</th>
<th>Drill Time (Rate, ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100% fluid return</td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Brazilian Tensile Strength Test**
 - Mohs Hardness = 3
 - UCS = 2288 psi
 - Bulk Density = 148.67pcf

- **Cerchar Abrasiveness Test**
 - Becomes strong; slightly fractured

- **Packer test #1 from 47.0 to 57.0**
 - 100% fluid return
VOLCANIC BRECCIA; green gray (10Y 6/1); moderately to slightly weathered; weak to strong; slightly fractured; angular breccia clasts up to 1-inch; fine to medium grained matrix——TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)—(continued)

1: 30, V, N-T, H+Ca, Fi, Wa, ?
2: 10, J, N, No, No, Wa-St, SR-R
3: 60, J/V, MW, Ca, Pa, Wa-Pi, SR
4: 60-70, J/V, N, H+Ca, Fi, Wa, ?

TOTAL DEPTH = 67.0 FEET
Log of Soil and Core Boring BI-03

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/21/2018</td>
<td>K. Zeiger</td>
<td>B. Kozlowicz</td>
</tr>
</tbody>
</table>

Drilling Method
- Rotary Wash, HQ-3 Rock Core
- Barge Mounted CME 45

Drill Rig Type
- 4-inch solid stem auger, 3-7/8 inch tricone, 4-inch #2 diamond coring bit
- NAVD 88 Ground Surface Elevation

Groundwater Level
- 25.3 feet above ground surface (2/21)

Borehole Backfill
- Cement grout to ground surface

Total Depth of Borehole
- 35.1 feet

Drill Rig Type
- B. Kozlowicz

Drill Rig Type
- Automatic hammer; 140 lbs, 30-inch drop

Drill Rig Type
- 4-inch solid stem auger, 3-7/8 inch tricone, 4-inch #2 diamond coring bit

Drill Rig Type
- Rotary Wash, HQ-3 Rock Core

Drill Rig Type
- Taber Drilling

Drill Rig Type
- 2.5-inch ID ModCal, HQ Core Barrel

Drill Rig Type
- Hammer: Automatic hammer; 140 lbs, 30-inch drop

Drill Rig Type
- 2.5-inch ID ModCal, HQ Core Barrel

Drill Rig Type
- K. Zeiger

Drill Rig Type
- Checked By

Total Depth of Borehole
- 2306 feet

Borehole Location
- Iron Gate Reservoir

Coordinate Location
- N 2601812 E 6461399

Soil Samples

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>Recovery, %</th>
<th>Blows / 6 in.</th>
<th>Drill Time (Rate, ft/hr)</th>
<th>Fractures per Foot</th>
<th>Fracture Drawing Number</th>
<th>R Q D, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Notes and Test Results

- Advance 5-inch casing to 3ft.
- Refusal with tricone bit; switched to HQ rock core
- *Rock does not meet soundness criteria for RQD calculation*
Log of Soil and Core Boring BI-03

Sheet 2 of 3

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>-2292</td>
</tr>
<tr>
<td>14</td>
<td>-2290</td>
</tr>
<tr>
<td>15</td>
<td>-2288</td>
</tr>
<tr>
<td>16</td>
<td>-2286</td>
</tr>
<tr>
<td>17</td>
<td>-2284</td>
</tr>
<tr>
<td>18</td>
<td>-2282</td>
</tr>
<tr>
<td>19</td>
<td>-2280</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

ROCK CORE

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
<th>Fracture Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>100</td>
<td>14*</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>14*</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100*</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>86*</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>48*</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **VOLCANIC BRECCIA**: green gray (5G 6/1); moderately weathered; weak; intensely fractured to locally crushed; fine to medium grained matrix with angular to subrounded clasts up to 0.75-inches
 - TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)—(continued)
 - 5: 30, J, N, No, No, Wa-Pt, SR

- **Becomes slightly fractured; moderately strong**
 - 1: 35, J, N, No, No, St, R
 - 2: 30, J, N, No, Wa, SR
 - 3: 20, J, T, No, No, Wa, SR

- **Becomes highly fractured**
 - 1: 10, J, MW, No, No, Wa, SR
 - 2: 25, J, T, No, No, Wa-St, SR-R
 - 3: 10, J, MW, No, No, Wa, SR-R

- **Becomes moderately fractured**
 - 1: 10, J, MW, No, No, Wa, SR
 - 2: 25, J, T, No, No, Wa-St, SR-R
 - 3: 10, J, MW, No, No, Wa, SR-R

- **Moderately to highly weathered; weak to very weak; fractures 1, 2, 3 are likely mechanical**
 - 1: 15, J, T, No, No, Wa, SR
 - 2: 40, J, T, No, No, Wa-St, SR
 - 3: 5-10, J, MW, No, No, Wa, SR
 - 4: 30, J, N, No, Wa, Pt, SR
 - 5: 30, J, T, Ca, Pa, Pt-Wa, SR

- **Crushed zone**
 - 1: 65, J, MW, Sd, Pa, Wa, SR

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Depth, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2292</td>
<td></td>
</tr>
<tr>
<td>2290</td>
<td></td>
</tr>
<tr>
<td>2288</td>
<td></td>
</tr>
<tr>
<td>2286</td>
<td></td>
</tr>
<tr>
<td>2284</td>
<td></td>
</tr>
<tr>
<td>2282</td>
<td></td>
</tr>
<tr>
<td>2280</td>
<td></td>
</tr>
<tr>
<td>2278</td>
<td></td>
</tr>
</tbody>
</table>

FIELD NOTES AND TEST RESULTS

- **Depth, feet**
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21
 - 22
 - 23
 - 24
 - 25
 - 26
 - 27
 - 28
 - 29

- **Rock Type**
 - VOLCANIC BRECCIA

- **Lithology**
 - green gray (5G 6/1)

- **Moderate to very weak; moderately strong**
 - TERTIARY VOLCANICS

- **Mechanical fractures**
 - 1, 2, 3

- **Soundness criteria**
 - RQD = 70%

- **Mohs Hardness**
 - 3

- **UCS**
 - 221 psi

- **Brazilian Tensile Strength Test**
 - UCS = 221 psi

- **Punch Penetration Index Test**
 - UCS = 221 psi

- **Clayey coating**
 - 26.5-27.2 ft

- **Becomes slightly fractured; moderately strong**
 - 1: 35, J, N, No, No, St, R
 - 2: 30, J, N, No, Wa, SR
 - 3: 20, J, T, No, No, Wa, SR

- **Becomes highly fractured**
 - 1: 10, J, MW, No, No, Wa, SR
 - 2: 25, J, T, No, No, Wa-St, SR-R
 - 3: 10, J, MW, No, No, Wa, SR-R

- **Becomes moderately fractured**
 - 1: 10, J, MW, No, No, Wa, SR
 - 2: 25, J, T, No, No, Wa-St, SR-R
 - 3: 10, J, MW, No, No, Wa, SR-R

- **Moderately to highly weathered; weak to very weak; fractures 1, 2, 3 are likely mechanical**
 - 1: 15, J, T, No, No, Wa, SR
 - 2: 40, J, T, No, No, Wa-St, SR
 - 3: 5-10, J, MW, No, No, Wa, SR
 - 4: 30, J, N, No, Wa, Pt, SR
 - 5: 30, J, T, Ca, Pa, Pt-Wa, SR

- **Crushed zone**
 - 1: 65, J, MW, Sd, Pa, Wa, SR
ROCK CORE

<table>
<thead>
<tr>
<th>Depth, feet</th>
<th>Run No.</th>
<th>Box No.</th>
<th>Recovery, %</th>
<th>Fractures per Foot</th>
<th>R Q D, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2276</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>0</td>
<td>48°</td>
</tr>
<tr>
<td>-2274</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-2272</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-2270</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **VOLCANIC BRECCIA**: green gray (5G 6/1); moderately to highly weathered; weak to moderately strong; moderately fractured; fine to medium grained matrix with angular to subrounded clasts up to 0.75-inches.
- **TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)**—(continued)

- At 30.1 ft: Becomes intensely fractured, weak to moderately strong, locally very weak to weak
- 1: 5, J, N, No, No, Pl-Wa, SR
- 2: 20, J, N-MW, No, No, Wa, SR
- 3: 35, J, N, Ca+Sd, Fe, Pl, S
- 4: 30, J, N, No, No, Pl, SR
- Becomes highly weathered; weak; crushed along a fracture?
- 5: 65, J, MW-W, Fe+Sd, Su+Pa, Pl, SR-R with ~0.75-inch Fe stained highly weathered rind
- 6: 10-20, J, T, No, No, Wa-Pl, SR

TOTAL DEPTH = 35.1 FEET

SOIL SAMPLES

<table>
<thead>
<tr>
<th>Elevation, feet</th>
<th>Number</th>
<th>Recovery, %</th>
<th>Blows / 6 in.</th>
<th>Drill Time [Rate, ft/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>5</td>
<td>1321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>1327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>1347</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rock does not meet soundness criteria for RQD calculation
APPENDIX B PACKER TEST DATA
Boring B-203
Surface El. (ft) 2305
Groundwater El. (ft) 2330
Test No. 1
Test Interval Center Elevation (ft) 2268.5
Test Interval Length, L (ft) 20.0
Max. Measured Pressure, P_{MAX} (psi) 62.0
Reference Pressure, P_0 (psi) 145
Representative Lugeon Value 0

<table>
<thead>
<tr>
<th>Step No.</th>
<th>$%P_{\text{MAX}}$</th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, ψ</th>
<th>Flow, q (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>36.00</td>
<td>0.019999005</td>
<td>0.00</td>
<td>0.0000</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>43.00</td>
<td>0.02387695</td>
<td>0.02</td>
<td>0.0010</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>62.00</td>
<td>0.034427231</td>
<td>0.04</td>
<td>0.0020</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>#N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>#N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step No.</th>
<th>0.0005</th>
<th>0.001</th>
<th>0.0015</th>
<th>0.002</th>
<th>0.0025</th>
<th>0.003</th>
<th>0.0035</th>
<th>0.004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Loss (gal/min/ft)</td>
<td>0.0005</td>
<td>0.001</td>
<td>0.0015</td>
<td>0.002</td>
<td>0.0025</td>
<td>0.003</td>
<td>0.0035</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Pressure Factor
<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P_{\text{MAX}}</th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, (\psi)</th>
<th>Flow, (q) (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>42.00</td>
<td>0.023321672</td>
<td>12.78</td>
<td>0.6390</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>58.00</td>
<td>0.032206119</td>
<td>20.64</td>
<td>1.0320</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>78.33</td>
<td>0.04349677</td>
<td>31.70</td>
<td>1.5850</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>58.33</td>
<td>0.032391212</td>
<td>18.90</td>
<td>0.9350</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>42.50</td>
<td>0.023599311</td>
<td>7.46</td>
<td>0.3730</td>
<td>16</td>
</tr>
</tbody>
</table>

Graph

- **Flow Loss (gal/min/ft)** vs. **Pressure Factor**
- Points 1, 2, 3, 4, 5 correspond to the steps and values in the table.
<table>
<thead>
<tr>
<th>Boring</th>
<th>B-203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation (ft)</td>
<td>2239.5</td>
</tr>
<tr>
<td>Surface El. (ft)</td>
<td>2305</td>
</tr>
<tr>
<td>Groundwater El. (ft)</td>
<td>2330</td>
</tr>
<tr>
<td>Test No.</td>
<td>3</td>
</tr>
<tr>
<td>Test Interval Center Elevation (ft)</td>
<td>2229.5</td>
</tr>
<tr>
<td>Test Interval Length, L (ft)</td>
<td>20.0</td>
</tr>
<tr>
<td>Max. Measured Pressure, P<sub>MAX</sub> (psi)</td>
<td>99.0</td>
</tr>
<tr>
<td>Reference Pressure, P<sub>0</sub> (psi)</td>
<td>145</td>
</tr>
<tr>
<td>Representative Lugeon Value</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P<sub>MAX</sub></th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, ψ</th>
<th>Flow, q (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>50.00</td>
<td>0.027763896</td>
<td>1.34</td>
<td>0.0670</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>73.00</td>
<td>0.040535288</td>
<td>1.88</td>
<td>0.0940</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>99.00</td>
<td>0.054972514</td>
<td>1.22</td>
<td>0.0610</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>#N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>#N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Boring B-203

- **Top of Test Elevation (ft)**: 2219.5
- **Surface El. (ft)**: 2305
- **Groundwater El. (ft)**: 2330
- **Test No.**: 4
- **Test Interval Center Elevation (ft)**: 2209.5
- **Test Interval Length, L (ft)**: 20.0
- **Max. Measured Pressure, P_{MAX} (psi)**: 118.0
- **Reference Pressure, P_0 (psi)**: 145
- **Representative Lugeon Value**: 2

Test Interval Center Elevation (ft)

<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P_{MAX}</th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, (\psi)</th>
<th>Flow, (q) (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>59.00</td>
<td>0.032761397</td>
<td>0.92</td>
<td>0.0460</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>90.00</td>
<td>0.049975012</td>
<td>2.02</td>
<td>0.1010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>118.00</td>
<td>0.065522794</td>
<td>3.10</td>
<td>0.1550</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>90.00</td>
<td>0.049975012</td>
<td>1.42</td>
<td>0.0710</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>65.00</td>
<td>0.036093065</td>
<td>0.32</td>
<td>0.0160</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram

![Graph showing flow loss (gal/min/ft) vs. pressure factor](image-url)
Boring: B-203

<table>
<thead>
<tr>
<th>Top of Test</th>
<th>Elevation (ft)</th>
<th>2200.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom of Test</td>
<td>Elevation (ft)</td>
<td>2185.0</td>
</tr>
<tr>
<td>Top of Test Depth</td>
<td>(ft)</td>
<td>105</td>
</tr>
<tr>
<td>Bottom of Test Depth</td>
<td>(ft)</td>
<td>120</td>
</tr>
<tr>
<td>Angle from Vertical</td>
<td>(deg)</td>
<td>0</td>
</tr>
</tbody>
</table>

Test No.: 5

<table>
<thead>
<tr>
<th>Test Interval Center</th>
<th>Elevation (ft)</th>
<th>2192.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Interval Length,</td>
<td>L (ft)</td>
<td>15.0</td>
</tr>
<tr>
<td>Max. Measured</td>
<td>Pressure, P_{MAX} (psi)</td>
<td>135.7</td>
</tr>
<tr>
<td>Reference Pressure,</td>
<td>P_0 (psi)</td>
<td>145</td>
</tr>
<tr>
<td>Representative Lugeon Value</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P_{MAX}</th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, ψ</th>
<th>Flow, q (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>78.00</td>
<td>0.043311677</td>
<td>0.02</td>
<td>0.0013</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>102.33</td>
<td>0.05682344</td>
<td>0.14</td>
<td>0.0093</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>135.67</td>
<td>0.075332704</td>
<td>1.22</td>
<td>0.0813</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Graph showing Flow Loss (gal/min/ft) vs. Pressure Factor.
<table>
<thead>
<tr>
<th>Boring</th>
<th>B-206</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Test Elevation (ft)</td>
<td>2263.0</td>
</tr>
<tr>
<td>Bottom of Test Elevation (ft)</td>
<td>2254.3</td>
</tr>
<tr>
<td>Top of Test Depth (ft)</td>
<td>85</td>
</tr>
<tr>
<td>Bottom of Test Depth (ft)</td>
<td>95</td>
</tr>
<tr>
<td>Angle from Vertical (deg)</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test No.</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Interval Center Elevation (ft)</td>
<td>2258.7</td>
</tr>
<tr>
<td>Test Interval Length, L (ft)</td>
<td>10.0</td>
</tr>
<tr>
<td>Max. Measured Pressure, P_{MAX} (psi)</td>
<td>77.9</td>
</tr>
<tr>
<td>Reference Pressure, P_0 (psi)</td>
<td>145</td>
</tr>
<tr>
<td>Representative Lugeon Value</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P_{MAX}</th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, ψ</th>
<th>Flow, q (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>77.88</td>
<td>0.043245044</td>
<td>0.34</td>
<td>0.0338</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Graph:
- **Flow Loss (gal/min/ft)** vs **Pressure Factor**
- **Key Point:** 3
Boring B-206

Top of Test Elevation (ft) 2271.7

Surface El. (ft) 2336.62231

Groundwater El. (ft) 2328.02231

Test No. 2

Test Interval Center Elevation (ft) 2267.3

Test Interval Length, L (ft) 10.0

Max. Measured Pressure, P_{MAX} (psi) 73.0

Reference Pressure, P_{r} (psi) 145

Representative Lugeon Value 0

<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P_{MAX}</th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, ψ</th>
<th>Flow, q (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>72.96</td>
<td>0.040513077</td>
<td>0.02</td>
<td>0.0024</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
<td>#N/A</td>
</tr>
</tbody>
</table>

0 0 0 0 0 0

Flow Loss (gal/min/ft)

Pressure Factor

Graph...
<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P<sub>MAX</sub></th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, ψ</th>
<th>Flow, q (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>39.02</td>
<td>0.021669027</td>
<td>0.00</td>
<td>0.0000</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>47.15</td>
<td>0.026180984</td>
<td>0.00</td>
<td>0.0000</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>61.06</td>
<td>0.033903789</td>
<td>0.01</td>
<td>0.0003</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>47.24</td>
<td>0.026232069</td>
<td>0.00</td>
<td>0.0000</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>38.13</td>
<td>0.021173117</td>
<td>0.00</td>
<td>0.0000</td>
<td>0</td>
</tr>
</tbody>
</table>

The graph shows the relationship between pressure factor and flow loss, indicating an increase in flow loss as the pressure factor increases.
Boring BI-03

<table>
<thead>
<tr>
<th>Top of Test Elevation (ft)</th>
<th>2287.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom of Test Elevation (ft)</td>
<td>2267.1</td>
</tr>
<tr>
<td>Top of Test Depth (ft)</td>
<td>15.1</td>
</tr>
<tr>
<td>Bottom of Test Depth (ft)</td>
<td>35.1</td>
</tr>
<tr>
<td>Angle from Vertical (deg)</td>
<td>0</td>
</tr>
</tbody>
</table>

Test No.	1
Test Interval Center Elevation (ft)	2277.1
Test Interval Length, L (ft)	20.0

Max. Measured Pressure, P_{MAX} (psi)	42.4
Reference Pressure, P_0 (psi)	145
Representative Lugeon Value	4

<table>
<thead>
<tr>
<th>Step No.</th>
<th>%P_{MAX}</th>
<th>Measured Pressure (psi)</th>
<th>Pressure Factor, ψ</th>
<th>Flow, q (gal/min)</th>
<th>Flow loss (gal/min/ft)</th>
<th>Lugeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>21.16</td>
<td>0.011748459</td>
<td>0.13</td>
<td>0.0065</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
<td>32.61</td>
<td>0.018106835</td>
<td>0.61</td>
<td>0.0306</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>100%</td>
<td>42.36</td>
<td>0.023519129</td>
<td>1.66</td>
<td>0.0832</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>31.62</td>
<td>0.017556</td>
<td>0.76</td>
<td>0.0378</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>21.16</td>
<td>0.01175168</td>
<td>0.14</td>
<td>0.0070</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graph showing the relationship between Flow Loss (gal/min/ft) and Pressure Factor](image-url)

The graph illustrates the relationship between Flow Loss (gal/min/ft) and Pressure Factor. The data points correspond to the steps listed in the table, with Step 1 (50%) having the lowest Flow Loss and Step 4 (75%) having the highest Flow Loss. The trend line indicates an increasing Flow Loss with an increase in Pressure Factor.
October 11, 2018

AECOM
300 Lakeside Drive, Suite 400
Oakland, CA 94612, USA

Subject: Borehole Televiewer Logging Survey
Klamath River Project
Iron Gate Reservoir
Siskiyou County, California

NORCAL Job No: NS185074

Attention: Ben Kozlowicz

This report presents the findings of a borehole geophysical investigation performed by NORCAL Geophysical Consultants, Inc. at the Klamath River Project at the northeast end of Iron Gate Reservoir. This investigation was part of a geotechnical study to assess subsurface conditions along a propose water tunnel alignment. The survey was performed on two separate mobilizations during the period of August 16 through 23, 2018 by NORCAL Professional Geophysicist William J. Henrich PGp 893. Logistical support and safety information were provided onsite by Mr. Tim VandeVoorde, Engineering Geologist of AECOM.

1.0 SITE DESCRIPTION

Our work concerned 2 boreholes situated near the north and south shore at the very northeastern end of Iron Gate Reservoir (see Plate 1, Borehole Location Map). The purpose of this investigation was to help determine rock mass characteristics that included orientations and depth distribution of bedrock discontinuities. The site was underlain by unconsolidated river deposits, basalt flows and tuff breccia.

2.0 SCOPE

Geophysical borehole logging was conducted in two drilled boreholes labeled as B-202 and B-206. The geophysical logging methods consisted of acoustic televviewer and caliper. The scope of work included a report detailing analysis, methods, and presentation of results.
3.0 BOREHOLE CONDITIONS

Both boreholes were inclined 60 degrees from horizontal. They contained shallow Hwt. 4.5- inch diameter steel conductor casings from depths of 9 to 29.5-ft bgs. The casing was installed to prevent caving from unconsolidated river deposits. Below the conductor casing the boreholes were advanced with a HQ- diamond coring method. The HQ open bore diameter was approximately 3.82-inches. The principle rock types consisted of relatively hard, well consolidated basalt and highly weathered, weak tuff breccia. The latter geologic unit tended to cave and create washouts of the borehole wall. This impeded the advancement of the acoustic televviewer in Borehole B-202.

4.0 GEOPHYSICAL LOGGING EQUIPMENT AND METHODOLOGY

NORCAL conducted geophysical borehole logging using a digital MICROLOGGER2 System manufactured by Robertson Geologging, Ltd. This system consisted of the following components:

- control console,
- computer,
- motorized cable winch,
- Televviewer (acoustic)
- caliper

4.1 TELEVIEWER

Complete descriptions of the methodology, data acquisition and data analysis procedures are presented in Appendix A.

4.2 CALIPER

Caliper logs are a measure of the borehole diameter versus depth. The tool was used both as a survey technique to assess the relative consolidation of bedrock and provide parameter input to a computer program that calculates discontinuity dip. The caliper tool consists of three interconnected mechanical arms that are spring loaded against the borehole wall. The horizontal deflections of the arms gauge the borehole diameter in units of inches with depth. The logging measurement was made in the up hole direction at a speed of approximately 12-ft per minute. The data sampling rate for this instrumentation was every 0.2-ft.
5.0 RESULTS AND INTERPRETATION

Caliper and televiewer field logs are presented in Appendix B. Specific interpreted log plots (Televiewer Analysis of Dips) from the televiewer logging are presented in Appendix C. Supporting numerical tables (Discontinuity Tables) that tabulated depth, dip angles, dip azimuths, aperture thickness where applicable and fracture classification are presented in Appendix D.

Over 95 percent of all discontinuities subjected to orientation analysis were classified as fractures. The remaining percentage were attributed to lithologic contacts between basalt and tuff breccia. Fracture classifications are discussed in Appendix A. The discontinuities classified as fractures were present only in the basalt unit in Borehole B-206. No discontinuities in the tuff breccia in the lower portion of this borehole and the entire logged open borehole section of B-202 were observed. This is because this unit, based on very low BHTV amplitude returns and variable borehole diameters (washouts), is highly weathered and poorly consolidated. As a result, this geologic unit was not capable of supporting brittle fractures. Note that not all visible fractures-joints on the televiewer images were chosen for orientation analysis. This was because these non-selected features were either too fragmented or feint to be considered representative. We did subdivide or classify the fractures-joints based on the appearance of the televiewer image and related caliper responses.

6.0 STANDARD OF CARE

The scope of NORCAL's services for this project consisted of using geophysical methods to characterize the subsurface. The accuracy of our findings is subject to specific site conditions and limitations inherent to the techniques used. We performed our services in a manner consistent with the standard of care ordinarily exercised by members of the profession currently employing similar methods. No warranty, with respect to the performance of services or products delivered under this agreement, expressed or implied, is made by NORCAL.
Thank you for the opportunity to participate on this project.

Sincerely,

NORCAL Geophysical Consultants, Inc.

William J. Henrich
Professional Geophysicist PGp 893

Donald J. Kirker
Professional Geophysicist PGp 997

WJH/DJK/tlt

Enclosures:

Appendix A: Borehole Imaging Televiewer Surveying and Data Processing
Appendix B: Field Logs Televiewer and Caliper Survey, Boreholes B-202 and B-206
Appendix C: Interpreted Televiewer Plot, Borehole B-206
Appendix D: Discontinuity Table Borehole B-206
Appendix A:

TelevIEWer Analysis Boreholes B-202 and B-206
APPENDIX A

BOREHOLE TELEVIEWER SURVEY

1.0 METHODOLOGY

Televiewers are downhole tools that are used to produce radial images of the interior of a borehole. The images are composited sequentially using computer software to produce continuous color images. These images are like unfolded, or unwrapped, cylinders displayed on a two-dimensional surface. The “unwrapped” radial images are referenced to magnetic north by an on-board magnetic compass. In addition, an on-board three-axis magnetic inclinometer determines the inclination and azimuth of the borehole.

Televiewer images can be used to detect bedrock discontinuities (joints, fractures, bedding planes, geologic contacts, etc.) in boreholes and determine their frequency, depths and orientations. Interpretable discontinuities appear as thin sinusoidal forms that stretch across the image. Interactively fitting lines to these sinusoids provides data that computer software uses to determine the orientation and dip of the discontinuities. The midpoint or half amplitude of the sinusoid is taken as the depth of the discontinuity.

There are two types of televiewers; optical and acoustic. Optical televiewers (OPTV) use a digital optical sensor to produce radial images to a vertical resolution as fine as 0.004 feet and a radial resolution to 720 pixels. However, they can only be used in dry holes or in water filled holes with sufficient clarity to create an interpretable high resolution image. Acoustic televiewers (BHTV) require a water column to act as a medium for the transmission and reception of acoustic signals. The water does not have to be optically clear. In operation the BHTV transmits an ultrasonic signal into the borehole fluid and detects ultrasonic energy that is reflected from the borehole wall. Sidewall borehole images are created by measuring variations in the two-way travel time of the ultrasonic pulses as well as variations in the amplitude of the reflected signals.

2.0 DATA ACQUISITION

Prior to Televiewer logging we checked the correct operation of the onboard tool compass of bearing direction against the readings provided by a Brunton Compass. This procedure involves setting the probe vertically in a jig with a bar situated in the south (magnetic) direction and recording a time-drive record so that the bar forms a straight line down the center of the waterfall image. Alternately,
we incline the probe (greater than 45 degrees from vertical) in an arbitrary direction and compare the bearing displayed in test mode to the bearing indicated on the Brunton compass face. Variations of 1 to 2 degrees in azimuth between the tool display and Brunton Compass bearing confirms the tools compass is operating satisfactory.

Given that all boreholes maintained a shallow fluid level, image logging was accomplished with the acoustic method. We acquired acoustic BHTV data at a rate of approximately 1000 two-way pulses times per second. The tool was raised/lowered at a rate of 4.5-ft per minute. This resulted in a BHTV depth sample interval of 0.006 ft. Two logs were acquired in each borehole; one in the up direction and one in the down direction. This allowed us to demonstrate the tools compass stability by comparing the orientations of common features between the two logs.

3.0 DATA ANALYSIS

We used the computer program WELLCAD (Version 5.1, ALT, and Luxemburg) to display BHTV images and to calculate the orientations of interpreted discontinuities (e.g. fractures, joints, bedding). Corrections for the magnetic declination in the survey area required adding 14.3 degrees to the magnetic compass bearings in order to orient the borehole images to true north (see Figure A-1 below). Since borehole diameter is a major reduction parameter in determining dip magnitude, we input caliper log measurements. In each borehole, discontinuity analyses were performed interactively on sections of the unwrapped optical or acoustic amplitude images as viewed on a computer monitor. An interpretable discontinuity on a two-dimensional unwrapped borehole televiewer log appears as a recognizable sinusoidal trace that usually extends across the full width of the borehole image. The sinusoidal shape is a manifestation of planar discontinuities intercepting a three-dimensional cylindrical borehole. Planar discontinuities can be geologic features that include discrete fractures or joints, bedding planes and planar intrusions such as veins and geologic contacts. The traces of discontinuities identified on the image logs were
fitted with a bendable sinusoid overlying the trace, as shown in Figure A-2. This provided data that were used by WELLCAD to calculate a plane representing the orientation of the discontinuity in terms of dip direction and dip magnitude. This process was repeated for every significant discontinuity until the entire borehole was interpreted. At this stage, the apparent dip direction and dip magnitude of the identified discontinuities were converted to true geographic dip azimuth and dip magnitude by factoring the borehole tilt (inclination) and azimuth at the depth of the discontinuity.

![Figure A-2: A sample BHTV section showing observable discontinuity traces (left) versus the same image (right) with the addition of interpreted sinusoidal overlays (solid red and green colored traces).](image)

Based on observations of the core and discussions with the on-site geologist, as well as our own experience identifying planar features in acoustic televiewer images, we classified discontinuity features into three fracture/joints categories as follows:
1) "Open continuous fractures". These have characteristics that are relatively wide (measureable >> 1mm) apparent apertures, continuous sinusoidal traces across the circumference of the borehole wall and show relief/breakage along the borehole wall. This relief is usually shown as diameter enlargements on the caliper log.

2) "Thin partial to continuous fracture". These features are "thin" (indicative of very small apertures 1 mm or less) partial or discontinuous across the full 360 degrees span of the image to continuous. Feature traces can be irregular (non-sinusoidal) especially if the dip angles are greater than 60 degrees.

3) "Lithologic Contacts". Boundaries between basalt and tuff breccia.

We did not tabulate (interpret) cemented or highly discontinuous or fragmented fractures.

4.0 PRESENTATIONS

Field Logs showing the two completed BHTV logging runs referenced to magnetic North are presented in Appendix B. Two televiwer images are presented to show the stability of the compass orientation of common fracture features between separate logging runs. The Televiewer Analysis for B-206 referenced to true geographic North, is presented in Appendix C. This plot is several pages long, with header information presented at the top of the first page only. The plot contains several columns of information described, from left to right, as follows:

COLUMN 1 – DEPTH AXIS

The depth axis indicates the relative vertical distance below the ground surface. Ground surface was set equal to zero feet. Depth values are positive and increase in the downward direction.

COLUMN 2 - TELEVIEWSER IMAGE

This is an unwrapped false color (BHTV) image representing the interior of the borehole wall. On the BHTV images the relationship between color and signal amplitude is indicated by the color bar at the top of the header. Dark shades (blue) indicate relatively low amplitude and the brighter shades (yellow) indicate relatively high amplitudes. BHTV images are oriented relative to true North as indicated by the azimuth information presented in the header where North, East, South and West correspond to 0°, 90°, 180° and 270°, respectively. The diameter of the borehole is indicated by the white dashed line superimposed on the image. Solid and dashed color lines superimposed on
sinusoidal fracture/joint traces depict interpreted discontinuities. The colors of the lines relate to the fracture/joint classification as follows, red = open continuous fractures, teal = “thin”, partial to complete fractures and blue = lithologic contacts. Note, that due to the wide apparent thickness of some fractures, we expanded the line trace into a broader hachured sinusoidal section.

COLUMN 3 - DIPS PLOT

The Dips Plot indicates the dip of discontinuities and their direction of maximum dip. These parameters are indicated by small symbols called “tadpoles” which consist of colored circles or squares with a straight line (tail) extending from them. The position of the tadpole indicates the degree of dip, from 0° on the left to 90° on the right, according to the scale shown at the top of the column. The direction that the tail is pointing indicates the direction of dip where straight up is true north and 90° to the right indicates due east. The tadpole symbol colors relate to the three classifications of fractures and joints. A Discontinuity Legend in the sub-header related the colors to the classification. The numerical values of dip azimuth and dip angle are also presented in discontinuity tables presented at the end of this appendix.

COLUMN 4 - CORE PLOT

This plot is a graphic rendering of the BHTV image into a 3-D core based on amplitude variations. This is basically what the image shown in Column 2 would look like if it was re-wrapped to form a cylinder where the vertical center line of the cylinder represents true north (0°), the right edge represents west (270°) and the left edge represents east (90°). South (180°) is out of view behind the core. Although the color spectrum of the core is the same as that used for the BHTV image, the core reconstruction tends to compress the amplitude spectrum into a darker range. This has the effect of making the core appear to be reddish rather than yellow. Planes drawn through the interpreted discontinuities illustrate the relative dip and dip direction of the discontinuities.

COLUMN 5 - BOREHOLE DEVIATION

This plot indicates the azimuth and tilt of the borehole. The solid blue line represents the dip direction, from 0° to 360°, according to the header scale labeled “Azimuth”. The dotted green line represents the angle of the borehole from true vertical according to the header scale labeled “Tilt”. This scale ranges from 0° to 4°.
5.0 DISCONTINUITY TABLES

The dip azimuth and dip angle of all interpreted discontinuities from the teviewer analysis plot are tabulated Appendix D. The tables present 5 column headers listed left to right as follows: Depth, Dip Azimuth, Dip Angle, Corrected Aperture and Discontinuity Classification. A brief description of the meaning of these terms is presented below.

Depth – relates to the center of discontinuity's sinusoid in feet below ground surface.

Dip Azimuth – dip direction of the discontinuity in degrees from true North.

Dip Angle – inclination of the plane of the discontinuity in degrees from horizontal.

Corrected Aperture – true thickness of fracture/joint corrected for dip measured in tenths of inches. In this survey, we used this processing facility to indicate the true thickness of weathered/alterd fractures.

Discontinuity Classification – number designating classification type of fracture/joint (see Legend for explanation).
Appendix B:

Field Logs Televiwer and Caliper Survey
Boreholes B-202 and B-206
Appendix C:
Televiwer Analysis Plot
Borehole B-206
Volcanic Flow Fabric
Dipping to N-NW
Appendix D:

Discontinuity Table
Boreholes B-206
Field work conducted in July, 2018

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Dip Azimuth (deg)</th>
<th>Dip Angle (deg)</th>
<th>Vein Thickness (1/10 inches)</th>
<th>Discontinuity Classification (see Explanation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.57</td>
<td>140.32</td>
<td>76.75</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>23.12</td>
<td>58.29</td>
<td>78.68</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>24.16</td>
<td>67.97</td>
<td>25.98</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>25.52</td>
<td>42.73</td>
<td>61.45</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>26.46</td>
<td>57.25</td>
<td>22.54</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>26.48</td>
<td>62.09</td>
<td>69.06</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>28.11</td>
<td>53.72</td>
<td>60.46</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>28.27</td>
<td>39.82</td>
<td>39.62</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>28.9</td>
<td>52</td>
<td>39.62</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>29.97</td>
<td>51.76</td>
<td>33.87</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>30.54</td>
<td>46.92</td>
<td>23.86</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>30.67</td>
<td>148.32</td>
<td>70.68</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>31.53</td>
<td>49.6</td>
<td>44.6</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>32.19</td>
<td>52.06</td>
<td>49.96</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>33.56</td>
<td>43.07</td>
<td>36.46</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>34.33</td>
<td>65.47</td>
<td>67.69</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>34.85</td>
<td>146.65</td>
<td>76.34</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>35.31</td>
<td>13.66</td>
<td>32.06</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>36.41</td>
<td>68.13</td>
<td>52.28</td>
<td>na</td>
<td>1</td>
</tr>
<tr>
<td>37.29</td>
<td>286.06</td>
<td>15.36</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>37.74</td>
<td>258.54</td>
<td>87.17</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>38.7</td>
<td>85.98</td>
<td>65.14</td>
<td>0.47</td>
<td>1</td>
</tr>
<tr>
<td>39.32</td>
<td>82.73</td>
<td>68.45</td>
<td>0.34</td>
<td>1</td>
</tr>
<tr>
<td>40.77</td>
<td>138.04</td>
<td>81.09</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>41.19</td>
<td>134.45</td>
<td>85.46</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>41.51</td>
<td>309.75</td>
<td>88.64</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>42.19</td>
<td>118.19</td>
<td>81.57</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>42.35</td>
<td>126.15</td>
<td>81.88</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>43.34</td>
<td>120.37</td>
<td>73.78</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>46.25</td>
<td>249.1</td>
<td>50.56</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>49.3</td>
<td>124.62</td>
<td>65.04</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>50.83</td>
<td>11.82</td>
<td>48.04</td>
<td>na</td>
<td>1</td>
</tr>
<tr>
<td>55.78</td>
<td>328.96</td>
<td>79.19</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>56.58</td>
<td>41.25</td>
<td>76.59</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>58.08</td>
<td>41.73</td>
<td>69.34</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>60.87</td>
<td>46.4</td>
<td>57.42</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>61.08</td>
<td>59.22</td>
<td>43.18</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>62.66</td>
<td>321.44</td>
<td>82.92</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>66.26</td>
<td>26.68</td>
<td>32.79</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>66.58</td>
<td>18.98</td>
<td>29.74</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>68.21</td>
<td>99.31</td>
<td>81.31</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>72.65</td>
<td>29.26</td>
<td>54.98</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>73.03</td>
<td>242.35</td>
<td>52.54</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>73.66</td>
<td>155.6</td>
<td>48.28</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>74.79</td>
<td>53.08</td>
<td>81.3</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>74.97</td>
<td>50.2</td>
<td>65.09</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>78.79</td>
<td>266.85</td>
<td>33.13</td>
<td>na</td>
<td>3</td>
</tr>
<tr>
<td>82.92</td>
<td>257.8</td>
<td>41.65</td>
<td>na</td>
<td>3</td>
</tr>
<tr>
<td>83.43</td>
<td>251.52</td>
<td>38.95</td>
<td>na</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: "na" = true thickness of discontinuity aperture not determined
APPENDIX D LABORATORY TEST DATA
Log of Shelby Tube

Top

Length (in.) Depth

Empty

Light Brown SILT (slightly plastic) (Siltstone)

MD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

NOTE: All descriptions are visual descriptions unless classification tests were performed on that portion of the tube. Dashed lines indicate zones where listed tests were performed.
Log of Shelby Tube

- **CTL No.:** 020-272
- **Date:** 1/15/2019
- **Company Name:** AECOM
- **Run By:** MD
- **Project Name:** Klamath River Dam
- **Reduced By:** RU
- **Project No.:** 60537920
- **Boring:** BC-13
- **Sample:** S04
- **Depth (ft.):** 22'

<table>
<thead>
<tr>
<th>Top</th>
<th>Length (in.)</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: All descriptions are visual descriptions unless classification tests were performed on that portion of the tube. Dashed lines indicate zones where listed tests were performed.
Log of Shelby Tube

CTL No.: 020-272
Date: 1/15/2019
Company Name: AECOM
Run By: MD
Project Name: Klamath River Dam
Reduced By: RU
Project No.: 60537920
Boring: BC-13
Sample: S06
Depth (ft.): 40’

<table>
<thead>
<tr>
<th>Top</th>
<th>Length (in.)</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: All descriptions are visual descriptions unless classification tests were performed on that portion of the tube. Dashed lines indicate zones where listed tests were performed.
22 February, 2019

Job No. 1902023
Cust. No. 12259

Mr. John Hunt
Inspection Services Inc.
1798 University Avenue
Berkeley, CA 94703-1514

Subject: Project No.: 60537920
Project Name: Klamath River Dam Removal Project
Corrosivity Analysis – CalTrans Test Methods

Dear Mr. Hunt:

Pursuant to your request, CERCO Analytical has analyzed the soil samples submitted on February 05, 2019. Based on the analytical results, this brief corrosivity evaluation is enclosed for your consideration.

Based upon the resistivity measurements, Sample No.003 is classified as “severely corrosive” and the remaining samples are classified as “corrosive”. All buried iron, steel, cast iron, ductile iron, galvanized steel and dielectric coated steel or iron should be properly protected against corrosion depending upon the critical nature of the structure. All buried metallic pressure piping such as ductile iron firewater pipelines should be protected against corrosion.

The chloride ion concentrations reflect none detected with a reporting limit of 15 mg/kg.

The sulfate ion concentrations reflect none detected & 26 mg/kg and are determined to be insufficient to damage reinforced concrete structures and cement mortar-coated steel at these locations.

The pH of the soils ranged from 7.84 to 8.97, which does not present corrosion problems for buried iron, steel, mortar-coated steel and reinforced concrete structures.

This corrosivity evaluation is based on general corrosion engineering standards and is non-specific in nature. For specific long-term corrosion control design recommendations or consultation, please call JDH Corrosion Consultants, Inc. at (925) 927-6630.

We appreciate the opportunity of working with you on this project. If you have any questions, or if you require further information, please do not hesitate to contact us.

Very truly yours,

CERCO ANALYTICAL, INC.

J. Darby Howard, Jr. P.E.
President

JDH/djl
Enclosure
Client: Inspection Services, Inc.
Client’s Project No.: 60537920
Client’s Project Name: Klamath River Dam Removal Project
Date Sampled: 1-Feb-19
Date Received: 5-Feb-19
Matrix: Soil
Authorization: Signed Chain of Custody

<table>
<thead>
<tr>
<th>Job/Sample No.</th>
<th>Sample I.D.</th>
<th>Moisture (%)</th>
<th>pH</th>
<th>Min. Resistivity (ohms-cm)**</th>
<th>Sulfide (mg/kg)*</th>
<th>Chloride (mg/kg)*</th>
<th>Sulfate (mg/kg)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1902023-001</td>
<td>B-6, S-01 @ 5-6.5'</td>
<td>-</td>
<td>8.97</td>
<td>840</td>
<td>-</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>1902023-002</td>
<td>B-19, S-01 & S-02 @ 5-11.5'</td>
<td>-</td>
<td>7.97</td>
<td>980</td>
<td>-</td>
<td>N.D.</td>
<td>26</td>
</tr>
<tr>
<td>1902023-003</td>
<td>B-20, S-01 & S-02 @ 5-11.5'</td>
<td>-</td>
<td>7.84</td>
<td>470</td>
<td>-</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Method:

<table>
<thead>
<tr>
<th>Method</th>
<th>CT 226 (*)</th>
<th>CT 643 (b)</th>
<th>CT 643 (c)</th>
<th>CT 422 (c)</th>
<th>CT 417 (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting Limit</td>
<td>-</td>
<td>-</td>
<td>14-Feb-2019</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>Date Analyzed</td>
<td>-</td>
<td>8-Feb-2019</td>
<td>19-Feb-2019</td>
<td>8-Feb-2019</td>
<td>8-Feb-2019</td>
</tr>
</tbody>
</table>

* Results Reported on an "As Received" Basis
N.D. - None Detected

Cheryl McMillen
Laboratory Director

Quality Control Summary - All laboratory quality control parameters were found to be within established limits
Chain of Custody

<table>
<thead>
<tr>
<th>Lab No.</th>
<th>Sample I.D.</th>
<th>Date</th>
<th>Time</th>
<th>Matrix</th>
<th>Contain.</th>
<th>Size</th>
<th>Preserv.</th>
<th>Qty.</th>
<th>pH</th>
<th>Sulfate</th>
<th>Chloride</th>
<th>Resistivity-Minimum</th>
<th>Brief Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-22</td>
<td>5 3-01</td>
<td>5</td>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td>B-19</td>
<td>5 11.5 3-02</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B-22</td>
<td>5 11.5 3-02</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

THERE IS AN ADDITIONAL CHARGE FOR METAL/POLY TUBES
Moisture-Density-Porosity Report

Cooper Testing Labs, Inc. (ASTM D7263b)

<table>
<thead>
<tr>
<th>Boring:</th>
<th>BC-01</th>
<th>BC-01</th>
<th>BC-01</th>
<th>BC-02</th>
<th>BC-02</th>
<th>BC-02</th>
<th>BC-03</th>
<th>BC-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>BC-01</td>
<td>S-02</td>
<td>S-03</td>
<td>S04</td>
<td>S05</td>
<td>S09</td>
<td>S10</td>
<td>S-01</td>
</tr>
<tr>
<td>Depth, ft:</td>
<td>6.5</td>
<td>12.5-13</td>
<td>21.5</td>
<td>14.5</td>
<td>44.5</td>
<td>54.8-55.3</td>
<td>1</td>
<td>5.5-6.0</td>
</tr>
</tbody>
</table>

Visual Description:

- Dark Olive CLAY
- Gray Sandy CLAY
- Yellowish Brown ELASTIC SILT
- Sandy CLAY
- Gray ELASTIC SILT
- Black CLAY
- Dark Olive Brown CLAY
- Sandy CLAY w/ Gravel

Actual Gs

<table>
<thead>
<tr>
<th>Moisture, %</th>
<th>43.1</th>
<th>98.6</th>
<th>92.9</th>
<th>83.7</th>
<th>177.8</th>
<th>170.6</th>
<th>34.7</th>
<th>25.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Unit wt, pcf</td>
<td>91.0</td>
<td>80.3</td>
<td>125.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Unit wt, pcf</td>
<td>45.8</td>
<td>29.7</td>
<td>99.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Bulk Dens, (g/cc)</td>
<td>0.73</td>
<td>0.48</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation, %</td>
<td>99.3</td>
<td>98.3</td>
<td>99.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Porosity, %</td>
<td>72.8</td>
<td>82.4</td>
<td>40.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumetric Water Cont, Θw, %</td>
<td>72.3</td>
<td>81.0</td>
<td>40.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumetric Air Cont., Θa, %</td>
<td>0.5</td>
<td>1.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>2.68</td>
<td>4.68</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Series

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate.

Moisture-Density

The Zero Air-Voids curves represent the dry density at 100% saturation for each value of specific gravity.
Moisture-Density-Porosity Report

Cooper Testing Labs, Inc. (ASTM D7263b)

<table>
<thead>
<tr>
<th>CTL Job No:</th>
<th>020-251b</th>
<th>Project No.</th>
<th>60537920</th>
<th>By: RU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>AECOM</td>
<td>Date:</td>
<td>06/13/18</td>
<td></td>
</tr>
<tr>
<td>Project Name:</td>
<td>Klamath River Dam Removal Project</td>
<td>Remarks:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring Sample

<table>
<thead>
<tr>
<th>Depth, ft:</th>
<th>BC-03</th>
<th>BC-07</th>
<th>BC-08</th>
<th>BC-08A</th>
<th>BI-02</th>
<th>BI-02</th>
<th>BI-02</th>
<th>BI-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>S05</td>
<td>S02</td>
<td>S-01</td>
<td>S05</td>
<td>S05</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S-1</td>
</tr>
<tr>
<td>24.5</td>
<td>4-4.5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

Visual Description

- Light Olive Brown Elastic SILT
- Very Dark Olive Brown Sandy Fat CLAY w/ Gravel
- Dark Reddish Brown Sandy Fat CLAY
- Light Olive Elastic SILT
- Dark Reddish Brown Sandy Fat CLAY
- Yellowish Brown Sandy Fat CLAY
- Yellowish Brown Sandy Fat CLAY
- Olive Gray Poorly Graded GRAVEL w/ Silt & Sand

Actual Specific Gravity (G_s)

- 2.70

Assumed Specific Gravity (G_s)

- 2.70

Moisture, %

- 80.3
- 34.1
- 31.4
- 178.6
- 27.8
- 28.7
- 38.4
- 12.0

Wet Unit wt, pcf

- 117.5

Dry Unit wt, pcf

- 87.6

Dry Bulk Dens, (g/cc)

- 1.40

Saturation, %

- 99.5

Total Porosity, %

- 48.1

Volumetric Water Cont, θ_w, %

- 47.8

Volumetric Air Cont., θ_a, %

- 0.2

Void Ratio

- 0.93

Series

| Series | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (G_s) was used then the saturation, porosities, and void ratio should be considered approximate.

Moisture-Density

Zero Air-Voids Curves, Specific Gravity

- The Zero Air-Voids curves represent the dry density at 100% saturation for each value of specific gravity.

![Moisture-Density Diagram](image-url)
Moisture-Density-Porosity Report

Cooper Testing Labs, Inc. (ASTM D7263b)

Boring/Sample/Depth

<table>
<thead>
<tr>
<th>Boring</th>
<th>Sample</th>
<th>Depth, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-13</td>
<td>S03</td>
<td>17</td>
</tr>
<tr>
<td>BC-13</td>
<td>S04</td>
<td>22</td>
</tr>
<tr>
<td>BC-13</td>
<td>S06</td>
<td>40</td>
</tr>
</tbody>
</table>

Visual Description

- **Light Brown SILT (Siltstone) (slightly plastic)**
- **Pale Olive SILT (slightly plastic)**
- **Olive Brown Clayey SAND**

Physical Properties

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Assumed</th>
<th>Moisture, %</th>
<th>Wet Unit wt, pcf</th>
<th>Dry Unit wt, pcf</th>
<th>Dry Bulk Dens. ρb (g/cc)</th>
<th>Saturation, %</th>
<th>Total Porosity, %</th>
<th>Volumetric Water Cont, Θw, %</th>
<th>Volumetric Air Cont., Θa, %</th>
<th>Void Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gs</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>78.8</td>
<td>60.6</td>
<td>0.97</td>
<td>45.5</td>
<td>64.1</td>
<td>29.2</td>
<td>34.9</td>
<td>1.79</td>
</tr>
<tr>
<td>Moisture, %</td>
<td>30.1</td>
<td>59.1</td>
<td>20.8</td>
<td>74.4</td>
<td>46.8</td>
<td>0.75</td>
<td>61.2</td>
<td>72.3</td>
<td>44.2</td>
<td>28.0</td>
<td>2.61</td>
</tr>
<tr>
<td>Wet Unit wt, pcf</td>
<td>119.6</td>
<td>99.0</td>
<td>40.0</td>
<td>119.6</td>
<td>99.0</td>
<td>1.59</td>
<td>79.7</td>
<td>41.3</td>
<td>32.9</td>
<td>8.4</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Note

All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate.

Moisture-Density Graph

The Zero Air-Voids curves represent the dry density at 100% saturation for each value of specific gravity.
Moisture-Density-Porosity Report

Cooper Testing Labs, Inc. (ASTM D7263b)

<table>
<thead>
<tr>
<th>CTL Job No:</th>
<th>020-251b</th>
<th>Project No.</th>
<th>60537920</th>
<th>By: RU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>AECOM</td>
<td>Date:</td>
<td>06/13/18</td>
<td></td>
</tr>
<tr>
<td>Project Name:</td>
<td>Klamath River Dam Removal Project</td>
<td>Remarks:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Description:

<table>
<thead>
<tr>
<th>Boring</th>
<th>Sample</th>
<th>Depth, ft</th>
<th>BI-02</th>
<th>BI-02</th>
<th>BI-02</th>
<th>BI-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI-02</td>
<td>S1</td>
<td>5</td>
<td>Dark Reddish Brown Sandy Fat CLAY</td>
<td>Yellowish Brown Sandy Fat CLAY</td>
<td>Yellowish Brown Sandy Fat CLAY</td>
<td>Olive Gray Poorly Graded GRAVEL w/ Silt & Sand</td>
</tr>
<tr>
<td>BI-02</td>
<td>S2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-02</td>
<td>S3</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI-03</td>
<td>S-1</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actual G_s

27.8 28.7 38.4 12.0

Assumed G_s

Moisture, %

Wet Unit wt, pcf

Dry Unit wt, pcf

Dry Bulk Dens, pcf, (g/cc)

Saturation, %

Total Porosity, %

Volumetric Water Cont, ω_w, %

Volumetric Air Cont., ω_a, %

Void Ratio

<table>
<thead>
<tr>
<th>Series</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (G_s) was used then the saturation, porosities, and void ratio should be considered approximate.

Zero Air-voids Curves, Specific Gravity

The Zero Air-Voids curves represent the dry density at 100% saturation for each value of specific gravity.
MOISTURE & DENSITY TEST

<table>
<thead>
<tr>
<th>Boring #</th>
<th>B-2</th>
<th>B-4</th>
<th>B-5</th>
<th>B-6</th>
<th>B-6</th>
<th>B-6</th>
<th>B-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample #</td>
<td>S-01</td>
<td>S-01</td>
<td>S-02</td>
<td>S-02</td>
<td>S-03</td>
<td>S-04</td>
<td>S-05</td>
</tr>
<tr>
<td>Depth (ft.)</td>
<td>27-27.5</td>
<td>5-6.5</td>
<td>7.5-9</td>
<td>10-11.5</td>
<td>15-16.5</td>
<td>30-31.5</td>
<td>40-41.5</td>
</tr>
<tr>
<td>Soil type: (visual)</td>
<td>Gray silty sand with gravel</td>
<td>Grayish brown sandy clay with gravel</td>
<td>Grayish brown clayey gravel with sand</td>
<td>Grayish brown silty sand with organics</td>
<td>Dark gray clayey sand</td>
<td>Reddish brown clayey gravel with sand</td>
<td>Grayish brown gravel with sand</td>
</tr>
</tbody>
</table>

1. Date tested: 01/23/19 01/26/19 01/26/19 01/23/19 01/26/19 01/26/19 01/26/19 01/26/19
2. Tested by: JH JH JH JH JH JH JH JH
3. Specimen height (in.): 5.17 5.37 5.98
4. Wt. of specimen + tare (gm): 805.91 824.75 1173.34
5. Tare wt. (gm): 0.00 206.10 203.70
6. Diameter (in.): 2.42 2.42 2.42
7. Wet wt. of soil + dish wt. (gm): 1157.51 1002.84 453.90 446.32 384.60 1323.52 974.35 825.39
8. Dry wt. of soil + dish wt. (gm): 1032.81 912.52 437.81 359.22 317.89 1209.09 945.10 788.49
9. Wt. of dish (gm): 166.03 200.96 83.11 187.89 84.88 361.35 187.94 188.28
10. Dish ID

Wet Density (pcf)	129.0	95.3	134.2					
Dry Density (pcf)	114.5	63.2	118.2					
Moisture Content (%)	14.4	12.7	4.5	50.8	28.6	13.5	3.9	6.1

Gs (Assumed)	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70
Void Ratio	0.472	1.666	0.425					
Saturation (%)	72.6	82.4	85.7					

Additional data:
- Wt. of dry soil + dish before washing (gm)
- Wt. of dry soil + dish after washing (gm)
- % Passing #200 sieve
- USCS symbol
MOISTURE & DENSITY TEST

<table>
<thead>
<tr>
<th>Boring #</th>
<th>Sample #</th>
<th>Depth (ft.)</th>
<th>Soil type: (visual)</th>
<th>Moisture Content (%)</th>
<th>Gs (Assumed)</th>
<th>Void Ratio</th>
<th>Saturation (%)</th>
<th>Wet Density (pcf)</th>
<th>Dry Density (pcf)</th>
<th>USCS symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-7</td>
<td>S-02</td>
<td>16.5-18</td>
<td>Gray clayey sand with organics</td>
<td>49.1</td>
<td>2.70</td>
<td>0.786</td>
<td>75.6</td>
<td>115.1</td>
<td>94.4</td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>S-01</td>
<td>13-14.5</td>
<td>Grayish brown clay with sand</td>
<td>24.9</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>S-02</td>
<td>16-17.5</td>
<td>Dark grayish brown clayey sand</td>
<td>66.5</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>S-03</td>
<td>20-21.5</td>
<td>Grayish brown clayey sand</td>
<td>31.0</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8</td>
<td>S-04</td>
<td>25-25.5</td>
<td>Grayish brown clayey sand</td>
<td>10.5</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-10</td>
<td>S-02</td>
<td>25.5-27</td>
<td>Mottled grayish brown sandy clay</td>
<td>8.3</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-19</td>
<td>S-01</td>
<td>5-6.5</td>
<td></td>
<td>22.0</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-19</td>
<td>S-03</td>
<td>15-16.5</td>
<td></td>
<td>23.3</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Date tested: 01/26/19
2. Tested by: JH
3. Specimen height (in.) 5.67
4. Wt. of specimen + tare (gm) 788.65
5. Tare wt. (gm) 0.00
6. Diameter (in.) 2.42
7. Wet wt. of soil + dish wt. (gm) 359.80
8. Dry wt. of soil + dish wt. (gm) 269.65
9. Wt. of dish (gm) 85.87
10. Dish ID

Additional data:
- Wt. of dry soil + dish before washing (gm)
- Wt. of dry soil + dish after washing (gm)
- % Passing # 200 sieve

USCS symbol
Boring: B-15
Sample: S1
Depth, ft: 5-5.5

Visual Description:
- Brown Sandy Fat CLAY

| Actual G_s | | | | | | | | |
| Assumed G_s | 2.70 |

Moisture, %
- 23.7

Wet Unit wt, pcf
- 114.1

Dry Unit wt, pcf
- 92.3

Dry Bulk Dens. ρ_b, (g/cc)
- 1.48

Saturation, %
- 77.3

Total Porosity, %
- 45.3

Volumetric Water Cont., θ_w,%
- 35.0

Volumetric Air Cont., θ_a,%
- 10.3

Void Ratio
- 0.83

Series

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

Note:
All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (G_s) was used then the saturation, porosities, and void ratio should be considered approximate.

Moisture-Density

The Zero Air-Voids curves represent the dry density at 100% saturation for each value of specific gravity.

Graph:

- Zero Air-voids Curves, Specific Gravity
- Graph shows data points and curves for different series (1 to 8) with specific gravity values (2.6, 2.7, 2.8).
<table>
<thead>
<tr>
<th>Boring #</th>
<th>Sample #</th>
<th>Depth (ft.)</th>
<th>Soil type: (visual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-19</td>
<td>S-04</td>
<td>20-21.5</td>
<td>Grayish brown clayey gravel with sand</td>
</tr>
<tr>
<td>B-20</td>
<td>S-03</td>
<td>15-16.5</td>
<td>Grayish brown sandy clay</td>
</tr>
<tr>
<td>B-20</td>
<td>S-04</td>
<td>20-21.5</td>
<td>Grayish brown clayey sand</td>
</tr>
<tr>
<td>B-20</td>
<td>S-05</td>
<td>25-26.5</td>
<td>Grayish brown clayey sand with gravel</td>
</tr>
</tbody>
</table>

1. Date tested: 01/26/19
2. Tested by: JH
3. Specimen height (in.)
4. Wt. of specimen + tare (gm)
5. Tare wt. (gm)
6. Diameter (in.)
7. Wet wt. of soil + dish wt. (gm)
8. Dry wt. of soil + dish wt. (gm)
9. Wt. of dish (gm)
10. Dish ID

<table>
<thead>
<tr>
<th>Wet Density (pcf)</th>
<th>Dry Density (pcf)</th>
<th>Moisture Content (%)</th>
<th>Gs (Assumed)</th>
<th>Void Ratio</th>
<th>Saturation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional data:
- Wt. of dry soil + dish before washing (gm)
- Wt. of dry soil + dish after washing (gm)
- % Passing #200 sieve
- USCS symbol
#200 Sieve Wash Analysis
ASTM D 1140

<table>
<thead>
<tr>
<th>Job No.: 020-251</th>
<th>Project No.: 60537920</th>
<th>Run By: MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client: AECOM</td>
<td>Date: 6/14/2018</td>
<td>Checked By: DC</td>
</tr>
<tr>
<td>Project: Klamath River Dam Removal Project</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring:
- **Sample:** BC-02, BC-03, BC-04, BC-04
- **Depth, ft.:** 1-2, S-01, S-01, 1, S-01, 1.5, S02, 7

Soil Type:
- **Dark Olive Brown Clayey GRAVEL w/ Sand**
- **Dark Olive Brown Sandy Lean CLAY**
- **Dark Olive Brown Clayey SAND**
- **Dark Olive Brown Sandy CLAY**

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>wt. Ret. on #4 Sieve, gm</th>
<th>Wt. Ret. on #200 Sieve, gm</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Silt & Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Olive Brown Clayey</td>
<td>556.7</td>
<td>774.5</td>
<td>51.9</td>
<td>20.3</td>
<td>27.7</td>
</tr>
<tr>
<td>GRAVEL w/ Sand</td>
<td>16.7</td>
<td>30.2</td>
<td>3.1</td>
<td>30.2</td>
<td>66.6</td>
</tr>
<tr>
<td>Dark Olive Brown Sandy Lean CLAY</td>
<td>22.3</td>
<td>291.7</td>
<td>4.3</td>
<td>51.4</td>
<td>44.3</td>
</tr>
<tr>
<td>Brown Sandy SAND</td>
<td>15.6</td>
<td>205.6</td>
<td>3.2</td>
<td>39.3</td>
<td>57.5</td>
</tr>
<tr>
<td>Dark Olive Brown Sandy CLAY</td>
<td>176.0</td>
<td>200.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: As an added benefit to our clients, the gravel fraction may be included in this report. Whether or not it is included is dependent upon both the technician's time available and if there is a significant enough amount of gravel. The gravel is always included in the percent retained on the #200 sieve but may not be weighed separately to determine the percentage, especially if there is only a trace amount, (5% or less).
#200 Bulk Sieve Wash Analysis
ASTM D 1140m

<table>
<thead>
<tr>
<th>Job No.:</th>
<th>020-251</th>
<th>Project No.:</th>
<th>60537920</th>
<th>Run By:</th>
<th>MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>AECOM</td>
<td>Date:</td>
<td>6/14/2018</td>
<td>Checked By:</td>
<td>DC</td>
</tr>
<tr>
<td>Project:</td>
<td>Klamath River Dam Removal Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring:	BC-07
Sample:	S-02
Depth, ft.	4-4.5

| Soil Type: | Very Dark Olive Brown Sandy Fat CLAY w/ Gravel |

Bulk Sample wt. lb.	218.0
Wt of Dish & Dry Soil <#4, gm	389.5
Weight of Dish, gm	171.0
Weight of Dry Soil <#4, gm	218.5
Wt. Ret. on #4 Sieve, lb	33.1
Wt. Ret. on #200 Sieve, gm	52.3
% Gravel	15.2
% Sand	20.3
% Silt & Clay	64.5

Remarks: As an added benefit to our clients, the gravel fraction may be included in this report. Whether or not it is included is dependent upon both the technician's time available and if there is a significant enough amount of gravel. The gravel is always included in the percent retained on the #200 sieve but may not be weighed separately to determine the percentage, especially if there is only a trace amount, (5% or less).
ASTM D-1140
PERCENT PASSING NO. 200 SIEVE REPORT

Method A
Specimens Soaked Overnight without Deflocculating Agent
Dry Mass Determined Directly

<table>
<thead>
<tr>
<th>Boring Number</th>
<th>Sample Number</th>
<th>Depth (ft)</th>
<th>Percent of Soil Finer than No. 200 Sieve</th>
<th>Visual Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-6</td>
<td>S-03</td>
<td>15-16.5</td>
<td>36.2</td>
<td>Dark gray clayey sand</td>
</tr>
<tr>
<td>B-6</td>
<td>S-05</td>
<td>40-41.5</td>
<td>2.4</td>
<td>Grayish brown gravel with sand</td>
</tr>
<tr>
<td>B-8</td>
<td>S-04</td>
<td>25-25.5</td>
<td>27.6</td>
<td>Dark grayish brown clayey sand</td>
</tr>
<tr>
<td>B-10</td>
<td>S-02</td>
<td>25.5-27</td>
<td>15.7</td>
<td>Grayish brown clayey sand</td>
</tr>
<tr>
<td>B-20</td>
<td>S-03</td>
<td>15-16.5</td>
<td>67.8</td>
<td>Grayish brown sandy clay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Weight of Dry Soil + Pan (before wash)</th>
<th>Weight of Dry Soil + Pan (after wash)</th>
<th>Weight of Pan</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/26/19</td>
<td>317.9</td>
<td>233.5</td>
<td>84.9</td>
</tr>
<tr>
<td>01/26/19</td>
<td>945.1</td>
<td>927.2</td>
<td>187.9</td>
</tr>
<tr>
<td>01/26/19</td>
<td>470.0</td>
<td>392.2</td>
<td>188.3</td>
</tr>
<tr>
<td>01/26/19</td>
<td>428.9</td>
<td>375.1</td>
<td>85.3</td>
</tr>
<tr>
<td>01/26/19</td>
<td>550.9</td>
<td>303.7</td>
<td>186.2</td>
</tr>
</tbody>
</table>
#200 Sieve Wash Analysis
ASTM D 1140

<table>
<thead>
<tr>
<th>Job No.:</th>
<th>020-277</th>
<th>Project No.:</th>
<th>60537920</th>
<th>Run By:</th>
<th>MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td></td>
<td>Date:</td>
<td>3/26/2019</td>
<td>Checked By:</td>
<td>DC</td>
</tr>
<tr>
<td>Project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring:
B-15
Sample:
S3
Depth, ft.:
15-16.5

Soil Type:
Brown
Clayey
GRAVEL w/ Sand

<table>
<thead>
<tr>
<th>Wt of Dish & Dry Soil, gm</th>
<th>687.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of Dish, gm</td>
<td>172.2</td>
</tr>
<tr>
<td>Weight of Dry Soil, gm</td>
<td>515.1</td>
</tr>
<tr>
<td>Wt. Ret. on #4 Sieve, gm</td>
<td>218.3</td>
</tr>
<tr>
<td>Wt. Ret. on #200 Sieve, gm</td>
<td>357.6</td>
</tr>
<tr>
<td>% Gravel</td>
<td>42.4</td>
</tr>
<tr>
<td>% Sand</td>
<td>27.0</td>
</tr>
<tr>
<td>% Silt & Clay</td>
<td>30.6</td>
</tr>
</tbody>
</table>

Remarks: As an added benefit to our clients, the gravel fraction may be included in this report. Whether or not it is included is dependent upon both the technician's time available and if there is a significant enough amount of gravel. The gravel is always included in the percent retained on the #200 sieve but may not be weighed separately to determine the percentage, especially if there is only a trace amount, (5% or less).
ASTM D-1140

PERCENT PASSING NO. 200 SIEVE REPORT

Method A
Specimens Soaked Overnight without Deflocculating Agent
Dry Mass Determined Directly

<table>
<thead>
<tr>
<th>Client Name</th>
<th>AECOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>Klamath River Dam Removal Project</td>
</tr>
<tr>
<td>Project Number</td>
<td>60537920</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boring Number</th>
<th>B-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number</td>
<td>S-05</td>
</tr>
<tr>
<td>Depth (ft)</td>
<td>25-26.5</td>
</tr>
<tr>
<td>Percent of Soil Finer than No. 200 Sieve</td>
<td>23.1</td>
</tr>
<tr>
<td>Visual Classification</td>
<td>Grayish brown clayey sand with gravel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>01/26/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of Dry Soil + Pan (before wash)</td>
<td>563.3</td>
</tr>
<tr>
<td>Weight of Dry Soil + Pan (after wash)</td>
<td>476.3</td>
</tr>
<tr>
<td>Weight of Pan</td>
<td>187.6</td>
</tr>
</tbody>
</table>
Particle Size Distribution Report

#### % COBBLES	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
○ | 9.4 | 50.1 | 40.5 | | | | | |
□ | 26.7 | 65.3 | 8.0 | | | | | |
△ | 84.8 | 14.5 | 0.7 | | | | | |

####粒径分布

SOIL DESCRIPTION
- ○ Reddish Brown Clayey SAND
- □ Dark Olive Brown Well-Graded SAND w/ Silt & Gravel
- △ Dark Olive Brown Well-Graded GRAVEL

REMARKS:
- ○ Due to the small sample size, relative to the largest particle size, this data should be considered to be approximate.

COOPER TESTING LABORATORY

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Particle Size Distribution Report

% COBBLES % GRAVEL % SAND % SILT % CLAY USCS AASHTO PL LL
○ 61.4 29.6 9.0 GP-GM 26 41

SOIL DESCRIPTION
○ Olive Gray Poorly Graded GRAVEL w/ Silt & Sand

REMARKS:
○

Source: BI-03
Sample No.: S-01
Elev./Depth: 3.5'

COOPER TESTING LABORATORY
Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Figure
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.*</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>99.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>99.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>99.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>99.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>98.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0274 mm.</td>
<td>90.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0176 mm.</td>
<td>87.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0104 mm.</td>
<td>83.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0076 mm.</td>
<td>73.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0056 mm.</td>
<td>64.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0041 mm.</td>
<td>55.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0029 mm.</td>
<td>48.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0021 mm.</td>
<td>42.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0013 mm.</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY
0.0 | 0.0 | 1.0 | 56.9 | 42.1 |

Soil Description
Olive Gray Elastic SILT

Atterberg Limits
PL = 51
LL = 85
PI = 34

Coefficients
\[D_{85} = 0.0115 \]
\[D_{60} = 0.0048 \]
\[D_{50} = 0.0031 \]
\[C_u = \]
\[C_c = \]
\[D_{10} = \]

Classification
USCS = MH
AASHTO =

Remarks

Sample No.: S-04
Source of Sample: BC-01
Date: 6/5/18
Elev./Depth: 21.5'

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920

Project No.: 020-251

COOPER TESTING LABORATORY
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>99.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>99.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>99.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>99.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>99.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>99.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0285 mm.</td>
<td>93.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0182 mm.</td>
<td>91.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0106 mm.</td>
<td>89.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0077 mm.</td>
<td>81.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0056 mm.</td>
<td>73.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0040 mm.</td>
<td>65.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0029 mm.</td>
<td>57.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0021 mm.</td>
<td>52.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0013 mm.</td>
<td>41.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Soil Description
Gray Elastic SILT

Atterberg Limits
- \(PL = 59 \)
- \(LL = 105 \)
- \(PI = 46 \)

Coefficients
- \(D_{95} = 0.0090 \)
- \(D_{60} = 0.0032 \)
- \(D_{50} = 0.0018 \)
- \(C_u = 8.0 \)
- \(C_c = 10.0 \)

Classification
AASHTO = MH

Remarks

Sample No.: S-05
Source of Sample: BC-02
Date: 6/5/18
Elev./Depth: 14.5'

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Particle Size Distribution Report

Soil Description
Gray Elastic SILT

Atterberg Limits
- PL = 85
- LL = 187
- PI = 102

Coefficients
- D_{85} = 0.0084
- D_{60} = 0.0059
- D_{50} = 0.0047

Classification
- USCS = MH
- AASHTO =

Remarks

Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>100.0</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>99.6</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>99.6</td>
<td>99.5</td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>99.5</td>
<td>99.4</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>98.3</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>97.6</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>96.7</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>0.0331 mm.</td>
<td>97.6</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>0.0210 mm.</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>0.0122 mm.</td>
<td>97.6</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>0.0089 mm.</td>
<td>97.6</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>0.0067 mm.</td>
<td>97.6</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>0.0049 mm.</td>
<td>52.0</td>
<td>73.4</td>
<td></td>
</tr>
<tr>
<td>0.0035 mm.</td>
<td>40.3</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>0.0025 mm.</td>
<td>35.7</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>0.0016 mm.</td>
<td>27.6</td>
<td>27.6</td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Sample No.: S-09 **Source of Sample:** BC-02 **Date:** 6/5/18

Location:

Elev./Depth: 44.5'

Client: AECOM **Project:** Klamath River Dam Removal Project - 60537920

Project No.: 020-251 **Figure:**
Particle Size Distribution Report

Soil Description
Light Olive Brown Elastic SILT

Atterberg Limits
- PL = 59
- LL = 69
- PI = 10

Coefficients
- \(D_{85} = 0.0091\)
- \(D_{60} = 0.0049\)
- \(D_{50} = 0.0039\)
- \(D_{30} = 0.0021\)
- \(D_{15} = \) (no specification provided)
- \(C_u = \) (no specification provided)
- \(C_c = \) (no specification provided)

Classification
- USCS = MH
- AASHTO = (no specification provided)

Remarks

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* (X=NO)</th>
<th>PASS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>#200</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0309 mm.</td>
<td>98.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0196 mm.</td>
<td>97.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0116 mm.</td>
<td>90.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0084 mm.</td>
<td>82.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0062 mm.</td>
<td>71.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0046 mm.</td>
<td>57.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0033 mm.</td>
<td>43.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0024 mm.</td>
<td>33.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0015 mm.</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Sample No.: S-05
Source of Sample: BC-03
Date: 6/5/18
Elev./Depth: 24.5'

COOPER TESTING LABORATORY

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Figure
Particle Size Distribution Report

% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY
0.0 | 0.0 | 0.9 | 37.0 | 62.1

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT (X=NO)</th>
<th>PASS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>99.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>99.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>99.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>99.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>99.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>98.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0347 mm.</td>
<td>98.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0219 mm.</td>
<td>98.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0127 mm.</td>
<td>98.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0090 mm.</td>
<td>96.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0064 mm.</td>
<td>91.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0046 mm.</td>
<td>82.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0032 mm.</td>
<td>75.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0023 mm.</td>
<td>65.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0014 mm.</td>
<td>55.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Soil Description
Pale Brown Mottled Gray Elastic SILT

Atterberg Limits
- PL = 85
- LL = 120
- PI = 35

Coefficients
- D85 = 0.0050
- D60 = 0.0018
- D50 =
- D15 =
- Cc =
- Cd =

Classification
- USCS = MH
- AASHTO =

Remarks

Sample No.: S-08
Location:

Source of Sample: BC-04
Date: 5/16/18
Elev./Depth: 32.5(Tip-16")

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>99.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>99.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>99.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>99.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>99.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>98.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0343 mm.</td>
<td>97.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0218 mm.</td>
<td>95.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0126 mm.</td>
<td>94.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0089 mm.</td>
<td>93.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0063 mm.</td>
<td>92.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0046 mm.</td>
<td>86.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0034 mm.</td>
<td>64.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0026 mm.</td>
<td>29.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0016 mm.</td>
<td>16.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Soil Description
Light Olive Brown Elastic Silt

Atterberg Limits
- PL = 88
- LL = 200
- PI = 112

Coefficients
- D_{60} = 0.0044
- D_{50} = 0.0032
- D_{15} = 0.0026
- D_{10} = 0.0030
- C_{u} =
- C_{c} =

Classification
- USCS: MH
- AASHTO:

Remarks

Sample No.: S-05
Source of Sample: BC-08A
Date: 6/5/18
Elev./Depth: 54'

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Figure:

Elev./Depth: 54'
Particle Size Distribution Report

Dark Gray Elastic SILT

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.*</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>99.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>99.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>99.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>99.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>99.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>98.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0270 mm.</td>
<td>85.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0181 mm.</td>
<td>71.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0110 mm.</td>
<td>56.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0081 mm.</td>
<td>47.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0059 mm.</td>
<td>37.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0043 mm.</td>
<td>30.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0030 mm.</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0022 mm.</td>
<td>21.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0013 mm.</td>
<td>15.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Atterberg Limits

- **PL** = 53
- **LL** = 74
- **Pl** = 21

Coefficients

- **D_{85}** = 0.0270
- **D_{60}** = 0.0124
- **D_{50}** = 0.0088
- **D_{30}** = 0.0043
- **D_{15}** =
- **D_{10}** =
- **C_c** =

Classification

- **USCS** = MH
- **AASHTO** =

Remarks

- **Sample No.** = S-05
- **Source of Sample** = BC-09
- **Date** = 6/5/18
- **Elev./Depth** = 23(Tip-5")

Cooper Testing Laboratory

Client: AECOM

Project: Klamath River Dam Removal Project - 60537920

Project No: 020-251

Figure
Particle Size Distribution Report

Soil Description

Dark Reddish Brown Sandy Fat CLAY

Atterberg Limits

- PL = 28
- LL = 78
- PI = 50

Coefficients

- D_{85} = 2.56
- D_{60} = 0.0267
- D_{50} = 0.0084
- D_{30} = 0.15
- D_{15} = 0.02
- C_{c} = 0.1

Classification

- USCS = CH
- AASHTO =

Remarks

- (no specification provided)

Sample Information

- **Sample No.**: S-01
- **Source of Sample**: BI-02
- **Date**: 6/6/18
- **Elev./Depth**: 5'

Table: Particle Size Distribution

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC. %</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 in.</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 in.</td>
<td>91.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>89.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>83.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>79.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>77.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>76.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>72.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>68.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>65.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0284 mm.</td>
<td>60.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0184 mm.</td>
<td>56.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0108 mm.</td>
<td>52.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0078 mm.</td>
<td>49.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0056 mm.</td>
<td>45.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0041 mm.</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0028 mm.</td>
<td>41.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0020 mm.</td>
<td>40.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0010 mm.</td>
<td>39.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)
Particle Size Distribution Report

Soil Description
- Yellowish Brown Sandy Fat CLAY

Atterberg Limits
- PL = 28
- LL = 58
- PI = 30

Coefficients
- D_85 = 0.917
- D_60 = 0.0612
- D_50 = 0.0226
- C_u = 0.0032
- C_c =

Classification
- USCS = CH
- AASHTO =

Remarks

SIEVE SIZE PERCENT FINER SPEC.* PERCENT PASS? (X=NO)

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 in.</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 in.</td>
<td>98.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>95.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>90.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>81.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>79.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>76.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>69.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>62.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>58.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0292 mm.</td>
<td>53.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0190 mm.</td>
<td>47.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0113 mm.</td>
<td>42.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0081 mm.</td>
<td>38.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0059 mm.</td>
<td>34.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0042 mm.</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0029 mm.</td>
<td>29.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0021 mm.</td>
<td>28.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0013 mm.</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Sample Details
- **Sample No.**: S-02
- **Source of Sample**: BI-02
- **Date**: 6/6/18
- **Client**: AECOM
- **Project**: Klamath River Dam Removal Project - 60537920
- **Elev./Depth**: 10'
- **Project No.**: 020-251
- **Figure**: 020-251

Note: The image contains a bar graph showing the percent finer size distribution, a table with particle size distribution data, and text describing the soil characteristics, test results, and project information.
Particle Size Distribution Report

Soil Description

Yellowish Brown Sandy Fat CLAY

Atterberg Limits

\[PL = 27 \]
\[LL = 51 \]
\[PI = 24 \]

Coefficients

\[D_{50} = 0.492 \]
\[D_{60} = 0.113 \]
\[D_{50} = 0.0601 \]
\[C_u = 30 \]
\[C_c = 15 \]

Classification

USCS = CH

Remarks

Due to the small sample size, relative to the largest particle size, this data should be considered to be approximate.

Sample Data

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 in.</td>
<td>1.5 in.</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>1 in.</td>
<td>1 in.</td>
<td>95.9</td>
<td></td>
</tr>
<tr>
<td>3/4 in.</td>
<td>3/4 in.</td>
<td>93.1</td>
<td></td>
</tr>
<tr>
<td>3/8 in.</td>
<td>3/8 in.</td>
<td>93.1</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>#4</td>
<td>92.4</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>#10</td>
<td>90.7</td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>#30</td>
<td>86.2</td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>#40</td>
<td>83.9</td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>#50</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>#100</td>
<td>66.0</td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>#200</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>#270</td>
<td>48.6</td>
<td></td>
</tr>
<tr>
<td>0.0311 mm.</td>
<td>0.0311 mm.</td>
<td>43.4</td>
<td></td>
</tr>
<tr>
<td>0.0200 mm.</td>
<td>0.0200 mm.</td>
<td>39.1</td>
<td></td>
</tr>
<tr>
<td>0.0118 mm.</td>
<td>0.0118 mm.</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>0.0084 mm.</td>
<td>0.0084 mm.</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>0.0060 mm.</td>
<td>0.0060 mm.</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>0.0043 mm.</td>
<td>0.0043 mm.</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>0.0030 mm.</td>
<td>0.0030 mm.</td>
<td>23.3</td>
<td></td>
</tr>
<tr>
<td>0.0022 mm.</td>
<td>0.0022 mm.</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td>0.0013 mm.</td>
<td>0.0013 mm.</td>
<td>19.3</td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Date: 6/6/18
Elev./Depth: 15'
Particle Size Distribution Report

% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
○ | 61.4 | 29.6 | 9.0 | | GP-GM | 26 | 41 |

<table>
<thead>
<tr>
<th>SIEVE size</th>
<th>PERCENT FINER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>100.0</td>
</tr>
<tr>
<td>3/8"</td>
<td>54.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIEVE number size</th>
<th>PERCENT FINER</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>38.6</td>
</tr>
<tr>
<td>#10</td>
<td>27.2</td>
</tr>
<tr>
<td>#30</td>
<td>17.7</td>
</tr>
<tr>
<td>#40</td>
<td>15.9</td>
</tr>
<tr>
<td>#50</td>
<td>14.2</td>
</tr>
<tr>
<td>#100</td>
<td>11.4</td>
</tr>
<tr>
<td>#200</td>
<td>9.0</td>
</tr>
</tbody>
</table>

SOIL DESCRIPTION
○ Olive Gray Poorly Graded GRAVEL w/ Silt & Sand

REMARKS:
○

Source: BI-03
Sample No.: S-01
Elev./Depth: 3.5'
Particle Size Distribution Report

Soil Description
Dark Reddish Brown Sandy Fat CLAY

Atterberg Limits
- PL = 28
- LL = 78
- PI = 50

Coefficients
- D85 = 2.56
- D60 = 0.0267
- D50 = 0.0084
- D30 = 0.0020
- C_u = 0.0056
- C_c = 0.0028

Classification
USCS = CH
AASHTO =

Remarks

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINE</th>
<th>SPEC.* PERCENT</th>
<th>PASS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 in.</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 in.</td>
<td>91.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>89.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>83.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>79.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>77.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>76.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>72.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>68.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>65.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0284 mm.</td>
<td>60.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0184 mm.</td>
<td>56.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0108 mm.</td>
<td>52.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0078 mm.</td>
<td>49.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0056 mm.</td>
<td>45.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0041 mm.</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0028 mm.</td>
<td>41.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0020 mm.</td>
<td>40.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0010 mm.</td>
<td>39.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Sample No.: S-01 Source of Sample: BI-02 Date: 6/6/18
Location: Elev./Depth: 5'

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251 Figure

COOPER TESTING LABORATORY
Particle Size Distribution Report

Soil Description
Yellowish Brown Sandy Fat CLAY

Atterberg Limits
- PL = 28
- LL = 58
- PI = 30

Coefficients
- $D_{85} = 0.917$
- $D_{60} = 0.0612$
- $D_{50} = 0.0226$
- $D_{30} = 0.0032$
- $D_{15} = $
- $C_u =$
- $C_c =$

Classification
- USCS = CH
- AASHTO =

Remarks

Table: Particle Size Distribution

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC. PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 in.</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8 in.</td>
<td>98.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>95.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>90.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>81.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>79.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>76.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>69.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>62.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#270</td>
<td>58.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0292 mm.</td>
<td>53.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0190 mm.</td>
<td>47.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0113 mm.</td>
<td>42.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0081 mm.</td>
<td>38.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0059 mm.</td>
<td>34.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0042 mm.</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0029 mm.</td>
<td>29.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0021 mm.</td>
<td>28.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0013 mm.</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Figure
020-251

Sample Details
- **Sample No.:** S-02
- **Source of Sample:** BI-02
- **Date:** 6/6/18
- **Elev./Depth:** 10'

Project Information
- **Client:** AECOM
- **Project:** Klamath River Dam Removal Project - 60537920
- **Project No.:** 020-251
- **Figure:**
Particle Size Distribution Report

Soil Description

Yellowish Brown Sandy Fat CLAY

Atterberg Limits

\[PL = 27 \]
\[LL = 51 \]
\[PI = 24 \]

Coefficients

\[D_{85} = 0.492 \]
\[D_{60} = 0.113 \]
\[D_{50} = 0.0601 \]
\[C_u = 0.0067 \]
\[C_c = D_{15} = D_{10} = \]

Classification

USCS = CH

AASHTO =

Remarks

Due to the small sample size, relative to the largest particle size, this data should be considered to be approximate.

Sample No.: S-03
Source of Sample: BI-02
Date: 6/6/18
Elev./Depth: 15'

Client: AECOM
Project: Klamath River Dam Removal Project - 60537920
Project No.: 020-251
Figure:
Soil Description

Gray silty sand with gravel

Atterberg Limits

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PL})</td>
<td>(15)</td>
</tr>
<tr>
<td>(\text{LL})</td>
<td>(19)</td>
</tr>
</tbody>
</table>

Coefficients

\(D_{90} \)	\(13.5779 \)
\(D_{50} \)	\(1.9723 \)
\(D_{10} \)	\(0.5334 \)
\(C_{c} \)	\(3.2642 \)

Classification

USCS = SM
AASHTO =

Remarks

* (no specification provided)
Particle Size Distribution Report

% +3"
% Gravel % Sand % Fines
Coarse Fine Coarse Medium Fine Silt Clay
0 0 7 6 7 12 68

SIEVE SIZE PERCENT FINER SPEC.* PERCENT PASS? (X=NO)
3/4 100
3/8 98
#4 93
#10 87
#20 83
#40 80
#60 76
#140 70
#200 68

* (no specification provided)

Soil Description
Brown clay with sand

Atterberg Limits
PL= LL= Pl=

Coefficients
D90= 3.2821 D60= D50=
D30= D15= Cw= Cc=

Classification
USCS= CL AASHTO=

Remarks

Source of Sample: B-5 Depth: 5-6.5
Sample Number: S-01 Date: 2-1-19

Client: AECOM Project: Klamath River Dam Removal Project
60537920
Project No: 2301-069.0

Tested By: JH Checked By: JH
Soil Description

Grayish brown silty sand with organics

Atterberg Limits

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
</tr>
<tr>
<td>D_90</td>
<td>0.6851</td>
</tr>
<tr>
<td>D_50</td>
<td>0.2048</td>
</tr>
<tr>
<td>D_10</td>
<td>0.1007</td>
</tr>
<tr>
<td>C_U</td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td></td>
</tr>
<tr>
<td>C_F</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>AASHTO=</td>
</tr>
</tbody>
</table>

Remarks

(no specification provided)

Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS?</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>100</td>
<td></td>
<td></td>
<td>#4</td>
</tr>
<tr>
<td>#10</td>
<td>99</td>
<td></td>
<td></td>
<td>#10</td>
</tr>
<tr>
<td>#20</td>
<td>93</td>
<td></td>
<td></td>
<td>#20</td>
</tr>
<tr>
<td>#40</td>
<td>79</td>
<td></td>
<td></td>
<td>#40</td>
</tr>
<tr>
<td>#60</td>
<td>58</td>
<td></td>
<td></td>
<td>#60</td>
</tr>
<tr>
<td>#140</td>
<td>31</td>
<td></td>
<td></td>
<td>#140</td>
</tr>
<tr>
<td>#200</td>
<td>25</td>
<td></td>
<td></td>
<td>#200</td>
</tr>
</tbody>
</table>

Source of Sample

- **Source of Sample:** B-6
- **Sample Number:** S-02
- **Date:** 2-1-19

Client

- **Client:** AECOM
- **Project:** Klamath River Dam Removal Project
- **Project No:** 2301-069.0
- **Date:** 2-1-19

Tested By: JH
Checked By: JH
Particle Size Distribution Report

Soil Description
Reddish brown clayey gravel with sand

Atterberg Limits
- PL = LL =
- \(D_{90} = 42.1617 \)
- \(D_{50} = 36.9884 \)
- \(D_{10} = 7.5052 \)
- \(C_{L} = 0.3044 \)
- \(C_{u} = 13.2018 \)

Classification
- USCS = GC
- AASHTO =

Remarks

Source of Sample: B-6
Sample Number: S-04
Depth: 30-31.5
Date: 2-1-19

Client: AECOM
Project: Klamath River Dam Removal Project
Project No: 2301-069.0

Tested By: JH
Checked By: JH
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC. PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#60</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#140</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(no specification provided)

<table>
<thead>
<tr>
<th>GRAIN SIZE</th>
<th>PERCENT FINER</th>
<th>PERCENT COARSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 in.</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2 in.</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>1 1/2 in.</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>1 in.</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>3/4 in.</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>3/8 in.</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>#4</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>#10</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>#20</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>#40</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>#60</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>#140</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>#200</td>
<td>0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Soil Description

Gray gravel

Atterberg Limits

- **PL** =
- **LL** =
- **Pl** =

Coefficients

- **D90** = 44.0963
- **D85** = 41.0147
- **D50** = 26.6693
- **D30** = 12.5388
- **D15** = 8.3745
- **Cu** = 4.11
- **Cc** = 0.91

Classification

USCS = GP

Remarks

Source of Sample: B-6
Sample Number: S-06
Depth: 45-46.5
Date: 2-1-19

Client: AECOM
Project: Klamath River Dam Removal Project
Project No: 2301-069.0

Figure

Tested By: JH Checked By: JH
Particle Size Distribution Report

Soil Description

Gray clayey sand with organics

Atterberg Limits

<table>
<thead>
<tr>
<th>PL</th>
<th>LL</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>D_90</th>
<th>D_85</th>
<th>D_50</th>
<th>D_30</th>
<th>D_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4544</td>
<td>0.3191</td>
<td>0.1102</td>
<td>0.1102</td>
<td>0.1102</td>
</tr>
</tbody>
</table>

Classification

USCS = SC

Remarks

Source of Sample: B-7
Sample Number: S-02
Depth: 16.5-18
Date: 2-1-19

Client: AECOM
Project: Klamath River Dam Removal Project
Project No: 2301-069.0

Tested By: JH
Checked By: JH
Black silt with sand and organics

Soil Description

Atterberg Limits

PL = LL = PL =

Coefficients

D_30 = 0.0020
D_60 = 0.0266

Classification

USCS = ML
AASHTO =

Remarks

Source of Sample: B-8
Sample Number: S-02

Depth: 16-17.5

Client: AECOM
Project: Klamath River Dam Removal Project
Project No: 2301-069.0

Figure 2-11-19

Tested By: JH
Checked By: JH
Brown sandy clay

Atterberg Limits

PL = 22
LL = 62
Pl = 40

Coefficients

D90 = 0.4406
D85 = 0.2283
D50 = 0.0154
D30 = 0.15
D10 =
C =
C =

Classification

USCS = CH
AASHTO = A-7-6(27)

Remarks

Source of Sample: B-14
Sample Number: S-01
Depth: 6.4-7.9
Date: 2-11-19

Client: AECOM
Project: Klamath River Dam Removal Project
60537920
Project No: 2301-069.0

Tested By: JH
Checked By: JH
Soil Description

Brown sandy silt

Atterberg Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td></td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₉₀</td>
<td>0.6889</td>
</tr>
<tr>
<td>D₈₅</td>
<td>0.3736</td>
</tr>
<tr>
<td>D₄₀</td>
<td>0.0243</td>
</tr>
<tr>
<td>D₁₀</td>
<td>0.0057</td>
</tr>
<tr>
<td>C₈₅</td>
<td></td>
</tr>
<tr>
<td>C₄₀</td>
<td></td>
</tr>
</tbody>
</table>

Classification

USCS = ML

AASHTO =

Remarks

<table>
<thead>
<tr>
<th>Grain Size Distribution Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>% +3" Coarse</td>
</tr>
<tr>
<td>Spec. *</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>% +3"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC. * PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#60</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#140</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0313 mm</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0207 mm</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0123 mm</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0088 mm</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0063 mm</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0031 mm</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0013 mm</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)
Soil Description
Mottled grayish brown sandy clay

Atterberg Limits

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>0.7332</td>
</tr>
<tr>
<td>D90</td>
<td>0.3954</td>
</tr>
<tr>
<td>D50</td>
<td>0.1112</td>
</tr>
<tr>
<td>Cc</td>
<td></td>
</tr>
</tbody>
</table>

Classification

- USCS: CL
- AASHTO:

Remarks

* (no specification provided)
Soil Description

Grayish brown clayey gravel with sand

Atterberg Limits

- **PL=**
- **LL=**
- **D_{90}=** 22.3903
- **D_{50}=** 20.1845
- **D_{10}=** 0.1726
- **C_{u}=**
- **C_{c}=** 4.7896

Classification

- **USCS=** GC
- **AASHTO=**

Remarks

- **Remarks:**

Particle Size Distribution Report

Source of Sample:

- **B-19**
- **Depth:** 20-21.5
- **Sample Number:** S-04

Atterberg Limits

- **PL=**
- **LL=**
- **D_{90}=** 22.3903
- **D_{50}=** 20.1845
- **D_{10}=** 0.1726
- **C_{u}=**
- **C_{c}=** 4.7896

Classification

- **USCS=** GC
- **AASHTO=**

Remarks

- **Remarks:**

Source of Sample:

- **B-19**
- **Depth:** 20-21.5

Client:

- **AECOM**

Project:

- **Klamath River Dam Removal Project**
- **60537920**

Project No:

- **2301-069.0**

Tested By:

- **JH**

Checked By:

- **JH**
Particle Size Distribution Report

Soil Description
Brown sandy clay

Atterberg Limits

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td></td>
</tr>
</tbody>
</table>

Classification

USCS = CL
AASHTO =

Remarks

SIEVE SIZE
3/4
3/8
#4
#10
#20
#40
#60
#140
#200
0.0292 mm.
0.0191 mm.
0.0115 mm.
0.0083 mm.
0.0059 mm.
0.0030 mm.
0.0013 mm.

PERCENT FINER
100
98
97
86
82
77
73
66
64
56
50
43
40
37
31
27

PERCENT COARSER

Grain Size - mm.
% +3"
% Gravel
% Sand
% Fines

Coarse
Fine
Coarse
Medium
Fine
Silt
Clay

Remarks

Source of Sample: B-20
Sample Number: S-02
Depth: 10-11.5
Date: 2-11-19

Client: AECOM
Project: Klamath River Dam Removal Project
60537920
Project No: 2301-069.0
Figure

Tested By: JH
Checked By: JH
Soil Description
Grayish brown clayey sand

Atterberg Limits
- **PL**
- **LL**

Coefficients
- **D₉₀** = 7.0418
- **D₅₀** = 4.1173
- **D₁₀** = 0.1119
- **C_U**
- **C_L**

Classification
- **USCS** = SC
- **AASHTO** =

Remarks

Source of Sample: B-20
Sample Number: S-04
Depth: 20-21.5
Date: 2-1-19

Client: AECOM
Project: Klamath River Dam Removal Project
60537920
Project No: 2301-069.0
Figure

Tested By: JH
Checked By: JH
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<#40</th>
<th>%<#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Olive Gray Sandy SILT</td>
<td>33</td>
<td>25</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive Gray Elastic SILT</td>
<td>85</td>
<td>51</td>
<td>34</td>
<td>99.9</td>
<td>99.0</td>
<td>MH</td>
</tr>
<tr>
<td>Gray Elastic SILT</td>
<td>105</td>
<td>59</td>
<td>46</td>
<td>99.7</td>
<td>99.3</td>
<td>MH</td>
</tr>
<tr>
<td>Gray Elastic SILT</td>
<td>187</td>
<td>85</td>
<td>102</td>
<td>99.6</td>
<td>99.5</td>
<td>MH</td>
</tr>
<tr>
<td>Dark Olive Brown Sandy Lean CLAY</td>
<td>48</td>
<td>25</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT No. 020-251 CLiENT: AECOM
Project: Klamath River Dam Removal Project - 60537920

Source: BC-01 Sample No.: S-02 Elev./Depth: 6.5'
Source: BC-01 Sample No.: S-04 Elev./Depth: 21.5'
Source: BC-02 Sample No.: S-05 Elev./Depth: 14.5'
Source: BC-02 Sample No.: S-09 Elev./Depth: 44.5'
Source: BC-03 Sample No.: S-01 Elev./Depth: 1'

Remarks:

COOPER TESTING LABORATORY
LIQUID AND PLASTIC LIMITS TEST REPORT

Figure

Dashed line indicates the approximate upper limit boundary for natural soils

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<=#40</th>
<th>%<=#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Olive Brown Elastic SILT</td>
<td>69</td>
<td>59</td>
<td>10</td>
<td>100.0</td>
<td>100.0</td>
<td>MH</td>
</tr>
<tr>
<td>Pale Brown Mottled Gray Elastic SILT</td>
<td>120</td>
<td>85</td>
<td>35</td>
<td>99.4</td>
<td>99.1</td>
<td>MH</td>
</tr>
<tr>
<td>Very Dark Olive Brown Sandy Fat CLAY w/ Gravel</td>
<td>60</td>
<td>24</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Reddish Brown Sandy Fat CLAY</td>
<td>56</td>
<td>24</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Gray Elastic SILT</td>
<td>74</td>
<td>53</td>
<td>21</td>
<td>99.9</td>
<td>99.7</td>
<td>MH</td>
</tr>
</tbody>
</table>

Remarks:

- **Source:** BC-03
 Sample No.: S-05
 Elev./Depth: 24.5'

- **Source:** BC-04
 Sample No.: S-08
 Elev./Depth: 32.5(Tip-16”)

- **Source:** BC-07
 Sample No.: S02
 Elev./Depth: 4-4.5’

- **Source:** BC-08
 Sample No.: S-01
 Elev./Depth: 3.0’

- **Source:** BC-09
 Sample No.: S-05
 Elev./Depth: 23(Tip-5”)

LIQUID AND PLASTIC LIMITS TEST REPORT

COOPER TESTING LABORATORY
<table>
<thead>
<tr>
<th>Source/Location</th>
<th>Sample No.</th>
<th>Elev./Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: BC-08A</td>
<td>S-05</td>
<td>54'</td>
</tr>
<tr>
<td>Source: BI-02</td>
<td>S-01</td>
<td>5'</td>
</tr>
<tr>
<td>Source: BI-02</td>
<td>S-02</td>
<td>10'</td>
</tr>
<tr>
<td>Source: BI-02</td>
<td>S-03</td>
<td>15'</td>
</tr>
<tr>
<td>Source: BI-03</td>
<td>S-01</td>
<td>3.5'</td>
</tr>
</tbody>
</table>

Remarks:

- Dashed line indicates the approximate upper limit boundary for natural soils.
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils.

![Graph showing liquid and plastic limits test results](image)

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Source</th>
<th>Sample No.</th>
<th>Elev./Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light Olive Brown Elastic SILT</td>
</tr>
<tr>
<td></td>
<td>S-05</td>
<td>54'</td>
<td>LL 200, PL 88, PI 112, %<#40 99.6, %<#200 99.0, USCS MH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dark Reddish Brown Sandy Fat CLAY</td>
</tr>
<tr>
<td></td>
<td>S-01</td>
<td>5'</td>
<td>LL 78, PL 28, PI 50, %<#40 77.6, %<#200 68.3, USCS CH</td>
</tr>
<tr>
<td></td>
<td>S-02</td>
<td>10'</td>
<td>LL 68.3, PL 77.6, PI 50, %<#40 77.6, %<#200 68.3, USCS CH</td>
</tr>
<tr>
<td></td>
<td>S-03</td>
<td>15'</td>
<td>LL 62.5, PL 79.1, PI 30, %<#40 79.1, %<#200 62.5, USCS CH</td>
</tr>
<tr>
<td></td>
<td>S-01</td>
<td>3.5'</td>
<td>LL 52.9, PL 83.9, PI 24, %<#40 83.9, %<#200 52.9, USCS CH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yellowish Brown Sandy Fat CLAY</td>
</tr>
<tr>
<td></td>
<td>S-03</td>
<td>15'</td>
<td>LL 51, PL 27, PI 24, %<#40 83.9, %<#200 52.9, USCS CH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Olive Gray Poorly Graded GRAVEL w/ Silt & Sand</td>
</tr>
<tr>
<td></td>
<td>S-03</td>
<td>3.5'</td>
<td>LL 41, PL 26, PI 15, %<#40 15.9, %<#200 9.0, USCS GP-GM</td>
</tr>
</tbody>
</table>

Remarks:

- **Source:** BI-02
 - Sample No.: S-01
 - Elev./Depth: 5'
- **Source:** BI-02
 - Sample No.: S-02
 - Elev./Depth: 10'
- **Source:** BI-02
 - Sample No.: S-03
 - Elev./Depth: 15'
- **Source:** BI-03
 - Sample No.: S-01
 - Elev./Depth: 3.5'

LIQUID AND PLASTIC LIMITS TEST REPORT

COOPER TESTING LABORATORY
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils

MATERIAL DESCRIPTION	LL	PL	PI	%<#40	%<#200	USCS
Dark brown clay with sand | 69 | 22 | 47 | | | CH

Project No. 2301-069.0 Client: AECOM
Project: Klamath River Dam Removal Project
60537920
Source of Sample: B-8 Depth: 13-14.5 Sample Number: S-01

Tested By: JH Checked By: JH
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<#40</th>
<th>%<#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown sandy clay</td>
<td>62</td>
<td>22</td>
<td>40</td>
<td>90</td>
<td>70</td>
<td>CH</td>
</tr>
</tbody>
</table>

Project No. 2301-069.0 Client: AECOM
Project: Klamath River Dam Removal Project
60537920
Source of Sample: B-14 Depth: 6.4-7.9 Sample Number: S-01

Tested By: JH Checked By: JH
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Source of Sample</th>
<th>Water Content</th>
<th>Plasticity Index</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown clay</td>
<td>83-93</td>
<td>5-6.5</td>
<td>CH</td>
</tr>
</tbody>
</table>

- **Project No.**: 2301-069.0
- **Client**: AECOM
- **Project**: Klamath River Dam Removal Project
- **Remarks**:

Tested By: JH
Checked By: JH
Consolidation Test

ASTM D2435

Job No.: 020-251
Boring: BC-04
Run By: MD
Client: AECOM
Sample: S-08
Reduced: PJ
Project: 60537920
Depth, ft.: 32.5 (Tip-2")
Checked: PJ/DC
Date: 6/1/2018

Soil Type: Pale Brown Mottled Gray Elastic SILT

Assumed Gs

- 2.6

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture %:</td>
<td>149.5</td>
<td>104.4</td>
</tr>
<tr>
<td>Dry Density, pcf:</td>
<td>32.1</td>
<td>43.7</td>
</tr>
<tr>
<td>Void Ratio:</td>
<td>4.058</td>
<td>2.715</td>
</tr>
<tr>
<td>% Saturation:</td>
<td>95.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Remarks:

Strain-Log-P Curve

- Strain, %
- Effective Stress, psf

- Strain-Log-P Curve
 - Consolidation Test
 - ASTM D2435

Graph Parameters:

- Strain, %
- Effective Stress, psf

Graph Details:

- Assumed Gs: 2.6
- Initial: 149.5
 Final: 104.4
- Moisture %:
- Dry Density, pcf: 32.1
 43.7
- Void Ratio: 4.058
 2.715
- % Saturation: 95.8
 100.0

Graph Description:

The graph illustrates the relationship between strain and effective stress, depicting the soil's behavior under varying stress conditions. The consolidation test results show the soil's response to applied stress, which is crucial for engineering design and construction planning.
Consolidation Test
ASTM D2435

Job No.: 020-251 Boring: BC-09 Run By: MD
Client: AECOM Sample: S-09 Reduced: PJ
Project: 60537920 Depth, ft.: 68-70.5(Tip-20") Checked: PJ/DC
Soil Type: Dark Greenish Gray CLAY (Silty) Date: 6/1/2018

Assumed Gs

<table>
<thead>
<tr>
<th>Moisture %:</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>88.4</td>
<td>60.3</td>
</tr>
<tr>
<td>Dry Density, pcf:</td>
<td>48.6</td>
<td>63.2</td>
</tr>
<tr>
<td>Void Ratio:</td>
<td>2.340</td>
<td>1.568</td>
</tr>
<tr>
<td>% Saturation:</td>
<td>98.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Remarks:

Strain-Log-P Curve
Triaxial Unconsolidated-Undrained
(ASTM D2850m)

Sample:

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC, %</td>
<td>160.5</td>
<td>163.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Dens, pcf</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sat. %</td>
<td>95.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>4.519</td>
<td>4.414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter in</td>
<td>2.87</td>
<td>2.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height, in</td>
<td>6.08</td>
<td>6.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell, psi</td>
<td></td>
<td></td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>BP, psi</td>
<td></td>
<td></td>
<td>38.5</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: Strengths picked at 5% strain.
*Sample was back-pressure saturated prior to shear.

Effective Stresses At:

Strain, %	5.0
Deviator ksf	3.444
Excess PP	0.000
Sigma 1	4.970
Sigma 3	1.526
P, ksf	3.248
Q, ksf	1.722
Stress Ratio	3.256

Rate in/min | 0.0588 |

Total C | N/A |
Total Phi | N/A |
Eff. C | N/A |
Eff. Phi | N/A |
Triaxial Unconsolidated-Undrained (ASTM D2850m)

Sample:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC, %</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Dens, pcf</td>
<td>54.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sat. %</td>
<td>97.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>2.121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter, in</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height, in</td>
<td>6.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC, %</td>
<td>76.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Dens, pcf</td>
<td>54.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sat. %</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>2.068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter, in</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height, in</td>
<td>6.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell, psi</td>
<td>54.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP, psi</td>
<td>48.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective Stresses At:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain, %</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviator ksf</td>
<td>3.118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excess PP</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma 1</td>
<td>4.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma 3</td>
<td>0.907</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P, ksf</td>
<td>2.466</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q, ksf</td>
<td>1.559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Ratio</td>
<td>4.437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate in/min</td>
<td>0.0588</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total C</td>
<td>N/A</td>
<td>ksf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phi</td>
<td>N/A</td>
<td>Degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eff. C</td>
<td>N/A</td>
<td>ksf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eff. Phi</td>
<td>N/A</td>
<td>Degrees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: Strengths picked at 5% strain.

*Sample was back-pressure saturated prior to shear.
Stress-Strain Curves

Sample Data

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture %</td>
<td>76.6</td>
<td>34.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Den,pcf</td>
<td>48.3</td>
<td>70.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>2.363</td>
<td>1.293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation %</td>
<td>84.3</td>
<td>69.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height in</td>
<td>6.06</td>
<td>6.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter in</td>
<td>2.86</td>
<td>2.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell psi</td>
<td>12.4</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain %</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Deviator, ksf</td>
<td>14.642</td>
<td>6.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate %/min</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in/min</td>
<td>0.061</td>
<td>0.060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job No.:</td>
<td>020-272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client:</td>
<td>AECOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project:</td>
<td>60537920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boring:</td>
<td>BC-13</td>
<td>BC-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample:</td>
<td>S04</td>
<td>S02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth ft:</td>
<td>22(Tip-12')</td>
<td>7(Tip-1')</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Soil Description

Sample #
1. Olive Brown CLAY w/ Sand
2. Light Yellowish Brown Sandy CLAY w/ Claystone
3.
4.

Remarks:

Note: Strengths are picked at the peak deviator stress or 15% strain which ever occurs first per ASTM D2850.
Triaxial Unconsolidated-Undrained

(ASTM D2850m)

Sample Data

<table>
<thead>
<tr>
<th>Sample</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MC, %</td>
<td>Dry Dens, pcf</td>
<td>Sat. %</td>
<td>Void Ratio</td>
</tr>
<tr>
<td>1</td>
<td>21.9</td>
<td>77.6</td>
<td>52.3</td>
<td>1.090</td>
</tr>
<tr>
<td>2</td>
<td>39.9</td>
<td>79.6</td>
<td>100.0</td>
<td>1.038</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Diameter, in</th>
<th>Height, in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.87</td>
<td>6.09</td>
</tr>
<tr>
<td>2</td>
<td>2.84</td>
<td>6.09</td>
</tr>
</tbody>
</table>

Stress-Restrain Response

Olive Brown Silty SAND (Weathered Rock)

REMARKS: Strengths picked at 10% strain. *Sample was back-pressure saturated prior to shear.*

Effective Stresses

Total Stress

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Total Best Fit

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total Best Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Normal Stress, ksf

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Stress, ksf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Stress, ksf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shear Stress, ksf

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviator Stress, psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stress-Strain Response

<table>
<thead>
<tr>
<th>Sample</th>
<th>Deviator ksf</th>
<th>Excess PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.299</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sigma 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sigma 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.846</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Sigma 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sigma 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.547</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

P, ksf

<table>
<thead>
<tr>
<th>Sample</th>
<th>P, ksf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.196</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Q, ksf

<table>
<thead>
<tr>
<th>Sample</th>
<th>Q, ksf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.649</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Stress Ratio

<table>
<thead>
<tr>
<th>Sample</th>
<th>Stress Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.373</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Rate in/min

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rate in/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0600</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Total C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Total Phi

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total Phi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Eff. C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Eff. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Eff. Phi

<table>
<thead>
<tr>
<th>Sample</th>
<th>Eff. Phi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Sample: 1 2 3 4
MC, % 28.4 42.6
Dry Dens, pcf 74.3 77.0
Sat. % 62.4 100.0
Void Ratio 1.184 1.108
Diameter in 2.87 2.83
Height, in 6.08 6.06
Cell, psi 91.2
BP, psi 79.0

Effective Stresses At:
Strain, % 10.0
Deviator ksf 3.148
Excess PP 0.000
Sigma 1 4.905
Sigma 3 1.757
P, ksf 3.331
Q, ksf 1.574
Stress Ratio 2.792
Rate in/min 0.0592
Total C N/A ksf
Total Phi N/A Degrees
Eff. C N/A ksf
Eff. Phi N/A Degrees

REMARKS: Strengths picked at 10% strain.
*Sample was back-pressure saturated prior to shear.
Triaxial Unconsolidated-Undrained
(ASTM D2850m)

Sample: 1 2 3 4
MC, % 72.2 39.4 60.3 112.3
Dry Dens, pcf 39.4 41.4
Sat. % 60.3 100.0
Void Ratio 3.116 2.919
Diameter in 2.87 2.81
Height, in 6.08 6.06
Cell, psi 95.3
BP, psi 79.0

Effective Stresses At:
Strain, % 10.0
Deviator ksf 3.116
Excess PP 0.000
Sigma 1 5.463
Sigma 3 2.347
P, ksf 3.905
Q, ksf 1.558
Stress Ratio 2.327
Rate in/min 0.0588
Total C N/A ksf
Total Phi N/A Degrees
Eff. C N/A ksf
Eff. Phi N/A Degrees

Stress-Strain Response

Job No.: 020-272 Date: 12/19/2018
Client: AECOM BY: MD/DC
Project: 60537920
Sample 1) BC-13_505 @ 30.5(Tip-11") Pale Brown SILT (slightly plastic) w/ CaCO3 deposits (Weathered Rock)
Sample 2)
Sample 3)
Sample 4)

REMARKS: Strengths picked at 5% strain.
*Sample was back-pressure saturated prior to shear.
Triaxial Unconsolidated-Undrained
(ASTM D2850m)

Sample: 1 2 3 4

<table>
<thead>
<tr>
<th>Property</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC, %</td>
<td>45.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Dens, pcf</td>
<td>54.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sat. %</td>
<td>59.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>1.968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter in</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height, in</td>
<td>6.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell, psi</td>
<td>73.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP, psi</td>
<td>69.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Ratio</td>
<td>6.646</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain, %</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviator ksf</td>
<td>3.984</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excess PP</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma 1</td>
<td>4.690</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma 3</td>
<td>0.706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P, ksf</td>
<td>2.698</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q, ksf</td>
<td>1.992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Ratio</td>
<td>6.646</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate in/min</td>
<td>0.0587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total C</td>
<td>N/A</td>
<td>ksf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phi</td>
<td>N/A</td>
<td>Degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eff. C</td>
<td>N/A</td>
<td>ksf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eff. Phi</td>
<td>N/A</td>
<td>Degrees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: Strengths picked at 10% strain.
*Sample was back-pressure saturated prior to shear.
Remarks: The sample was delivered as a singular 13” x 16” block. The specimens were trimmed into a brass tube 2” x 4”. The orientation of the outcrop block was unknown. All samples were trimmed in the same approximate orientation. The material is highly structured and cemented. It disperses when exposed to water. All three specimens behaved differently during shear.
Consolidated Undrained Triaxial Compression with Pore Pressure

Stress-Strain Response

<table>
<thead>
<tr>
<th>Specimen</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boring</td>
<td>BC-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>S-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>19.5" (Tip-2")</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Description</td>
<td>Gray CLAY (Silty)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC (%)</td>
<td>147.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Density (pcf)</td>
<td>31.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation (%)</td>
<td>92.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>4.139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (in)</td>
<td>2.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (in)</td>
<td>6.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC (%)</td>
<td>147.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Density (pcf)</td>
<td>33.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation (%)</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>3.838</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (in)</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (in)</td>
<td>6.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Pressure (psi)</td>
<td>86.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back Pressure (psi)</td>
<td>80.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain (%)</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviator (ksf)</td>
<td>1.716</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excess PP (psi)</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma 1 (ksf)</td>
<td>1.966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma 3 (ksf)</td>
<td>0.250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (ksf)</td>
<td>1.108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q (ksf)</td>
<td>0.858</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Ratio</td>
<td>7.869</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate (in/min)</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective Stresses At:

- Total Tangent
- Effective Tangent

** CTL Number:** 020-251
** Client Name:** AECOM
** Project Name:** Klamath River Dam Removal Project
** Project Number:** 60537920
** Date:** 5/30/2018
** By:** MD/DC
Consolidated Undrained Triaxial Compression with Pore Pressure

ASTM D4767

Stress-Strain Response

![Stress-Strain Response Graph](image)

CTL Number: 020-251

Client Name: AECOM

Project Name: Klamath River Dam Removal Project

Project Number: 60537920

<table>
<thead>
<tr>
<th>Specimen</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boring</td>
<td>BC-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>S-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>34.5 (Tip-6')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Description</td>
<td>Pale Brown CLAY (Silty)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC (%)</td>
<td>148.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Density (pcf)</td>
<td>32.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation (%)</td>
<td>96.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Ratio</td>
<td>4.158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (in)</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (in)</td>
<td>6.07</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC (%)</td>
</tr>
<tr>
<td>Dry Density (pcf)</td>
</tr>
<tr>
<td>Saturation (%)</td>
</tr>
<tr>
<td>Void Ratio</td>
</tr>
<tr>
<td>Diameter (in)</td>
</tr>
<tr>
<td>Height (in)</td>
</tr>
<tr>
<td>Cell Pressure (psi)</td>
</tr>
<tr>
<td>Back Pressure (psi)</td>
</tr>
</tbody>
</table>

Effective Stresses At:

Strain (%)	5.0
Deviator (ksf)	3.832
Excess PP (psi)	5.0
Sigma 1 (ksf)	4.368
Sigma 3 (ksf)	0.536
P (ksf)	2.452
Q (ksf)	1.916
Stress Ratio	8.153
Rate (in/min)	0.0005

Rate (in/min) | 0.0005

CTL Number: 020-251

Client Name: AECOM

Project Name: Klamath River Dam Removal Project

Project Number: 60537920

<table>
<thead>
<tr>
<th>Date: 5/14/2018</th>
<th>By: MD/DC</th>
</tr>
</thead>
</table>

Total C #DIV/0! ksf

Total phi #DIV/0! degrees

Eff. C #DIV/0! ksf

Eff. Phi #DIV/0! degrees ©

Graphical Representations:
- **Stress-Strain Response Graph:**
- **Shear Stress, ksf** vs. **Normal Stress, ksf**
- **Deviator Stress, psf** vs. **Strain, %**

Data Tables:
- **Boring Sample Details:**
 - Boring: BC-02
 - Sample: S-08
 - Depth: 34.5 (Tip-6')
 - Visual Description: Pale Brown CLAY (Silty)
 - MC (%): 148.8
 - Dry Density (pcf): 32.7
 - Saturation (%): 96.6
 - Void Ratio: 4.158
 - Diameter (in): 2.87
 - Height (in): 6.07
 - Client: AECOM
 - Project: Klamath River Dam Removal Project
 - Project Number: 60537920

Effective Stresses:
- **Strain (%):** 5.0
- **Deviator (ksf):** 3.832
- **Excess PP (psi):** 5.0
- **Sigma 1 (ksf):** 4.368
- **Sigma 3 (ksf):** 0.536
- **P (ksf):** 2.452
- **Q (ksf):** 1.916
- **Stress Ratio:** 8.153
- **Rate (in/min):** 0.0005

Graphical Details:
- **Total Tangent**
- **Effective Tangent**