UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION

Klamath River Renewal Corporation PacifiCorp

Project Nos. 14803-001; 2082-063

AMENDED APPLICATION FOR SURRENDER OF LICENSE FOR MAJOR PROJECT AND REMOVAL OF PROJECT WORKS

EXHIBIT N (2 of 2)
Waste Disposal and Hazardous Materials Management Plan
(Amended December 15, 2021)

Appendix D

Iron Gate Development - Hazardous Materials Survey Report

Fax (916) 632-6812 www.entekgroup.com

HAZARDOUS MATERIALS SURVEY FINAL REPORT

CLIENT

NV5 48 Bellarmine Court, Ste. 40 Chico, CA 95928

CONTACT

Heidi Cummings, PG, QSD Senior Geologist

SURVEY ADDRESS

Iron Gate Development

BUILDINGS SURVEYED

Multiple Structures at Iron Gate Development Klamath River Renewal Project

PREPARED BY

Andy Roed CAC #16-5695 & CDPH I/A 2989 Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Entek Project #20-5562

October 22, 2020

ASBESTOS LEAD MOLD INDOOR AIR QUALITY NOISE MONITORING TRAINING HEALTH AND SAFETY AUDITS

TABLE OF CONTENTS

Executive Summary	3
Introduction	4
Building Description	4
Asbestos Inspection and Sample Collection Protocols	6
Asbestos Bulk Sample Results	7
Asbestos Regulatory Requirements	13
Lead Inspection and Sampling	14
Lead Sampling Results	14
Lead Regulatory Compliance	16
Fluorescent Light Tubes and Polychlorinated Biphenyls (PCBs)	17
Thermostats With Mercury Switches	18
Freon and Fluorocarbons	18
Smoke Detectors Which May Contain a Radioactive Element	18
Limitations	18

Appendices

- **Asbestos Related Documents** A.
- B. Lead Related Documents
- C.
- Sample Location Maps Backup Documentation D.
- E. Historical Documents

Executive Summary

Entek Consulting Group, Inc. (Entek) was contracted to conduct a supplementary investigation for hazardous materials specific to areas at the Iron Gate Development as designated by NV5 and Kiewit Infrastructure West Co. (Kiewit) as part of the Klamath River Renewal Project. Based on documentation provided to Entek, AECOM Technical Services, Inc. (AECOM) conducted a hazardous materials survey in September of 2018. Entek utilized AECOM's survey and the sample results to minimize the number of samples and time required to complete the survey. This report combines AECOM's final report as well as Entek's supplemental sampling into one report. AECOM's report is also attached to this report for your records. The investigation included an assessment of the following:

- Asbestos Materials
- Lead in Paint, Coatings, Ceramic Products and other Construction Components
- Fluorescent Light Tubes
- Light Ballasts
- Polychlorinated Biphenyls (PCB)
- Mercury Containing Thermostats and Switches
- Smoke Detectors with Radioactive Americium 241
- Exit Signs with Radioactive Gas Tritium
- Freon

Entek did not specifically inspect for mercury containing fluorescent light tubes or light ballast which may contain polychlorinated biphenyls (PCBs), thermostats which may contain mercury switches, equipment or systems which may contain Freon or other fluorocarbons, or smoke detectors which may contain a radioactive element. However, information pertaining to these materials is included in this report for your use and reference, since these light systems are present on the project.

The purpose of the inspection was to comply with the US EPA NESHAP requirements and the California Air Resource Board which has jurisdiction for this project site to determine if asbestos containing materials are present which may be impacted during an upcoming demolition project.

The United States Environmental Protection Agency, National Emission Standards for Hazardous Air Pollutants (US EPA NESHAP), 40 CFR Part 61 - Nov. 20, 1990, requires an owner or operator of a demolition or renovation project to thoroughly inspect the affected facility or part of the facility where the demolition or renovation operation will occur for the presence of asbestos-containing materials (ACM) prior to the commencement of that project.

This inspection was requested by Ms. Heidi Cummings, Senior Geologist with NV5. The attached drawings show approximate sample locations. Materials are classified in the tables of this report as Regulated Asbestos Containing Material (RACM), Category I (CAT-I) or Category II (CAT-II) ACM, or Asbestos Containing Construction Material (ACCM). The report must be read in its entirety prior to making any interpretations, or conclusions pertaining to the information. Any conclusions made by the reader about the information provided in the body of this report which are contradictory or not included in

this report are the responsibility of the reader.

Introduction

This report presents results of a supplemental asbestos and lead survey performed by Entek which included the interior and exterior of select structures as outlined in the building descriptions below. These buildings are located at the Iron Gate Development. Fluorescent lights were observed at this project site; therefore, this report also includes references to regulations pertaining to handling practices and waste disposal of PCB light ballasts and mercury containing light tubes and thermostats which may be impacted during this project.

The inspection was conducted by Mr. Andy Roed and Mr. Richard Perrelli on September 14 and 15, 2020. Mr. Roed and Mr. Perrelli are Cal/OSHA Certified Asbestos Consultants (CAC) and State of California Department of Public Health (CDPH) certified Lead Inspector/Assessors.

This report was prepared for Ms. Heidi Cummings, Senior Geologist with NV5.

Building Description

The following structures were not accessible by Entek and/or AECOM during either survey. The company in parenthesis was unable to access the structure due to safety or instructed to not enter structure by the building owner.

- Residence 1 (Entek / AECOM)
- Residence 2 (Entek / AECOM)
- Maintenance Shed (Entek)
- Switchyard (Entek)

Aerator (IGDAE)

The Aerator piping is approximately 4' to 6' in diameter and provides aeration for the Iron Gate Development Fish Hatchery water supply. The Aerator structure is located south of the Iron Gate Development Powerhouse. The piping extends approximately 50 feet up a hillside. A metal caged ladder follows the piping up the hill. The piping is wrapped with deteriorating asphaltic pipe wrap.

Communications Building (IGDCB)

The Communications Building is adjacent and to the north of the Powerhouse, is approximately 800 square feet, and is a single story slab on grade prefabricated building. The exterior siding and roof consists of prefabricated steel. The interior of the building consists of a front office, an electrical room, and a break room. Walls and ceilings consist of gypsum wallboard or are unfinished steel. Flooring consists of vinyl floor sheeting or unfinished concrete.

Diversion Tunnel Intake Structure (IGDDTI)

The Diversion Tunnel Intake Structure is located on pilings that extend into the Iron Gate Reservoir. The building is located on the northeast end of the reservoir and is approximately 390 square feet. The exterior siding and roofing consist of steel with a Hazardous Materials Survey Report – Iron Gate Development

rubber membrane cover throughout. The interior consists of unfinished steel walls and ceiling and the floor consists of metal grating.

Emergency Spill Equipment Shed (IGDES)

The Emergency Spill Equipment Shed is approximately 100 square feet, and is a single story slab on grade shed, with engineered wood siding and asphaltic shingle roofing. The interior of the shed is unfinished wood. The structure is currently being used as storage for emergency spill purposes. Entek was not able to access the interior of the structure; however, based on conversation with our site escort, the interior is limited to unfished wood framing and plywood flooring.

Fish Holding Facilities and Ponds (IGDFHF)

The Fish Holding Facilities and Ponds main building is approximately 1,250 square feet and is a prefabricated concrete floor building located between the Powerhouse and the dam. The main building is in the center of six concrete lined fish holding ponds. The exterior siding and roofing of the building consists of prefabricated steel. The interior consists of a ground floor, and a second floor that wraps around the perimeter of the interior. Interior finishes are painted or unfinished steel and concrete.

Fish Ladder (IGDFL)

The Fish Ladder is located east of the Powerhouse. It consists of concrete steps that extend to the Fish Holding Facilities and Ponds from the river.

Iron Gate Dam (IGD)

The Iron Gate Dam is a zoned earth fill embankment with a height of 189 feet from the rock foundation to the dam crest. The dam crest is 20 feet wide and approximately 740 feet long. The embankment includes a central impervious clay core, with filter zones and a downstream drain.

Maintenance Shed (IGDMS)

The Maintenance Shed is approximately 2,000 square feet, wood framed, and is constructed on a slab-on-grade concrete foundation. It is located on the north side of the Klamath River approximately 1,000 feet south of the dam. It is an open sided structure and is used for the storage of boats, recreational trailer and other items from the nearby residences. Entek was not able to access this structure.

Penstock Intake Structure (IGDPIS)

The Penstock Intake Structure is located on pilings that extend into the Iron Gate Reservoir. The building is located on the southeast end of the reservoir and is approximately 120 square feet. The exterior siding and roofing consist of prefabricated steel throughout. The interior consists of unfinished steel walls and ceiling and the floor consists of metal grating.

Penstock and Hatchery Water Supply (IGDPS)

The Penstocks and Hatchery Water Supply are connected with the Aerator piping. The Penstocks are north of the Powerhouse and extend up the Iron Gate Development. The hatchery water supply extends past the Powerhouse and turns towards the Fish Holding Facilities.

Powerhouse (IGDPH)

The Powerhouse is approximately 3,000 square feet. The facility is located at the downstream toe of the dam on the east bank of the river. The powerhouse has three levels; above ground, first lower level, and second lower level. The above ground level contains the upper portions of a single vertical-shaft, Francis-type turbine contained in its own concrete vault. The first lower level contains the middle portion of the turbine housed in a concrete vault, electrical panels, a 500 gallon oil governor accumulation tank, air compressors, oil, water and air piping, labeled hazardous materials and other miscellaneous storage cabinets. The second lower level contains the lowest portion of the turbine housed in steel vault, piping, and sump pumps.

Residence 1 (IGDR1)

Residence 1 is approximately 2,000 square feet. The exterior of the building consists of engineered wood siding and corrugated metal roofing. No suspect asbestos-containing materials were observed on the exterior of the building. The building was occupied during the survey and the interior was not accessed.

Residence 2 (IGDR2)

Residence 2 is approximately 2,000 square feet. The exterior of the building consists of engineered wood siding and corrugated metal roofing. No suspect asbestos-containing materials were observed on the exterior of the building. The building was occupied during the survey and the interior was not accessed.

Restrooms (IGDRR)

The Restrooms building is approximately 400 square feet. The exterior siding and roof of the building consist of prefabricated steel. The interior of the building has two restrooms, a storage room, and consists of unfinished steel and concrete.

Switchyard

The Switchyard is approximately 5,000 square feet and is located adjacent to the powerhouse. The switchyard contains an electrical transformer, substations, transmission poles and lines within a fenced gravel area. The majority of the transmission pole footings, substations and the transformer were on top of cement pads or gravel filled cement catch basins The "yellow glass portion" of the high voltage transformer bushings may contain PCBs in the oil. The small pole mounted transformers were noted to contain no-PCB labels. No observable impacts, odors or distressed vegetation were noted. Entek did not enter the switchyard area due to safety concerns.

Asbestos Inspection and Sample Collection Protocols

Entek included all specific designated interior and exterior areas of the buildings included in this report. Entek did not use any demolition methods to look within enclosed wall or ceiling cavities during this investigation. Entek did include all suspect materials observed in, on, or associated with the areas included in this report.

Entek reviewed the report prepared by AECOM prior to and during the site inspection. Materials sampled by AECOM were not resampled as part of this assessment. Only new material or materials which were assumed to contain asbestos by AECOM were sampled where possible.

Bulk samples were collected of various materials suspected to contain asbestos by utilizing a power drill and coring tube, cutting the materials with a razor knife, or use of other appropriate hand tools.

Surfacing materials were collected in a statistically random manner representative of the associated homogenous area as required in 40 CFR Part 763, Asbestos-Containing Materials in Schools; Final Rule and Notice, published October 30, 1987 and the California Air Resource Board (CARB).

Miscellaneous materials were collected from each homogenous area in a manner sufficient to determine whether the material is or is not ACM as required in 40 CFR Part 763, Asbestos-Containing Materials in Schools; Final Rule and Notice, published October 30, 1987.

Approximate locations of all samples collected during this inspection are indicated on the "Bulk Asbestos Material Analysis Request Form for Entek", which served as the chain of custody for the samples, and on the building diagram(s) attached to this report.

Asbestos Bulk Sample Results

There were several materials observed which are considered "suspect" under US EPA guidelines. Under current US EPA guidelines for conducting building inspections for ACM, all "suspect" materials must be assumed to contain asbestos until otherwise determined by laboratory testing.

The samples of materials suspected of containing asbestos were submitted to Asbestech, a laboratory located in Carmichael, California. These samples were subsequently analyzed by polarized light microscopy (PLM) with dispersion staining.

The US EPA NESHAP uses the terms Regulated Asbestos Containing Material (RACM), Category I, and Category II when identifying materials which contain asbestos in amounts greater than 1%. Cal/OSHA uses the term ACCM which indicates a manufactured construction material contains greater than 0.1% asbestos by weight by the PLM method. This definition can be found in Title 8, 1529.

Copies of Asbestech's laboratory reports and accreditations are attached.

Bulk samples were collected of all the materials considered to be "suspect", which had not been previously sampled, and were observed during this investigation. Some of those samples contained multiple layers which were individually analyzed to determine their asbestos content. Analysis of all samples collected was by PLM with dispersion staining. Results of the analysis for materials found to contain asbestos by both AECOM and Entek compiled in the table on the following pages

For all materials tested and found not to contain asbestos by Entek, refer to all laboratory results that are attached. In addition, the report by AECOM provides a list of materials with laboratory results of materials they collected, which include materials found to be positive and negative for asbestos.

	Suspect Materials Found or Assumed TO Contain >1% Asbestos				
Sample ID#'s	Suspect Material	Location	NESHAP Category	Asbestos Content/Type (%) by PLM	Total Estimated Quantity
		Aerator (IGDAE)			
N/A	Red Gaskets	Aerator Piping, Hatchery Water Supply	Cat. I	Assumed To Contain Asbestos	2 Each
		Diversion Tunnel Intake Structure (IGDDTI)			
IGDDTI-1	Gray Window Putty	Interior Window Panes	Cat. II	5-6% Chrysotile	2 Each (4'x5')
		Fish Holding Facility (IGDFHF)			
IGDFHF-01	Gray Brittle Window Putty	Patch Sealant On One Window Only	Cat. II	4-6% Chrysotile	4 linear feet
IGDFHF- 03A-B	Silver Paint over Black Asphaltic Coating	Coating on Metal Gutter Along Fish Ladder near Gantry Gate	Cat. II	1-5% Chrysotile (Silver Paint) 20-30% Chrysotile	60 Square Feet
				(Asphaltic Coating)	
	Maintenance Shed (IGDMS)				
N/A	Silver Woven Electrical Wire Insulation	Throughout Maintenance Shed	Cat. II	Assumed To Contain Asbestos	Unable to quantify
N/A	Electrical Panel Backing of older Electrical Panels	Interior Maintenance Shed	Cat. II	Assumed To Contain Asbestos	4 Each

Suspect Materials Found or Assumed TO Contain >1% Asbestos					
Sample ID#'s	Suspect Material	Location	NESHAP Category	Asbestos Content/Type (%) by PLM	Total Estimated Quantity
		Maintenance Shed (IGDMS) (continued)			
N/A	Roof Felt Paper	Thought roof of Maintenance Shed (AECOM – Too High to Access) (Entek – No access to Structure Allowed)	Cat. I	Assumed To Contain Asbestos	2,100 Square Feet
		Penstock (IGDPS)			
N/A	Red Gaskets	Hatchery Water Supply Piping (AECOM/Entek – Unable to sample due to active system)	Cat. I	Assumed To Contain Asbestos	Unable to Quantify
N/A	Black Gaskets	Hatchery Water Supply Piping (AECOM/Entek – Unable to sample due to active system)	Cat. I	Assumed To Contain Asbestos	Unable to Quantify
		Penstock Intake Structure (IGDPIS)			
IGDPIS-01	White Brittle Window Putty	Interior Window Panes	Cat. II	4-5% Chrysotile	2 Each (4'x5')
		Powerhouse (IGDPH)			
IGDPH-01	Gray Brittle Window Putty	Interior and Exterior Window Frames	Cat. II	4-5% Chrysotile	4 Each (4'x4')
N/A	Wicket Gates Seal	Associated with Turbines of Main Level of Powerhouse (No Access without Turbine Removal)	Cat. II	Assumed To Contain Asbestos	3 Each
N/A	Metal Clad Fire Door Insulation	Powerhouse Main Level Doors	RACM	Assumed To Contain Asbestos	2 Each

	Suspect Materials Found or Assumed TO Contain >1% Asbestos					
Sample ID#'s	Suspect Material	Location	NESHAP Category	Asbestos Content/Type (%) by PLM	Total Estimated Quantity	
		Throughout Iron Gate Development				
N/A	Transite Piping	Assumed to be present underground throughout the Iron Gate Development	Cat. II	Assumed To Contain Asbestos	Unable to Quantify	
		Residence 1				
	(AECOM and ENTEK did not Ass	sess this Structure – Materials and Quantities Estimated for	r Bidding Pui	rposes at Client's Re	quest)	
(The	se materials and additional materi	als may or may not be present. An asbestos survey is nece	essary prior t	o the demolition of th	nis structure)	
N/A	Roofing Felt Paper	Under Metal Roof Throughout	Cat. I	Assumed To Contain Asbestos	2,000 Square Feet	
N/A	Siding Felt Paper	Under Composite Siding	Cat. II	Assumed To Contain Asbestos	2,500 Square Feet	
N/A	Drywall and Joint Compound	Throughout Interior of the Structure	Cat. II	Assumed To Contain Asbestos	6,000 Square Feet	
N/A	Drywall Texture	Throughout Interior of the Structure	RACM	Assumed To Contain Asbestos	6,000 Square Feet	
N/A	Vinyl Sheet Flooring and Mastic	Throughout Interior of the Structure	Cat. I/II	Assumed To Contain Asbestos	2,000 Square Feet	
		Residence 2				
	(AECOM and ENTEK did not Assess this Structure – Materials and Quantities Estimated for Bidding Purposes at Client's Request)					
(The	(These materials and additional materials may or may not be present. An asbestos survey is necessary prior to the demolition of this structure)					
N/A	Roofing Felt Paper	Under Metal Roof Throughout	Cat. I	Assumed To Contain Asbestos	2,000 Square Feet	
N/A	Siding Felt Paper	Under Composite Siding	Cat. II	Assumed To Contain Asbestos	2,500 Square Feet	

	Suspect Materials Found or Assumed TO Contain >1% Asbestos					
Sample ID#'s	Suspect Material	Location	NESHAP Category	Asbestos Content/Type (%) by PLM	Total Estimated Quantity	
		Residence 2 (continued)				
N/A	Drywall and Joint Compound	Throughout Interior of the Structure	Cat. II	Assumed To Contain Asbestos	6,000 Square Feet	
N/A	Drywall Texture	Throughout Interior of the Structure	RACM	Assumed To Contain Asbestos	6,000 Square Feet	
N/A	Vinyl Sheet Flooring and Mastic	Throughout Interior of the Structure	Cat. I/II	Assumed To Contain Asbestos	2,000 Square Feet	

NOTE: Any CAT-I or CAT-II materials identified in the previous tables which will be subjected to mechanical removal, must be considered RACM for the purposes of notification to US EPA Region IX, CARB, or Local AQMD and classification of waste. Removal of any CAT-I or CAT-II materials prior to demolition of a building is dependent upon how the materials will be impacted and if the impact will cause the materials to become friable. If any remaining CAT-I or CAT-II materials will become friable they must be removed prior to the initiation of demolition.

NOTE: Cal/OSHA regulates all materials containing greater than 0.1% asbestos. As a result, impact to materials identified as ACCM and ACM must be performed by properly asbestos trained personnel utilizing appropriate personal protection, work practices, as well as, properly constructed and demarcated work areas or containments, in accordance with Cal/OSHA asbestos regulations.

The tables above provide an estimate of the amount of materials in square feet or linear feet. Contractors are responsible for quantifying the exact quantity of materials impacted by the renovation or demolition and shall not rely on the quantities in the above tables.

US EPA AHERA uses three terms when determining the classification of a material for the purpose of sampling. These terms include miscellaneous, surfacing, and thermal system insulation (TSI).

<u>Miscellaneous materials</u> are building materials on structural components, structural members or fixtures, such as floor and ceiling tiles, and do not include surfacing material or TSI.

<u>Surfacing materials</u> are materials that are sprayed-on, troweled-on, or otherwise applied to surfaces, such as acoustical plaster on ceiling and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, or other purposes.

<u>TSI</u> is material applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain, water condensation, or for other purposes.

The information provided in the tables of this report are for use by the Owner in determining where asbestos containing materials are located, and whether or not any future work may impact those materials. The information is also provided for use by any contractor who may perform work in areas impacting the materials listed in this report, and for use as appropriate by asbestos abatement contractors to provide costs related to work impacting ACM.

Any building materials which are considered "suspect" for containing asbestos which have not been identified in this report must be assumed to contain asbestos in amounts >1% until properly investigated and/or tested.

Materials commonly excluded from being suspected for containing asbestos include, but are not limited to: unwrapped pink and yellow fiberglass insulating materials or products, foam insulation, wood, metal, plastic, or glass. All other types of building materials or coatings on the materials listed above are commonly listed as "suspect" and must be tested prior to impact by a Contractor. Work impacting these untested or newly discovered materials must cease until an investigation can be completed.

Asbestos Regulatory Requirements

<u>US EPA</u>

The property included in this survey report is located in Siskiyou County. The California Air Resource Board (CARB) has been given authority for enforcement of the NESHAP regulations.

A demolition is the wrecking, taking out, or burning of any load supporting structural member. A renovation is everything else. 10 day written notification to the US EPA Region IX, CARB or local AQMD is required prior to the performance of any demolition project regardless of asbestos being present or not. This notification would also apply to any renovation project which involves the wrecking, taking out, or burning of any load bearing

structural member during a renovation as well.

There is a sufficient amount of ACM present to require a 10 day notification to the US EPA Region IX, CARB or local AQMD be submitted prior to starting work which will impact materials identified as RACM or CAT-I and CAT-II materials if they are made friable. If more than 160 square feet, 260 linear feet or 35 cubic feet of RACM is planned for removal on the project, formal written notification to US EPA Region IX, CARB or local AQMD is required.

Cal/OSHA

Disturbance of any ACM or ACCM could generate airborne asbestos fibers and would be regulated by Cal/OSHA. Cal/OSHA worker health and safety regulations apply during any disturbance of ACM or ACCM by a person while in the employ of another. This is true regardless of friability or quantity disturbed. Since it has been estimated more than 100 square feet of ACCM does exist and will be impacted during the upcoming project, a licensed asbestos contractor, certified by the State of California, and registered with Cal/OSHA is required to perform the asbestos related removal work. Entek recommends a licensed asbestos contractor be used to remove ACCM even if less than 100 square feet of ACCM are being disturbed.

For compliance with Title 8, Section 341.9, the asbestos contractor must send written notice at least one day (24 hours) prior to start of any work which will impact any amount of asbestos to the local office for the State of California, Department of Occupational Safety and Health, and perform all work in accordance with Cal/OSHA requirements.

Lead Inspection and Sampling

An X-ray fluorescence (XRF) Spectrum Analyzer was used during the lead inspection portion of this survey as a screening tool in determining if lead is present in quantities which would require existing paints and/or coatings to be classified as Lead-Based Paint (LBP).

In XRF spectroscopy, the process begins by exposing the sample in question to a source of x-rays or gamma rays. As these high energy photons strike the sample, they tend to knock electrons out of their orbits around the nuclei of the atoms that make up the sample. When this occurs, an electron from an outer orbit, or "shell", of the atom will fall into the shell of the missing electron. Since outer shell electrons are more energetic than inner shell electrons, the relocated electron has an excess of energy that is expended as an XRF photon. This fluorescence is unique to the composition of the sample. The detector collects this spectrum and converts them to electrical impulses that are proportional to the energies of the various x-rays in the sample's spectrum. Since each element has a different and identifiable x-ray signature, we can look at specific parts of the emitted spectrum, and by counting the pulses in the sector, determine the presence and concentration of the element(s) in question within the sample. Entek used a Niton XRF spectrum analyzer which is specific to measuring only lead in the building substrate.

Lead Sampling Results

XRF Spectrum Analyzer testing indicated lead was present in concentrations >1.0 mg/cm²

on various building components. XRF direct reading technology is not capable of determining lead concentrations below 1.0 mg/cm². The limit of detection for this device with a 95% confidence level is 1.0 mg/cm². As a result, any reading provided by the XRF technology does not provide adequate information to determine the actual content of lead in the paint/coating being tested. Any XRF reading less than 1.0 mg/cm² (including readings of 0.00) only indicate lead is not present at levels high enough to classify the paint/coating as LBP. Some coatings or materials which resulted in a lead concentration of below 1.0 mg/cm² were then sampled and analyzed by atomic absorption spectrometry (AAS) for lead content. Results of the XRF analysis and laboratory analysis are included in the tables below.

Paints/Coatings/ Materials Determined to Contain Lead				
Paint/Coating Color or Material	Lead Content	Component/Location	LBP/ LCP	
		Aerator		
Yellow Paint	2.7 mg/cm ²	Metal Ladder	LBP	
Red over Gray Paint	4.4 mg/cm ²	Aerator Piping	LBP	
	Diversion	on Tunnel Intake Structure		
Tan Paint	470 ppm	Exterior Metal Window Frames	LCP	
Gray/Silver Paint	1,500 ppm	Interior Metal Walls	LCP	
Orange Paint	210,000 ppm	Interior Metal Ladder	LBP	
	Con	nmunications Building		
Yellow Paint	180 ppm	Exterior Metal Bollards	LCP	
	F	ish Holding Facility		
Gray/Silver Paint	500 ppm	Metal Handrail and Equipment throughout Interior	LCP	
Silver paint	110,000 ppm	Metal Mechanical unit in center of fish holding ponds	LBP	
Silver Paint	92,000 ppm	Exterior Equipment Structures	LBP	
		Penstock		
Pink Paint	65,000 ppm	6' Diameter Penstock Piping	LBP	
Red Paint	60 ppm	6' Diameter Penstock Piping	LCP	
	Pen	stock Intake Structure		
Tan Paint	140 ppm	Exterior Metal Siding and Equipment	LCP	
Red Paint	170,000 ppm	Metal Walkway	LBP	
Tan Paint	2.2 mg/cm ²	Metal Structural Components	LBP	
Silver Paint	2.6 mg/cm ²	Handrails	LBP	
	Powerhouse			
Orange Paint	83,000 ppm	Interior Metal Handrails and Guardrails throughout	LBP	
Gray Paint	980 ppm	Interior Floor and Equipment Blocks	LCP	

Paints/Coatings/ Materials Determined to Contain Lead					
Paint/Coating Color or Material	Lead Content	Component/Location	LBP/ LCP		
	Powerhouse (continued)				
Tan Paint	7,200 ppm	Walls in Turbine Room	LBP		
Off-White/Silver Paint	860 ppm	Exterior stop Log Gates	LCP		
Orange Paint	150,000 ppm	Exterior Stop Log Supports	LBP		
Silver Paint	14.2 mg/cm ²	Metal Crane Rails on top of Powerhouse	LBP		
Yellow Paint	2.8 mg/cm ²	Interior Metal Ladders	LBP		
Gray Paint	1.9 mg/cm ²	Metal Equipment on top of Powerhouse	LBP		

LBP - Materials/coatings/paints meeting the definition of lead-based paint as defined by the CDPH and the US EPA, currently defined as containing lead in concentrations equal to or greater than 1.0 mg/cm², 5,000 ppm, or 0.5% by weight.

LCP - Materials/coatings/paints which contain measurable amounts of lead. The disturbance of these materials/coatings/paints is regulated by Cal/OSHA.

Lead Regulatory Compliance

Any upcoming project which may result in the disturbance of lead containing products or surfaces, but is not intended to remediate a lead hazard or specifically designed to remove LBP to reduce or eliminate a known hazard, would be considered "lead related construction work".

Lead related construction work does not fit the classification of a "lead abatement project" under CDPH Title 17 regulations. "Abatement" is defined in Title 17, Division 1, Chapter 8, Article 1 as "any set of measures designed to reduce or eliminate lead hazards or LBP for public and residential buildings, but does not include containment or cleaning." A lead hazard is defined in Title 17, Division 1, Chapter 8, Article 1 as "deteriorated LBP, lead contaminated dust, lead contaminated soil, disturbing LBP or presumed LBP without containment, or any other nuisance which may result in persistent and quantifiable lead exposure."

Lead related construction work means any "construction, alteration, painting, demolition, salvage, renovation, repair, or maintenance of any residential or public building, including preparation and cleanup, that, by using or disturbing lead-containing material or soil, may result in significant exposure of adults or children to lead". (Title 17, California Code of Regulations, Division 1, Chapter 8, Article 1).

Currently, Cal/OSHA has not established a definition for LBP, nor have they established minimum concentrations where their regulations do not apply. Cal/OSHA regulates all construction activities involving materials containing lead, including LBP. These regulations are found in CCR, Title 8 Section 1532.1 (§1532.1) Lead in Construction.

Cal/OSHA has not established a concentration of lead in a product where their regulations

do not apply, therefore, any disturbance to products containing lead come under the jurisdiction of Cal/OSHA and their regulations. Disturbance of paints/coatings or materials determined to be LBP may trigger a pre-work notification to Cal/OSHA if "trigger tasks" disturb 100 square feet or more of those paints/coatings or materials. Trigger tasks are described in Title 8 CCR 1532.1.

Fluorescent Light Tubes and Polychlorinated Biphenyls (PCBs)

Fluorescent light tubes which contain mercury are considered a universal waste and must be packaged and recycled appropriately if they are removed from a building and not used again. The regulation, called the Universal Waste Rule, are in the California Code of Regulations (CCR), Title 22, Division 4.5, Chapter 23.

Fluorescent light tubes are the bulb or tube portion of an electric lighting device and are commonly referred to as "lamps". Examples of other common electric lamps considered to be universal wastes include, but are not limited to, high intensity discharge, neon, mercury vapor, high pressure sodium, and metal halide lamps. Any lamp which is not spent and has been designated to be reused is not classified as a waste and does not meet the requirements of a hazardous waste or a universal waste.

Spent lamps typically contain concentrations of mercury exceeding the established Total Threshold Limit Concentration (TTLC) and/or the Soluble Threshold Limit Concentration (STLC) values. Therefore, these lamps must be sent to an authorized recycle facility or to a universal waste consolidator for shipment to an authorized recycling facility.

At a minimum, if removed lamps will not be reused they must be packaged in boxes/ packages/containers which are structurally sound, adequate to prevent breakage, and compatible with the content of the lamps. These packages must remain closed and be free of damage which could cause leakage under reasonably foreseeable conditions. Each container must be labeled or marked clearly with one of the following phrases: "Universal Waste Lamp(s)," or "Used Lamp(s)." Entek recommends shipping any lamp not designated for reuse to a universal waste recycling facility once they have been packaged.

PCB containing light ballasts are considered a hazardous waste, and must be properly manifested for transport to a hazardous waste facility. Any contractor who may perform PCB related work (inspection, removal, clean-up) must be trained and qualified to do so. All workers must also follow current OSHA regulations including 29 CFR 1910.120 and 8 CCR 5192, as well as, other applicable federal, state, and local laws, and regulations. While light ballasts marked "No PCB" are not considered a hazardous waste, they are considered a universal waste. As a result, removal, packaging, and disposal/recycling of these types of ballasts must be conducted in accordance with current regulations of Title 22.

Entek and AECOM made an effort to assist in quantifying select materials throughout the structure. The below quantities are estimates based on observations during the assessment. It shall be the contractor responsibility to verify the total quantities present.

Universal Waste Inventory				
Other Regulated Building Material Description	Approximate Quantity			
Mercury-Containing fluorescent light tubes (4' length)	20			
Mercury-Containing fluorescent light tubes (8' length)	10			
Magnetic light ballasts	10			
HID Lamps	6			
Mercury-containing switches, controls, and recorders	None Observed			
PCB-Containing Transformer Oil	Assumed Present in			
<u>-</u>	Switchyard			

PCB Caulking Results			
Material Description	Material Location	Sample Results (ppm)	
Flexible Gray Expansion Joint Sealant	Top of Powerhouse at expansion joints	None Detected	

Thermostats with Mercury Switches

It is possible existing thermostats may utilize switches containing mercury. The mercury in these switches would be considered a hazardous waste if removed and disposed. Any work requiring removal of thermostats containing mercury switches, must include having the switches inspected for the presence of mercury, and subsequently following all requirements for packaging and disposal of any switch found to contain mercury.

Freon and Fluorocarbons

Freon and other fluorocarbon products associated with HVAC systems, refrigerators, etc. may be present in or on the exterior of the buildings included in this investigation. Prior to demolition of a structure or removal of existing HVAC systems, refrigerators, or any other type of equipment which typically uses these types of coolant products shall have the coolant materials investigated prior to their demolition and removed from the mechanical systems and recycled in accordance with Cal/EPA requirements.

Smoke Detectors Which May Contain a Radioactive Element

It is possible existing smoke detectors may contain a radioactive element. These types of detectors are easily identified by reviewing the label which is usually found on the back of the detector. Older units may display the international radiation symbol (three bladed propeller) and the radioactive content. Newer units state the radioactive content and their Nuclear Regulatory Agency (NRC) license number.

Any work requiring the removal of smoke detectors with a radioactive element must include contacting the manufacturer of the smoke detector to determine their return policies. The California Department of Toxic Substance Control (DTSC) has stated that it is a condition of the manufacturers NRC license they must accept returned units for disposal.

Limitations

Entek inspected only the specific designated areas identified by the Owner to be included in the upcoming project. Select structures as outlined in the building description portion of this report were not assessed due to either safety concerns or at the request of the building owner. As a result the information provided in this inspection report may not be used to extend the inspection results to areas not included in this report without additional review and sampling as necessary.

Entek did not perform any destructive sampling to look into ceiling and wall cavities. As a result, it may be possible for materials to be hidden in these areas which are not included in this report. Entek also did not employ any destructive measures on floors of interior spaces or exterior areas covered with asphalt, concrete, or dirt.

If any new materials not listed as having been sampled, or listed as assumed for containing asbestos in this report are discovered, the new material must be assumed to contain asbestos until properly inspected and tested for asbestos content.

Entek's policy is to retain a full copy of these written documents for three (3) years once the file is closed. At the end of the 3 year period the written files will be destroyed without further notice. It is suggested copies of the file(s) are maintained as per your policy.

Entek will be providing only this electronic copy of the report and its attachments for your use. However, if you would like a hard copy of this report please do not hesitate to ask. Entek will be happy to mail the report upon receipt of your request.

Thank you for choosing Entek for your environmental needs. Please call me at (916) 632-6800 if you have any questions regarding this report.

Prepared by:

Andy Roed CIH, CSP, CAC

Andy Roed

President

Cal/OSHA CAC #16-5695

CDPH I/S/M Certification #2989

Appendices

- A. Asbestos Related Documents
- B. Lead Related Documents
- C. Backup Documentation

APPENDIX A ASBESTOS RELATED DOCUMENTS

- Bulk Asbestos Analysis Report From Asbestech
- Bulk Asbestos Material Analysis Request Form for Entek

ASBESTECH

6825 Fair Oaks Blvd., Suite 103

Carmichael, California 95608

Tel.(916) 481-8902 asbestech@sbcglobal.net

Client: Job:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

20-5562 NV5 Iron Gate Dam

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67928 NVLAP Lab Code 101442-0

Date/Time Collected: 9/14/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No. Color/Description % Type Asbestos Other Materials ECG-20-5562-IGDAE-01A Silver paint, aerator piping near ground NONE DETECTED Opaques Black asphaltic wrap NONE DETECTED Tar Binder Fibrous Glass 02A Granular Mins. Gray concrete, foundation of ladder NONE DETECTED

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

Client: Job:

Entek Consulting Group, Inc. 20-5562 NV5 4200 Rocklin Rd., Suite 7 Iron Gate Dam Rocklin, CA 95677

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67946 NVLAP Lab Code 101442-0

Date/Time Collected: 10/7/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562- 01A	IGDCB- Black asphalt exterior of Communications building	NONE DETECTED	Tar Binder Granular Mins.
01B	Black asphalt exterior of Communications building	NONE DETECTED	Tar Binder Granular Mins.
02A	Black asphalt joint sealant exterior of Communications building	NONE DETECTED	Tar Binder Granular Mins.
02B	Black asphalt joint sealant exterior of Communications building	NONE DETECTED	Synthetics Granular Mins.

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: TOM CONLON

ASBESTECH

6825 Fair Oaks Blvd., Suite 103 Carmichael, California 95608

Tel.(916) 481-8902 asbestech@sbcglobal.net

Client: Job:

Entek Consulting Group, Inc. 20-5562 NV5 4200 Rocklin Rd., Suite 7 Iron Gate Dam Rocklin, CA 95677

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67925 NVLAP Lab Code 101442-0

Date/Time Collected: 9/14/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No. Color/Description % Type Asbestos Other Materials

ECG-20-5562-IGDES01A Black asphaltic roofing shingles NONE DETECTED Tar Binder Fibrous Glass

01B Black asphaltic roofing shingles NONE DETECTED Tar Binder

IB Black asphaltic rooting shingles NONE DETECTED Tar Binder (no felt paper), roof on shed Fibrous Glass

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES

Client:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

Job: 20-5562 NV5

Iron Gate Dam

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67938 NVLAP Lab Code 101442-0

Date/Time Collected: 10/7/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562-IO	GDFHF- Gray concrete at foundation of fish holding facility building	NONE DETECTED	Granular Mins.
02A	Gray concrete of fish holding ponds	NONE DETECTED	Granular Mins.
03A	Silver paint of black asphaltic material (inseparable from asphaltic material) gutter along fish ladder near gantry gate	1-5 CHRYSOTILE	Opaques
	Black asphaltic material	20-30 CHRYSOTILE	Tar Binder
03B	NOT ANALYZED		

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: TOM CONLON

Client: Job:

Entek Consulting Group, Inc. 20-5562 NV5 4200 Rocklin Rd., Suite 7 Iron Gate Dam Rocklin, CA 95677

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67935 NVLAP Lab Code 101442-0

Date/Time Collected: 10/7/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

 Sample No.
 Color/Description
 % Type Asbestos
 Other Materials

 ECG-20-5562-IGDFHS 01A
 Black felt paper under metal roofing
 NONE DETECTED
 Tar Binder Cellulose

 01B
 Black felt paper under metal roofing
 NONE DETECTED
 Tar Binder Cellulose

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A),THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: TOM CONLON

ASBESTECH

6825 Fair Oaks Blvd., Suite 103 Carmichael, California 95608

Tel.(916) 481-8902 asbestech@sbcglobal.net

Client: Job:

Entek Consulting Group, Inc. 20-5562 NV5 4200 Rocklin Rd., Suite 7 Iron Gate Dam Rocklin, CA 95677

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67927 NVLAP Lab Code 101442-0

Date/Time Collected: 9/14/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562-	-IGDFPS-		
01A	Gray concrete on supports for fish hatchery water supply	NONE DETECTED	Granular Mins.
	Gray grout	NONE DETECTED	Granular Mins.
02A	Brown fibrous material at saddles for fish hatchery water supply	NONE DETECTED	Synthetics Cellulose
03A	Silver paint on fish hatchery water supply	NONE DETECTED	Opaques
	Black asphaltic material	NONE DETECTED	Tar Binder Cellulose

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

Client: Job:

Entek Consulting Group, Inc. 20-5562 NV5 4200 Rocklin Rd., Suite 7 Iron Gate Dam Rocklin, CA 95677

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67929 NVLAP Lab Code 101442-0

Date/Time Collected: 9/14/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No. Color/Description % Type Asbestos Other Materials ECG-20-5562-IGDPH-01A Gray CMU, power house interior wall NONE DETECTED Granular Mins. Granular Mins. Gray grout NONE DETECTED 02A Gray concrete, power house floor NONE DETECTED Granular Mins.

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

Job:

Client:

Entek Consulting Group, Inc. 20-5562 NV5 4200 Rocklin Rd., Suite 7 Iron Gate Dam Rocklin, CA 95677

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67932 NVLAP Lab Code 101442-0

Date/Time Collected: 9/14/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No. Color/Description % Type Asbestos Other Materials

ECG-20-5562-IGDPIS-

O1A Gray concrete, intake house foundation NONE DETECTED Granular Mins.

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Jungles

Client:

Gray grout

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677 **Job:** 20-5562 NV5 Iron Gate Dam

NONE DETECTED

BULK ASBESTOS ANALYSIS REPORT

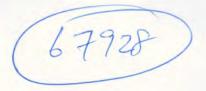
LAB JOB # 67926 NVLAP Lab Code 101442-0

Date/Time Collected: 9/14/20 CDPH # 1153

Date Received: 10/7/20 Date Analyzed: 10/8/20

Sample No.Color/Description% Type AsbestosOther MaterialsECG-20-5562-IGDRR-
01AGray concrete foundation of bldg.NONE DETECTEDGranular Mins.02AGray CMU, storage area interior wallNONE DETECTEDGranular Mins.

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.



ANALYST: JIM JUNGLES

Granular Mins.

BULK ASBESTOS MATERIAL Analysis Request

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday Date: 10 / 13 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDAE-01A	Silver Paint over Black Asphaltic Wrap / Aerator Piping, Near ground level
ECG-20-5562-IGDAE-02A	Concrete / Foundation of ladder

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDAE\Bulk Request

Date: 10 17 10 Time: 10 Delivered by: Date: 1017120Time: 10 Received by:

BULK ASBESTOS MATERIAL Analysis Request

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday Date: 10 / 13 /20 Time: 5 pm

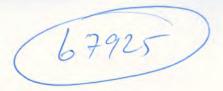
ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JGDCB-01A	Black Asphalt / Exterior of Communications Building	
ECG-20-5562-IGDCB-01B	Black Asphalt / Exterior of Communications Building	
ECG-20-5562-IGDCB-02A	Black Asphalt Joint Sealant / Exterior of Communications Building	
ECG-20-5562-IGDCB-02B	Black Asphalt Joint Sealant / Exterior of Communications Building	


C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDCB\Bulk Request

9-15-2020.wpd

Delivered by: ην Time: Date: 11/120 Time: 109 Received by:

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

Date: 10 / 13 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDES-01A	Asphaltic Roofing Shingles (No Felt Paper) / Roof of Shed
ECG-20-5562-IGDES-01A	Asphaltic Roofing Shingles (No Felt Paper) / Roof of Shed

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDES\Bulk Request 9-15-2020.wpd

Delivered by:

Date: 10 11 110 Time: 1000 AM/PM

Date: 10 17 120 Time: 10 40 AM/PM

BULK ASBESTOS MATERIAL Analysis Request

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday Date: 10 / 13 /20 Time: 5 pm

7 mo. 0 pm

ANALYSIS REQUESTED: Asbestos by PLM with Dispersion Staining

to repult (>19/1) for comple in a parion. Also ata

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE #	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDFHF-01A	Concrete at Coundation of Fish Holding Facility Building
ECG-20-5562-IGDFHF-02A	Concrete of Fish Holding Ponds
ECG-20-5562-IGDFHF-03A	Silver Paint of Black Asphaltic Material / Gutter Along Fish Ladder Near Gantry Gate
ECG-20-5562-IGDFHF-03B	Silver Paint of Black Asphaltic Material / Gutter Along Fish Ladder Near Gantry Gate

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\\GDFHF\Bulk Request

Delivered by:

Date: 1111 Time: 1010 AM/PM

Date: 101712 Time: 1040 AM/PM

BULK ASBESTOS MATERIAL Analysis Request

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

Date: 10 / 13 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

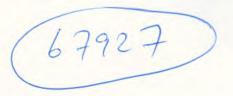
with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE #	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDFHS-01A	Black Felt Paper under Metal Roofing
ECG-20-5562-IGDEHS-01B	Black Felt Paper under Metal Roofing

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDFHS\Bulk Request 9-15-2020 wpd


Delivered by:

Date: 10 17 10 Time: 10 0 AM/PM

Date: 10 17 120 Time: 10 0 AM/PM

BULK ASBESTOS MATERIAL Analysis Request

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

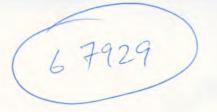
Turnaround Time: Day: Tuesday
Date: 10 / 13 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.


SAMPLE # MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-IGDFPS-01A	Concrete on Supports for Fish Hatchery Water Supply
ECG-20-5562-IGDFPS-02A	Brown Fibrous Material at Saddles for Fish Hatchery Water Supply
ECG-20-5562-IGDFPS-03A	Silver Paint over Black Asphaltic Material on Fish Hatchery Water

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDFPS\Bulk Request

Date: 10 17 7 Time: 104 Delivered by: Date: 15 1 71 25 Time: 1640 AM/PM Received by:

BULK ASBESTOS MATERIAL Analysis Request

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE #	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-IGDPH-01A	CMU and Grout / Power House, Interior Wall	
FCG-20-5562-IGDPH-02A	Concrete / Powerhouse Floor	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDPH\Bulk Request 9-15-2020 wod

Delivered by:

Date: 10 17 17 Time: 10 AM/PM

Date: 15 1 7 1 25 Time: 15 AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

67932

Date: 10 / 13 /20 Time: 5 pm

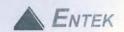
ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE #	MATERIAL DESCRIPTION/LOCATION
FCG-20-5562-IGDPIS-01A	Concrete / Intake House Foundation


C:\Users\selber\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDPIS\Bulk Request 9-15-2020 wpd

Delivered by:

Date: 10 11 Time: 10 10 AM/PM

Date: 10 17 12 Time: 10 90 AM/PM

Page 1 of 1

BULK ASBESTOS MATERIAL Analysis Request

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

Date: 10 / 13 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-IGDRR-01A	Concrete / Foundation of Building	
FCG-20-5562-IGDRR-02A	CMU and Grout / Storage Area, Interior Wall	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDRR\Bulk Request 9-15-2020.wpd

Delivered by:

Date: 10 17 10 Time: 040 AM/PM

Received by:

Date: 10 17 13 Time: 10 40 AM/PM

APPENDIX B LEAD RELATED DOCUMENTS

- Lead in Paint Samples Analysis Report From EMLAB
- Bulk Lead Material Analysis Request Form for Entek

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; NV5; Iron Gate Dam

EML ID: 2498697

Approved by:

Industida

Technical Manager Andrew Ikeda Dates of Analysis:

Lead - Flame AA: 10-13-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group

C/O: Andy Roed

Re: 20-5562; NV5; Iron Gate Dam

Date of Sampling: 09-14-2020

Date of Receipt: 10-08-2020

Date of Report: 10-15-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-IGDCB-01Pb: White paint on interior walls and door frames	ECG-20-IGDCB-02Pb: Yellow paint on exterior bollards
Comments (see below)	A	A
Lab ID-Version‡:	11905547-1	11905548-1
Analysis Date:	10/13/2020	10/13/2020
Sample type	Paint Chip sample	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	130 ppm	55 ppm
Sample size	0.0780 grams	0.1818 grams
§Total Lead Result	< 130 ppm	180 ppm

Comments: A) The relative percent difference of the matrix duplicate pair was above control limits. The laboratory control sample and matrix blank were both within control limits and validated the batch.

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

^{*}Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; NV5; Iron Gate Dam

EML ID: 2498724

Approved by:

Industrial Manager
Andrew Ikeda

Dates of Analysis: Lead - Flame AA: 10-12-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Date of Sampling: 09-14-2020

Client: Entek Consulting Group

C/O: Andy Roed Date of Receipt: 10-08-2020 Re: 20-5562; NV5; Iron Gate Dam Date of Report: 10-14-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-IGDDTI-01Pb: Orange paint on interior metal ladder	
Comments (see below)	None	
Lab ID-Version‡:	11905853-1	
Analysis Date:	10/12/2020	
Sample type	Paint Chip sample	
Method*	NIOSH 7082 & EPA 7000B modified	
† Method Reporting Limit	83 ppm	
Sample size	0.1212 grams	
§Total Lead Result	210000 ppm	

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC EMLab ID: 2498724, Page 2 of 2

^{*}Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; NV5; Iron Gate Dam

EML ID: 2498714

Approved by:

andww Heda

Technical Manager Andrew Ikeda Dates of Analysis: Lead - Flame AA: 10-13-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group C/O: Andy Roed

Re: 20-5562; NV5; Iron Gate Dam

Date of Sampling: 09-14-2020 Date of Receipt: 10-08-2020 Date of Report: 10-15-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-IGDES-01Pb: Gray Paint on Exterior Wood Siding	
Comments (see below)	A	
Lab ID-Version‡:	11905926-1	
Analysis Date:	10/13/2020	
Sample type	Paint Chip sample	
Method*	NIOSH 7082 & EPA 7000B modified	
† Method Reporting Limit	73 ppm	
Sample size	0.1378 grams	
§Total Lead Result	< 73 ppm	

Comments: A) The relative percent difference of the matrix duplicate pair was above control limits. The laboratory control sample and matrix blank were both within control limits and validated the batch.

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- *Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.
- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

Report for:

Andy Roed **Entek Consulting Group** 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; NV5; Iron Gate Dam

EML ID: 2498705

Approved by:

Indus Heda

Technical Manager Andrew Ikeda

Dates of Analysis:

Lead - Flame AA: 10-13-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group

C/O: Andy Roed

Re: 20-5562; NV5; Iron Gate Dam

Date of Sampling: 09-14-2020

Date of Receipt: 10-08-2020

Date of Report: 10-15-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-IGDFHF-	ECG-20-5562-IGDFHF-	ECG-20-5562-IGDFHF-
	01Pb:	02Pb:	03Pb:
	Red/Orange Paint on	Silver Paint on Exterior	Green Paint on Gantry
	Handrails	Equipment Structures	Gate
Comments (see below)	A	A	A
Lab ID-Version‡:	11905893-1	11905894-1	11905895-1
Analysis Date:	10/13/2020	10/13/2020	10/13/2020
Sample type	Paint Chip sample	Paint Chip sample	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	380 ppm	220 ppm	360 ppm
Sample size	0.0265 grams	0.0460 grams	0.0276 grams
§Total Lead Result	< 380 ppm	92000 ppm	< 360 ppm

Comments: A) The relative percent difference of the matrix duplicate pair was above control limits. The laboratory control sample and matrix blank were both within control limits and validated the batch.

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC EMLab ID: 2498705, Page 2 of 2

^{*}Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; NV5; Iron Gate Dam

EML ID: 2498702

Approved by:

Undundleda Technical Manager

Andrew Ikeda

Dates of Analysis: Lead - Flame AA: 10-13-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group

C/O: Andy Roed

Date of Sampling: 09-14-2020

Date of Receipt: 10-08-2020

Re: 20-5562; NV5; Iron Gate Dam

Date of Receipt: 10-08-2020

Date of Report: 10-15-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-IGDFHS-01Pb: Gray Paint On Wood Siding	
Comments (see below)	None	
Lab ID-Version‡:	11905609-1	
Analysis Date:	10/13/2020	
Sample type	Paint Chip sample	
Method*	NIOSH 7082 & EPA 7000B modified	
† Method Reporting Limit	39 ppm	
Sample size	0.2576 grams	
§Total Lead Result	< 39 ppm	

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- *Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.
- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; NV5; Iron Gate Dam

EML ID: 2498716

Approved by:

Undundleda Technical Manager

Andrew Ikeda

Dates of Analysis: Lead - Flame AA: 10-12-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group
C/O: Andy Roed
Date of Sampling: 09-14-2020
Date of Receipt: 10-08-2020
Date of Report: 10-14-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-IGDPIS-01Pb: Red paint on metal walkway	
Comments (see below)	None	
Lab ID-Version‡:	11905885-1	
Analysis Date:	10/12/2020	
Sample type	Paint Chip sample	
Method*	NIOSH 7082 & EPA 7000B modified	
† Method Reporting Limit	83 ppm	
Sample size	0.1209 grams	
§Total Lead Result	170000 ppm	

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- *Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.
- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; NV5; Iron Gate Dam

EML ID: 2498720

Approved by:

Indus Heda

Technical Manager Andrew Ikeda Dates of Analysis:

Lead - Flame AA: 10-12-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group

C/O: Andy Roed

Re: 20-5562; NV5; Iron Gate Dam

Date of Sampling: 09-14-2020

Date of Receipt: 10-08-2020

Date of Report: 10-14-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-IGDRR-01Pb: Silver paint on metal door	ECG-20-5562-IGDRR-02Pb: Gray paint on floor of restroom
Comments (see below)	None	None
Lab ID-Version‡:	11905856-1	11905857-1
Analysis Date:	10/12/2020	10/12/2020
Sample type	Paint Chip sample	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	75 ppm	40 ppm
Sample size	0.1329 grams	0.2500 grams
§Total Lead Result	< 75 ppm	< 40 ppm

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

^{*}Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Emlab P & K - Irvine

Collected by: Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as

possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-IGDCB-01Pb	White Paint on Interior walls and door frames	
ECG-20-5562-IGDCB-02Pb	Yellow Paint on Exterior Bollards	

C:WaarstselbertEntek Consulting Group, InclEntekgroup - Documents\Clients\NV926-5562 Klammath Danis\Field Documents\tron Gete\COCs\IGDC9\Bulk Request Pb 09-15-2020 wpd

Delivered by:

Date: (9 /] / 70 Time: 2

Received by:

Date: 10 18 1 25 Time: 945 @M/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Emlab P & K - Irvine

Collected by: Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDDTI-01Pb	Orange Paint on Interior Metal Ladder

C UserslaelberflEntek Consulting Group, IndiEntekgroup - DocumentslClients\NV5/20-5562 Klammath DanislField Documentsl(from Gate(COCs))GDDT\Bulk Request Pb 09-15-2020 wpd

Delivered by:

Date:

ÁM/PM

Received by:

10 10 12 Time: 945

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Emlab P & K - Irvine

Collected by: Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDES-01Pb	Gray Paint on Exterior Wood Siding

C-Wserslaelbert/Entek Consulting Group, InclEntekgroup - Documents/Clients/NV5/20-5562 Klammath Dams/Field Documents/Iron Gate/COCs/IGDES/8ulk Request Pb 09-15-2020.wpd

Date: 10 17 100 Time: Delivered by: 125 Time: 945 Received by:

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Emlab P & K - Irvine

Collected by: Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDFHF-01Pb	Red/Orange Paint on Handrails
ECG-20-5562-IGDFHF-02Pb	Silver Paint on Exterior Equipment Structures
CG-20-5562-IGDFHF-03Pb	Green Paint on Gantry Gate

C:\Users\ae\bert\Entak Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dame\Field Documents\ifon Gate\COCs\GDF\F\Bulk Request Pb 09-15-2020 wpd

Delivered by:	V	Vin felex	Date:	1017120	Time:	9	Амем
Received by:		>	Date:	10 PTZ	Time:	845	ДМ РМ

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Emlab P & K - Irvine

Collected by: Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as

possible.

SAMPLE #	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDFHS-01Pb	Gray Paint on Wood Siding

C.\Usara\salbert\Entek Consulting Group, InclEntekgroup - Documents\Clients\NV5\20-5562 Klammath Dama\Field Documents\Inon Gate\COCs\GDF\HS\Bulk Request Pb. 09-15-2020 wpd

Delivered by:

AM/PM

Received by:

10 10 120 Time:

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-14-2020

Job Number: 20-5562

Client Name: NV5

Site Address: Iron Gate Dam

Lab: Emlab P & K - Irvine

Collected by: Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as

possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDPIS-01Pb	Red Paint on Metal Walkway

C:\Users\selbert\Entek Consulting Group, InclEntekgroup - Documents\Clients\NV5\20-6562 Klammath Dams\Field Documents\Incl Doc

Delivered by:

Date: 1017170 Time: AM/PM

Date: 1017170 Time: 945 AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-14-2020

Job Number: 20-5562 Client Name: NV5

Site Address: Iron Gate Dam

Lab: Emlab P & K - Irvine

Collected by: Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE #	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-IGDRR-01Pb	Silver Paint on Metal Door
ECG-20-5562-IGDRR-02Pb	Gray Paint on Floor of Restroom

C-UsersiseibertEntek Consulting Group, InclEntekgroup - Documents\Clients\WV5/20-5562 Klammath Dams\Field Documents\Iron Gate\COCs\IGDRR\Bulk Request Pb

n'a Fedex Date: 10 17 / Delivered by: Received by:

Lead Testing Data Sheet (OSHA)

Iron Gate Development

Entek Project # 20-5562 Niton: XLp-300A Lead Analyzer Date: 9-14 and 9-15, 2020

Address: Iron Gate Development XRF Serial No.: 24015 Source No.: TR3580

Room Equivalent: Inspector(s): Andy Roed

Component	Substrate	Color	Test Locations	XRF Reading (mg/cm²)
Ladder	Metal	Yellow	Aerator Structure	2.7
Pipe	Metal	Red	Aerator Piping	4.4
Siding	Wood	Gray	Wood Siding on emergency spill shed	0.0
Structural Component	Metal	Tan	Penstock Intake Structure	2.2
Handrail	Metal	Silver	Penstock Intake Structure	2.6
Handrails	Metal	Orange	Handrails of Fish holding Facility	0.2
Gantry Gate	Metal	Green	Paint on fish ladder gantry gate	0.1
Crane Rails	Metal	Silver	Rails for Crane on top of Powerhouse	14.2
Ladder	Metal	Yellow	Ladder on interior of powerhouse	2.8
Equipment	Metal	Gray	Turbine enclosure on top of powerhouse	1.9
Walls	Metal	White	Communications Building	0.1
Bollard	Metal	Yellow	Bollards outside communication bulling	0.0
Siding	Wood	Gray	Fish holding shed siding	0.0

C:\Users\andy\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Reports\Iron Gate\Working Documents\Lead Test Data SheetOSHA.wpd

Klamath River Dams

Site Name:	Copco 1 D	evelopment	Date:	9-17-2020				
City:	Hornbrook	, CA						
Device:	Niton XIp 3	800	Source Assay Date:	12-1-19				
XRF Serial No.	KRF Serial No. 24015		Source Number:	TR3580				
Contractor:	Entek Con	sulting Group, Inc.						
Inspector Name	e: Andy Roed	I						
Inspector Signature:								
Calibration Check Tolerance Used 1.04 ±0.06								
First Calibration	First Calibration Check 0900 hours							
Red	SRM (2573) 0.8 to 1.2	2 mg/cm²	Do All Three Checks Meet the Standard?					
First Reading	Second Reading	Third Reading	Yes					
1.0	1.0	0.9						
Second Calibration Check 1600 hours								
Red SRM (2573) 0.8 to 1.2 mg/cm ²			Do All Three Checks Meet the	Standard?				
First Reading	Second Reading	Third Reading						
1.0	1.1	1.0	Yes					
Third Calibration Check N/A								
Red	SRM (2573) 0.8 to 1.2	? mg/cm²	Do All Three Checks Meet the	Standard?				
First Reading	Second Reading	Third Reading	N/A					
N/A	N/A	N/A						
Fourth Calibratio	on Check <u>N/A</u>							
Red	SRM (2573) 0.8 to 1.2	2 mg/cm ²	Do All Three Checks Meet the Stand	ard?				
First Reading	Second Reading	Third Reading	N/A					
N/A	N/A	N/A						

^{*} If the Calibration Check from the red SRM film value is greater or less than the specified Calibration Check Tolerance for this device, consult the manufacturer's recommendations to bring the instrument back into control. Retest all testing combinations tested since the last successful Calibration Check test.

Klamath River Dams

City: Hornbrook, CA Device: Niton Xlp 300 Source Assay Date: 12-1-19 XRF Serial No. 24015 Source Number: TR3580 Contractor: Entek Consulting Group, Inc. Inspector Name: Andy Roed Inspector Signature:
XRF Serial No. 24015 Source Number: TR3580 Contractor: Entek Consulting Group, Inc. Inspector Name: Andy Roed Inspector Signature:
Contractor: Entek Consulting Group, Inc. Inspector Name: Andy Roed Inspector Signature:
Inspector Name: Andy Roed Inspector Signature: Calibration Check Tolerance Used 1.04 ±0.06 First Calibration Check 0700 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading Yes 0.9 1.0 0.9 Second Calibration Check 1500 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading Yes 1.0 0.9 1.0 Yes
Calibration Check Tolerance Used 1.04 ±0.06
Calibration Check Tolerance Used 1.04 ±0.06 First Calibration Check 0700 hours Do All Three Checks Meet the Standard? Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading 1.0 Third Reading 0.9 Second Calibration Check 1500 hours Hours 1.2 mg/cm² Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading 1.0 Third Reading Yes 1.0 0.9
First Calibration Check 0700 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading 0.9 1.0 0.9 Second Calibration Check 1500 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading 1.0 0.9 1.0
Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading 0.9 1.0 0.9 Second Calibration Check 1500 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading 1.0 0.9 1.0
First Reading Second Reading Third Reading Yes 0.9 1.0 0.9 Second Calibration Check 1500 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading 1.0 0.9 1.0
0.9 1.0 0.9 Second Calibration Check
Second Calibration Check 1500 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading 1.0 0.9 1.0
Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading 1.0 0.9 1.0
First Reading Second Reading Third Reading 1.0 0.9 1.0
1.0 0.9 1.0 Yes
1.0 0.9 1.0
Third Calibration Check N/A
Red SRM (2573) 0.8 to 1.2 mg/cm ² Do All Three Checks Meet the Standard?
First Reading Second Reading Third Reading N/A
N/A N/A N/A
Fourth Calibration Check N/A
Red SRM (2573) 0.8 to 1.2 mg/cm ² Do All Three Checks Meet the Standard?
First Reading Second Reading Third Reading N/A
N/A N/A N/A

^{*} If the Calibration Check from the red SRM film value is greater or less than the specified Calibration Check Tolerance for this device, consult the manufacturer's recommendations to bring the instrument back into control. Retest all testing combinations tested since the last successful Calibration Check test.

Klamath River Dams

Site Name:	Iron Gate /	Copco 2 Developn	nent Date:	9-15-2020				
City:	Hornbrook	Hornbrook, CA						
Device:	Niton XIp 3	00	Source Assay Date: 12-1-19					
XRF Serial No.	24015		Source Number:	TR3580				
Contractor:	Entek Cons	sulting Group, Inc.						
Inspector Name: Andy Roed								
Inspector Signa	Inspector Signature:							
Calibration Check Tolerance Used 1.04 ±0.06								
First Calibration	First Calibration Check 0800 hours							
Red S	SRM (2573) 0.8 to 1.2	mg/cm ²	Do All Three Checks Meet the	Standard?				
First Reading	Second Reading	Third Reading	Yes					
0.9	1.0	1.0						
Second Calibration	Second Calibration Check 1700 hours							
Red SRM (2573) 0.8 to 1.2 mg/cm ²			Do All Three Checks Meet the	Standard?				
First Reading	Second Reading	Third Reading	Vaa					
1.0	1.0	1.0	Yes					
Third Calibration Check N/A								
Red S	SRM (2573) 0.8 to 1.2	mg/cm ²	Do All Three Checks Meet the	Standard?				
First Reading	Second Reading	Third Reading	N/A					
N/A	N/A	N/A						
Fourth Calibratio	n Check <u>N/A</u>							
Red S	SRM (2573) 0.8 to 1.2	mg/cm ²	Do All Three Checks Meet the Stand	ard?				
First Reading	Second Reading	Third Reading	N/A					
N/A	N/A	N/A						

^{*} If the Calibration Check from the red SRM film value is greater or less than the specified Calibration Check Tolerance for this device, consult the manufacturer's recommendations to bring the instrument back into control. Retest all testing combinations tested since the last successful Calibration Check test.

Klamath River Dams

City: Hornbrook, CA Device: Niton XIp 300 Source Assay Date: 12-1-19 XRF Serial No. 24015 Source Number: TR3580 Contractor: Entek Consulting Group, Inc. Inspector Name: Andy Roed Inspector Signature: Calibration Check Tolerance Used1.04 ±0.06 First Calibration Check	Site Name:	Iron Gate /	Copco 2 Developn	nent Date:	9-14-2020				
XRF Serial No. 24015 Source Number: TR3580 Contractor: Entek Consulting Group, Inc. Inspector Name: Andy Roed Inspector Signature: Calibration Check Tolerance Used 1.04 ±0.06 First Calibration Check 0700 hours	City:	Hornbrook	, CA						
Contractor: Entek Consulting Group, Inc. Inspector Name: Andy Roed Inspector Signature: Calibration Check Tolerance Used 1.04 ±0.06 First Calibration Check 0700 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading O.9 0.9 1.0 Second Calibration Check 1730 hours Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading Yes 1.0 1.0 1.1 Yes Third Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading Yes Third Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A N/A N/A N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard?	Device:	Niton XIp 3	800	Source Assay Date:	12-1-19				
Inspector Name:	XRF Serial No.	24015		Source Number:	TR3580				
Calibration Check Tolerance Used 1.04 ±0.06	Contractor:	Entek Con	sulting Group, Inc.						
Calibration Check Tolerance Used 1.04 ±0.06									
First Calibration Check	Inspector Signa								
Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading Yes 0.9 0.9 1.0 Second Calibration Check	Calibration Check Tolerance Used 1.04 ±0.06								
First Reading Second Reading Third Reading Yes 0.9 0.9 1.0 Second Calibration Check	First Calibration	Check <u>0700</u>	hours						
0.9 0.9 1.0 Second Calibration Check	Red	SRM (2573) 0.8 to 1.2	? mg/cm²	Do All Three Checks Meet the	Standard?				
Second Calibration Check	First Reading	Second Reading	Third Reading	Yes					
Red SRM (2573) 0.8 to 1.2 mg/cm² First Reading Second Reading Third Reading T.0 1.0 1.0 1.1 Third Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A N/A N/A N/A N/A N/A Pourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading Do All Three Checks Meet the Standard?	0.9	0.9	1.0						
First Reading Second Reading Third Reading Yes 1.0 1.0 1.1 Third Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A N/A N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	Second Calibrati	Second Calibration Check 1730 hours							
1.0 1.0 1.1 Yes Third Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	Red SRM (2573) 0.8 to 1.2 mg/cm ²			Do All Three Checks Meet the	Standard?				
1.0 1.0 1.1 Third Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading N/A N/A N/A N/A Fourth Calibration Check N/A N/A Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	First Reading	Second Reading	Third Reading	V					
Red SRM (2573) 0.8 to 1.2 mg/cm² First Reading Second Reading Third Reading N/A N/A N/A N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	1.0	1.0	1.1	Yes					
First Reading Second Reading Third Reading N/A N/A N/A N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	Third Calibration Check N/A								
N/A N/A N/A Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	Red	SRM (2573) 0.8 to 1.2	2 mg/cm ²	Do All Three Checks Meet the	Standard?				
Fourth Calibration Check N/A Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	First Reading	Second Reading	Third Reading	N/A					
Red SRM (2573) 0.8 to 1.2 mg/cm² Do All Three Checks Meet the Standard? First Reading Second Reading Third Reading N/A	N/A	N/A	N/A						
First Reading Second Reading Third Reading N/A	Fourth Calibratio	Fourth Calibration Check N/A							
 	Red	SRM (2573) 0.8 to 1.2	2 mg/cm ²	Do All Three Checks Meet the Stand	ard?				
N/A N/A	First Reading	Second Reading	Third Reading	N/A					
	N/A	N/A	N/A						

^{*} If the Calibration Check from the red SRM film value is greater or less than the specified Calibration Check Tolerance for this device, consult the manufacturer's recommendations to bring the instrument back into control. Retest all testing combinations tested since the last successful Calibration Check test.

Performance Characteristic Sheet

EFFECTIVE DATE: September 24, 2004 EDITION NO.: 1

MANUFACTURER AND MODEL:

Make: Niton LLC
Tested Model: XLp 300
Source: 109Cd

Note: This PCS is also applicable to the equivalent model variations indicated

below, for the Lead-in-Paint K+L variable reading time mode, in the XLi and

XLp series:

XLi 300A, XLi 301A, XLi 302A and XLi 303A. XLp 300A, XLp 301A, XLp 302A and XLp 303A. XLi 700A, XLi 701A, XLi 702A and XLi 703A. XLp 700A, XLp 701A, XLp 702A, and XLp 703A.

Note: The XLi and XLp versions refer to the shape of the handle part of the instrument. The differences in the model numbers reflect other modes available, in addition to Lead-in-Paint modes. The manufacturer states that specifications for these instruments are identical for the source, detector, and detector electronics relative to the Lead-in-Paint mode.

FIELD OPERATION GUIDANCE

OPERATING PARAMETERS:

Lead-in-Paint K+L variable reading time mode.

XRF CALIBRATION CHECK LIMITS:

0.8 to 1.2 mg/cm² (inclusive)

The calibration of the XRF instrument should be checked using the paint film nearest 1.0 mg/cm² in the NIST Standard Reference Material (SRM) used (e.g., for NIST SRM 2579, use the 1.02 mg/cm² film).

If readings are outside the acceptable calibration check range, follow the manufacturer's instructions to bring the instruments into control before XRF testing proceeds.

SUBSTRATE CORRECTION:

For XRF results using Lead-in-Paint K+L variable reading time mode, substrate correction is <u>not</u> needed for: Brick, Concrete, Drywall, Metal, Plaster, and Wood

INCONCLUSIVE RANGE OR THRESHOLD:

K+L MODE READING DESCRIPTION	SUBSTRATE	THRESHOLD (mg/cm²)
Results not corrected for substrate bias on any	Brick	1.0
substrate	Concrete	1.0
T. San	Drywall	1.0
	Metal	1.0
	Plaster	1.0
	Wood	1.0

BACKGROUND INFORMATION

EVALUATION DATA SOURCE AND DATE:

This sheet is supplemental information to be used in conjunction with Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing ("HUD Guidelines"). Performance parameters shown on this sheet are calculated from the EPA/HUD evaluation using archived building components. Testing was conducted in August 2004 on 133 testing combinations. The instruments that were used to perform the testing had new sources; one instrument's was installed in November 2003 with 40 mCi initial strength, and the other's was installed June 2004 with 40 mCi initial strength.

OPERATING PARAMETERS:

Performance parameters shown in this sheet are applicable only when properly operating the instrument using the manufacturer's instructions and procedures described in Chapter 7 of the HUD Guidelines.

SUBSTRATE CORRECTION VALUE COMPUTATION:

Substrate correction is not needed for brick, concrete, drywall, metal, plaster or wood when using Lead-in-Paint K+L variable reading time mode, the normal operating mode for these instruments. If substrate correction is desired, refer to Chapter 7 of the HUD Guidelines for guidance on correcting XRF results for substrate bias.

EVALUATING THE QUALITY OF XRF TESTING:

Randomly select ten testing combinations for retesting from each house or from two randomly selected units in multifamily housing. Use the K+L variable time mode readings.

Conduct XRF retesting at the ten testing combinations selected for retesting.

Determine if the XRF testing in the units or house passed or failed the test by applying the steps below.

Compute the Retest Tolerance Limit by the following steps:

Determine XRF results for the original and retest XRF readings. Do not correct the original or retest results for substrate bias. In single-family housing a result is defined as the average of three readings. In multifamily housing, a result is a single reading. Therefore, there will be ten original and ten retest XRF results for each house or for the two selected units.

Calculate the average of the original XRF result and retest XRF result for each testing combination.

Square the average for each testing combination.

Add the ten squared averages together. Call this quantity C.

Multiply the number C by 0.0072. Call this quantity D.

Add the number 0.032 to D. Call this quantity E.

Take the square root of E. Call this quantity F.

Multiply F by 1.645. The result is the Retest Tolerance Limit.

Compute the average of all ten original XRF results.

Compute the average of all ten re-test XRF results.

Find the absolute difference of the two averages.

If the difference is less than the Retest Tolerance Limit, the inspection has passed the retest. If the difference of the overall averages equals or exceeds the Retest Tolerance Limit, this procedure should be repeated with ten new testing combinations. If the difference of the overall averages is equal to or greater than the Retest Tolerance Limit a second time, then the inspection should be considered deficient.

Use of this procedure is estimated to produce a spurious result approximately 1% of the time. That is, results of this procedure will call for further examination when no examination is warranted in approximately 1 out of 100 dwelling units tested.

TESTING TIMES:

For the Lead-in-Paint K+L variable reading time mode, the instrument continues to read until it is moved away from the testing surface, terminated by the user, or the instrument software indicates the reading is complete. The following table provides testing time information for this testing mode. The times have been adjusted for source decay, normalized to the initial source strengths as noted above. Source strength and type of substrate will affect actual testing times. At the time of testing, the instruments had source strengths of 26.6 and 36.6 mCi.

Testing Times Using K+L Reading Mode (Seconds)								
	All Data			Median for laboratory-measured lead levels (mg/cm²)				
Substrate	25 th Percentile	Median	75 th Percentile	Pb < 0.25	0.25 ≤ Pb<1.0	1.0 <u><</u> Pb		
Wood Drywall	4	11	19	11	15	11		
Metal	4	12	18	9	12	14		
Brick Concrete Plaster	8	16	22	15	18	16		

CLASSIFICATION RESULTS:

XRF results are classified as positive if they are greater than or equal to the threshold, and negative if they are less than the threshold.

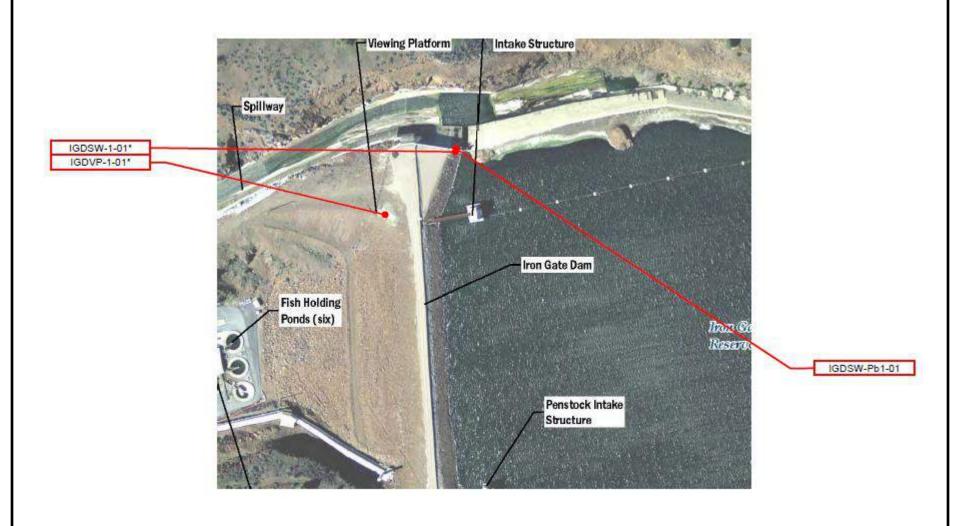
DOCUMENTATION:

A document titled *Methodology for XRF Performance Characteristic Sheets* provides an explanation of the statistical methodology used to construct the data in the sheets, and provides empirical results from using the recommended inconclusive ranges or thresholds for specific XRF instruments. For a copy of this document call the National Lead Information Center Clearinghouse at 1-800-424-LEAD.

This XRF Performance Characteristic Sheet was developed by the Midwest Research Institute (MRI) and QuanTech, Inc., under a contract between MRI and the XRF manufacturer. HUD has determined that the information provided here is acceptable when used as guidance in conjunction with Chapter 7, Lead-Based Paint Inspection, of HUD's Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing.

APPENDIX C

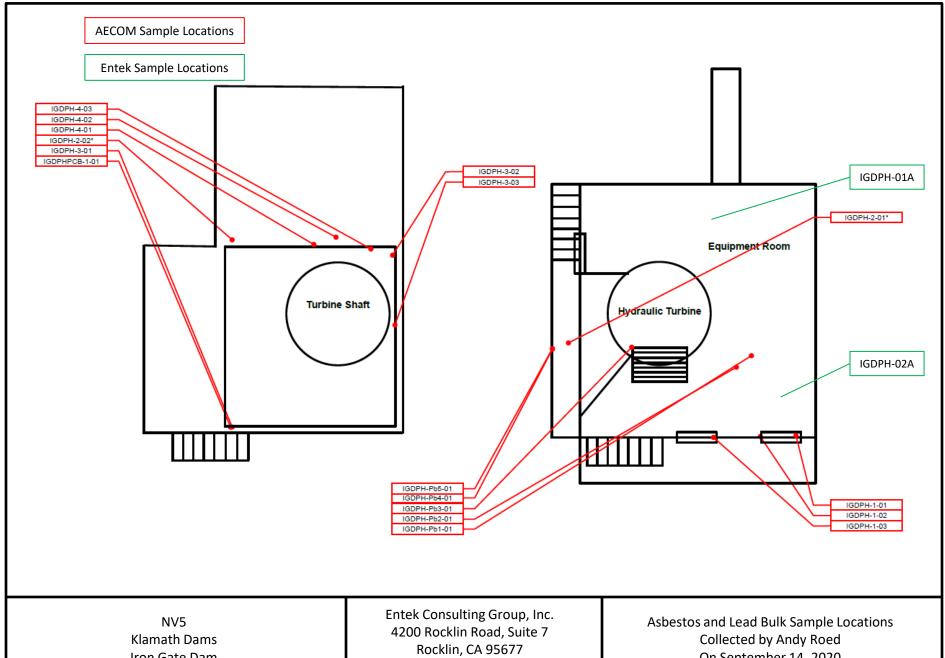
Sample Location Maps


Asbestos and Lead Sample Location Diagrams

NV5 Klamath Dams Iron Gate Dam Hornsbrook, CA Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

 ${\tt Cloud \C lients \NV5 \20-5562\ Klammath\ Dams \Drawings \lfon\ Gate}$

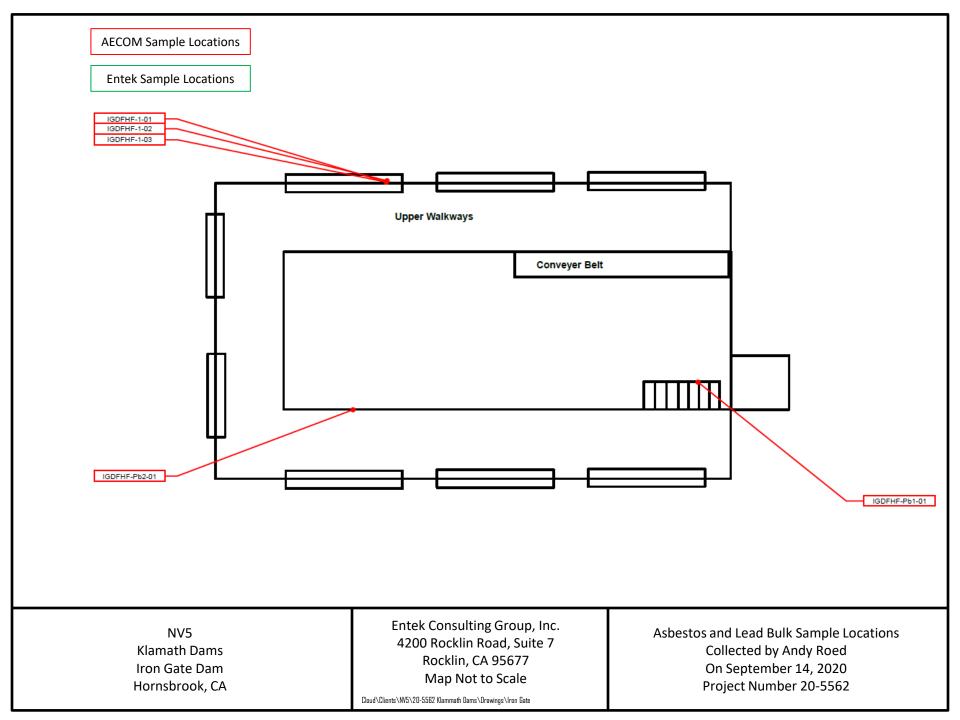
Site Diagram On September 14, 2020 Project Number 20-5562

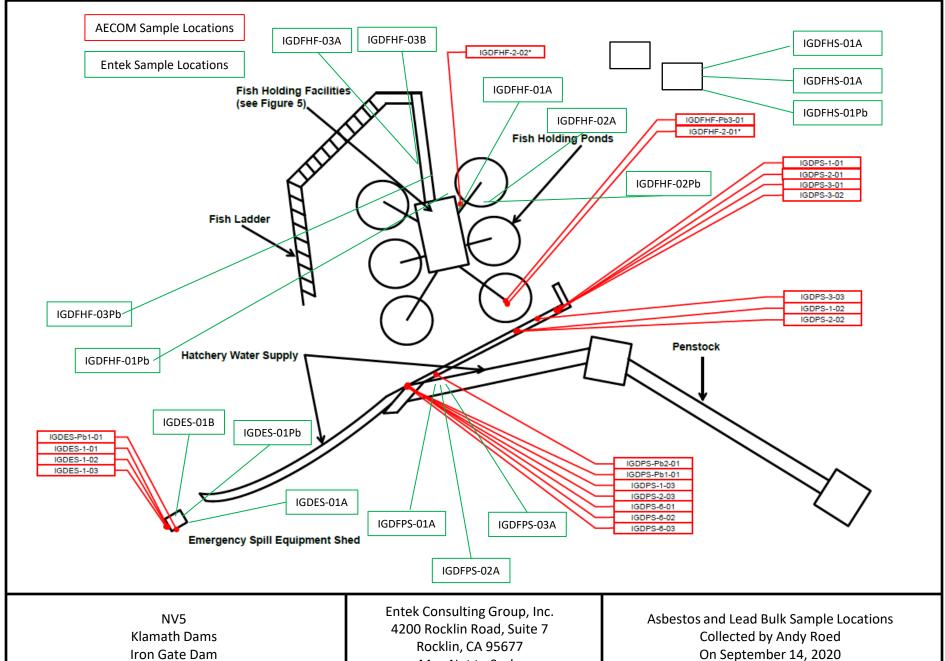


NV5 Klamath Dams Iron Gate Dam Hornsbrook, CA Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\Iron Gate

Asbestos and Lead Bulk Sample Locations Collected by Andy Roed On September 14, 2020 Project Number 20-5562

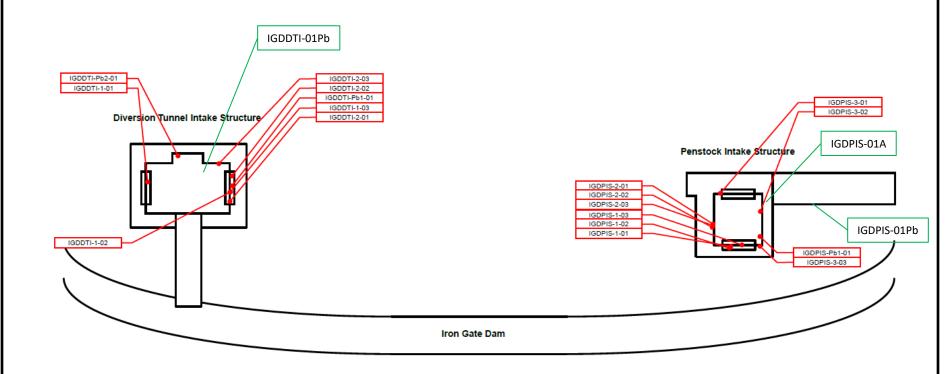




Iron Gate Dam Hornsbrook, CA Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\Iron Gate

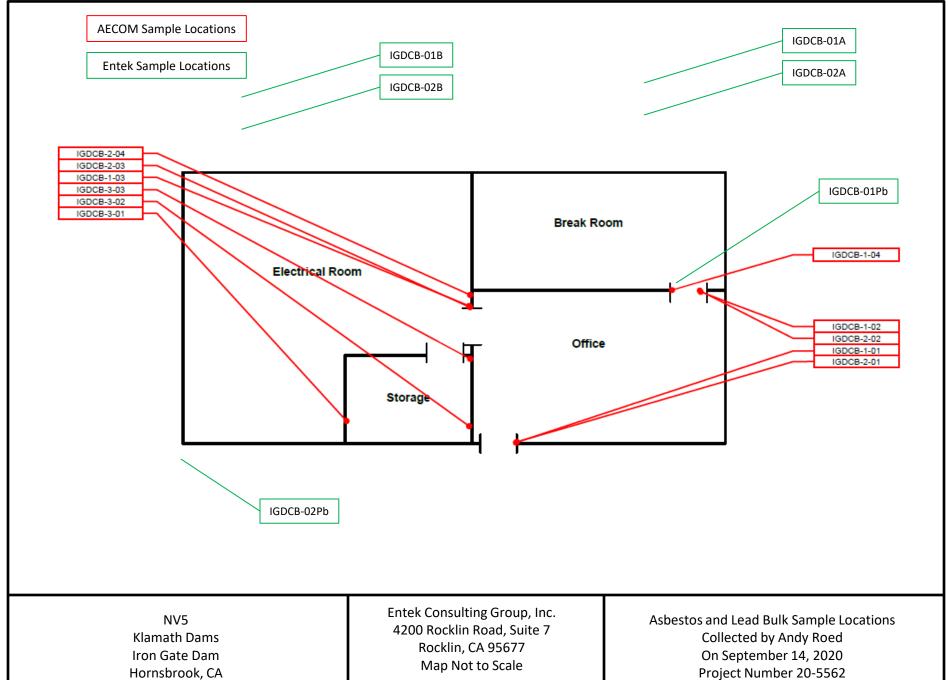
On September 14, 2020 Project Number 20-5562



Iron Gate Dam Hornsbrook, CA Rocklin, CA 95677 Map Not to Scale

Project Number 20-5562 Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\Iron Gate

AECOM Sample Locations


Entek Sample Locations

NV5 Klamath Dams Iron Gate Dam Hornsbrook, CA Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\Iron Gate

Asbestos and Lead Bulk Sample Locations Collected by Andy Roed On September 14, 2020 Project Number 20-5562

 ${\tt Cloud \C lients \NV5 \20-5562\ Klammath\ Dams \Drawings \lfon\ Gate}$

Project Number 20-5562

AECOM Sample Locations Entek Sample Locations IGDAE-01A IGDAE-2-03 IGDAE-1-03 IGDAE-1-02 IGDAE-2-02 IGDAE-1-01 IGDAE-2-01 IGDAE-01A

> NV5 Klamath Dams Iron Gate Dam Hornsbrook, CA

Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\Iron Gate

Asbestos and Lead Bulk Sample Locations Collected by Andy Roed On September 14, 2020 Project Number 20-5562

APPENDIX D

BACK UP DOCUMENTATION

- Inspector Accreditations and Certifications
- Laboratory Accreditations for Asbestos and Lead Analysis

State of California Division of Occupational Safety and Health Certified Asbestos Consultant

Andrew R Roed

Name

Certification No. 16-5695

Expires on 08/17/21

This certification was issued by the Division of Occupational Safety and Health as authorized by Sections 7180 at seq. of the Business and Professions Code.

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC HEALTH

LEAD-RELATED CONSTRUCTION CERTIFICATE

INDIVIDUAL:

CERTIFICATE TYPE:

NUMBER:

EXPIRATION DATE:

Lead Inspector/Assessor

LRC-00002989

9/11/2021

Disclaimer: This document alone should not be relied upon to confirm certification status. Compare the individual's photo and name to another valid form of government issued photo identification. Verify the individual's certification status by searching for Lead-Related Construction Professionals at www.cdph.ca.gov/programs/clppb or calling (800) 597-LEAD.

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 101442-0

ASBESTECH

Carmichael, CA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Asbestos Fiber Analysis

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2020-07-01 through 2021-06-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ASBESTECH

6825 Fair Oaks Blvd., Suite 103 Carmichael, CA 95608 Mr. Tommy Conlon

Phone: 916-481-8902 Fax: 916-481-3975 Email: asbestech@sbcglobal.net http://www.asbestechlab.com

ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 101442-0

Bulk Asbestos Analysis

-	٦.		_1	Γ.	
	- 4	ъ.	а	60	,

Description

18/A01

EPA -- 40 CFR Appendix E to Subpart E of Part 763, Interim Method of the Determination of

Asbestos in Bulk Insulation Samples

18/A03

EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials

Airborne Asbestos Analysis

Code

Description

18/A02

U.S. EPA's "Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory-and Mandatory Section to Determine Completion of Response Actions" as found in

40 CFR, Part 763, Subpart E, Appendix A.

For the National Voluntary Laboratory Accreditation Program

CALIFORNIA STATE

ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

CERTIFICATE OF ENVIRONMENTAL ACCREDITATION

Is hereby granted to

Asbestech

6825 Fair Oaks Boulevard Carmichael, CA 95608

Scope of the certificate is limited to the "Fields of Testing" which accompany this Certificate.

Continued accredited status depends on successful completion of on-site inspection, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No.: 1153

Expiration Date: 3/31/2022

Effective Date: 4/1/2020

Sacramento, California subject to forfeiture or revocation

Christine Sotelo, Chief

Environmental Laboratory Accreditation Program

CALIFORNIA STATE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Accredited Fields of Testing

Asbestech

6825 Fair Oaks Boulevard Carmichael, CA 95608 Phone: 9164818902 Certificate No. 1153 Expiration Date 3/31/2022

Field of Testing: 121 - Bulk Asbestos Analysis of Hazardous Waste

121.010 001 Bulk Asbestos EPA 600/M4-82-020

AIHA Laboratory Accreditation Programs, LLC

acknowledges that

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

Laboratory ID: 178697

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2017 international standard, *General Requirements for the Competence of Testing and Calibration Laboratories* in the following:

LABORATORY ACCREDITATION PROGRAMS

- INDUSTRIAL HYGIENE Accreditation Expires: September 01, 2021
 ENVIRONMENTAL LEAD Accreditation Expires: September 01, 2021
 ENVIRONMENTAL MICROBIOLOGY Accreditation Expires: September 01, 2021
- ☐ FOOD Accreditation Expires:
 ☐ UNIQUE SCOPES Accreditation Expires:

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached **Scope of Accreditation**. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2017 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached **Scope of Accreditation**. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Bets Bair

Elizabeth Bair Chairperson, Analytical Accreditation Board

Revision 17 - 09/11/2018

Cheryl O. Morton

Cheryl O. Charton

Managing Director, AIHA Laboratory Accreditation Programs, LLC

Date Issued: 08/21/2019

AIHA Laboratory Accreditation Programs, LLC SCOPE OF ACCREDITATION

Laboratory ID: **178697** Issue Date: 08/21/2019

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Industrial Hygiene Laboratory Accreditation Program (IHLAP)

Initial Accreditation Date: 06/01/2011

IHLAP Scope Category	Field of Testing (FoT) (FoTs cover all relevant IH matrices)	Technology sub-type/ Detector	Published Reference Method/Title of In- house Method	Method Description or Analyte (for internal methods only)
Asbestos/Fiber Microscopy Core	Phase Contrast Microscopy (PCM)		NIOSH 7400	

A complete listing of currently accredited Industrial Hygiene laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 04/10/2015 Scope_IHLAP_R8

Page 1 of 1

AIHA Laboratory Accreditation Programs, LLC SCOPE OF ACCREDITATION

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

Laboratory ID: **178697**Issue Date: 08/21/2019

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Environmental Microbiology Laboratory Accreditation Program (EMLAP)

Initial Accreditation Date: 07/01/2005

EMLAP Category	Field of Testing (FoT)	Method	Method Description (for internal methods only)
	Air - Direct Examination	EM-MY-S-1038	Preparation and Analysis of Spore Trap (Air) Samples for Fungal Spores, Other Biological and Non-Biological Particles
Fungal	Bulk - Direct Examination	EM-MY-S-1039 Preparation and Analysis of Tape Wipe, Bulk and Dust - Soil Sam Qualitative Direct Microsco Examination	
	Surface - Direct Examination	EM-MY-S-1041	Preparation and Analysis of Tape, Swab, Wipe, Bulk, and Dust - Soil Samples for Quantitative Direct Microscopic Examination
Bacterial	Legionella	EM-BT-S-1045	Enumeration of Legionella. International Standard ISO 11731:2017
Dacterial		EM-BT-S-1687	CDC Laboratory protocol 2016

A complete listing of currently accredited Environmental Microbiology laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 03/12/2013 Scope_EMLAP_R6

Page 1 of 1

AIHA Laboratory Accreditation Programs, LLC SCOPE OF ACCREDITATION

Laboratory ID: **178697**

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

Issue Date: 08/21/2019 The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the

laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazard Reduction Act of 1992 and includes paint, soil and dust wipe analysis. Air and composited wipes analyses are not included as part of the NLLAP.

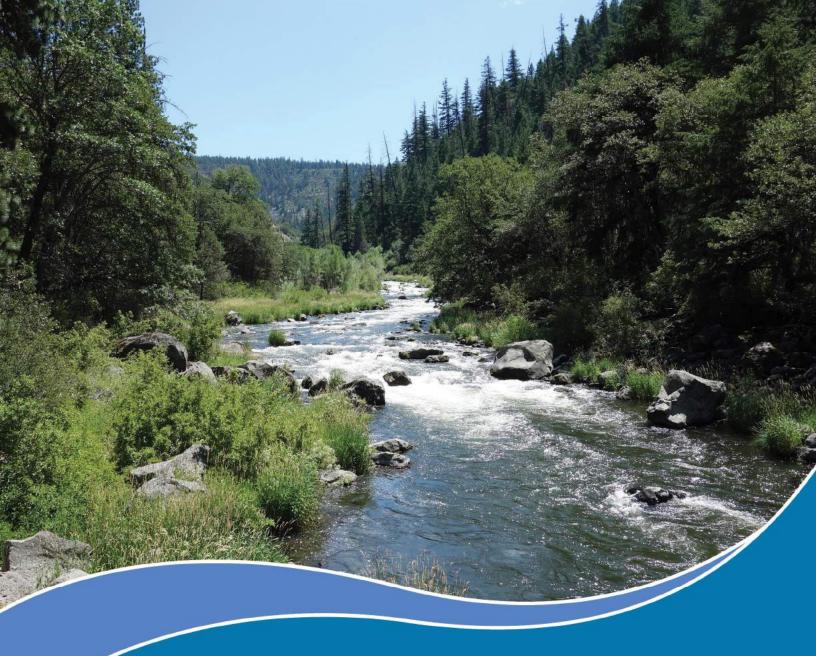
Environmental Lead Laboratory Accreditation Program (ELLAP)

Initial Accreditation Date: 03/01/2017

Field of Testing (FoT)	Technology sub-type/ Detector	Method	Method Description (for internal methods only)
		EPA SW-846 7000B	
Paint		Modified	
		NIOSH 7082	
		EPA SW-846 7000B	
Settled Dust by Wipe		Modified	
		NIOSH 7082	

A complete listing of currently accredited Environmental Lead laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 10/14/2016 Scope ELLAP R7


Page 1 of 1

APPENDIX E

HISTORICAL SURVEY DOCUMENTATION

AECOM Technical Services, Inc. Report Dated April 2019

Klamath River Renewal Project

Iron Gate Development Hazardous Building Materials Survey

Prepared for:

Klamath River Renewal Corporation

Assessment Conducted by:

AECOM Technical Services, Inc.

300 Lakeside Drive, Suite 400 Oakland, California 94612

Assessment Personnel

Mr. David Simon

State of California Certified Asbestos Consultant (CAC)

Number: 92-005 (exp. 6/24/2019)

Ms. Shannon MacKay (assisted with documentation)

AHERA-Certified Building Inspector Number: CA-015-16 (exp. 1/15/2020)

Assessment Dates

September 14, 2018 and December 19, 2018

Report Prepared by:

Shannon MacKay

Environmental Consultant

Report Reviewed by:

David I Smin

David Simon

State of California Certified Asbestos Consultant (CAC)

Nicole Gladu

EHS Compliance Manager

2 April 2019

Table of Contents

Exe	cutiv	ve Sur	mmary	7
	Proje	ect Backo	ground:	7
	Haza	ardous Bu	uilding Materials Survey:	8
	Obje	ctive:		8
	Sum	marized	HBMS Results:	8
1	Intr	roduct	tion	11
	1.1 Project Description			11
	1.2	1.2 Survey Limitations		
2.	Sco	Scope of Services		
	2.1	Asbesto	os Assessment	14
		2.1.1	Methodology	14
		2.1.2	Naturally Occurring Asbestos	15
	2.2	Sampli	ng Procedures	15
	2.3	Sampli	ng and Analysis	16
	2.4	Lead A	ssessment	18
		2.4.1	Sampling Methodology	18
	2.5	Other F	Regulated Building Materials	18
		2.5.1	Universal Waste Inventory Methodology	18
		2.5.2	PCB-Containing Caulking	18
3.	Site	e Desc	cription	20
	3.1	Iron Ga	ite Development	20
		3.1.1	Description of Iron Gate Development Structures	20
4.	Conclusions and Recommendations			25
	4.1 Asbestos			25
		4.1.1	Asbestos Regulations	26
	4.2	Lead		28
	4.3	Other F	Regulated Building Materials.	28

4.4	Treated Wood	29
4.5	Tables	29

List of Figures (Appendix A)

Figure 1 Aerial Site Photo
<u>Asbestos and Lead Sample Locations:</u>

Figure 2 Aerator

Figure 3 Communications Building

Figure 4 Diversion Tunnel Intake Structure and Penstock Intake Structure

Figure 5 Penstock, Hatchery Water Supply, Emergency Spill Equipment Shed, and Fish Holding

Ponds

Figure 6 Fish Holding Facilities

Figure 7 Powerhouse Figure 8 Restrooms

Approximate ACM Locations:

Figure 9 Aerator, Penstock Intake Structure, Fish Holding Facilities, Maintenance Shed, Diversion

Tunnel Intake Structure, and Powerhouse

List of Appendices

Appendix A Figures

Appendix B HSA Photologs

Appendix C Laboratory Analytical Results

Appendix D Personnel and Laboratory Certifications

Acronyms and Abbreviations

ACM Asbestos-Containing Material

ACCM Asbestos-Containing Construction Material; Material which contains more than 0.1%

asbestos

AECOM Technical Services, Inc.

AHERA Asbestos Hazard Emergency Response Act

AST Aboveground Storage Tank

CAC California Certified Asbestos Consultant

CAB Cement Asbestos Board

CAL/OSHA California Occupational Safety and Health Administration

4 Table of Contents April 2019

CC1 Copco 1 Development CC2 Copco 2 Development

CCR California Code of Regulations

CDPH State of California Department of Public Health
CSST California Certified Site Surveillance Technician

CFR Code of Federal Regulations

DTSC Department of Toxic Substances Control

ELAP Environmental Laboratory Accreditation Program

HEPA High Efficiency Particulate Air
HSA Homogenous Sampling Area
IGD Iron Gate Development
IGH Iron Gate Hatchery
JCB/JC J.C. Boyle Development

KHSA Klamath Hydroelectric Settlement Agreement

KRRC Klamath River Renewal Corporation

LCP Lead-Containing Paint mg/kg milligrams per kilogram

NESHAP National Emission Standards for Hazardous Air Pollutants

NOA Naturally Occurring Asbestos

NVLAP National Voluntary Laboratory Accreditation Program

O&M Operations & Maintenance

PACM Presumed Asbestos-Containing Material

PCB Polychlorinated Biphenyl

RCRA Resource Conservation and Recovery Act

RM river miles

SCAPCD Siskiyou County Air Pollution Control District SCDPH Siskiyou County Department of Public Health

T8 Title 8

USEPA United States Environmental Protection Agency

April 2019 Table of Contents 5

EXECUTIVE SUMMARY

Project Background:

AECOM Technical Services (AECOM) was retained by Klamath River Renewal Corporation (KRRC) to conduct a Hazardous Building Materials Survey (HBMS) of the Iron Gate Development. This report includes the findings of the HBMS conducted at the Iron Gate Development and associated support buildings and structures on September 14, 2018 and December 19, 2018. The Iron Gate Development is located near Hornbrook, California, and is a remote secured industrial facility owned and operated by PacifiCorp.

Iron Gate Development and original supporting structures were completed in 1962 and are located between RM 199.7 and RM 192.9, in Siskiyou County, California. The Iron Gate Development address is 8630 Copco Road, Hornbrook, California, 96044. The Iron Gate Development impounds a reservoir of 942 acres (aka Iron Gate Reservoir). Main features at the Iron Gate Development include a reservoir, embankment dam, ungated side-channel spillway, diversion tunnel, intake structures, fish holding facilities, communication building, and a powerhouse.

Four dams and associated structures including the J. C. Boyle Development, Copco No. 1 Development, Copco No. 2 Development, Iron Gate Development and the Iron Gate Fish and Fall Creek Hatcheries (the Sites) have been identified for decommissioning and removal under the 2016 Amended Klamath Hydroelectric Settlement Agreement (KHSA, 2016) following the U.S. Department of the Interior Bureau of Reclamation's Detailed Plan for Dam Removal – Klamath River Dams, Klamath Hydroelectric Project FERC License No. 2082 Oregon – California (Detailed Plan) (USBR 2012). The Iron Gate Fish Hatchery, Fall Creek Fish Hatchery, and the City of Yreka Diversion Dam have been identified for improvements under the KHSA. All four developments will be transferred to their respective states after dam decommissioning and removal.

The Sites are located on land currently owned by PacifiCorp. An HBMS was conducted at each of the seven Sites, and an HBMS report issued for the Sites as follows:

- 1. J.C. Boyle Development
- 2. Copco No. 1 Development
- 3. Copco No. 2 Development
- 4. Iron Gate Development
- Iron Gate and Fall Creek Hatcheries
- 6. City of Yreka Diversion

Hazardous Building Materials Survey:

AECOM assessed Iron Gate Development and support facilities for the following hazardous building materials:

- Asbestos-containing materials (ACMs);
- Asbestos-containing construction materials (ACCMs);
- Assumed asbestos-containing materials;
- Lead-containing coatings (paints);
- Mercury-containing light tubes, switches, and thermostats;
- Polychlorinated Biphenyl (PCB)-containing caulking, putties, gaskets, and membranes;
- Suspected high-intensity discharge (HID) lamps; and
- Suspected PCB-containing fluorescent light ballasts and transformers.

Objective:

The objective of the HBMS was to provide information regarding the presence of lead-containing coatings, PCB-containing light ballasts, PCB-containing caulking, and mercury-containing sources, and the presence, location, and quantity of ACMs, ACCMs, and assumed ACMs, and for the purposes of decommissioning planning.

Summarized HBMS Results:

Sixty-two bulk samples of suspect asbestos-containing materials were collected and analyzed using Polarized Light Microscopy (PLM) during this assessment. Four materials (HSAs) were found to contain detectable asbestos above 0.1%, nine materials were assumed to contain asbestos, and no materials were visually assessed and determined to be non-suspect. Per the EPA National Emission Standard for Hazardous Air Pollutants (NESHAP) requirements and the analytical results, no sample layers were further analyzed using PLM Point Count Method.

In addition, five concrete bulk samples were collected and analyzed using PLM California Air Resources Board (CARB) 435 method to determine the content of Naturally Occurring Asbestos (NOA). No concrete samples were found to contain detectable NOA above the PLM point count threshold of 0.25%.

8 00 | Executive Summary April 2019

Fifteen paint chip samples were collected and analyzed for total lead content using Atomic Absorption Spectrophotometry; twelve of the samples were found to contain reportable levels of lead.

Mercury-containing fluorescent light tubes, HID lamps, and magnetic light ballasts labeled "No-PCBs" were observed during the assessment. In the switchyard, the yellow glass portion of the high voltage transformer bushings may contain PCBs in the oil. No suspect PCB-containing caulking was observed during the inspection.

See Section 4.5: Tables for tabulated HBMS Results.

April 2019 00 | Executive Summary 9

Chapter 1: Introduction

1. INTRODUCTION

1.1 Project Description

AECOM Technical Services (AECOM) was retained by KRRC to conduct an HBMS of the Iron Gate Development and support facilities. This report includes the findings of the HBMS conducted at the Iron Gate Development and associated support buildings and structures on September 14, 2018 and December 19, 2018. The Iron Gate Development is located near Hornbrook, California, and is a remote secured industrial facility owned and operated by PacifiCorp.

1.2 Survey Limitations

The conclusions of this report are AECOM's professional opinions, based solely upon visual site observations and interpretations of laboratory analyses, as described in this report. The opinions presented herein apply to the site conditions existing at the time of AECOM's assessment and interpretation of current regulations pertaining to asbestos, lead-containing paint, PCB-containing ballasts and building materials, and mercury-containing components. Therefore, AECOM's opinions and recommendations may not apply to future conditions that may exist at the site which we have not had the opportunity to evaluate. All applicable state, federal, and local regulations should always be verified prior to any work that will disturb materials containing asbestos and other hazardous building materials.

AECOM has performed the services set forth in the Scope of Work in accordance with generally accepted industrial hygiene practices in the same or similar localities, related to the nature of the work accomplished, at the time the services were performed.

Additional sampling needs to be conducted of structures not assessed and inaccessible areas prior to demolition. Suspect regulated building materials throughout the Iron Gate Development and support facilities that are not included in this regulated building materials assessment are assumed to be asbestos-containing unless they are sampled by a Certified Asbestos Consultant (CAC) or a Certified Site Surveillance Technician (CSST) and analyzed by a State of California Environmental Laboratory Accreditation (ELAP)-licensed laboratory that is also a National Voluntary Laboratory Accreditation Program (NVLAP)-accredited laboratory to confirm the presence of asbestos prior to the disturbing such materials.

The regulated building materials and conditions presented in this report represent those observed on the dates we conducted the sampling. This sampling is intended for the exclusive use of KRRC for specific application to the proposed decommissioning. This assessment is not intended to replace construction or demolition plans, specifications, or bidding documents. This report is not meant to represent a legal opinion.

This report was prepared pursuant to an agreement between KRRC and AECOM and is for the exclusive use of KRRP. No other party is entitled to rely on the conclusions, observations, specifications, or data contained

April 2019 01 | Introduction 11

herein without first obtaining AECOM's written consent and provided any such party signs an AECOM-generated Reliance Letter. A third party's signing of the AECOM Reliance Letter and AECOM's written consent are conditions precedent to any additional use or reliance on this report.

The passage of time may result in changes in technology, economic conditions, site variations, or regulatory provisions, which would render the report inaccurate. Reliance on this report after the date of issuance as an accurate representation of current site conditions shall be at the user's sole risk.

12 01 | Introduction April 2019

Chapter 2: Scope of Services

2. SCOPE OF SERVICES

2.1 Asbestos Assessment

Mr. David Simon, a California Certified Asbestos Consultant (CAC), (Certification 92-005, expiration date: 6/24/2019) performed the sampling at the Iron Gate Development and support buildings on September 14, 2018 and on December 19, 2018. Ms. Shannon MacKay, an Asbestos Hazard Emergency Response Act (AHERA)-accredited building inspector (Certification CA-015-16, expiration date: 1/15/2020), assisted in documenting the inspection, but did not perform sampling. Copies of their certifications are included in Appendix D.

The following materials/areas were inaccessible during the site work and should be assumed to contain asbestos until such time as the area becomes accessible and is sampled by a CAC or CSST and analyzed by a State of California ELAP-licensed NVLAP-accredited laboratory:

- Residence 1
- Residence 2

2.1.1 Methodology

This assessment was conducted using a modified protocol adapted from AHERA. The protocol is as follows:

- Identify suspect asbestos-containing materials.
- Group materials into homogeneous sampling areas/materials.
- Quantify each homogeneous material and collect representative samples. The number of samples collected of miscellaneous materials was determined by the inspector.
- Samples of each material were taken to the substrate, ensuring that all components and layers of the material were included.
- Sample locations are referenced on the field data forms according to sample number.
- Sampling was performed by a CAC or CSST, and the use of proper protective equipment and procedures was followed.

14 02 | Scope of Services April 2019

2.1.2 Naturally Occurring Asbestos

For informational purposes, AECOM collected samples of concrete and submitted them to EMSL Laboratories to analyze for NOA. The sampling was conducted as a preliminary screen for NOA. Sampling was conducted discretely in areas where damage to concrete was already present. Future sampling for NOA may be necessary to fulfill California State regulatory requirements for NOA, and should be conducted when more destructive sampling of the concrete is possible.

2.2 Sampling Procedures

This sampling was conducted using the following procedures:

- 1. Spread the plastic drop cloth (if needed) and set up other equipment, e.g., ladder.
- 2. Don protective equipment (respirator and protective clothing if needed).
- 3. Label sample container with its identification number and record number. Record sample location and type of material sampled on a sampling data form.
- 4. Moisten area where sample is to be extracted (spray the immediate area with water).
- 5. Extract sample using a clean knife, drill capsule, or cork boring tool to cut out or scrape off approximately one tablespoon of the material. Penetrate all layers of material.
- 6. Place sample in a container and tightly seal it.
- 7. Wipe the exterior of the container with a wet wipe to remove any material that may have adhered to it during sampling.
- 8. Clean tools with wet wipes and wet mop; or vacuum area with HEPA vacuum to clean all debris.
- 9. Discard protective clothing, wet wipes and rags, cartridge filters, and drop cloth in a labeled plastic waste bag.

AECOM inspected the buildings and structures for suspect ACM including thermal systems insulation, surfacing materials, and miscellaneous materials (e.g., floor tiles, ceiling tiles). When materials suspected of containing asbestos were identified, AECOM's inspectors collected representative bulk samples from each Homogeneous Sampling Area using the protocol presented in the Table 2-1:

April 2019 02 | Scope of Services 15

Table 2-1 Suspect ACM Sampling Protocol

Suspect ACM Sampling Protocol				
Homogeneous Sampling Area (HSA) Category	HSA Size	Minimum Number of Samples		
Surfacing Materials	1,000 SF or Less	3		
	1,001-5,000 SF	5		
	>5,000 SF	7 or more		
Thermal System Insulation (TSI)	No Stipulation	3 of each type of TSI. (Must also sample all repair patches)		
Miscellaneous Materials	No Stipulation	3 samples of each miscellaneous material		

A Homogeneous Sampling Area is defined to include surfacing materials, thermal systems insulations, and miscellaneous materials, which are uniform in color, texture, construction and application date, and general appearance.

Additional suspect ACMs may be present in inaccessible or concealed spaces. These spaces include, but are not limited to, areas not assessed, areas not accessible at the time of the assessment, fire doors, electrical systems, pipe chases, spaces between wall/ceiling/door/floor cavities, interior of mechanical components, beneath foundation pads, etc. If future maintenance, renovation, and/or demolition activities make these areas accessible, AECOM recommends that a thorough assessment of these spaces be conducted at that time to identify and confirm the presence or absence of additional suspect ACMs. Until then, all such unidentified materials must be treated as assumed ACMs in accordance with applicable federal, state, and local regulations.

AECOM did not sample suspect ACM in the following circumstances:

- The AECOM inspector could not safely access the material for sampling;
- The residence was still occupied;
- The AECOM inspector concluded that the materials were inaccessible for sampling; or
- The AECOM inspector determined that destructive sampling would compromise the integrity of the material and/or the structure.

2.3 Sampling and Analysis

EPA NESHAP (40 CFR 61, Subparts A and M) also has requirements related to the assessment of suspect ACM in buildings. NESHAP defines a "friable" material to be a material that when dry, can be crumbled, pulverized, or reduced to powder with hand pressure or by the forces expected to act on the material in the course of demolition or renovation activities. AECOM applied this NESHAP definition of friable for the

16 02 | Scope of Services April 2019

purposes of determining which analytical method to use to quantify the asbestos content of a specific material.

The collected samples of suspect ACM were analyzed by NVL Laboratories, Inc. for asbestos content using the PLM visual estimation method and the PLM Point Counting Method. NVL Laboratories, Inc. is accredited for these asbestos analytical methods by the State of California ELAP and the NVLAP. Appendix D contains NVL Laboratories, Inc.'s certificate of laboratory accreditation and licensure. The collected samples of suspect NOA in concrete were analyzed by EMSL Analytical, Inc. for asbestos content using PLM CARB Method 435. EMSL Analytical, Inc. is accredited for these asbestos analytical methods by the State of California ELAP. Appendix D contains EMSL Analytical, Inc.'s certificate of laboratory accreditation and licensure.

Polarized Light Microscopy (PLM)

The PLM method is a visual estimation of the asbestos content of a sample. The PLM analysis was performed by NVL Laboratories, Inc. following the United States Environmental Protection Agency's (USEPA) PLM method EPA-600R/M4-82-020 for determining asbestos content in bulk building materials.

Polarized Light Microscopy Point Count (PLM Point Count)

According to the NESHAP, when the asbestos content of a friable material is visually estimated by the PLM visual technique to be detectable but less than 10%, the inspector may either (1) assume that the amount is greater than 0.1% and treat the material as ACCM or (2) conduct a second analysis, the PLM Point Count Method EPA/600-R93/116, to verify the percentage of asbestos in the material.

Per NESHAP, AECOM used the results of the PLM visual method analyses for friable materials to determine whether additional laboratory analysis was warranted (i.e., PLM Point Count), or whether the material would be treated as ACCM. Based on PLM analytical results, no samples were further analyzed by PLM Point Count analysis (See Appendix C).

If the results obtained by PLM Point Count Method and the PLM visual estimation method are different, the PLM Point Count result is used. When no asbestos is detected by the first PLM visual method, the additional technique using PLM Point Count Method is not required. The analytical results are reported in percent asbestos as derived from a 1000 point counting technique, which yields a detection limit of 0.1%.

Naturally Occurring Asbestos (NOA)

Asbestos fibers may be released from serpentine rock formations. The CARB 435 method is used to determine the asbestos content of serpentine aggregate, or NOA, in concrete, storage piles, on conveyor belts, and on surfaces such as road beds, road shoulders, and parking lots. Samples are crushed using a mill to produce a material of which the majority is less than 200 Tyler mesh (0.75 microns). CARB defines NOA as having >0.25% asbestos by PLM point counting. The analytical results are reported in percent asbestos as derived from a 400 PLM point counting technique, which yields a detection limit of 0.25%.

April 2019 02 | Scope of Services 17

2.4 Lead Assessment

2.4.1 Sampling Methodology

Homogeneous painted surfaces were defined by substrate, application, and color. The paint chip samples were collected to the substrate to ensure that all layers present on the substrate were included in the laboratory analysis. The samples were collected and stored in a heavy-duty, self-sealing plastic bag and delivered to NVL Laboratories in Seattle, Washington. The samples were analyzed via Atomic Absorption Spectrophotometry in accordance with Method EPA 7000B. NVL Laboratories in Seattle, Washington is accredited by American Industrial Hygiene Association (AIHA) for lead analysis and by the California Environmental Laboratory Accreditation Program (ELAP).

Lead paint chip samples were collected from industrial and operational buildings or from former residences that will no longer be occupied; all structures assessed are planned for decommissioning.

2.5 Other Regulated Building Materials

2.5.1 Universal Waste Inventory Methodology

An inventory of fluorescent light tubes, HID lamps, mercury-containing sources, and potential PCB-containing ballasts was conducted in accessible Project Areas.

Where fluorescent light fixtures were accessible, the ballast covers were removed, and the ballast labels were visually examined. Where fluorescent light fixtures could not be visually examined, the number of potential PCB-containing ballasts in each fixture was estimated based on the following assumptions:

- Each single light tube fluorescent fixture contains one ballast;
- Each HID lamp contains one ballast and one mercury bulb;
- Each multiple light tube fluorescent fixture contains one ballast for every pair of light tubes; and
- All light ballasts are assumed to contain PCBs unless the ballasts are labeled as not containing PCBs or are determined to be electronic.

Fluorescent light tubes, HID lamps, fluorescent light fixtures and PCB-containing transformers were identified in the buildings in the quantities listed in Table 4-4.

2.5.2 PCB-Containing Caulking

No suspect PCB-caulking was observed during the inspection.

18 02 | Scope of Services April 2019

Chapter 3: Site Description

SITE DESCRIPTION

3.1 Iron Gate Development

AECOM Technical Services (AECOM) was retained by Klamath River Renewal Corporation (KRRC) to conduct a Hazardous Building Materials Survey (HBMS) of the Iron Gate Development. This report includes the findings of the HBMS conducted at the Iron Gate Development and associated support buildings and structures on September 14, 2018 and December 19, 2018. The Iron Gate Development is located near Hornbrook, California, and is a remote secured industrial facility owned and operated by PacifiCorp.

Iron Gate Development and original supporting structures were completed in 1962 and are located between RM 199.7 and RM 192.9, in Siskiyou County, California. The Iron Gate Development address is 8630 Copco Road, Hornbrook, California 96044. The Iron Gate Development impounds a reservoir of 942 acres (aka Iron Gate Reservoir). Main features at the Iron Gate Development include a reservoir, embankment dam, ungated side-channel spillway, diversion tunnel, intake structures, fish holding facilities, communication building, and a powerhouse.

3.1.1 Description of Iron Gate Development Structures

The following Iron Gate Development support structures were assessed during the HBMS:

Aerator (IGDAE)

The Aerator piping is approximately 4' to 6' in diameter and provides aeration for the Iron Gate Development Fish Hatchery water supply. The Aerator structure is located south of the Iron Gate Development Powerhouse. The piping extends approximately 50 feet up a hillside. A metal caged ladder follows the piping up the hill. The piping is wrapped with deteriorating asphaltic pipe wrapping.

Communications Building (IGDCB)

The Communications Building is adjacent and to the north of the Powerhouse, is approximately 800 square feet, and is a single story slab on grade pre-fabricated building. The exterior siding and roof consists of pre-fabricated steel. The interior of the building consists of a front office, an electrical room, and a break room. Walls and ceilings consist of gypsum wallboard or are unfinished steel. Flooring consists of vinyl floor sheeting or unfinished concrete.

Diversion Tunnel Intake Structure (IGDDTI)

The Diversion Tunnel Intake Structure is located on pilings that extend into the Iron Gate Reservoir. The building is located on the northeast end of the reservoir and is approximately 390 square feet. The exterior

20 03 | Site Description April 2019

siding and roofing consist of steel with a rubber membrane cover throughout. The interior consists of unfinished steel walls and ceiling and the floor consists of metal grating.

Emergency Spill Equipment Shed (IGDES)

The Emergency Spill Equipment Shed is approximately 100 square feet, and is a single story slab on grade shed, with engineered wood siding and asphaltic shingle roofing. The interior of the shed is unfinished wood. The structure is currently being used as storage for emergency spill purposes.

Fish Holding Facilities and Ponds (IGDFHF)

The Fish Holding Facilities and Ponds main building is approximately 1,250 square feet and is a prefabricated concrete floor building located between the Powerhouse and the dam. The main building is in the center of six concrete lined fish holding ponds. The exterior siding and roofing of the building consists of prefabricated steel. The interior consists of a ground floor, and a second floor that wraps around the perimeter of the interior. Interior finishes are painted or unfinished steel and concrete.

Fish Ladder (IGDFL)

The Fish Ladder is located east of the Powerhouse. It consists of concrete steps that extend to the Fish Holding Facilities and Ponds from the river.

Iron Gate Dam (IGD)

The Iron Gate Dam is a zoned earth fill embankment with a height of 189 feet from the rock foundation to the dam crest. The dam crest is 20 feet wide and approximately 740 feet long. The embankment includes a central impervious clay core, with filter zones and a downstream drain.

Maintenance Shed (IGDMS)

The Maintenance Shed is approximately 2,000 square feet, wooden framed, and is constructed on a slabon-grade concrete foundation. It is located on the north side of the Klamath River approximately 1,000 feet south the dam. It is an open sided structure and is used for the storage of boats, recreational trailer and other items from the nearby residences.

Penstock Intake Structure (IGDPIS)

The Penstock Intake Structure is located on pilings that extend into the Iron Gate Reservoir. The building is located on the southeast end of the reservoir and is approximately 120 square feet. The exterior siding and roofing consist of pre-fabricated steel throughout. The interior consists of unfinished steel walls and ceiling and the floor consists of metal grating.

April 2019 03 | Site Description 21

Penstocks and Hatchery Water Supply (IGDPS)

The Penstocks and Hatchery Water Supply are connected with the Aerator piping. The Penstocks are north of the Powerhouse and extend up the Iron Gate Development. The hatchery water supply extends past the Powerhouse and turns towards the Fish Holding Facilities.

Powerhouse (IGDPH)

The Powerhouse is approximately 3,000 square feet. The facility is located at the downstream toe of the dam on the east bank of the river. The powerhouse has three levels; above ground, first lower level, and second lower level.

The above ground level contains the upper portions of a single vertical-shaft, Francis-type turbine contained in its own concrete vault.

The first lower level contains the middle portion of the turbine housed in concrete vault, electrical panels, a 500 gallon oil governor accumulation tank, air compressors, oil, water and air piping, labeled hazardous materials and other miscellaneous storage cabinets.

The second lower level contains the lowest portion of the turbine housed in steel vault, piping, and sump pumps.

Residence 1 (IGDR1)

Residence 1 is approximately 2,000 square feet. The exterior of the building consists of engineered wood siding and corrugated metal roofing. No suspect asbestos-containing materials were observed on the exterior of the building. The building was occupied during the HBMS and the interior was not accessed.

Residence 2 (IGDR2)

Residence 2 is approximately 2,000 square feet. The exterior of the building consists of engineered wood siding and corrugated metal roofing. No suspect asbestos-containing materials were observed on the exterior of the building. The building was occupied during the HBMS and the interior was not accessed.

Restrooms (IGDRR)

The Restrooms building is approximately 400 square feet. The exterior siding and roof of the building consist of pre-fabricated steel. The interior of the building has two restrooms, a storage room, and consists of unfinished steel and concrete.

Switchyard (IGDSW)

The Switchyard is approximately 5,000 square feet and is located adjacent to the powerhouse. The switchyard contains an electrical transformer, substations, transmission poles and lines within a fenced

22 03 | Site Description April 2019

gravel area. The majority of the transmission pole footings, substations and the transformer were on top of cement pads or gravel filled cement catch basins The "yellow glass portion" of the high voltage transformer bushings may contain PCBs in the oil. The small pole mounted transformers were noted to contain no-PCB labels. No observable impacts, odors or distressed vegetation were noted.

Viewing Platform (IGDVP)

The Viewing Platform is located on the top of the Iron Gate Dam, and overlooks the powerhouse and fish holding facilities.

April 2019 03 | Site Description 23

Chapter 4: Conclusion and Recommendations

CONCLUSIONS AND RECOMMENDATIONS

On September 14, 2018 and December 19, 2018, AECOM conducted a Hazardous Building Materials Survey of the Iron Gate Development located in Hornbrook, California. AECOM assessed the site buildings for a variety of regulated building materials that would require removal or special handling during decommissioning and demolition. Section 4.5: Tables includes the tabulated results of the survey. The following are AECOM's general recommendations related to the HBMS findings:

- Plans and specifications should be developed by an appropriately qualified professional (e.g., CAC) to outline the planned scope of work, phasing, training and certification requirements, policies and procedures for the proper handling, removal packaging, disposal/recycling, and transportation of the materials.
- The findings of this report should be communicated to contractors planning to work on or bid on work at the site.
- Additional material-specific recommendations as listed below.

4 1 **Asbestos**

Sixty-two bulk samples of suspect asbestos-containing materials were collected and analyzed using PLM during this assessment. Four materials (HSAs) were found to contain detectable asbestos above 0.1%, nine materials were assumed to contain asbestos, and no materials were visually assessed and determined to be non-suspect. Per the EPA NESHAP requirements and the analytical results, no sample layers were further analyzed using PLM Point Count Method.

In addition, five concrete bulk samples were collected and analyzed using PLM CARB 435 method to determine the content of NOA. No concrete samples were found to contain detectable NOA above the PLM point count threshold of 0.25%.

The results of the analyses are presented in Section 4.5, Tables 4-1 and 4-2. Appendix C contains the laboratory reports of analytical results for each discrete sample.

Additional suspect ACMs may be present in inaccessible or concealed spaces. These spaces include, but are not limited to; below grade exterior materials, electrical systems, pipe chases, spaces between wall/ceiling/door/floor cavities, interior of mechanical components, beneath foundation pads, etc. If future demolition activities make these areas accessible, AECOM recommends that a thorough assessment of these spaces be conducted at that time to identify and confirm the presence or absence of additional ACMs

and ACCMs. Until then, all such unidentified materials must be treated as assumed ACMs in accordance with applicable federal, state, and local regulations.

If the analytical results indicate that all the samples collected per HSA do not contain asbestos, then the HSA (material) is considered a non-ACM. If the analytical results of one or more of the samples collected per HSA indicate that asbestos is present in quantities of greater than 0.1% asbestos as defined by Cal/OSHA, all of the HSA (material) is considered to be an ACM or ACCM regardless of any other analytical results.

Any material that contains greater than 0.1% asbestos is considered an ACCM and must be handled according to Cal/OSHA regulations. Any material greater than one percent asbestos is considered an ACM and must be handled according to EPA regulations, and applicable state and local regulations. The EPA NESHAP regulations (40 CFR 61, Subparts A and M) have a requirement related to assessment of suspect ACM in buildings. When the asbestos content of a friable material is visually estimated by PLM to be detectable but less than ten percent, your firm may elect to (1) assume the amount is greater than one percent and treat the material as asbestos-containing or (2) require verification of the amount by the PLM point counting technique. If the results obtained by point counting and visual estimation are different, the point count result must be used. When no asbestos is detected by PLM, point counting is not required.

4.1.1 Asbestos Regulations

Asbestos-related work must be performed in compliance with local, federal, and state regulations including Cal/OSHA, the Siskiyou County Air Pollution Control District, EPA NESHAP, and relevant federal, state and local regulations pertaining to handling of asbestos.

The EPA NESHAP regulations (Renovation and Demolition NESHAP 40 CFR 61, Subparts A and M) for asbestos apply to certain demolition and renovation projects in facilities containing ACM and/or assumed ACM. The NESHAP rule usually requires that all friable ACM and some categories of non-friable ACM be removed before a building is demolished, and may require localized removal prior to demolition. The following NESHAP definitions of ACM are very important in interpreting which NESHAP requirements may apply to your building:

- Friable asbestos-containing material: any material containing more than 1 percent asbestos that when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.
- Category I non-friable asbestos-containing material: asbestos-containing packings, gaskets, resilient
 floor covering, and asphalt roofing products containing more than 1 percent asbestos that, when dry,
 cannot be crumbled, pulverized, or reduced to powder by hand pressure.
- Category II non-friable asbestos-containing material: any material excluding Category I non-friable ACM, containing more than 1 percent asbestos that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure.
- Regulated asbestos-containing material (RACM): (1) friable ACM, (2) Category I non-friable ACM that has become friable (3) Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading, or (4) Category II non-friable ACM that has a high probability of

becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the materials in the course of demolition or renovation operations regulated by NESHAP.

NESHAP also requires that the local air district be notified before certain renovations or demolition impacting RACM begin. When ACCM is removed or disturbed during demolition or renovation, the Cal/OSHA regulations also apply. The NESHAP regulations should be studied in detail for a thorough delineation of these and other requirements.

Cal/OSHA regulates employee exposure to asbestos (T8, CCR 1529). The Cal/OSHA asbestos standards mandate a permissible exposure limit (PEL) of 0.1 fibers (equal to or longer than 5 micrometers) per cubic centimeter of air (fibers/cc) determined as an 8-hour, time-weighted average (TWA) and an excursion limit of 1 fiber/cc as a 30-minute TWA.

Also, for asbestos removal or renovation involving ACM, the Cal/OSHA Asbestos Construction Standard (T8, CCR 1529) requires that specific procedures be followed, including enclosure of the work area to control asbestos exposure of building occupants, as well as, employees involved in abatement or renovation activities.

The following are selected Cal/OSHA definitions regarding asbestos work:

- Class I asbestos work means activities involving the removal of TSI and surfacing ACM and PACM.
- Class II asbestos work means activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestoscontaining wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastics.
- Class III asbestos work means repair and maintenance operations, where "ACM", including TSI and surfacing ACM and PACM, is likely to be disturbed.
- Class IV asbestos work means maintenance and custodial activities during which employees contact but do not disturb ACM or PACM and activities to clean up dust, waste and debris resulting from Class I, II, and III activities.
- Intact means that the ACM has not crumbled, been pulverized, or otherwise deteriorated so that asbestos is no longer likely to be bound with its matrix.

AECOM identified materials that were assumed to contain asbestos, but were not assessed because the inspector determined them to be ACM, for the safety of the inspector and to preserve building system integrity.

During demolition activities, inaccessible materials may be uncovered which were not identified or sampled during this assessment. Personnel in charge of demolition should be alerted to note materials uncovered during these activities which were not identified in this report. The following are AECOM's recommendations:

If the buildings are scheduled for abatement and demolition (AECOM's recommendation), an abatement project design manual should be prepared with technical specifications and abatement plans. The design must be prepared by a CAC.

- The results of this sampling should be communicated to any Contractors working in the Project Areas and a copy of the assessment report must be on-site during demolition activities.
- Abatement work must be performed by CA-licensed asbestos abatement contractor with trained asbestos workers and supervisors.
- Any concealed building materials discovered during demolition activities, which are suspected to contain asbestos, should be sampled by a CSST or CAC and analyzed by a NVLAP- and CA ELAPaccredited laboratory to confirm the presence of asbestos prior to disturbing such materials or be assumed to be ACM.
- If the facilities assessed during the HBMS are not scheduled for demolition, AECOM recommends the development of an O&M Plan by a CAC.

4.2 Lead

Fifteen paint chip samples were collected and analyzed for total lead content; twelve of the paint chip samples were found to contain detectable levels of lead. The results of the analyses are presented in Section 4.5 Table 4-3. Appendix C contains the laboratory reports of analytical results for each discrete sample.

Cal/OSHA requires worker training, worker protection, and exposure assessments be conducted during operations that may disturb the lead-containing paint in such a way that the airborne exposure may reach or exceed the Action Level of 30 micrograms per cubic meter (µg/m³) or the Permissible Exposure Limit of 50 µg/cm³. The worker protection requirements of Cal/OSHA 1532.1 "Lead" apply.

4.3 Other Regulated Building Materials

Mercury-containing fluorescent light tubes and HID lamps were observed during the assessment. In the switchyard, the yellow glass portion of the high voltage transformer bushings may contain PCBs in the oil. No suspect PCB-containing caulking was observed during the inspection.

Fluorescent light tubes, switches, and thermostats may contain mercury. Fluorescent light ballasts, transformer oil, and HID lamp ballasts may contain PCBs. PCB wastes are regulated by Department of Toxic Substance Control Act (DTSC) Title 22 CCR 66261.24, Resource Conservation Recovery Act (RCRA) Title 40 CFR 761, and Toxic Substance Control Act (TSCA) 15 USC 2695. DTSC has classified PCBs as a hazardous waste when the concentrations are equal to or greater than 5 mg/l in liquids or when the total concentrations are equal to or greater than 50 mg/kg in non-liquids (Title 22, CCR, 66261.24). If the PCB waste is greater than 50 mg/l, then it is also to be managed under the RCRA and TSCA requirements. Employers must inform their employees of mercury and PCB hazards in accordance with Cal/OSHA.

Light ballasts in representative locations were visually assessed where possible. All light ballasts observed during the course of the HBMS were electronic ballasts or magnetic ballasts labeled "No PCBs". In the switchyard, the yellow glass portion of the high voltage transformer bushings may contain PCBs in the oil.

During the course of decommissioning or demolition activities, magnetic light ballasts may be discovered that are not labeled "No PCBs" and should be disposed of per DTSC requirements.

Fluorescent light tubes must be removed and recycled or disposed of as hazardous waste or universal waste prior to demolition as per 22 CFR 66261.50 and 66273.8.

The results of the Universal Waste Inventory are presented in Section 4.5 Table 4-5.

Treated Wood 4 4

Wood treated with creosote was observed in the following locations:

Power poles throughout Iron Gate Development

4.5 **Tables**

Table 4-1: Confirmed ACMs, ACCMs, and Assumed ACMs lists the HSAs (materials) that were tested and confirmed to contain greater than 0.1 percent asbestos as well as the HSAs that could not be tested and are assumed to contain asbestos. NESHAP categories and approximate quantities of each material are identified, when possible.

Table 4-2: Asbestos Sample Results by Layer lists the tabulated analytical results for each discrete asbestos sample, listed by building then by HSA. Confirmed ACMs, ACCMs and Non-ACMs are included.

Table 4-3: Lead Paint Sample Results lists the tabulated analytical results for each discrete lead paint sample.

Table 4-4: Universal Waste Inventory presents the tabulated approximate quantities of fluorescent light tubes, suspect PCB containing light ballasts, non-PCB containing magnetic light ballasts, HID Lamps, and PCB-containing transformers.

Table 4-5: PCB-Caulking Sample Results lists the tabulated analytical results for each PCB caulking sample.

Appendix A contains figures of structures, sampling locations, and asbestos-containing material locations.

Appendix B contains HSA Photologs, by building, then by HSA.

Appendix C contains the laboratory reports of analytical results for each discrete sample.

Appendix D contains personnel and laboratory certifications.

Table 4-1 Confirmed ACMs, ACCMs, and Assumed ACMs

Table 1: Confir				ALIEDA CI	material State	NECHAR	C	0
Building	HSA#	HSA Description	Material Location	AHERA Class	Friability	NESHAP Category	Summarized Results	Quantity
Aerator	IGDAE-03	Assumed asbestos- containing red gaskets	Aerator piping, hatchery water supply	Misc.	_	_	Assumed	2 EA
Diversion Tunnel Intake Structure	IGDDTI-01	Gray window putty	Interior window panes	Misc.	NF	Cat II	Positive	2 EA (4'x5')
Fish Holding Facilities	IGDFHF-01	Gray brittle window putty	Patch sealant on one window only	Misc.	NF	Cat II	Positive	4 LF
Maintenance Shed	IGDMS-01	Assumed asbestos- containing silver woven electrical wire insulation	Throughout Maintenance Shed	Misc.	NF	Cat II	Assumed	Not quantified
Maintenance Shed	IGDMS-02	Assumed asbestos- containing electrical panel backing in older electrical panels	Interior of Maintenance Shed	Misc.	NF	Cat II	Assumed	~4 EA
Maintenance Shed	IGDMS-03	Assumed asbestos- containing roofing paper	Throughout Maintenance Shed roof, underneath corrugated metal roofing	Misc.	NF	Cat II	Assumed	~2,100 SF
Penstock	IGDPS-04	Assumed asbestos- containing red gaskets	Hatchery water supply piping	Misc.	NF	Cat II	Assumed	Not quantified**
Penstock	IGDPS-05	Assumed asbestos- containing black gaskets	Hatchery water supply piping	Misc.	NF	Cat II	Assumed	Not quantified**
Penstock Intake Structure	IGDPIS-01	White brittle window putty	Interior window panes	Misc.	NF	Cat II	Positive	2 EA (4'x5')
Powerhouse	IGDPH-01	Gray brittle window putty	Interior/exterior windows	Misc.	NF	Cat II	Positive	4 EA (4'x4')
Powerhouse	IGDPH-05	Assumed asbestos- containing wicket gate	Associated with turbines on main level of Powerhouse, inaccessible unless turbines are removed	Misc.	-	-	Assumed	3 EA
Powerhouse	IGDPH-06	Assumed asbestos- containing metal-clad fire door insulation	Powerhouse main level	Misc.	NF	Cat II	Assumed	2 EA

NF: Non-Friable; HSA: material that is uniform in color, texture, general appearance, and construction and application date, Misc.: Miscellaneous material per AHERA, SF: Square Feet, EA: Each; LF: Linear Feet; Cat II: Category II per NESHAPS; Materials that were unable to be sampled (typically because of inaccessibility or sampling would be too destructive while facilities were still operational) are assumed to be asbestos-containing. *Not quantified because of unknown extent of material not accessible at time of inspection; as-built drawings needed for approximate quantification.

Table 1: Confir	Table 1: Confirmed ACMs, ACCMs, and Assumed ACMs							
Building	HSA#	HSA Description	Material Location	AHERA Class	Friability	NESHAP Category	Summarized Results	Quantity
Throughout Iron Gate Development	-	Assumed asbestos- containing buried Transite piping	A small portion of unburied Transite piping was observed at the Copco 2 development. Due to the proximity of Iron Gate to Copco 2, it is reasonable to assume that buried Transite piping also exists throughout the Iron Gate Development	Misc.	NF	Cat II	Assumed	Not quantified*

NF: Non-Friable; HSA: material that is uniform in color, texture, general appearance, and construction and application date, Misc.: Miscellaneous material per AHERA, SF: Square Feet, EA: Each; LF: Linear Feet; Cat II: Category II per NESHAPS; Materials that were unable to be sampled (typically because of inaccessibility or sampling would be too destructive while facilities were still operational) are assumed to be asbestos-containing. *Not quantified because of unknown extent of material not accessible at time of inspection; as-built drawings needed for approximate quantification.

Table 4-2 Asbestos Sample Results by Layer

Building	Sample ID	Layer	Sample Description	Material Location	AHERA	Percent	Asbestos
•					Classification	(%) Asbestos	Туре
Aerator	IGDAE-1-01	1	Black asphaltic pipe wrap	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator	IGDAE-1-02	1	Black asphaltic pipe wrap	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator	IGDAE-1-03	1	Black asphaltic pipe wrap	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator	IGDAE-2-01	1	Thick silver coating	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator		2	Black asphaltic pipe wrap (HSA IGDAI-01)	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator	IGDAE-2-02	1	Thick silver coating	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator		2	Black asphaltic pipe wrap (HSA IGDAI-01)	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator	IGDAE-2-03	1	Thick silver coating	Aerator piping, hatchery water supply	Misc.		None Detected
Aerator		2	Black asphaltic pipe wrap (HSA IGDAI-01)	Aerator piping, hatchery water supply	Misc.		None Detected
Communications Building	IGDCB-1-01	1	Gray vinyl floor sheeting with terrazzo pattern	Flooring in office area	Misc.		None Detected
Communications Building		2	Gray paper backing with mastic	Flooring in office area	Misc.		None Detected
Communications Building		3	Tan mastic	Flooring in office area	Misc.		None Detected
Communications Building	IGDCB-1-02	1	Gray vinyl floor sheeting with terrazzo pattern	Flooring in office area	Misc.		None Detected
Communications Building		2	Gray paper backing with mastic	Flooring in office area	Misc.		None Detected
Communications Building		3	Tan mastic	Flooring in office area	Misc.		None Detected
Communications Building	IGDCB-1-03	1	Gray vinyl floor sheeting with terrazzo pattern	Flooring in office area	Misc.		None Detected

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%)	Asbestos Type
Communications Building		2	Gray paper backing with mastic	Flooring in office area	Misc.	Asbestos	None Detected
Communications Building	IGDCB-1-04	1	Gray vinyl floor sheeting with terrazzo pattern	Flooring in office area	Misc.		None Detected
Communications Building		2	Gray paper backing with mastic	Flooring in office area	Misc.		None Detected
Communications Building	IGDCB-2-01	1	4" gray rubber cove base	Walls in office area	Misc.		None Detected
Communications Building	IGDCB-2-02	1	4" gray rubber cove base	Walls in office area	Misc.		None Detected
Communications Building		2	White mastic	Walls in office area	Misc.		None Detected
Communications Building	IGDCB-2-03	1	4" gray rubber cove base	Walls in office area	Misc.		None Detected
Communications Building		2	White mastic	Walls in office area	Misc.		None Detected
Communications Building	IGDCB-2-04	1	4" gray rubber cove base	Walls in office area	Misc.		None Detected
Communications Building		2	White mastic	Walls in office area	Misc.		None Detected
Communications Building	IGDCB-3-01	1	White joint compound	Walls in storage room only	Misc.		None Detected
Communications Building		2	White joint compound with paper	Walls in storage room only	Misc.		None Detected
Communications Building		3	Peach gypsum wallboard with paper	Walls in storage room only	Misc.		None Detected
Communications Building	IGDCB-3-02	1	White joint compound	Walls in storage room only	Misc.		None Detected
Communications Building		2	White joint compound with paper	Walls in storage room only	Misc.		None Detected
Communications Building		3	Peach gypsum wallboard with paper	Walls in storage room only	Misc.		None Detected

Building	Sample ID	Layer	Sample Description	Material Location	AHERA	Percent	Asbestos
					Classification	(%) Asbestos	Туре
Communications Building	IGDCB-3-03	1	White joint compound with paper	Walls in storage room only	Misc.		None Detected
Communications Building		2	White gypsum wallboard with paper	Walls in storage room only	Misc.		None Detected
Communications Building		3	White joint compound with paper	Walls in storage room only	Misc.		None Detected
Communications Building		4	Peach gypsum wallboard with paper	Walls in storage room only	Misc.		None Detected
Diversion Tunnel Intake Structure	IGDDTI-1-01	1	Gray window putty	Interior window panes	Misc.	5%	Chrysotile
Diversion Tunnel	IGDDTI-1-02	1	Gray window putty	Interior window panes	Misc.	6%	Chrysotile
Intake Structure							
Diversion Tunnel Intake Structure	IGDDTI-1-03	1	Silver paint	Interior window panes	Misc.		None Detected
Diversion Tunnel		2	Gray window putty	Interior window panes	Misc.	6%	Chrysotile
Intake Structure							
Diversion Tunnel Intake Structure	IGDDTI-2-01	1	Beige exterior window caulking	Exterior window frames	Misc.		None Detected
Diversion Tunnel Intake Structure	IGDDTI-2-02	1	Beige exterior window caulking	Exterior window frames	Misc.		None Detected
Diversion Tunnel Intake Structure	IGDDTI-2-03	1	Beige exterior window caulking	Exterior window frames	Misc.		None Detected
Diversion Tunnel Intake Structure	IGDES-1-01	1	Asphaltic roofing shingles with granules	Roofing throughout shed	Misc.		None Detected
Diversion Tunnel Intake Structure	IGDES-1-02	1	Asphaltic roofing shingles with granules	Roofing throughout shed	Misc.		None Detected
Diversion Tunnel	IGDES-1-03	1	Asphaltic roofing shingles	Roofing throughout shed	Misc.		None
Intake Structure			with granules				Detected
Fish Holding Facilities	IGDFHF-1-01	1	Gray brittle window putty	Patch sealant on one window only	Misc.	4%	Chrysotile
Fish Holding Facilities	IGDFHF-1-02	1	Gray brittle window putty	Patch sealant on one window only	Misc.	6%	Chrysotile

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Fish Holding Facilities	IGDFHF-1-03	1	Gray brittle window putty	Patch sealant on one window only	Misc.	4%	Chrysotile
Penstock	IGDPS-1-01	1	Black asphaltic pipe wrap	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-1-02	1	Black asphaltic pipe wrap	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-1-03	1	Black asphaltic pipe wrap	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-2-01	1	Thick silver coating	Hatchery water supply piping	Misc.		None Detected
Penstock		2	Black asphaltic pipe wrap (HSA 01)	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-2-02	1	Thick silver coating	Hatchery water supply piping	Misc.		None Detected
Penstock		2	Black asphaltic pipe wrap (HSA 01)	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-2-03	1	Thick silver coating	Hatchery water supply piping	Misc.		None Detected
Penstock		2	Black asphaltic pipe wrap (HSA 01)	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-3-01	1	Brown fibrous gasket at pipe line saddles	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-3-02	1	Brown fibrous gasket at pipe line saddles	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-3-03	1	Brown fibrous gasket at pipe line saddles	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-6-01	1	Tar coating on fish hatchery water supply	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-6-02	1	Tar coating on fish hatchery water supply	Hatchery water supply piping	Misc.		None Detected
Penstock	IGDPS-6-03	1	Tar coating on fish hatchery water supply	Hatchery water supply piping	Misc.		None Detected
Penstock Intake Structure	IGDPIS-1-01	1	White brittle window putty	Interior window panes	Misc.	5%	Chrysotile

Building	Sample ID	Layer	Sample Description	Material Location	AHERA	Percent	Asbestos
					Classification	(%) Asbestos	Туре
Penstock Intake Structure	IGDPIS-1-02	1	White brittle window putty	Interior window panes	Misc.	4%	Chrysotile
Penstock Intake Structure	IGDPIS-1-03	1	White brittle window putty	Interior window panes	Misc.	4%	Chrysotile
Penstock Intake Structure	IGDPIS-2-01	1	White caulking at base of doorway	Doorway to interior	Misc.		None Detected
Penstock Intake Structure		2	Gray brittle material	Doorway to interior	Misc.		None Detected
Penstock Intake Structure	IGDPIS-2-02	1	White caulking at base of doorway	Doorway to interior	Misc.		None Detected
Penstock Intake Structure	IGDPIS-2-03	1	White caulking at base of doorway	Doorway to interior	Misc.		None Detected
Penstock Intake Structure	IGDPIS-3-01	1	White caulking	Exterior metal siding seams	Misc.		None Detected
Penstock Intake Structure	IGDPIS-3-02	1	Beige soft material with paint	Exterior metal siding seams	Misc.		None Detected
Penstock Intake Structure		2	White caulking	Exterior metal siding seams	Misc.		None Detected
Penstock Intake Structure	IGDPIS-3-03	1	Beige soft material with paint	Exterior metal siding seams	Misc.		None Detected
Powerhouse	IGDPH-1-01	1	Gray brittle window putty	Interior/exterior windows	Misc.	4%	Chrysotile
Powerhouse	IGDPH-1-02	1	Gray brittle window putty	Interior/exterior windows	Misc.	5%	Chrysotile
Powerhouse	IGDPH-1-03	1	Gray brittle window putty	Interior/exterior windows	Misc.	4%	Chrysotile
Powerhouse	IGDPH-3-01	1	Gray expansion joint caulking	Exterior seams, roof of Powerhouse (concrete pad)	Misc.		None Detected
Powerhouse	IGDPH-3-02	1	Gray expansion joint caulking	Exterior seams, roof of Powerhouse (concrete pad)	Misc.		None Detected
Powerhouse	IGDPH-3-03	1	Gray expansion joint caulking	Exterior seams, roof of Powerhouse (concrete pad)	Misc.		None Detected
Powerhouse	IGDPH-4-01	1	Brown epoxy coating	Roof of Powerhouse (concrete pad)	Misc.		None Detected

Table 2: Asbestos Sample Results by Layer								
Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type	
Powerhouse	IGDPH-4-02	1	Brown epoxy coating	Roof of Powerhouse (concrete pad)	Misc.		None Detected	
Powerhouse	IGDPH-4-03	1	Brown epoxy coating	Roof of Powerhouse (concrete pad)	Misc.		None Detected	
Restroom	IGDRR-1-01	1	White brittle terrazzo	Shower base interior of restroom	Misc.		None Detected	
Restroom	IGDRR-1-02	1	White brittle terrazzo	Shower base interior of restroom	Misc.		None Detected	
Restroom	IGDRR-1-03	1	White brittle terrazzo	Shower base interior of restroom	Misc.		None Detected	

Table 4-3 Lead Paint Sample Results

Table 4: Lead Paint	Sample Results				
Building	Sample ID	Description	Substrate	Location	Results in (mg/kg)
Diversion Tunnel Intake	IGDDTI-Pb1-01	Tan paint	Metal	Exterior metal window frames	470
Diversion Tunnel Intake	IGDDTI-Pb2-01	Grayish/silver paint	Metal	Interior metal walls	1,500
Emergency Spill Equipment Shed	IGDES-Pb1-01	Light gray paint	Wood	Throughout exterior metal siding on walls	<140
Fish Hold Facilities	IDGFHF-Pb1-01	Grayish/silver paint	Metal	On metal handrails and equipment throughout interior	500
Fish Hold Facilities	IDGFHF-Pb2-01	White paint	Concrete	Throughout concrete walls on lower level of interior	<50
Fish Hold Facilities	IDGFHF-Pb3-01	Silver paint	Metal	Center mechanical unit in center of fish holding ponds	110,000
Penstock	IGDPS-Pb1-01	Pink paint	Metal	6' penstock piping	65,000
Penstock	IGDPS-Pb2-01	Red paint	Metal	6' penstock piping	60
Penstock Intake Structure	IGDPIS-Pb1-01	Tan paint	Metal	Exterior metal siding and equipment	140
Powerhouse	IGDPH-Pb1-01	Orange paint	Metal	Interior metal handrails and guardrails throughout	83,000
Powerhouse	IGDPH-Pb2-01	Gray paint	Concrete	Interior floor and equipment blocks	980
Powerhouse	IGDPH-Pb3-01	Tan paint	Concrete	Walls in turbine room	7,200
Powerhouse	IGDPH-Pb4-01	Off-white/silver paint	Steel	Exterior stop log gates	860
Powerhouse	IGDPH-Pb5-01	Orange paint	Steel	Exterior stop log supports	150,000

<: Below the reporting limit

Table 4-4 Universal Waste Inventory

Table 5: Universal Waste Inventory	
Other Regulated Building Materials Description	Approximate Quantity
Mercury-containing fluorescent light tubes (4' length)	20
Mercury-containing fluorescent light tubes (8' length)	10
Magnetic light ballasts	10
HID lamps	6
Mercury-containing switches, controls, and recorders	None observed
PCB-Containing Transformer Oil	Associated with yellow glass portion of the transformer bushings in the switchyard

Table 4-5 PCB-Caulking Sample Results

Table 6: PCB Caulking Results		
Sample Number and Description	Material Location	Samples Results in Parts Per Million (ppm)
Flexible gray expansion joint sealant	Top of Powerhouse – at expansion joints	ND

ND: None Detected

APPENDIX A FIGURES

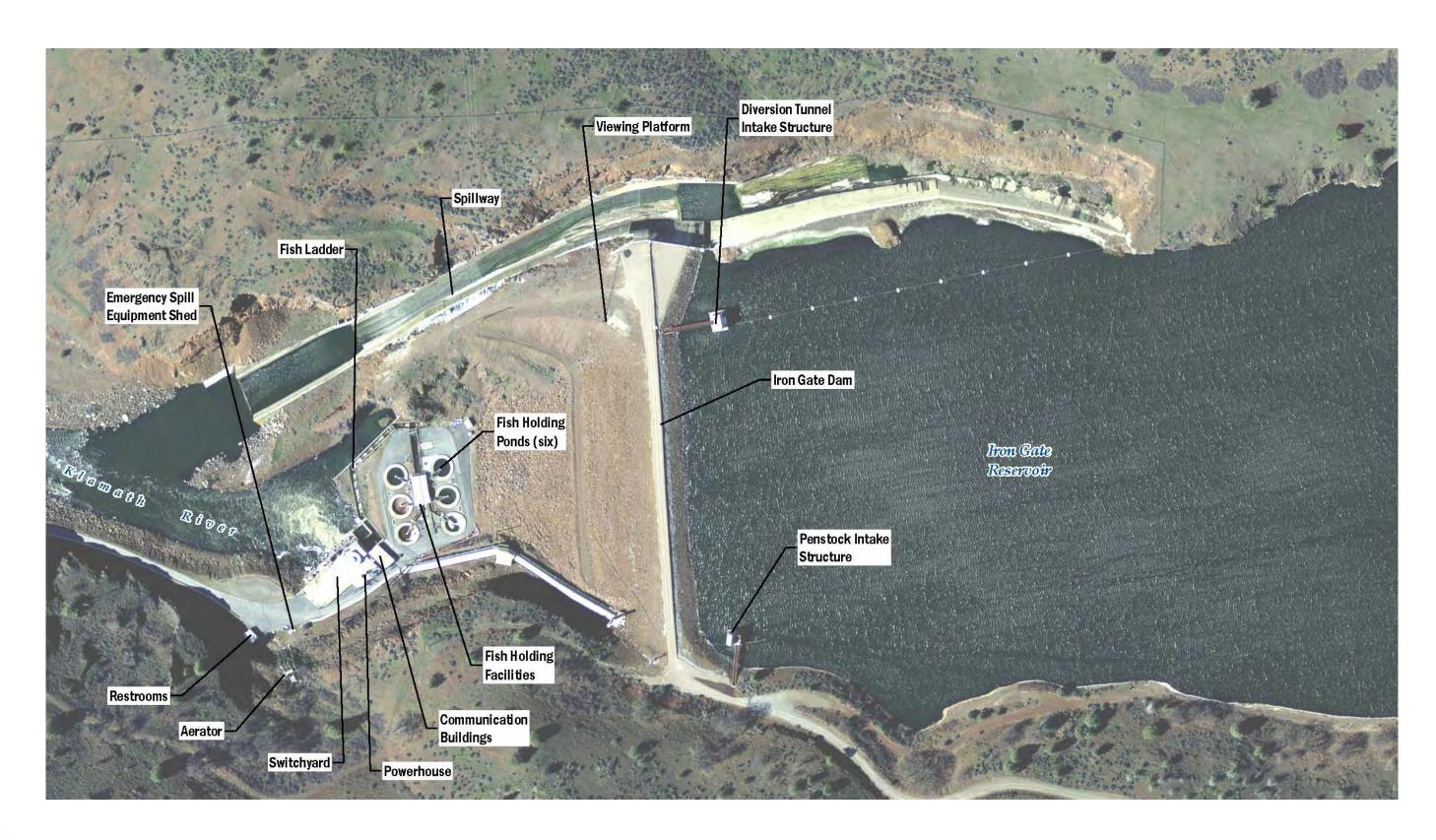
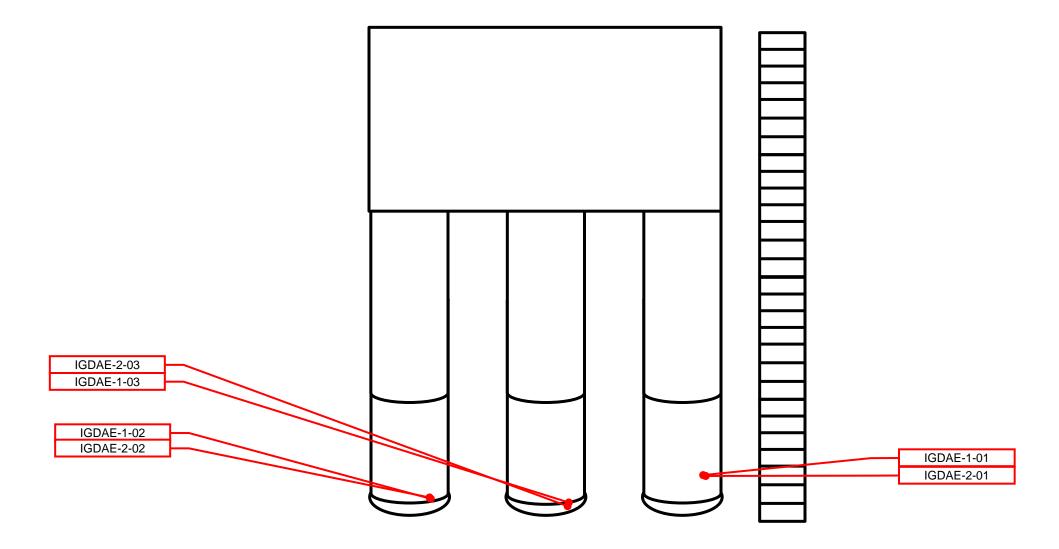
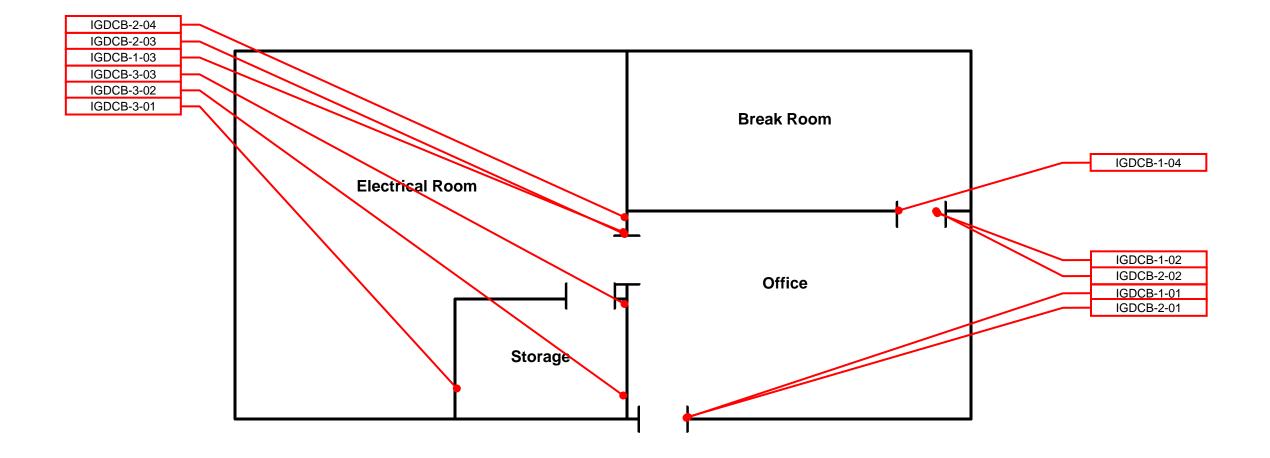
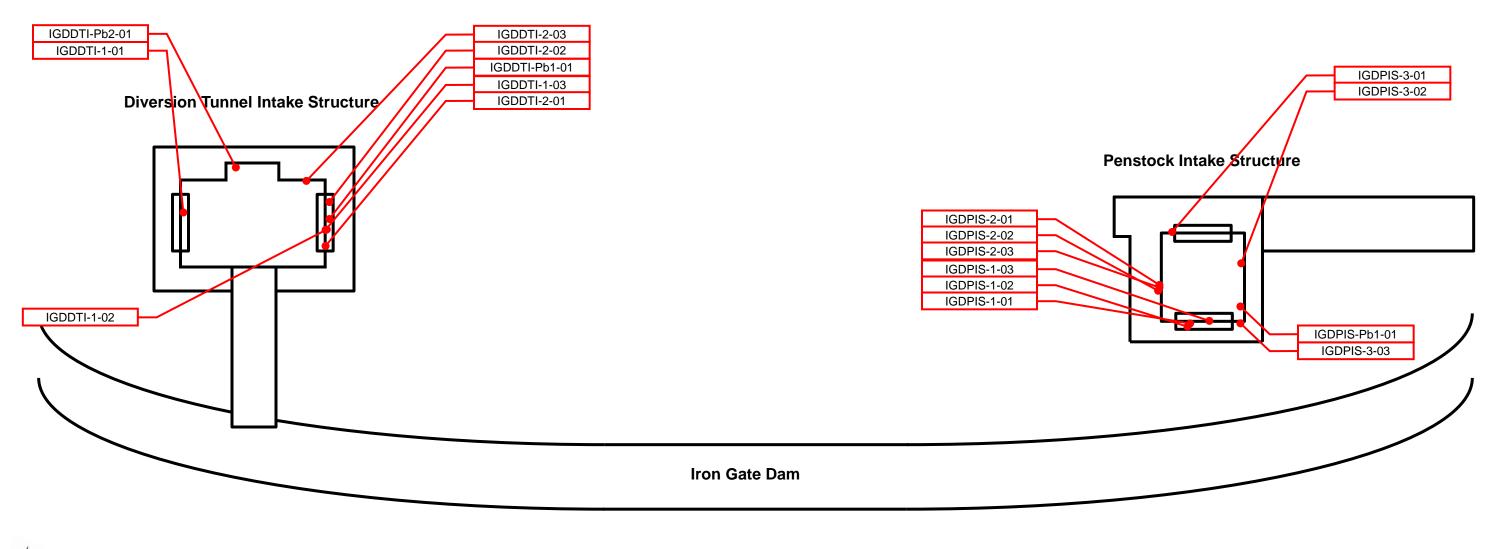



Figure 1 Aerial Site Photo Iron Gate Dam



Legend
IGDAE - HSA# - ## = Asbestos sample location
IGDAE - Pb# - ## = Lead paint sample location

Job No. 60537920 Drawing Not to Scale - Schematic Only



Legend
IGDCB - HSA# - ## = Asbestos sample location
IGDCB - Pb# - ## = Lead paint sample location

Job No. 60537920 Drawing Not to Scale - Schematic Only

Figure 3 Asbestos and Lead Sample Locations **Communications Building**

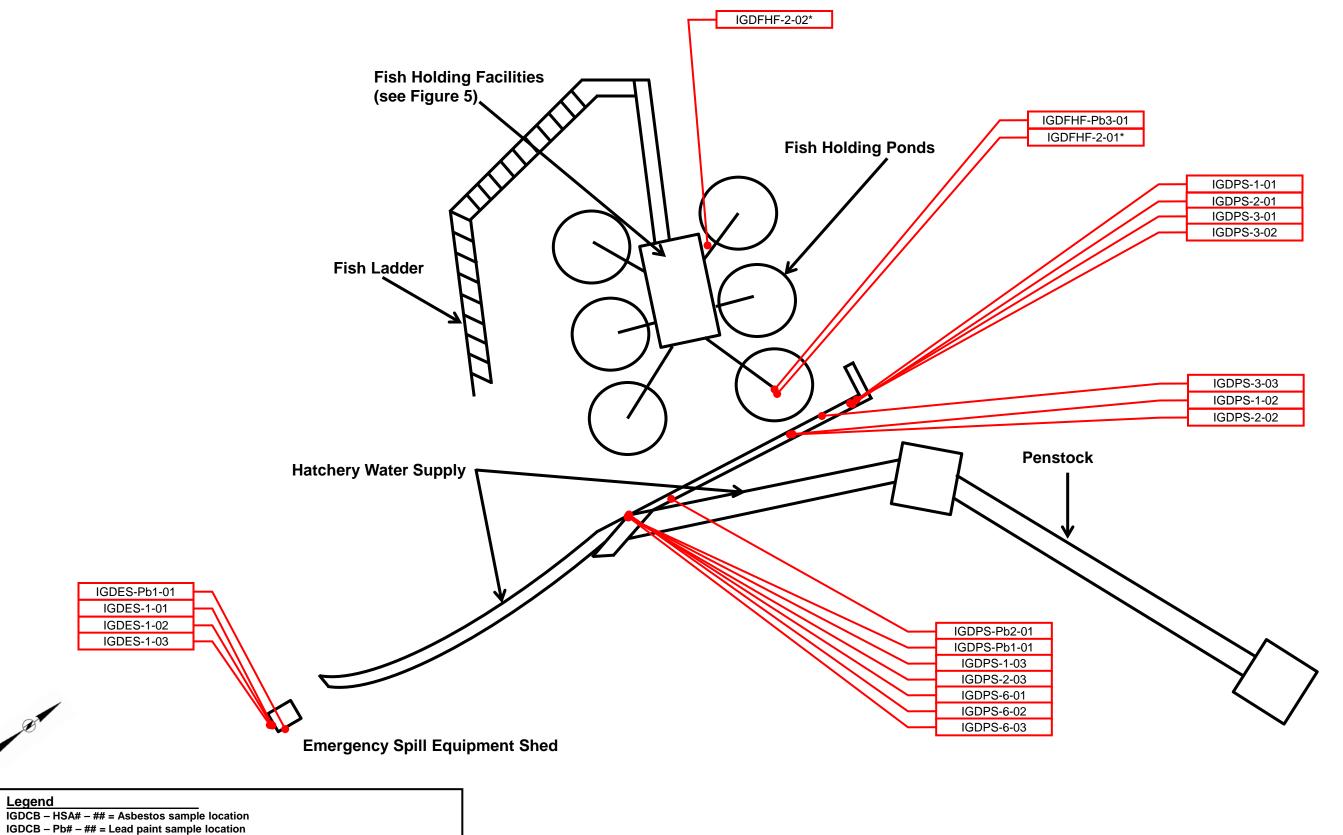
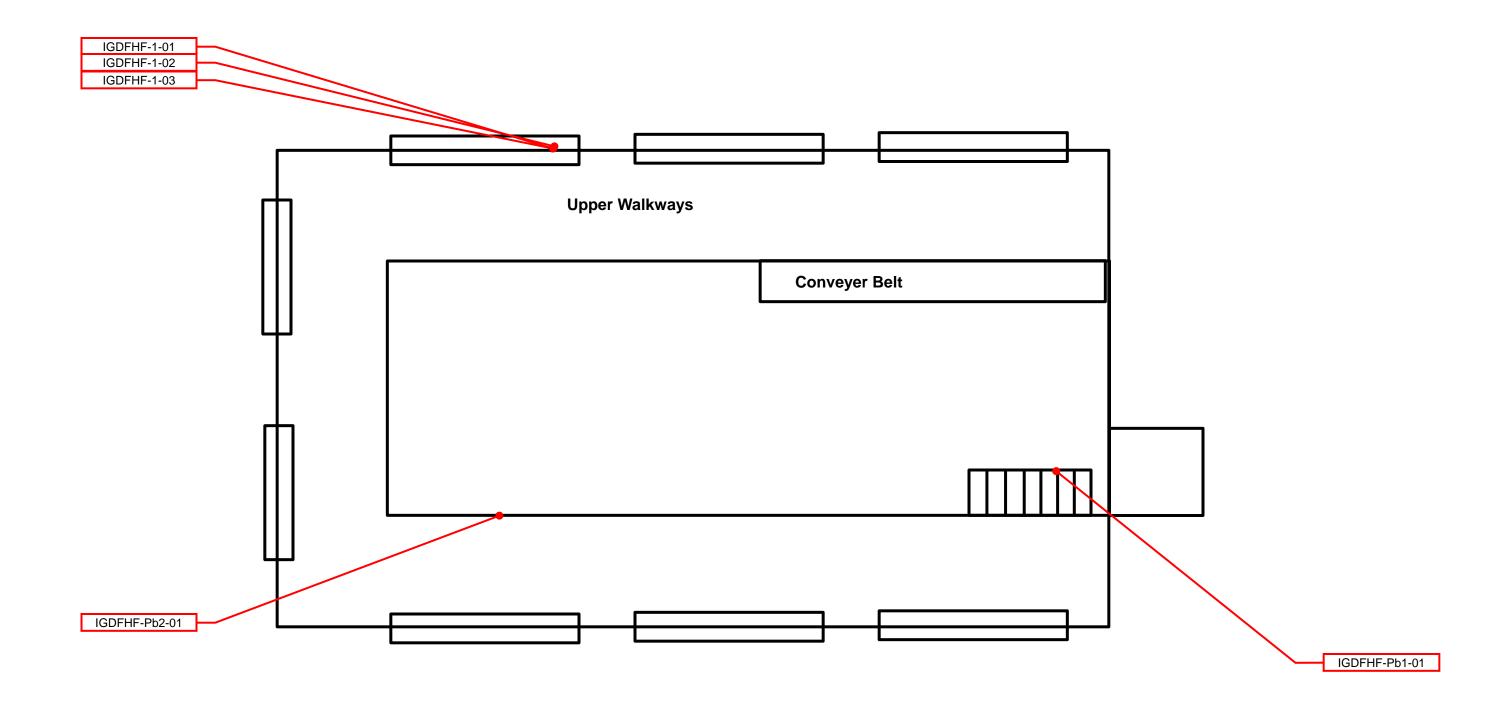

Legend
IGDCB - HSA# - ## = Asbestos sample location
IGDCB - Pb# - ## = Lead paint sample location

Figure 4 **Asbestos and Lead Sample Locations Diversion Tunnel Intake Structure and Penstock Intake Structure**

Job No. 60537920

Drawing Not to Scale - Schematic Only

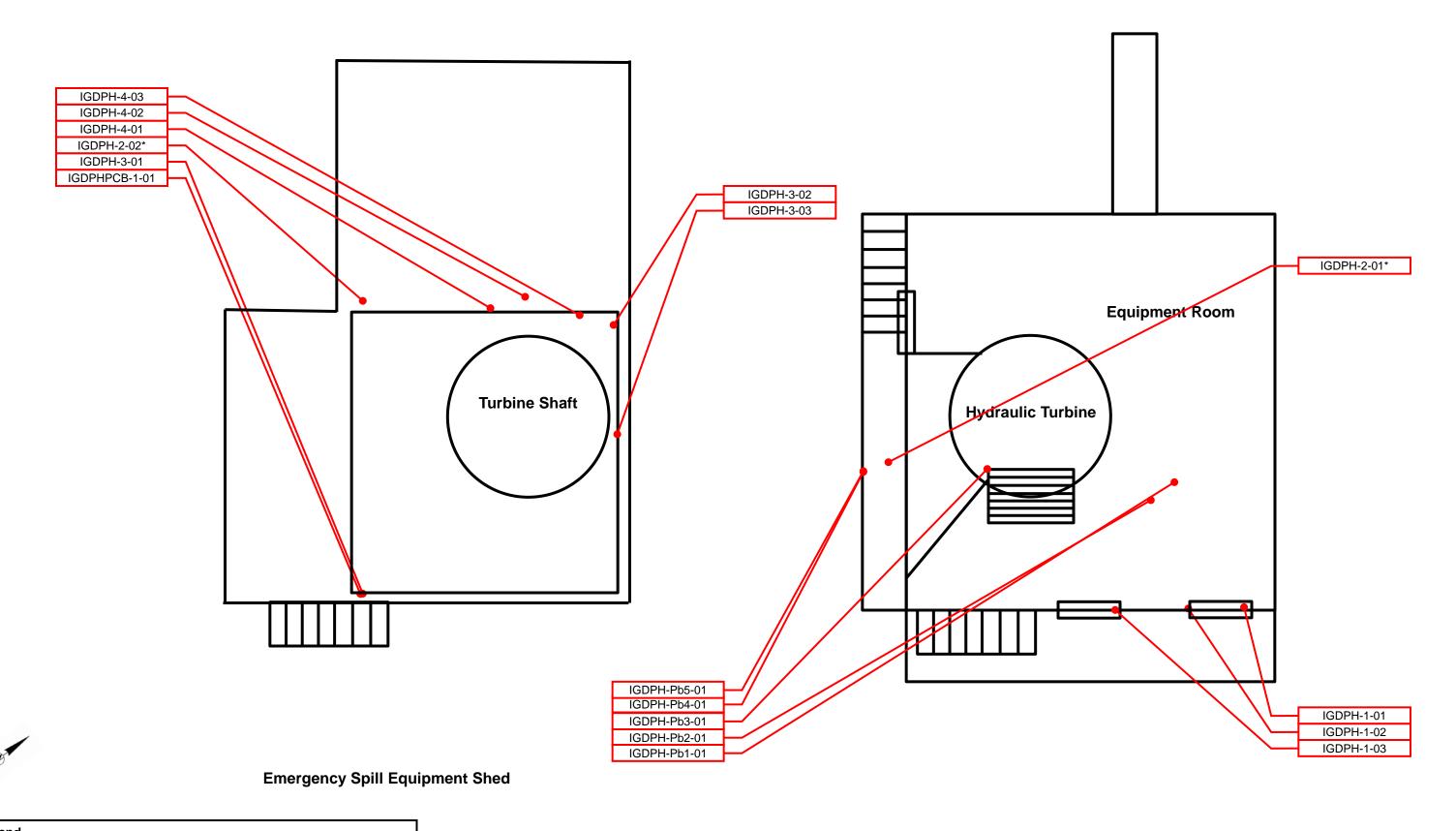


*Concrete sample analyzed via PLM CARB (Detection limit of .25%) Job No. 60537920

Drawing Not to Scale - Schematic Only

Figure 5 **Asbestos and Lead Sample Locations** Penstock, Hatchery Water Supply, Emergency Spill Equipment Shed, and Fish Holding Ponds

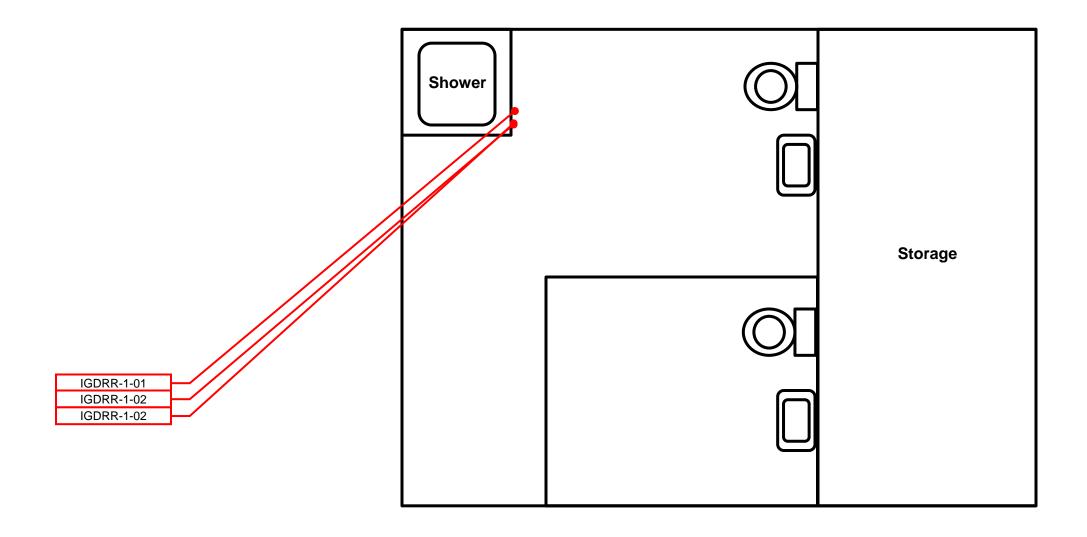
Emergency Spill Equipment Shed


Legend
IGDFHF - HSA# - ## = Asbestos sample location
IGDFHF - Pb# - ## = Lead paint sample location

Job No. 60537920

Drawing Not to Scale - Schematic Only

Figure 6 Asbestos and Lead Sample Locations
Fish Holding Facilities

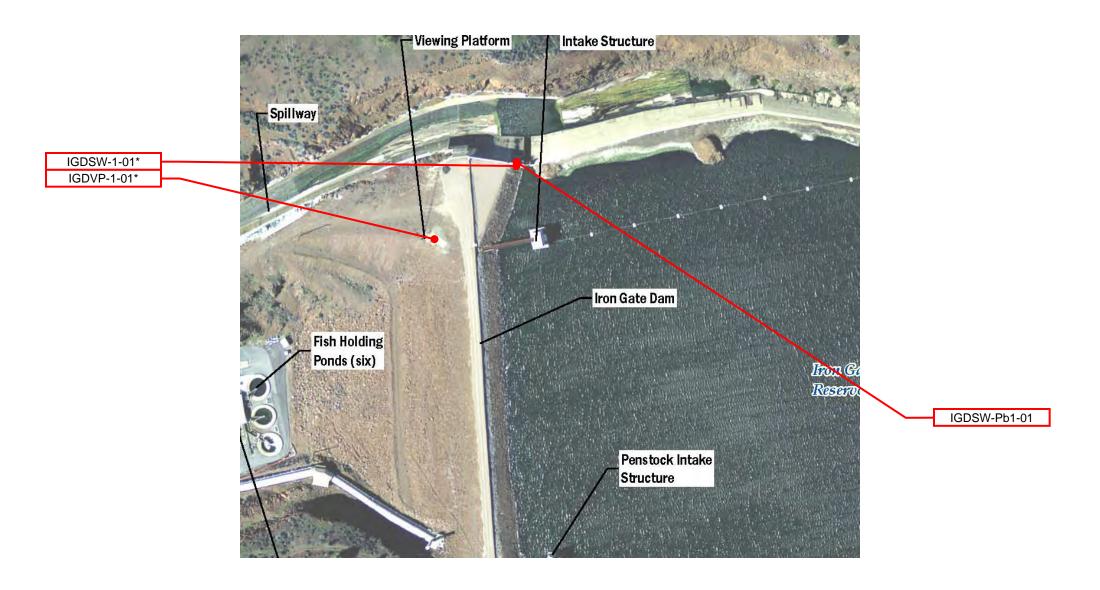

Legend
IGDFHF - HSA# - ## = Asbestos sample location

IGDFHF – Pb# – ## = Lead paint sample location
*Concrete sample analyzed via PLM CARB (Detection limit of .25%)

Job No. 60537920 **Drawing Not to Scale – Schematic Only**

AECOM

Figure 7 **Asbestos and Lead Sample Locations Powerhouse**


Legend
IGDFHF - HSA# - ## = Asbestos sample location
IGDFHF - Pb# - ## = Lead paint sample location

Job No. 60537920

Drawing Not to Scale - Schematic Only

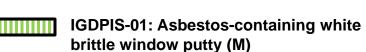
Figure 8
Asbestos and Lead Sample Locations Restroom

Legend
IGDSW - Pb# - ## = Lead paint sample location
*Concrete sample analyzed via PLM CARB (Detection limit of .25%)

Job No. 60537920

Drawing Not to Scale - Schematic Only

Figure 9 **Asbestos and Lead Sample Locations Spillway**


Legend

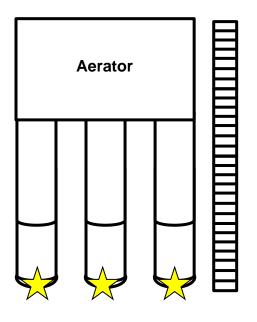
IGDAE-03: Assumed asbestos-containing gaskets (M)

IGDMS-01, IGDMS-02, and IGDMB-03: Assumed asbestos-containing silver woven electrical wire insulation, assumed asbestos-containing electrical panel backing, and assumed asbestoscontaining roofing paper (M)

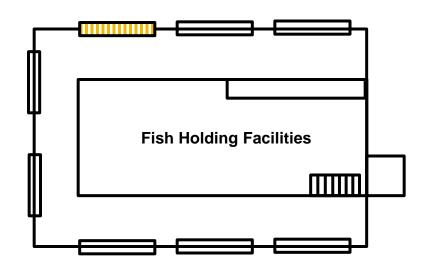
IGDPH-05: Assumed asbestos-containing wicket gate (M)

IGDDIS-01: Asbestos-containing gray

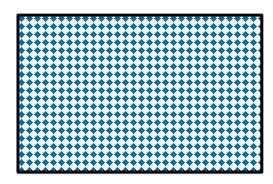
IDGPH-01: Asbestos-containing gray

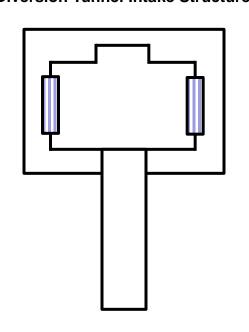

window putty (M)

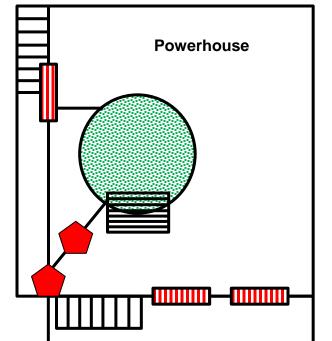
brittle window putty (M)



IGDPH-06: Assumed asbestos-containing metal-clad fire door insulation (M)


Drawing should be printed in color





Maintenance Shed

Assumed asbestos-containing buried Transite piping is assumed to be throughout the Iron Gate Development. Not shown on figures.

Figure 9
Approximate ACM Locations
Aerator, Penstock Intake Structure,
Fish Holding Facilities, Maintenance Shed,
Diversion Tunnel Intake Structure,
and Powerhouse

Job No. 60537920

Drawing Not to Scale - Schematic Only

APPENDIX B HSA PHOTOLOGS

Client Name: Klamath River Renewal Site Location: Iron Gate Dam, Aerator

Project No. 60567920

Photo No./ Material ID:

Corporation

Date:

9/12/2018

Structure:

Iron Gate Dam Aerator

Photo No./ Material ID:

Date:

IGDAE - 01

9/12/2018

Structure/Material Location:

Iron Gate Dam Aerator/ Aerator piping, hatchery water supply

*Description (by layer):

1: Black asphaltic pipe wrap (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Aerator

Project No. 60567920

Photo No./ Material ID:

Date:

IGDAE - 02

9/12/2018

Structure/Material Location:

Iron Gate Dam Aerator/ Ceiling throughout all rooms

*Description (by layer):

- 1: Silver paint (M)
- 2: Black asphaltic pipe wrap (M)

Photo No./ Material ID:

Date:

IGDAE - 03

9/12/2018

Structure/Material Location:

Iron Gate Dam Aerator/ Ceiling throughout all rooms

*Description (by layer):

1: Red gasket (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Communication Building

Project No. 60567920

Photo No./ Material ID:

Date:

9/12/2018

Structure:

Iron Gate Dam Aerator

Photo No./ Material ID:

Date:

IGDAE - 01

9/12/2018

Structure/Material Location:

Iron Gate Dam Aerator/ Flooring in office area

- 1: Gray vinyl floor sheeting with terrazzo pattern (M)
- 2: Gray paper backing with mastic (M)
- 3: Tan mastic (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Communication Building

Project No. 60567920

Photo No./ Material ID:

Date:

IGDAE - 02

9/12/2018

Structure/Material Location:

Iron Gate Dam Aerator/ Walls in office area

*Description (by layer):

- 1: 4" gray rubber cove base (M)
- 2: White mastic (M)

Photo No./ Material ID:

Date:

IGDAE - 03

9/12/2018

Structure/Material Location:

Iron Gate Dam Aerator/ Ceiling throughout all rooms

- 1: White joint compound with paper (M)
- 2: White gypsum wallboard with paper (M)
- 3: White joint compound with paper (M)
- 4: Peach gypsum wallboard with paper (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Diversion Tunnel Intake Structure

Project No. 60567920

Photo No./ Material ID:

Date:

9/17/2018

Structure:

Iron Gate Dam Diversion Tunnel Intake Structure

Photo No./ Material ID:

Date:

IDGDTI - 01

9/14/2018

Structure/Material Location:

Iron Gate Dam Diversion Tunnel Intake Structure/ Flooring in office area

- 1: Silver paint (M)
- 2: Gray window putty (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Diversion Tunnel Intake Structure

Project No. 60567920

Photo No./ Material ID:

Date:

IDGDTI - 02

9/14/2018

Structure/Material Location:

Iron Gate Dam Diversion Tunnel Intake Structure/ Exterior window frames

*Description (by layer):

1: Beige exterior window caulking (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Emergency Spill Equipment Shed

Project No. 60567920

Photo No./ Material ID:

Date:

9/14/2018

Structure:

Iron Gate Dam Emergency Spill Equipment Shed

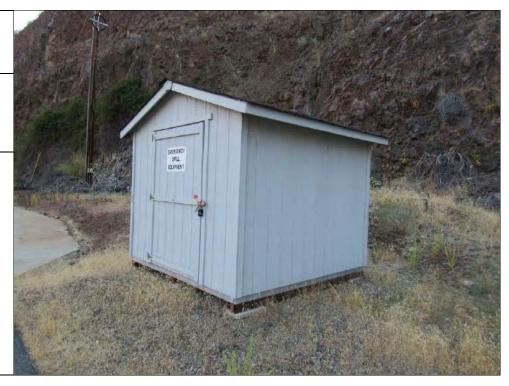


Photo No./ Material ID:

Date:

IGDES - 01

9/14/2018

Structure/Material Location:

Iron Gate Dam Emergency Spill Equipment Shed/ Roofing throughout shed

*Description (by layer):

1: Asphaltic roofing shingle with granules (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Fish Holding Facility

Project No. 60567920

Photo No./ Material ID:

Date:

9/14/2018

Structure:

Iron Gate Dam Fish Holding Facility

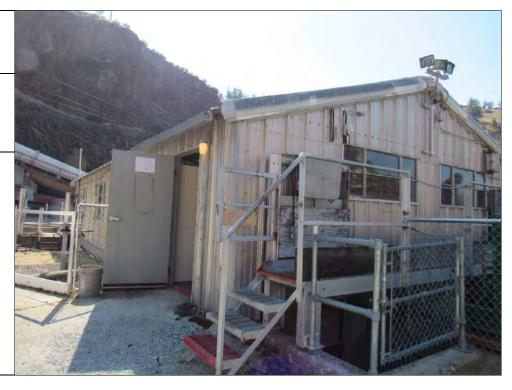


Photo No./ Material ID:

IGDFHF - 01

9/14/2018

Date:

Structure/Material Location:

Iron Gate Dam Fish Holding Facility/ Patch sealant on one window only

*Description (by layer):

1: Gray brittle window putty (M)

Client Name: Klamath River Renewal Site Location: Iron Gate Dam, Maintenance Shed

Project No. 60567920

Photo No./ Material ID:

Corporation

Date:

9/14/2018

Structure:

Iron Gate Dam Maintenance Shed

Photo No./ Material ID:

Date:

IGDMS - 01

9/14/2018

Structure/Material Location:

Iron Gate Dam Maintenance Shed/ Throughout Maintenance Shed

*Description (by layer):

Assumed asbestos-containing silver woven electrical wire insulation

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Maintenance Shed

Project No. 60567920

Photo No./ Material ID:

Date:

IGDMS - 02

9/14/2018

Structure/Material Location:

Iron Gate Dam Maintenance Shed/ Throughout Maintenance Shed

*Description (by layer):

Assumed asbestos-containing electrical panel backing in older electrical panels

Photo No./ Material ID:

Date:

IGDMS - 03

9/14/2018

Structure/Material Location:

Iron Gate Dam Maintenance Shed/ Throughout Maintenance Shed roof, underneath corrugated metal roofing

*Description (by layer):

Assumed asbestos-containing roofing paper

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Penstock Intake Structure

Project No. 60567920

Photo No./ Material ID:

Date:

9/14/2018

Structure:

Iron Gate Dam Penstock Intake Structure

Photo No./ Material ID:

Date:

IGDPIS - 01

9/14/2018

Structure/Material Location:

Iron Gate Dam Penstock Intake Structure/ Interior window panes

*Description (by layer):

1: Gray putty material (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Dam, Penstock Intake Structure

Project No. 60567920

Photo No./ Material ID:

Date:

IGDPIS - 02

9/14/2018

Structure/Material Location:

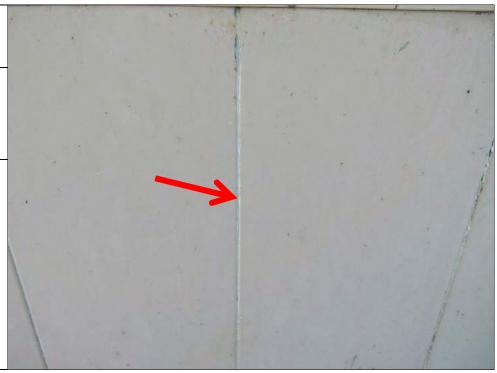
Iron Gate Dam Penstock Intake Structure/ Doorway to interior

*Description (by layer):

- 1: White caulking at base of doorway (M)
- 2: Gray brittle material (M)

Photo No./ Material ID:

Date:


IGDPIS - 03

9/14/2018

Structure/Material Location:

Iron Gate Dam Penstock Intake Structure/ Exterior metal siding seams

- 1: White caulking (M)
- 2: Beige soft material with paint (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Development, Penstock

Project No. 60567920

Photo No./ Material ID:

Date:

9/14/2018

Structure:

Iron Gate Dam Penstock

Photo No./ Material ID:

20 04

IGDPS - 01

9/14/2018

Date:

Structure/Material Location:

Iron Gate Dam Penstock/ Hatchery water supply piping (M)

*Description (by layer):

1:Black asphaltic pipe wrap (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Development, Penstock

Project No. 60567920

Photo No./ Material ID:

Date:

IGDPS - 02

9/14/2018

Structure/Material Location:

Iron Gate Dam Penstock/ Hatchery water supply piping

*Description (by layer):

- 1: Thick silver paint (M)
- 2: Black asphaltic pipe wrap (M)

Photo No./ Material ID:

Date:

IGDPS - 03

9/14/2018

Structure/Material Location:

Iron Gate Dam Penstock/ Hatchery water supply piping

*Description (by layer):

1: Brown fibrous gasket at pipe line saddles (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Development, Penstock

Project No. 60567920

Photo No./ Material ID:

Date:

IGDPS - 04

9/14/2018

Structure/Material Location:

Iron Gate Dam Penstock/ Hatchery water supply piping

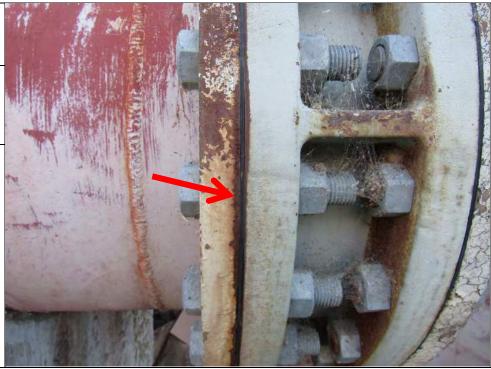
*Description (by layer):

1: Red gasket (M)

Photo No./ Material ID:

Date:

IGDPS - 05


9/14/2018

Structure/Material Location:

Iron Gate Dam Penstock/ Hatchery water supply piping

*Description (by layer):

1: Black gasket (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Development, Penstock

Project No. 60567920

Photo No./ Material ID:

Date:

IGDPS - 06

9/14/2018

Structure/Material Location:

Iron Gate Dam Penstock/ Hatchery water supply piping

*Description (by layer):

1: Tar coating on fish hatchery water supply (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Development, Powerhouse

Project No. 60567920

Photo No./ Material ID:

Date:

9/14/2018

Structure:

Iron Gate Dam Powerhouse

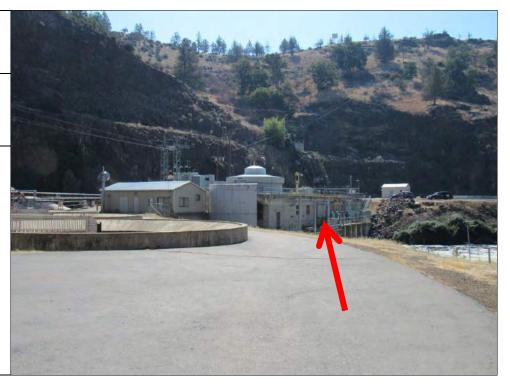


Photo No./ Material ID:

Date:

IGDPH - 01

9/14/2018

Structure/Material Location:

Iron Gate Dam Powerhouse/ Interior/exterior windows

*Description (by layer):

1: Gray brittle window putty (M)

	1
Photo No./ Material ID:	Date:
IGDPH - 02	
Structure/Mate	rial Location:
Not used	
*Description (b	y layer):

Photo No./ Material ID:

Date:

IGDPH - 03

9/14/2018

Structure/Material Location:

Iron Gate Dam Powerhouse/ Exterior seams, roof of Powerhouse (concrete pad)

*Description (by layer):

1: Gray expansion joint caulking (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Development, Powerhouse

Project No. 60567920

Photo No./ Material ID:

Date:

IGDPH - 04

9/14/2018

Structure/Material Location:

Iron Gate Dam Powerhouse/ Roof of Powerhouse (concrete pad)

*Description (by layer):

1: Brown epoxy coating (M)

Client Name:

Klamath River Renewal Corporation

Site Location: Iron Gate Development, Restrooms

Project No. 60567920

Photo No./ Material ID:

Date:

9/14/2018

Structure:

Iron Gate Dam Restrooms

Photo No./ Material ID:

IGDRR - 01

Date:

9/14/2018

Structure/Material Location:

Iron Gate Dam Restrooms/ Shower base interior of restroom

*Description (by layer):

1: White brittle terrazzo (M)

APPENDIX C LABORATORY ANALYTICAL RESULTS

October 8, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819445.00

Client Project: 60537920 Task 2.4

Location: IGD Aerator

Dear Ms. Gladu,

Enclosed please find test results for the 6 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

NVL Laboratories, Inc.

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Batch #: 1819445.00

Samples Received: 6

Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

None Detected ND

Attention: Ms. Nicole Gladu

Project Location: IGD Aerator

Lab ID: 18099616 Client Sample #: IGDAE-1-01

Location: IGD Aerator

Layer 1 of 1 Description: Black asphaltic fibrous built-up material

> Non-Fibrous Materials: Other Fibrous Materials:%

> > Insect parts

Asphalt/Binder, Fine particles, Debris

Cellulose

Glass fibers 17%

3%

Spider silk 2%

Lab ID: 18099617 Client Sample #: IGDAE-1-02

Location: IGD Aerator

Layer 1 of 1 Description: Black asphaltic fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine particles

Cellulose 3% None Detected ND

Asbestos Type: %

Asbestos Type: %

Glass fibers 26%

Lab ID: 18099618 Client Sample #: IGDAE-1-03

Location: IGD Aerator

Layer 1 of 1 Description: Black asphaltic fibrous material with granules

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder, Fine particles, Granules Cellulose 3%

Glass fibers 36%

Lab ID: 18100184 Client Sample #: IGDAE-2-01

Location: IGD Aerator

Layer 1 of 2 **Description:** Silver paint

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Cellulose Metallic paint, Fine particles 3%

Sampled by: Client

Analyzed by: Matthew McCallum Date: 10/08/2018

Reviewed by: Matt Macfarlane Date: 10/08/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

NVL Laboratories, Inc.

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Attention: Ms. Nicole Gladu

Project Location: IGD Aerator

Batch #: 1819445.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 6

Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Layer 2 of 2 Description: Black asphaltic fibrous felt

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Organic debris, Fine particles

Cellulose 62%

None Detected ND

Lab ID: 18100185 Client Sample #: IGDAE-2-02

Location: IGD Aerator

Layer 1 of 2

Laver 2 of 2

Description: Silver paint

Non-Fibrous Materials:

Non-Fibrous Materials:

Other Fibrous Materials:%

Cellulose

Asbestos Type: %
None Detected ND

Metallic paint, Fine particles

Description: Black asphaltic fibrous felt

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Organic debris, Fine particles

Cellulose 67%

2%

None Detected ND

Location: IGD Aerator

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Metallic paint, Fine particles

Cellulose 2%

None Detected ND

Layer 2 of 2 Description: Black asphaltic fibrous felt

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Organic debris, Fine particles

Cellulose 64%

None Detected ND

Sampled by: Client

Analyzed by: Matthew McCallum Reviewed by: Matt Macfarlane

Date: 10/08/2018

Date: 10/08/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

NVL Laboratories, Inc.

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL B	atch N	Number 18	319445	.00
Address	1111 3rd Avenue Ste. 1600	TAT	4 Day	'S		AH No
	Seattle, WA 98101	Rush	TAT_			
Project Manager	Ms. Nicole Gladu	Due D	ate	10/8/2018	Time	5:00 PM
Phone	(206) 438-2700	Email	nicole	e.gladu@ae	com.com	
Cell	(206) 240-0644	Fax	(866)	495-5288		

Proj	ect Name/Nu	u mber: 6053792	0 Task 2.4 Project Location: IGD Aerator	
Subc	ategory PLM	1 Bulk		
	m Code ASB		EPA 600/R-93-116 Asbestos by PLM <bulk></bulk>	
To	tal Numbe	er of Samples	66	Rush Samples
	Lab ID	Sample ID	Description	A/R
1	18099616	IGDAE-1-01		A
2	18099617	IGDAE-1-02		A
3	18099618	IGDAE-1-03		A
4	18100184	IGDAE-2-01		A
5	18100185	IGDAE-2-02		Α
6	18100186	IGDAF-2-03		A

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Matthew McCallum		NVL	10/8/18	
Results Called by					
Faxed Emailed					
Special					

Date: 10/3/2018 Time: 9:40 AM

Entered By: Emily Schubert

1819445

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

⊒ 1 Hour

⊿ 4 Days

.J 2 Hours ⊒4 Hours

☐ 2 Days ☐ 3 Days

HYGIEI SERVIC			al es	Please call for TA	call for TAT less than 24 Hours	
sboratory Managemo	ent Training			200		
Company	AECOM Corporation	1	Project Manager	Nicole Gladu		
Address	1111 3rd Avenue, Si	uite 1600	Cell	(206) 240	0644	
	Seattle, WA 98101		<u>Email</u>	nicole.gladu@	Daecom.com	
Phone	206.438.2700		Fax	(866) 495	5288	
Project Name/No	^{umber} 60537920 Task 2.4	Project Location	D AERATO	R		
☐ PCM Air (EPA ☐ PLM (EPA ☐ PLM Grav	(NIOSH 7400)	TEM (NIOSH 7402) EPA 400 Points (600 Asbestos in Vermic	→ TEM (AHER. 0/R-93-116) ulite (EPA 600/R-0	A) L TEM (6	EPA Level II Modifie 200 Points (600/R-93 tos in Sediment (EP	3-116)
Reporting Ins	tructions <u>email Nicole G</u>	J _{Fax} ()		u Ernail shannon	.mackay@aecc	m.com
	ber of Samples	3				
Samp		Description				A/R
1 IGDA	E-1-01					
2 #	-1-02					
3 јі	- 103					
5						
6						
7						
8						
9						
10						
11						
12						
14						
15						
1	Print Name	Signature		ompany	Date	Time
Sampled by	David Simon, CAC	Jan I Sam		AECOM	9/14/18	8am-4p
Relinquish by	Shannon MacKay	Stor		AECOM	10/02/18	Spm
Office Use O	S- VM + + 11	Signajure	A	ompany	Date (7/1	P Time 70
Analyzed Called Faxed/Email	ру					

Emily Schubert

From:

MacKay, Shannon <shannon.mackay@aecom.com>

Sent: Wednesday, October 03, 2018 4:05 PM

To: Client Services **Subject:** RE: Extra Samples

Please add the three samples to the COC, exactly as labeled below.

Thanks!

Shannon MacKay

Sr. Environmental Scientist, Environmental Compliance D 206-438-2232 C 206-999-2112 shannon.mackay@aecom.com

AECOM

1111 3rd Avenue, Suite 1600 Seattle, WA 98101 206-438-2700 Fax 866-438-2166 www.aecom.com

From: Client Services [mailto:ClientServices@nvllabs.com]

Sent: Wednesday, October 03, 2018 4:03 PM

To: MacKay, Shannon Cc: Client Services Subject: Extra Samples

Good afternoon,

In reference to the attached COC we received 3 extra samples in this batch that are not listed on the COC.

Please confirm if you would like to add these sample to the existing COC or we can dispose of them for you.

- 1. IGDAE-2-01
- 2. IGDAE-2-02
- 3. IGDAE-2-03

Your samples will be placed on hold until we receive confirmation for these samples. Please let us know if you have any other questions or concerns.

Thanks & Regards,

Client Services

www.nvllabs.com

ph: 206.547.0100 | fax: 206.634.1936

December 28, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1825181.01

Client Project: 60537920 Task 2.4

Location: N-A

Dear Ms. Gladu,

Enclosed please find test results for the 2 sample(s) submitted to our laboratory for analysis on 12/21/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

Phone: 206 547.0100 | Fax: 206 634.1936 | Toll Free: 1.888.NVL.LABS (685.5227)

Lab Code: 102063-0

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Attention: Ms. Nicole Gladu

Project Location: N-A

Batch #: 1825181.01

Client Project #: 60537920 Task 2.4

Date Received: 12/21/2018

Samples Received: 2

Samples Analyzed: 2

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Lab ID: 18129768 Client Sample #: IGDCB-1-04

Location: N-A

Layer 1 of 2 Description: Gray sheet vinyl

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Vinyl/Binder, Fine particles, Synthetic foam

None Detected N

None Detected ND

Layer 2 of 2 Description: Gray fibrous material with yellow soft mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Fine particles

Cellulose 40%

None Detected ND

Glass fibers 20%

Synthetic fibers <1%

Lab ID: 18129769 Client Sample #: IGDCB-2-04

Location: N-A

Layer 1 of 2 Description: Gray rubbery material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Vinyl/Binder, Fine particles

None Detected

None Detected ND

Layer 2 of 2 Description: White soft mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Fine particles, Wood flakes

Cellulose 2%

None Detected ND

Insect parts

Sampled by: Client

Analyzed by: Tiffany Cummings

Reviewed by: Matt Macfarlane

Date: 12/26/2018

Date: 12/28/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

ASBESTOS LABORATORY SERVICES

	Company	AECOM-Seattle			NVL Batch Number 13	325181.00		
	Address	1111 3rd Avenue	Ste. 160	00	TAT 1 Day	AH No	10	
		Seattle, WA 981	01		Rush TAT			
Pro	ject Manager	Ms. Nicole Gladu	s. Nicole Gladu		Due Date 12/26/2018	Date 12/26/2018 Time 4:55 PM		
	Phone	(206) 438-2700						
	Cell	(206) 240-0644			Fax (866) 495-5288			
	oject Name/	Number: 6053792 M Bulk	20 Task 2	2.4_ Project L	ocation: N-A			
ŀ	tem Code AS	SB-02	EPA 6	00/R-93-116 Asb	estos by PLM <bulk></bulk>			
T	otal Numb	per of Sample	s2			Rush Samples		
	Lab ID	Sample ID		Description			A/R	
	1 18129768	IGDCB-1-04					Α	

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	12/21/18	1655
Analyzed by	Tiffany Cummings		NVL	12/26/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'	·		

Date: 12/26/2018 Time: 10:52 AM

Entered By: Shaina Mitchell

IGDCB-2-04

18129769

ASBESTOS CHAIN OF CUSTODY

Turn Around Tim.

⊿1 Hour

24 Hours

ی 2 Hours کی **⊿**4 Hours 'LI 2 Days □ 3 Days → 10 Days

Please call for TAT less than 24 Hours

			SERVI
Nicola Cladu		-	iboratory Manage
Project Manager Nicole Gladu		AECOM Corporation	
Cell (206) 240 - 0644	uite 1600	<u>1111 3rd Avenue, Si</u>	Addres
Email _nicole.gladu@aecom.com		Seattle, WA 98101	
Fax (866) 495 - 5288		206.438.2700	Phon
	Project Location	umber 60537920 Task 2.4	Project Name/
93-116)	Asbestos in Vermicu	600/R-93-116)	☑ PLM (E
	Sladu.	tructions email Nicole G	Reporting I
shannon.mackay@aecom.com	⊕ Fax ()		U Call €
A/R	Description	ber of Samples 2	Sam
		B-1-04 B-2-04	1 1GE
		18-2-04	2 196
			3 4
			5
			6
*			7
			8
			9
			10
			11
1			13
			15
Company Date Time	Signature	Print Name	
AECOM 12/9/18 2pm	Sant & Sim	David Simon, CAC	Sampled by
AECOM 12/21/18 6pm	Su-	Shannon MacKay	, ,
AECOM 12/9/18 2	Signature Sand J Sum Signature	David Simon, CAC Shannon MacKay nily by Print Name S. M. + M.	14

October 8, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819479.00

Client Project: 60537920 Task 2.4 Location: IGD Communications Bldg

Dear Ms. Gladu,

Enclosed please find test results for the 9 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Communications Bldg

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018 Samples Received: 9

Batch #: 1819479.00

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Client Sample #: IGDCB-1-01

Location: IGD Communications Bldg

Lab ID: 18099801

Layer 1 of 3 **Description:** Gray vinyl

> **Asbestos Type: %** Other Fibrous Materials:% Non-Fibrous Materials:

None Detected ND Vinyl/Binder, Calcareous particles None Detected ND

Layer 2 of 3 **Description:** Gray fibrous backing

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Binder/Filler, Fine particles Cellulose 34%

Glass fibers 25%

Layer 3 of 3 **Description:** Tan firm mastic

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:% None Detected ND

Mastic/Binder, Insect parts, Fine particles Cellulose 3%

Calcareous particles, Wood flakes, Fine grains Synthetic fibers <1%

Glass fibers <1%

Lab ID: 18099802 Client Sample #: IGDCB-1-02

Location: IGD Communications Bldg

Layer 1 of 3 **Description:** Grav vinvl

> Asbestos Type: % Other Fibrous Materials:% Non-Fibrous Materials: None Detected ND

None Detected Vinyl/Binder, Calcareous particles ND

Layer 2 of 3 Description: Gray fibrous backing

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Binder/Filler, Fine particles, Calcareous particles Cellulose 35%

Glass fibers 26%

Sampled by: Client

Analyzed by: William Minor Date: 10/08/2018 Reviewed by: Nick Ly Date: 10/08/2018 Nick Ly, Technical Director

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Batch #: 1819479.00

Samples Received: 9

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: IGD Communications Bldg

Layer 3 of 3 Description: Tan brittle mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Glass fibers

Asbestos Type: %

Mastic/Binder, Fine particles, Insect parts

Cellulose 3%

2%

None Detected ND

Wood flakes, Fine grains, Calcareous particles

Synthetic fibers <1%

Lab ID: 18099803 Client Sample #: IGDCB-1-03

Location: IGD Communications Bldg

Layer 1 of 2 Description: Gray vinyl

Non-Fibrous Materials: Other F

Other Fibrous Materials:% Asbestos Type: %

None Detected ND

None Detected ND

Layer 2 of 2 Description: Gray fibrous backing with tan mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Fine grains, Fine particles

Cellulose 36% Glass fibers 26% None Detected ND

Fine grains, Calcareous particles

Vinyl/Binder, Calcareous particles

Lab ID: 18099804 Client Sample #: IGDCB-2-01

Location: IGD Communications Bldg

Layer 1 of 1 Description: Gray rubbery material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Vinyl/Binder

None Detected ND

None Detected ND

Lab ID: 18099805 Client Sample #: IGDCB-2-02

Location: IGD Communications Bldg

Layer 1 of 2 Description: Gray rubbery material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Vinyl/Binder

None Detected ND

None Detected ND

Sampled by: Client

Analyzed by: William Minor Reviewed by: Nick Ly

Date: 10/08/2018 Date: 10/08/2018

Nick Ly, Technical Director

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Attention: Ms. Nicole Gladu Project Location: IGD Communications Bldg Batch #: 1819479.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 9

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Laver 2 of 2 **Description:** White firm mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

2%

Asbestos Type: % **None Detected ND**

Cellulose Synthetic fibers <1%

ND

2%

Spider silk <1%

Lab ID: 18099806 Client Sample #: IGDCB-2-03

Mastic/Binder, Calcareous particles, Fine particles

Location: IGD Communications Bldg

Description: Gray rubbery material Layer 1 of 2

Non-Fibrous Materials:

Vinyl/Binder

Other Fibrous Materials:% None Detected

Asbestos Type: % None Detected ND

Layer 2 of 2 **Description:** White firm mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Cellulose

Asbestos Type: %

None Detected ND

Mastic/Binder, Calcareous particles, Fine particles

Lab ID: 18099807 Client Sample #: IGDCB-3-01

Location: IGD Communications Bldg

Layer 1 of 3 **Description:** White compacted powdery material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Calcareous particles

Cellulose <1%

None Detected ND

Layer 2 of 3 Description: White compacted powdery material with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Calcareous particles

Cellulose 2% None Detected ND

Layer 3 of 3 Description: Peach chalky material with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Gypsum/Binder, Fine particles, Metal

Cellulose 22%

None Detected ND

Sampled by: Client

Analyzed by: William Minor Reviewed by: Nick Ly

Date: 10/08/2018 Date: 10/08/2018

Nick Ly, Technical Director

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Attention: Ms. Nicole Gladu

Project Location: IGD Communications Bldg

Batch #: 1819479.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 9

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Glass fibers 2%

Lab ID: 18099808 Client Sample #: IGDCB-3-02

Location: IGD Communications Bldg

Layer 1 of 3 Description: White compacted powdery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Calcareous particles Cellulose 2% None Detected ND

Layer 2 of 3 Description: White compacted powdery material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Calcareous particles

Cellulose 2%

None Detected ND

Layer 3 of 3 Description: Peach chalky material with paper & paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Gypsum/Binder, Fine particles Cellulose 24% None Detected ND

Glass fibers 3%

Lab ID: 18099809 Client Sample #: IGDCB-3-03

Location: IGD Communications Bldg

Comments: Unsure of correct layer sequence.

Layer 1 of 4 Description: White compacted powdery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Calcareous particles

Cellulose 2%

None Detected ND

Layer 2 of 4 Description: White chalky material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Gypsum/Binder Cellulose 18% None Detected ND

Glass fibers 3%

Sampled by: Client

Analyzed by: William Minor

Date: 10/08/2018

Reviewed by: Nick Ly

Date: 10/08/2018

Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is

limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL

Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819479.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 9

Samples Analyzed: 9

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: IGD Communications Bldg

Layer 3 of 4 Description: White compacted powdery material

Non-Fibrous Materials:

Calcareous binder, Calcareous particles

Layer 4 of 4 Description: Peach chalky material with paper

Non-Fibrous Materials:

Gypsum/Binder, Fine particles

Other Fibrous Materials:%

Cellulose <1%

Asbestos Type: %
None Detected ND

None Detected ND

Other Fibrous Materials:% Asbestos Type: %

Cellulose 22%

Glass fibers 3%

Sampled by: Client

Analyzed by: William Minor Reviewed by: Nick Ly

by: Nick Ly

Date: 10/08/2018

Date: 10/08/2018

All Control of the Co

Nick Ly, Technical Director

4708 Aurora Ave N, Seattle, WA 98103 p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	Company	AECOM-Seattle		NVL Batch Number 1819479.00	
Address 1111 3rd Avenue Ste. 16		. 1600	TAT 4 Days AH	No	
	Seattle, WA 98101			Rush TAT	
Proje	ct Manager	Ms. Nicole Gladu		Due Date 10/8/2018 Time 5:00 P	M
	Phone	(206) 438-2700		Email nicole.gladu@aecom.com	
	Cell	(206) 240-0644		Fax (866) 495-5288	
Subo	ategory PLI	M Bulk	PA 600/R-93-116 Asbe	estos by PLM <bul>estos by PLM <bul>bulk></bul></bul>	
To	tal Numb	er of Samples_	9	Rush	n Samples
	Lab ID	Sample ID	Description		A/R
1	18099801	IGDCB-1-01			А
2	18099802	IGDCB-1-02			А
3	18099803	IGDCB-1-03			Α
4	18099804	IGDCB-2-01			Α
5	18099805	IGDCB-2-02			Α
6	18099806	IGDCB-2-03			Α
7	18099807	IGDCB-3-01			A
8	18099808	IGDCB-3-02			А
9	18099809	IGDCB-3-03			А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	William Minor		NVL	10/8/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 11:11 AM

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

J 1 Hour

☐ 24 Hours

⊿ 4 Days

⊒ 2 Hours ⊒ 4 Hours

⊒ 2 Days 🗀 3 Days → 10 Days

HYGIE SERVIC				Please call for TAT	less than 24 Hours	
sboratory (Managem	ent Training					
Company	AECOM Corporation	1	Project Manager N	icole Gladu		
Address	Address 1111 3rd Avenue, Suite 160		Cell (2	206) 240	- 0644	
	Seattle, WA 98101		Email Ni	cole.gladu@	Daecom.com	
Phone	206.438.2700		Fax ({	866) 495	5288	
					c 1210/1	
Project Name/N	lumber 60537920 Task 2.4	Project Location 19	D COMMUN	ICKLION	2 Rmd.	
☑ PLM (EP/ □ PLM Gra □ Asbestos	A 600/R-93-116) Ivimetry (600/R-93-116) Is Friable/Non-Friable (EPA 60	EPA 400 Points (600 Asbestos in Vermico 00/R-93/116)	ulite (EPA 600/R-04/0 Other	→ EPA 10 04) → Asbest		.16)
Reporting In:	structions email Nicole C	Fax ()	EDD ALONG WI	channon	S .mackay@aecoп	n.com
Total Nun	nber of Samples 1					
Samp		Description				A/R
	CB-1-01					
2 11	-1-02					
3 11	-1-03					
4 11	-2-01					
5 11	-2-02					
6 11	-2-03					
7 11	-3-01					
8 p	- 3-02					
9 11	- 3-03					
10						
11						
12						
13						
14						
15						
	Print Name	Signature	Comp	any	Date	Time
Sampled by	David Simon, CAC	Jan 3 dam		AECOM	9/14/18	Sam-40
Relinquish by	Shannon MacKay	Ston	×	AECOM	10/08/18	5:00pu
Office Use O Received Analyzed	by SMIHAM	Signature	Comp	anyUVL	1017/18	Time 1700

October 8, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819458.00

Client Project: 60537920 Task 2.4 Location: IGD Diversion Tunnel Intake

Dear Ms. Gladu,

Enclosed please find test results for the 6 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Diversion Tunnel Intake

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 6

Batch #: 1819458.00

Campies received.

Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Chrysotile 5%

None Detected ND

Client Sample #: IGDDTI-1-01

Location: IGD Diversion Tunnel Intake

Lab ID: 18099686

Layer 1 of 1 Description: Off-white crumbly material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Calcareous particles, Fine grains Cellulose 3%

Lab ID: 18099687 Client Sample #: IGDDTI-1-02

Location: IGD Diversion Tunnel Intake

Layer 1 of 1 Description: Gray crumbly material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Calcareous particles, Fine grains Cellulose 2% Chrysotile 6%

Spider silk 2%

Lab ID: 18099688 Client Sample #: IGDDTI-1-03

Location: IGD Diversion Tunnel Intake

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint Cellulose 1%

Layer 2 of 2 Description: Gray crumbly material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Calcareous particles, Fine grains Cellulose 2% Chrysotile 6%

Lab ID: 18099689 Client Sample #: IGDDTI-2-01

Location: IGD Diversion Tunnel Intake

Layer 1 of 1 Description: Beige rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder, Fine particles None Detected ND None Detected ND

Sampled by: Client

Analyzed by: Akane Yoshikawa Date: 10/08/2018

Reviewed by: Matt Macfarlane Date: 10/08/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819458.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 6

Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

Attention: Ms. Nicole Gladu

Project Location: IGD Diversion Tunnel Intake

Lab ID: 18099690 Client Sample #: IGDDTI-2-02

Location: IGD Diversion Tunnel Intake

Layer 1 of 1 Description: Beige rubbery material

Non-Fibrous Materials: Other Fibrous Materials:%

Rubber/Binder, Fine particles, Insect parts Spider silk 2%

Spider silk 2% None Detected ND

Lab ID: 18099691 Client Sample #: IGDDTI-2-03

Location: IGD Diversion Tunnel Intake

Layer 1 of 1 Description: Beige rubbery material

Non-Fibrous Materials: Other Fibrous Materials:%

Rubber/Binder, Fine particles Synthetic fibers 3%

Asbestos Type: %

None Detected ND

Sampled by: Client

Analyzed by: Akane Yoshikawa Date: 10/08/2018
Reviewed by: Matt Macfarlane Date: 10/08/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

ACDECTOC EMBOTATION OF COLOR	
4708 Aurora Ave N, Seattle, WA 98103	347
p 206.547.0100 f 206.634.1936 www.nvllabs.com	Ĺ

Company	AECOM-Seattle	NVL Batch Number 1819458.	0 0	
Address	1111 3rd Avenue Ste. 1600	TAT 4 Days	AH No	
	Seattle, WA 98101	Rush TAT		
Project Manager	Ms. Nicole Gladu	Due Date 10/8/2018 Time	5:00 PM	
Phone	(206) 438-2700	Email nicole.gladu@aecom.com		
Cell	(206) 240-0644	Fax (866) 495-5288		

Project Name/Number: 60537920 Task 2.4 Project Location: IGD Diversion Tunnel Intake								
Subc	ategory PLM	Bulk						
lte	Item Code ASB-02		EPA 6	00/R-93-116 Asb	estos by PLM <bulk></bulk>			
То		er of Samples	s 6_	— Description			Rush Samples	A /D
	Lab ID	Sample ID		Description				A/R
1	18099686	IGDDTI-1-01						A
2	18099687	IGDDTI-1-02						Α
3	18099688	IGDDTI-1-03						Α
4	18099689	IGDDTI-2-01						Α
5	18099690	IGDDTI-2-02						Α
6	18099691	IGDDTI-2-03						А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Akane Yoshikawa		NVL	10/8/18	
Results Called by					
Faxed Emailed					
Special		<u>'</u>	·		

Date: 10/3/2018 Time: 10:10 AM

Entered By: Shaina Mitchell

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

J Hour □ 24 Hours

⊿ 4 Days

.J 2 Hours J 4 Hours □ 3 Days

⊒ 5 Days ⊒ 10 Days

SERVIC				riease call for 1/	AT less than 24 Hours	
Laboratory Managem						
, ,	AECOM Corporatio		Project Manager N	icole Gladu	,	
Address	1111 3rd Avenue, S	Suite 1600	Cell 🔛	206) 240) - 0644	
	Seattle, WA 98101		Email _ <u>N</u> i	cole.gladu	@aecom.com	
Phone	206.438.2700		Fax (}	866) 495	5 · 528 8	
Project Name/N	umber 60537920 Task 2.4	Project Location C	ID DIVERSION	TUNNE	L INTAKE	
		TEM (NłOSH 7402)	☐ TEM (AHERA)	☐ TEM	(EPA Level II Modified)	
	600/R-93-116)	EPA 400 Points (600	D/R-93-116)	☐ EPA 1	L000Points (600/R-93-)	L1 6)
PLM Gran Achestor	vimetry (600/R-93-116) 🔟 Friable/Non-Friable (EPA 66	Asbestos in Vermici		04) 🕹 Asbe:	stos in Sediment (EPA	1900 Points)
			→ Other			
Reporting Ins	tructions email Nicole C					
U Call ⁽	+1	⊒ Fax ()	€m	shannor	n.mackay@aecoп	1.com
Total Num	ber of Samples (<u> </u>				
Samp	· —					
		Description				A/R
IGDDT	the state of the s					
3 4	- 1-02					
	- 1-03	-				
- "	- 2-01	-				
	-2-02	-				-
7	- 2-03					
8		+				
9		_				-
10						
11						
12						+
13						
14						
15						
1	Print Name	Signature	Compa	iny	Date	Time
Sampled by	David Simon, CAC	Jand & Sam		AECOM	9/17-9/18/18	8am-4p
Relinquish by	Shannon MacKay	ABM.		AECOM	10/02/18	5:00 pm
Office Use On	lu	0	1		1 /10	-
	Print Name	Signature / /	Compa	ny , , ,	Date	Time
Received b		NO TO	\supset \land	IVL	10/2/10	11700
Analyzed b Called b						
Faxed/Email b						
			01			

page 5 of 5

October 8, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819469.00

Client Project: 60537920 Task 2.4

Location: IGP Emergency Spill Equipment Shed

Dear Ms. Gladu,

Enclosed please find test results for the 3 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819469.00

Client Project #: 60537920 Task 2.4 Date Received: 10/2/2018

Samples Received: 3

Samples Analyzed: 3

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

None Detected ND

Attention: Ms. Nicole Gladu

Project Location: IGP Emergency Spill Equipment Shed

Lab ID: 18099731 Client Sample #: IGDES-1-01

Location: IGP Emergency Spill Equipment Shed

Description: Black asphaltic fibrous material with granules Layer 1 of 1

Non-Fibrous Materials: Other Fibrous Materials:%

Asphalt/Binder, Granules, Fine grains

None Detected ND Glass fibers 60%

Lab ID: 18099732 Client Sample #: IGDES-1-02

Location: IGP Emergency Spill Equipment Shed

Description: Black asphaltic fibrous material with granules Layer 1 of 1

Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

Glass fibers 63% Asphalt/Binder, Granules, Fine particles

Lab ID: 18099733 Client Sample #: IGDES-1-03

Location: IGP Emergency Spill Equipment Shed

Description: Black asphaltic fibrous material with granules Layer 1 of 1

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

Glass fibers 62% None Detected ND Asphalt/Binder, Granules, Fine particles

Sampled by: Client

Analyzed by: Michael Jenkins Date: 10/08/2018 Reviewed by: Matt Macfarlane Date: 10/08/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

A/R

Α

Α

Α

4708 Aurora Ave N, Seattle, WA 98103

Lab ID

18099731

18099733

2 | 18099732

3

Sample ID

IGDES-1-01

IGDES-1-02

IGDES-1-03

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Compa	ny AECOM-Seattle		NVL Batch Number 18194	469.00
Addre	ess 1111 3rd Avenue	Ste. 1600	TAT 4 Days	AH No
	Seattle, WA 9810	1	Rush TAT	
Project Manag	ger Ms. Nicole Gladu		Due Date 10/8/2018 Tim	e 5:00 PM
Pho	one (206) 438-2700		Email nicole.gladu@aecom.d	com
C	Cell (206) 240-0644		Fax (866) 495-5288	
Project Nan	ne/Number: 60537920	Task 2.4 Project Loca	tion: IGP Emergency Spill Eq	uipment Shed
Subcategory	PLM Bulk			
Item Code	ASB-02	EPA 600/R-93-116 Asbest	os by PLM <bulk></bulk>	
Total Nu	mber of Samples	3		Rush Samples

Description

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Michael Jenkins		NVL	10/8/18	
Results Called by					
Faxed Emailed					
Special		<u>'</u>			

Date: 10/3/2018 Time: 10:45 AM

Entered By: Shaina Mitchell

1819469

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

J1 Hour

LI 24 Hours

4 Days

J2 Hours JA Hours

12 Days D 3 Days

15 Days → 10 Days

ZEHNIC	E 5		Please call for	TAT less than 24 Hours	
aboratory Manager	Hen) Training				
Company AECOM Corporation			Project Manager Nicole Glad	du	
Address	1111 3rd Avenue, S	uite 1600	Cell (206) 24	0 - 0644	
	Seattle, WA 98101		Email nicole.glad	u@aecom.com	
Phone	206.438.2700		Fax (866) 49		
Project Name/N	lumber 60537920 Task 2.4	Project Location IG	P EMERGENCY SPILL	L EQUIPMEN	I SHED
☑ PLM (EP ☑ PLM Gr	A 600/R-93-116)	EPA 400 Points (600 Asbestos in Vermici	0/R-93-116) EPA ulite (EPA 600/R-04/004) Asb	I (EPA Level II Madified 1000Points (600/R-93 lestas in Sediment (EPA	-116)
Reporting In	structions email Nicole G	ladu			
□ Call (1 -	⊒ Fax (- shanne	on.mackay@aeco	m.com
Sam	nber of Samples	Description			A/R-
	ES-1-01				
2 16	-1-02				
	- 1-03				
4 S		1			
6					_
7					-
8					_
9					
10					
11					
12					
-13					
15					
12	en Viene				
	Print Name	Signature	Company	Date	Time
Sampled by	David Simon, CAC	Namil 2' &	AECOM	9/14/18	: 8am-4pm
Relinquish by	Shannon MacKay	Alle	AECOM	10/0/18	Spm
Received Analyzed Called Faxed/Email	by SMITCHEU by MATONIA (Simpature A	Campany VL	Date 10/7/1	0 1700

October 8, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819460.00

Client Project: 60537920 Task 2.4 Location: IGD Fish Holding Facilities

Dear Ms. Gladu,

Enclosed please find test results for the 3 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819460.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 3

Samples Analyzed: 3

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Chrysotile 6%

Attention: Ms. Nicole Gladu

Project Location: IGD Fish Holding Facilities

Lab ID: 18099704 Client Sample #: IGDFHF-1-01

Location: IGD Fish Holding Facilities

Layer 1 of 1 Description: Gray soft material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Fine particles Cellulose 1%

ellulose 1% Chrysotile 4%

Lab ID: 18099705 Client Sample #: IGDFHF-1-02

Location: IGD Fish Holding Facilities

Layer 1 of 1 Description: Gray soft material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Fine particles Cellulose <1%

Lab ID: 18099706 Client Sample #: IGDFHF-1-03

Location: IGD Fish Holding Facilities

Layer 1 of 1 Description: Gray soft material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Fine particles Cellulose <1% Chrysotile 4%

Sampled by: Client

Analyzed by: Matthew McCallum

Reviewed by: Matt Macfarlane

Date: 10/08/2018

Date: 10/08/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

Due Date 10/8/2018 **Time**

(866) 495-5288

Email nicole.gladu@aecom.com

5:00 PM

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Project Manager Ms. Nicole Gladu

Phone (206) 438-2700

Cell (206) 240-0644

200.547.0100 1200.054.1550 WWW.IVIII.053.COIII			
Company AECOM-Seattle	NVL Batch Number	1819460.00	
Address 1111 3rd Avenue Ste. 1600	TAT 4 Days	AH No	
Seattle, WA 98101	Rush TAT		

Project Name/Number: 60537920 Task 2.4 Project Location: IGD Fish Holding Facilities

Fax

 Subcategory
 PLM Bulk

 Item Code
 ASB-02
 EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples 3 Rush Samples ____ Lab ID Sample ID Description A/R 18099704 IGDFHF-1-01 Α 2 | 18099705 IGDFHF-1-02 Α 3 18099706 IGDFHF-1-03 Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Matthew McCallum		NVL	10/8/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special					

Date: 10/3/2018 Time: 10:12 AM

Entered By: Shaina Mitchell

1819460

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

⊒ 1 Hour

□ 24 Hours

4 4 Days

J 2 Hours J 4 Hours

□ 2 Days □ 3 Days

⊒ S Days

SERVIC	E S			Please call	ior IAI less than	24 Hours	
aboratory Managem							
	AECOM Corporation		Project Manager				
Address	1111 3rd Avenue, S	uite 1600	Cell (206) 240 - 0644				
	Seattle, WA 98101		Email	_nicole.gla	idu@aeco	m.com	
Phone	206.438.2700		Fax	(866)	495 - 5288		
Project Name/N	umber 60537920 Task 2.4	Project Location 1D	G FISH HOL	DING FA	CIUTIES		
☑ PLM (EPA □ PLM Gra			0/R-93-116) ulite (EPA 600/R-0	٦ و		s (600/R-93-11	
Reporting Ins	structions .email Nicole C	Hadu EMATE	EDD ATON	ET WITH	CESULTS		
u Call		_ Fax ()	4.	shar	non.macka	ay@aecom.	.com
Total Num	ber of Samples	Description					A/R
1 MAD	IGO FHF-1-01						
2	11 - 1-02						
3	11 -1-03						
4							
5							-
7							4
8							-
9							
10							
11							
12							
13							
14							-
13							
1	Print Name	Signature	1 0	ompany	Dat	e	Time
Sampled by	David Simon, CAC	Dand I dam		AECON	1 9/13	2-/9/18/18	8am-4p
Relinquish by	Shannon MacKay	Aluth		AECON	1 10/	02/18	5:00p
Office Use On Received Analyzed	by S. M. H. h	Signature	HA C	ompany L	Da	5/2/18	Time 00
Called Favor (Smail							
Faxed/Email	by L				1		

October 5, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819456.00

Client Project: 60537920 Task 2.4

Location: IGD Penstock Intake Structure

Dear Ms. Gladu,

Enclosed please find test results for the 9 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 9

Samples Analyzed: 9

Batch #: 1819456.00

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: IGD Penstock Intake Structure

Client Sample #: IGDPIS-1-01 Lab ID: 18099657

Location: IGD Penstock Intake Structure

Layer 1 of 1 **Description:** Gray putty material

> **Asbestos Type: %** Other Fibrous Materials:% Non-Fibrous Materials:

Putty Compound, Calcareous particles None Detected ND

Chrysotile 5%

Lab ID: 18099658 Client Sample #: IGDPIS-1-02

Location: IGD Penstock Intake Structure

Description: Gray putty material Layer 1 of 1

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected Putty Compound, Calcareous particles ND **Chrysotile 4%**

Client Sample #: IGDPIS-1-03 Lab ID: 18099659

Location: IGD Penstock Intake Structure

Layer 1 of 1 **Description:** Gray putty material with paint

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

Putty Compound, Calcareous particles Cellulose <1%

Chrysotile 4%

Client Sample #: IGDPIS-2-01 Lab ID: 18099660

Location: IGD Penstock Intake Structure

Layer 1 of 2 Description: Tan soft elastic material with paint

> Non-Fibrous Materials: Other Fibrous Materials:% Asbestos Type: %

None Detected ND Caulking compound, Paint None Detected ND

Layer 2 of 2 **Description:** Gray brittle material

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Mineral grains, Fine particles None Detected

Lab ID: 18099661 Client Sample #: IGDPIS-2-02

Location: IGD Penstock Intake Structure

Sampled by: Client

Analyzed by: Welly Hsieh Date: 10/05/2018

Reviewed by: Matt Macfarlane Date: 10/05/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819456.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 9

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: IGD Penstock Intake Structure

Layer 1 of 1 Description: Tan soft elastic material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Caulking compound, Paint, Rust

None Detected ND **None Detected ND**

Lab ID: 18099662 Client Sample #: IGDPIS-2-03

Location: IGD Penstock Intake Structure

Layer 1 of 1 Description: Tan soft elastic material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Caulking compound, Paint, Rust

None Detected ND **None Detected ND**

Client Sample #: IGDPIS-3-01

Location: IGD Penstock Intake Structure

Lab ID: 18099663

Layer 1 of 1

Description: Off-white soft elastic material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Caulking compound, Calcareous particles, Paint

None Detected ND None Detected ND

Client Sample #: IGDPIS-3-02 Lab ID: 18099664

Location: IGD Penstock Intake Structure

Layer 1 of 2 Description: Beige soft material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Caulking compound, Paint, Calcareous particles

Cellulose <1%

None Detected ND

Layer 2 of 2 **Description:** White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder. Paint

None Detected ND None Detected ND

Client Sample #: IGDPIS-3-03 Lab ID: 18099665

Location: IGD Penstock Intake Structure

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 10/05/2018

Date: 10/05/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819456.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 9

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: IGD Penstock Intake Structure

Layer 1 of 1 Description: Off-white soft elastic material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Caulking compound, Calcareous particles, Paint

Cellulose <1%

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane Date: 10/05/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Date: 10/05/2018

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Α

	Company	AECOM-Seattle		NVL Batch Number 1819	456.00	
	Address	1111 3rd Avenue Ste. 16	600	TAT 4 Days	AH No	
		Seattle, WA 98101				
Proje	ct Manager	Ms. Nicole Gladu		Due Date 10/8/2018 Tir	ne 5:00 PM	
	Phone	(206) 438-2700		Email nicole.gladu@aecom.	com	
	Cell	(206) 240-0644		Fax (866) 495-5288		
Proj	ect Name/N	lumber: 60537920 Task	2.4 Project Loc	cation: IGD Penstock Intake St	ructure	
Subo	ategory PLI	M Rulk				
			000/D 00 440 Asks	ataa haa DLM - baalla		
ite	m Code AS	B-UZ EPA (000/R-93-116 ASDE	stos by PLM <bulk></bulk>		
То	tal Numb	er of Samples 9			Rush Samples	
	Lab ID	Sample ID	Description			A/R
1	18099657	IGDPIS-1-01				А
2	18099658	IGDPIS-1-02				Α
3	18099659	IGDPIS-1-03				Α
4	18099660	IGDPIS-2-01				Α
5	18099661	IGDPIS-2-02				Α
6	18099662	IGDPIS-2-03				Α
7	18099663	IGDPIS-3-01				Α
8	18099664	IGDPIS-3-02				Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell	_	NVL	10/2/18	1700
Analyzed by	Welly Hsieh	_	NVL	10/5/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 10:05 AM

18099665

IGDPIS-3-03

Entered By: Shaina Mitchell

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

⊒ I Hour

□ 24 Hours

⊿ 4 Days

.J 2 Hours ⊒ 4 Hours

⊒ 2 Days 🗀 3 Days

10 Days

HYGIEN SERVICE			- USANATIVATIVA	Please call for IA	T less than 24 Hours		
ocratory Managemer	nt Training						
Company	AECOM Corporation		Project Manager N				
Address .	1111 3rd Avenue, St	ite 1600	O Cell (206) 240 - 0644				
	Seattle, WA 98101		Email <u>N</u> Ì	cole.gladu(@aecom.com		
	206.438.2700		Fax (866) 495	- 5288		
Project Name/Nu	mber 60537920 Task 2.4	Project Location	D PENSTOCK	INTAKE	STRUCTURE		
PCM Air (PLM (EPA		TEM (NIOSH 7402) PA 400 Points (60 Asbestos in Vermic	_1 TEM (AHERA) O/R-93-116) :ulite (EPA 600/R-04/0	☐ TEM (☐ EPA 1	EPA Level II Modified) 000Points (600/R-93-1		
	tructions email Nicole G	Jeax (LEDE A LONG	shannor	n.mackay@aecon	n.com	
u Call L		1 Fax		iidii -			
Iotal Num	ber of Samples	Description				A/R	
1 1000							
2	- 1-02						
3	- 1-03						
4 4	- 2-01						
5 1	- 2-02						
6 1	4 4 5						
7	- 3-01						
8	- 3-02						
0	- 3-03						
10	002						
11							
12							
13							
14							
15							
1	Print Name	Signature	Com	pany	Date	Time	
Sampled by	David Simon, CAC	Dand & Sim		AECOM	9/17/18-9/18/18	8AM-4PI	
Relinquish by	Shannon MacKay	40h		AECOM	10/02/18	5:00	
Office Use O Received Analyzed	by S. Mithell	Signature	Com	рапу V L	19812/19	7 Time 7	
Called Faxed/Email	by						

October 8, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819446.00

Client Project: 60537920 Task 2.4

Location: IGD Penstock

Dear Ms. Gladu,

Enclosed please find test results for the 12 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819446.00 Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

Asbestos Type: %

Lab ID: 18099619 Client Sample #: IGDPS-1-01

Location: IGD Penstock

Project Location: IGD Penstock

Layer 1 of 1 **Description:** Black asphaltic mastic

Non-Fibrous Materials:

Asbestos Type: % Other Fibrous Materials:%

> None Detected ND Glass fibers 4%

Lab ID: 18099620 Client Sample #: IGDPS-1-02

Location: IGD Penstock

Description: Black asphaltic mastic Layer 1 of 1

> Non-Fibrous Materials: Other Fibrous Materials:%

Asbestos Type: %

Glass fibers None Detected ND Asphalt/Binder, Miscellaneous particles 5%

Lab ID: 18099621 Client Sample #: IGDPS-1-03

Location: IGD Penstock

Description: Black asphaltic mastic Layer 1 of 1

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder, Miscellaneous particles Glass fibers 4%

Lab ID: 18099622 Client Sample #: IGDPS-2-01

Asphalt/Binder, Miscellaneous particles

Location: IGD Penstock

Layer 1 of 2 Description: Silver-colored reflective coating with paint

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Binder/Filler, Metal, Paint Cellulose 1%

Description: Black asphaltic mastic Layer 2 of 2

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder, Miscellaneous particles Cellulose

Lab ID: 18099623 Client Sample #: IGDPS-2-02

Location: IGD Penstock

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 10/06/2018

Reviewed by: Matt Macfarlane Date: 10/08/2018 Matt Macfarlane, Asbestos Lab Supervisor

L A B S

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Penstock

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 12

Batch #: 1819446.00

Camples Analyses

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Layer 1 of 2 Description: Silver-colored reflective coating with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Metal, Paint

Cellulose 2%

None Detected ND

Layer 2 of 2 Description: Black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Miscellaneous particles

Cellulose 4%

None Detected ND

Lab ID: 18099624 Client Sample #: IGDPS-2-03

Location: IGD Penstock

Layer 1 of 2 Description: Silver-colored reflective coating with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Metal, Paint

Cellulose 1%

5%

None Detected ND

Layer 2 of 2 Description: Black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Cellulose

Asbestos Type: %

None Detected ND

Asphalt/Binder, Miscellaneous particles

Location: IGD Penstock

Lab ID: 18099625

Layer 1 of 1

Description: Brown fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Organic debris

Client Sample #: IGDPS-3-01

Synthetic fibers 75%

None Detected ND

Cellulose 12%

Lab ID: 18099626 Client Sample #: IGDPS-3-02

Location: IGD Penstock

Layer 1 of 1 Description: Brown fibrous material

Non-Fibrous Materials: Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Organic debris Synthetic fibers 78%

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 10/06/2018

Reviewed by: Matt Macfarlane Date: 10/08/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819446.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018 Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: IGD Penstock

Cellulose 11%

Client Sample #: IGDPS-3-03 Lab ID: 18099627

Location: IGD Penstock

Layer 1 of 1 **Description:** Brown fibrous material

Non-Fibrous Materials:

Binder/Filler, Organic debris

Other Fibrous Materials:%

Synthetic fibers 74%

Asbestos Type: % None Detected ND

Cellulose 14%

Lab ID: 18099628 Client Sample #: IGDPS-6-01

Location: IGD Penstock

Layer 1 of 1 **Description:** Black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:% Glass fibers

Asbestos Type: % None Detected ND

Asphalt/Binder, Miscellaneous particles

Asphalt/Binder, Miscellaneous particles

Client Sample #: IGDPS-6-02

Location: IGD Penstock

Lab ID: 18099629

Layer 1 of 1 **Description:** Black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

None Detected ND

Asbestos Type: %

None Detected ND

1%

Lab ID: 18099630 Client Sample #: IGDPS-6-03

Location: IGD Penstock

Layer 1 of 1 **Description:** Black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Miscellaneous particles

None Detected ND None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 10/06/2018 Date: 10/08/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	Company	AECOM-Seattle		NVL Batch Number 181944	16.00	
	Address	1111 3rd Avenue Ste	e. 1600	TAT 4 Days	AH No	
	<u>.</u>	Seattle, WA 98101		Rush TAT		
Proje	ct Manager	Ms. Nicole Gladu		Due Date 10/8/2018 Time	5:00 PM	
•	_	(206) 438-2700		Email nicole.gladu@aecom.co	m	
		(206) 240-0644		Fax (866) 495-5288		
Subca	ect Name/N ategory PLN m Code ASI		Task 2.4 Project Loc PA 600/R-93-116 Asbes	ation: IGD Penstock		
То	tal Numb	er of Samples Sample ID			Rush Samples	A/R
1	18099619	IGDPS-1-01	·			Α

	Lab ID	Sample ID	Description	A/R
1	18099619	IGDPS-1-01		Α
2	18099620	IGDPS-1-02		Α
3	18099621	IGDPS-1-03		Α
4	18099622	IGDPS-2-01		Α
5	18099623	IGDPS-2-02		Α
6	18099624	IGDPS-2-03		Α
7	18099625	IGDPS-3-01		Α
8	18099626	IGDPS-3-02		Α
9	18099627	IGDPS-3-03		Α
10	18099628	IGDPS-6-01		Α
11	18099629	IGDPS-6-02		Α
12	18099630	IGDPS-6-03		Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Daniel		NVL	10/6/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 9:42 AM

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

J 1 Hour

☐ 24 Hours

₫ 4 Days

.J 2 Hours J 4 Hours ⊒ 2 Days C) 3 Days ⊒ 5 Days ⊒ 10 Days

Please call for TAT less than 24 Hours

SERVIC	ES		TO STATE OF THE				
boratory Managem	ent Training						
Company	AECOM Corporation	1	Project Manager	Nicole Gladu			
Address	1111 3rd Avenue, S	uite 1600	Cell (206) 240 - 0644				
	Seattle, WA 98101		Emait	nicole.gladu@	@aecom.com		
Phone	206.438.2700			(866) 495			
Project Name/N	umber 60537920 Task 2.4	Project Location	MA IGD	PENSTOCK	-		
☐ PCM Air ② PLM (EPA ☐ PLM Gra	(NIOSH 7400)		93-116)	→ EPA 10	EPA Level II Modified 000Points (600/R-93 tos in Sediment (EPA	-116)	
Reporting In:	tructions .email Nicole G	ladu. EMALL E	EDD ALONI	WITH RESUL	UTS		
) =	J Fax []				m.com	
		2					
	-						
Samp		Description				A/R	
	5-1-01						
2 #	-1-02						
3 N	-1-03						
4 11 5 1(- 2-01 - 2-02					_	
	- 2-03					-	
6 H	- 3-01					_	
8)1	- 3-02					-	
9 (1	-3-03					-	
10 10	- 6-01						
11 11	- 6-02						
12 4	- 603						
13							
14							
15							
1	Print Name	Signature	Con	npany	Date	Time	
Sampled by	David Simon, CAC	I west I dam		AECOM	9/14/18	8am-4	
elinquish by	Shannon MacKay	Strm-		AECOM	10/03/18	5:000	
Received I Received I Analyzed I Called I Faxed/Email	Print Name (+UV)	Signature AA	Col	трару V L	Date 10 /7/1	8 Time 00	

October 5, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819495.00

Client Project: 60537920 Task 2.4

Location: IGD Powerhouse

Dear Ms. Gladu,

Enclosed please find test results for the 9 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Powerhouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819495.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 9

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

Asbestos Type: %

Lab ID: 18099908 Client Sample #: IGDPH-1-01

Location: IGD Powerhouse

Layer 1 of 1 Description: Gray putty material with silver paint

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

Chrysotile 4% Putty Compound, Calcareous particles, Metallic paint None Detected ND

Lab ID: 18099909 Client Sample #: IGDPH-1-02

Location: IGD Powerhouse

Layer 1 of 1 **Description:** Gray putty material with silver paint

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected **Chrysotile 5%** ND

Putty Compound, Calcareous particles, Metallic paint

Lab ID: 18099910 Client Sample #: IGDPH-1-03

Location: IGD Powerhouse

Layer 1 of 1 Description: Gray putty material with silver paint

> Non-Fibrous Materials: Other Fibrous Materials:%

Chrysotile 4% Putty Compound, Calcareous particles, Metallic paint None Detected

Lab ID: 18099911 Client Sample #: IGDPH-3-01

Location: IGD Powerhouse

Layer 1 of 1 **Description:** Gray soft elastic material

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Caulking compound None Detected ND

Client Sample #: IGDPH-3-02 Lab ID: 18099912

Location: IGD Powerhouse

Layer 1 of 1 **Description:** Gray soft elastic material

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Caulking compound, Fine particles None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh Date: 10/05/2018

Reviewed by: Matt Macfarlane Date: 10/05/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Powerhouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819495.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018 Samples Received: 9

Oampioo Roodivod.

Samples Analyzed: 9

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Location: IGD Powerhouse

Layer 1 of 1 Description: Gray soft elastic material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Caulking compound, Synthetic foam None Detected ND None Detected ND

Lab ID: 18099914 Client Sample #: IGDPH-4-01

Location: IGD Powerhouse

Layer 1 of 1 Description: Brown/clear brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler None Detected ND None Detected ND

Lab ID: 18099915 Client Sample #: IGDPH-4-02

Location: IGD Powerhouse

Layer 1 of 1 Description: Brown/clear brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Mineral grains None Detected ND None Detected ND

Lab ID: 18099916 Client Sample #: IGDPH-4-03

Location: IGD Powerhouse

Layer 1 of 1 Description: Brown/clear brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Mineral grains None Detected ND None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh Date: 10/05/2018

Reviewed by: Matt Macfarlane Date: 10/05/2018 Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1819495.00
Address	1111 3rd Avenue Ste. 1600	TAT 4 Days AH No
	Seattle, WA 98101	Rush TAT
Project Manager	Ms. Nicole Gladu	Due Date 10/8/2018 Time 5:00 PM
Phone	(206) 438-2700	Email nicole.gladu@aecom.com
Cell	(206) 240-0644	Fax (866) 495-5288
		, ,

Proj	ect Name/Nu	ı mber: 6053792	20 Task 2	2.4 Project Lo	cation: IGD Powerhouse	
Subc	ategory PLM	l Bulk				
Ite	m Code ASB	-02	EPA 6	00/R-93-116 Asbe	stos by PLM <bulk></bulk>	
To	tal Numbe	er of Sample	s 9		Rush Sa	amples
	Lab ID	Sample ID		Description		A/R
1	18099908	IGDPH-1-01				А
2	18099909	IGDPH-1-02				А
3	18099910	IGDPH-1-03				A
4	18099911	IGDPH-3-01				A
5	18099912	IGDPH-3-02				A
6	18099913	IGDPH-3-03				А
7	18099914	IGDPH-4-01				А
8	18099915	IGDPH-4-02				А
9	18099916	IGDPH-4-03				A

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Welly Hsieh		NVL	10/5/18	
Results Called by					
Faxed Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 11:50 AM

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

⊒ 1 Hour CJ 24 Hours

₫ 4 Days

.⊒ 2 Hours ⊒ 4 Hours □ 2 Days © 3 Days ⊒ 10 Days

SERVIC			the state of the s	Flease Call Tor	IAI less than 24 Hours	
aboratory Managem	AECOM Corporation	1	Project Manager	Nicole Glad	lu	
, ,	1111 3rd Avenue, S			(206) 24		
Addless	Seattle, WA 98101	and root			u@aecom.com	
				(866) 49		-
Phone	206.438.2700		Fax	(000) 48	0 - 0200	
Project Name/No	imber 60537920 Task 2.4	Project Location G	D POWERH	OUSE		
☑ PLM (EPA → PLM Grav	NIOSH 7400)	Asbestos in Vermico)/R-93 -11 6)	∟ EPA	1 (EPA Level & Modified) 1000Points (600/R-93-1 estos in Sediment (EPA	
Reporting Ins	tructions email Nicole C	Gladu EMAN	CEDE A	o Nej With shanne	on.mackay@aecom	n.com
Total Num	ber of Samples	Description				A/R
		Description				7/1
1 IGD1	2H-1-01					+
3 11	102					
4 11						
5 11						
6 11 -						
7 11					-	
-	- 4-02					
9 4-						
10	, , ,					
11						
12						
13						
14						
15						
1	Print Name	Signature	1 C	ompany	Date	Time
Sampled by	David Simon, CAC	David I dan		AECOM	9/17-9/18/18	8am-40
Relinquish by	Shannon MacKay	Alson		AECOM	10/02/18	5:00pm
Office Use Or Received Analyzed Called Faxed/Email	Print Name Shull	Signature	HA C	ompany V L	1017/18	Time 1700

October 8, 2018

Nicole Gladu **AECOM-Seattle** 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1819509.00

Client Project: 60537920 Task 2.4

Location: IGD Restroom

Dear Ms. Gladu,

Enclosed please find test results for the 3 sample(s) submitted to our laboratory for analysis on 10/2/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both EPA 600/M4-82-020, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1,888.(685.5227) www.nvllabs.com

NVL Laboratories, Inc.

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819509.00

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 3

Samples Analyzed: 3

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: IGD Restroom

Lab ID: 18099987 Client Sample #: IGDRR-1-01

Location: IGD Restroom

Layer 1 of 1 Description: White brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Calcareous particles, Mineral grains Spider silk 4% None Detected ND

Lab ID: 18099988 Client Sample #: IGDRR-1-02

Location: IGD Restroom

Layer 1 of 1 Description: White brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Calcareous particles, Mineral grains Spider silk 2% None Detected ND

Lab ID: 18099989 Client Sample #: IGDRR-1-03

Location: IGD Restroom

Layer 1 of 1 Description: White brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Calcareous particles, Mineral grains

None Detected ND

None Detected ND

Sampled by: Client

Analyzed by: Michael Jenkins

Reviewed by: Matt Macfarlane

Date: 10/08/2018

Date: 10/08/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

ASBESTOS LABORATORY SERVICES

(866) 495-5288

Α

Α

4708 Aurora Ave N, Seattle, WA 98103

18099988

18099989

3

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Cell (206) 240-0644

IGDRR-1-02

IGDRR-1-03

Project Name/Number: 60537920 Task 2.4 Project Location: IGD Restroom

Company	AECOM-Seattle	NVL Batch N	umber 1	819509.0	00
Address	1111 3rd Avenue Ste. 1600	TAT 4 Days	3		AH No
	Seattle, WA 98101	Rush TAT			
Project Manager	Ms. Nicole Gladu	Due Date	10/8/2018	Time	5:00 PM
Phone	(206) 438-2700	Email nicole	.gladu@ae	com.com	

Fax

Subo	ategory PLM	/I Bulk		
Ite	em Code ASE	3-02	EPA 600/R-93-116 Asbestos by PLM <bulk></bulk>	•
To	otal Numbe	er of Samples	3	Rush Samples
	Lab ID	Sample ID	Description	A/R
1	18099987	IGDRR-1-01		A

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell	_	NVL	10/2/18	1700
Analyzed by	Michael Jenkins		NVL	10/8/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 12:11 PM

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

Turn Around Time

□ 1 Hour

☐ 24 Hours

⊿ 4 Days

.⊒ 2 Hours ⊒ 4 Hours □ 2 Days 🗆 3 Days

⊒ S Days _10 Days

SERV	ICES		all Name	Flease Call for I	AT less than 24 Hours	
iboratory (Mana	gement Training					
Compa	ny AECOM Corporation	n	Project Manager	Nicole Glade	ı	
Addre	ss 1111 3rd Avenue, S	Suite 1600	Çell	(206) 240	0- 0644	
	Seattle, WA 98101		Email	nicole.gladu	@aecom.com	
Pho	ne 206.438.2700		Fax	(866) 495	5 - 5288	
Project Name	e/Number 60537920 Task 2.4	Project Location	D RESTRO	OM		
© PCM / Ø PLM (TEM (NIOSH 7402) EPA 400 Points (600, Asbestos in Vermīcu	→ TEM (AHER) /R-93-116) lite (EPA 600/R-0	A) LI TEM LI EPA :	1000Points (600/R-9) stos in Sediment (EF	3-116)
	Instructions email Nicole (A .	shanno	n.mackay@aeco	om.com
	ımber of Samples	3100		J (Itlan)		
y Sa	mple ID	Description				A/R
1 1G	DRR-1-01					
2	11 -1-02					
3	11 - 1-03					
5						
6		-				
7						
8						
9						
10						
11						
12						_
13						
15		-				
•	Print Name	Signature	1 0	ompany	Date	Time
Sampled b	David Simon, CAC	Sand I dan		AECOM	9/14/18	Bam-4p
Relinquish b	y Shannon MacKay	SIM		AECOM	10/02/18	Som
Office Use Receiv Analyz Call Faxed/Err	ed by S. White Will ed by ed by	Signature	#A (ompany V L	Date 17/1	8 70C

October 5, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1819531.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Diversion Tunnel Intake

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819531.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 2

zed: 2

Sample	RL in	Results	Results in

n Weight (g) mg/Kg in mg/Kg percent Lab ID Client Sample # IGDDTI-Pb1-01 18100026 0.2157 46 470 0.047 IGDDTI-Pb2-01 18100027 0.1976 51 1500 0.15

Sampled by: Client

Date Analyzed: 10/05/2018 Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Issued: 10/05/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-1004-13

LEAD LABORATORY SERVICES	NVL
	L A B S
NVL Batch Number 1819531.00	
	LEAD LABORATORY SERVICES NVL Batch Number 1819531.00

		1111 3rd Avenue S Seattle, WA 98101	te. 160	0	TAT Rush	4 Day	/S		AH No	
Proje	ct Manager	Ms. Nicole Gladu			Due I	Date	10/8/2018	Time	5:00 PM	
	Phone	(206) 438-2700			Emai	l nicol	e.gladu@ae	com.com		
	Cell	(206) 240-0644			Fax	(866)	495-5288			
Proj	ect Name/N	lumber: 60537920	Task 2	4 Project L	ocation: 1	GD Di	version Tunr	nel Intake		
Subc	ategory Fla	me AA (FAA)								
Ite	m Code FA	A-02	EPA 70	000B Lead by FA	AA <paint></paint>	•				
То	tal Numb	er of Samples_	2	_					Rush Samples	
	Lab ID	Sample ID		Description						A/R
1	18100026	IGDDTI-Pb1-01								А
2	18100027	IGDDTI-Pb2-01								А

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Yasuyuki Hida		NVL	10/5/18	
Results Called by					
Faxed Emailed					
Special		'	·		

Date: 10/3/2018 Time: 1:07 PM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Time

☐ 2 Hour △ 4 Hours ☐ 24 Hours ∠ 4 Days

🗓 2 Days Ū S Days

3 Days **△** 6-10 Days

Please call for TAT less than 24 Hours

	AECOM			Missis C	ledu		
Company	AECOM	1000	Project Mana	ger Nicole G	240-0644		
Address	1111 3rd Avenue, Suite	e 1600	1	_ell			
	Seattle, WA 98101		En		lu@aecom.o	com	
Phone	206-438-2700			Fax (206)	495 - 5288		
Project Name/No	umber 60537920 Task 2.4 Pr	oject Location 1 4 [D DIVER	SION TUNN	EL INTAI	LE	
Total Metals	☼ FAA (ppm ☐ Air Filter ☐ ICP (PPM ☐ Paint Chips (cm) ☐ GFAA (ppb) ☐ Drinking Water ☐ CVAA (ppb) ☐ Other	-	<u>ن</u> ع	RA 8 Barium	/ ARead	RCRA 11 Copper	
Reporting Ins	tructions & MANAGED A	WITH PORTH	KESULTS	В			
□ Call () - (1 Fax ()	-	XEmail sha	nnon.macka	y@aecom.c	om
Total Num	ber of Samples						
Samp	e ID	Description					A/R
1 IGDI	OTI - Pb1 - 01						
2	10-294- 1						
3							
4							
5							
7							
8							
9							
10							
11		-21					
12							
13							
14							
15							
Ĺ	Print Name	Signature	18%	Company	Dat	e	Time
Sampled by	Shannon MacKay/David	d Simon Sands	100	AECOM	9/17	18-9/18/18	8am-4pm
Relinquish by	Shannon MacKay	ADM	-	AECOM	10/	62/18	5:00p
Office Use Or Received b Analyzed b Called b Faxed/Email b	by S. M. +(Leu	Signature		Company V L	- Day	12/18	Time

October 4, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1819511.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819511.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 1 Samples Analyzed: 1

Attention: Ms. Nicole Gladu

Project Location: IGD Emergency Spill Equipment Shed

Sample RL in Results Results in Weight (g) mg/Kg in mg/Kg percent Client Sample # Lab ID IGDES-Pb1-01 18099992 0.0697 140 < 140 < 0.014

Sampled by: Client

Date Analyzed: 10/04/2018 Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel

Date Issued: 10/04/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-1004-8

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	Company	AECOM-Seattle		NVL Batch Number	1819511	.00	
	Address	1111 3rd Avenue Ste. 1	600	TAT 4 Days		AH No	
		Seattle, WA 98101		Rush TAT			
Pro	oject Manager	Ms. Nicole Gladu		Due Date 10/8/20	18 Time	5:00 PM	
	Phone	(206) 438-2700		Email nicole.gladu@	aecom.com		
	Cell	(206) 240-0644		Fax (866) 495-528	88		
Pı	roject Name/	Number: 60537920 Tasl	< 2.4 Project Loc	ation: IGD Emergency	Spill Equipn	nent Shed	
Su	bcategory Fla	ame AA (FAA)					
	Item Code FA	AA-02 EPA	7000B Lead by FAA	<paint></paint>			
_		per of Samples	1			Rush Samples	
_	Lab ID	Sample ID	Description				A/R
	1 18099992	IGDES-Pb1-01					A

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Yasuyuki Hida	_	NVL	10/4/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 12:13 PM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Tin

CJ 2 Hour ☐ 4 Hours 🗓 2 Days

3 Days

☐ 24 Hours 🗖 4 Days

☐ 5 Days

□ 6-10 Days

Please call for TAT less than 24 Hours

1111 3rd Avenue, Sui			Nicole Gla	luu		
- TTT OTG 7 (VOTIGO) OG	te 1600	roject Manager Cell ⁽	206) 2	40-0644		
Seattle, WA 98101				@aecom.c	com	
206-438-2700						
umber 60537920 Task 2.4 P	roject Location IGD	EMERGEN	ICY SPI	II. EQU	IPMENT	SHET
		oil RCRA 8 □ Barium □ Arsenic	☐ Chromium	1	RCRA 11 Copper UZinc Other	
		7-4	_{nail} shanr	ion.macka	y@aecom.	com
ber of Samples \						
	 Description					A/R
5-Pb1-01						FVN
10101						
						-
Print Name	Signature	Compa Compa	ny	Date		Time
Shannon MacKay/David	d Simon Sand & San	AEG AEG	СОМ	9/14	/iB	Ваш-Чри
Shannon MacKay	Stiller	AEC	СОМ	10/01	18	Som
S-MITOURN	Signature A	Compa	J ^v VL	Date	12/18	Time
	206-438-2700 umber 60537920 Task 2.4 P XFAA (ppm UCP (PPM UPaint Chips (cm UPaint Chips (### Description Print Name Print Name Shannon MacKay/David Simon Shannon MacKay Project Location GD Project Loc	Umber 60537920 Task 2.4 Project Location IGD EMERGEN WEFAA (ppm UPaint Chips (cm) Dust Wipes UBarium USFAA (ppb) UDrinking Water UWaste Water USelenum CVAA (ppb) Uother USelenum Ctructions Amaly (Coba Business Companies Intructions Intruction	206-438-2700 Fax (206) 4* umber 60537920 Task 2.4 Project Location IGD EMERGENCY SP1 XFAA (sppin	206-438-2700 The state of the	Task 2.06 495 5288 umber 60537920 Task 2.4 Project Location IGD EMELGENCY SPILL EQUIPMENT AffaA (ppm Upair Chips (m) Durt Wipes Ulcopper Upair Chips (m) Upair

October 4, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1819426.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819426.00

Matrix: Paint Method: EPA 3051/7000B

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 3

Samples Analyzed: 3

Attention: Ms. Nicole Gladu

Project Location: IDG Fish Holding Facilities and Ponds

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18099568	IDGFHF-Pb1-01	0.1950	51	500	0.050
18099569	IDGFHF-Pb2-01	0.2016	50	< 50	<0.0050
18099570	IDGFHF-Pb3-01	0.1990	50	110000	11

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 10/04/2018 Date Issued: 10/04/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-1004-3

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	Company	AECOM-Seattle		NVL Batch Number 1819426.00	_
	Address	1111 3rd Avenue Ste.	1600	TAT 4 Days AH No	_
		Seattle, WA 98101		Rush TAT	
Projec	t Manager	Ms. Nicole Gladu		Due Date 10/8/2018 Time 5:00 PM	_
_	Phone	(206) 438-2700		Email nicole.gladu@aecom.com	
	Cell	(206) 240-0644		Fax (866) 495-5288	
Subca		Number: 60537920 Tas ame AA (FAA) AA-02 EP	A 7000B Lead by FA	cation: IDG Fish Holding Facilities and Ponds A <paint></paint>	
To	tal Numk	per of Samples	3	Rush Sam	ples
1	18099568	IDGFHF-Pb1-01	-		А
2	18099569	IDGFHF-Pb2-01			A
3	18099570	IDGFHF-Pb3-01			А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Yasuyuki Hida		NVL	10/4/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 7:54 AM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Time

☐ 2 Hour ☐ 4 Hours 🗀 24 Hours 🚜 4 Days

□ 2 Days ☐ 5 Days

3 Days **△** 6-10 Days

Please call for TAT less than 24 Hours

Compa	any AECOM		Project Manager Nicole Gladu	
Addr	ess 1111 3rd Avenue, Sui	te 1600	Cell (206) 240-0644	
	Seattle, WA 98101		Email nicole.gladu@aecom.com	-
Pho	one 206-438-2700		Fax (206) 495 - 5288	
Project Name	e/Number 60537920 Task 2.4 P	roject Location DC	FISH HOLDING FACILITIES AND F	Zano
Total Metals		XQ Paint Chips (%)) Dust Wipes	□ Soil RCRA 8 RCRA □ Barium □ Chromium □ Silver □ Co □ Arsenic □ Mercury □ ad □ □ Zin □ Selenium □ Cadmium □ Oti	A 11 pper nc
	Instructions EMPALLED	BALLARGE	WALKES WITS	
□ Call (.)	Fax ()	shannon.mackay@ae	ecom.com
	mber of Samples	Description		ı A/R
1 100	FHF-PbI-DI			
2	" - PB2-01			
3	11 - Pb3-01	Pond		
4				
5				
7				
8		+		
9				
10				
11				
12				
13				
14				
15				
	Print Name	Signature	Company Date	Time
Sampled by	Shannon MacKay/Davi	d Simon Sand	AECOM 9/17/18-11	18/18 8 nm - 4/0
Relinquish by		AISh	AECOM /0/02/1	8 5:00
Office Use Receive Analyze	ed by Serint Name +Chell	Signature 44	Company VV Date 10/2/	118 1700

page 4 of 4

October 4, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1819503.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Penstock Intake Structure

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819503.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 1 Samples Analyzed: 1

 Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
 18099951	IGDPIS-Ph1-01	ი 1977	51	140	0.014	

Sampled by: Client

Date Analyzed: 10/04/2018 Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Issued: 10/04/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-1004-8

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch	h Nu	ımber	18	19503 .	00
Address	1111 3rd Avenue Ste. 1600	TAT 4 Da	ays				AH No
	Seattle, WA 98101	Rush TAT					
Project Manager	Ms. Nicole Gladu	Due Date	1	0/8/201	8	Time	5:00 PM
Phone	(206) 438-2700	Email nice	ole.ç	gladu@a	aec	om.com	
Cell	(206) 240-0644	Fax (86	6) 4	95-5288	8		

Proje	ect Nam	ne/Number: 6053792	0 Task 2.4 Project Loca	ation: IGD Penstock Intake Structure
Subca	ategory	Flame AA (FAA)		
		FAA-02	EPA 7000B Lead by FAA	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
iten	ii oode	1777 02	LI A 1000B LCdd by I AA	Spaints
Tot	tal Nu	mber of Samples	<u> </u>	Rush Samples
	Lab ID	Sample ID	Description	A/R
1	180000	51 IGDPIS-Ph1-01		Δ

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Yasuyuki Hida		NVL	10/4/18	
Results Called by					
Faxed Emailed					
Special		'			

Date: 10/3/2018 Time: 12:03 PM

Entered By: Shaina Mitchell

METALS CHAIN OF CUSTODY

Turn Around Time

⊒ 2 Hour

□ 4 Hours

□ 24 Hours **⊭**4 Days

⊒ 2 Days ⊒ 5 Days 3 Days

□ 5 Days □ 6-10 Days
Please call for TAT less than 24 Hours

Company	AECOM			Project Manager	Nicole Gla	du		
Address	4444 01	Avenue, Suite	e 1600	Cell	206 2	40-0644		
		VA 98101		Email	nicole.gladu	@aecom.	com	
Phone	206-438-	2700		Fax	(206) 49	95 - 5288		
Project Name/N	Jumber 6053792	0 Task 2.4 Pr	oject Location 14	D PENSTO	CK INTAK	E STR	UCTURE	
XTotal Metals □TCLP	FAA (ppm CI ICP (PPM CI GFAA (ppb) CI CVAA (ppb)	☐ Air Filter ☐ Paint Chips (cm) ☐ Drinking Water ☐ Other	XQ Paint Chips (%)	Li Soil RCRA Li Bari Li Arse	8 um U Chromium enic U Mercury		RCRA 11 "Copper "Zinc "Other	
Reporting In	structions IBN		ALONG WE	OF RESULT		non.macka	ay@aecom.c	om
	nber of Sam	ples 1	Description					
1 Tape	TS- 161-1							
2								+
3								-
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
	Print Name		Signature		ompany	Dat		Time
Sampled by	Shannon	MacKay/Davi	d Simon 🕹 🛶 🕯	I Sim	AECOM	4/17	18-0/18/18	8AM-41
Relinquish by	Shannon	MacKay			AECOM	10/	02/18	5:00p
Office Use O Received Analyzed Called Faxed/Email	by S-M(4	ehelr	Signatury	/ 0	ompany//VL	Da	11/18	1700

October 4, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1819536.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: IGD Penstock

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819536.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 2

Samples Analyzed: 2

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18100035	IGDPS-Pb1-01	0.1355	74	65000	6.5
18100036	IGDPS-Pb2-01	0.2030	49	60	0.0060

Sampled by: Client

Date Analyzed: 10/04/2018 Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel

Date Issued: 10/04/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-1004-3

Lab ID

1 18100035

2 18100036

Sample ID

IGDPS-Pb1-01

IGDPS-Pb2-01

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

A/R

Α

Α

Compa	ny AECOM-Seattle	NVL Batch Number 1819536.0)0			
Addre	ss 1111 3rd Avenue Ste. 1600	TAT 4 Days	AH No			
	Seattle, WA 98101	Rush TAT				
Project Manag	er Ms. Nicole Gladu	Due Date 10/8/2018 Time	5:00 PM			
Pho	ne (206) 438-2700	Email nicole.gladu@aecom.com				
С	ell (206) 240-0644	Fax (866) 495-5288				
	•	ation: IGD Penstock				
• •	Flame AA (FAA)					
Item Code	FAA-02 EPA 7000B Lead by FAA	<paint></paint>				
Total Nur	mber of Samples2		Rush Samples			

Description

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Yasuyuki Hida	_	NVL	10/4/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'	·		

Date: 10/3/2018 Time: 1:13 PM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Time

🗅 2 Hour 4 Hours

24 Hours

□ 2 Days

3 Days

🛍 4 Days

🖰 5 Days **□** 6-10 Days Please call for TAT less than 24 Hours

Company	AECOM		Project Man	age Nico	ole Gladu		
Address	1111 3rd Avenue, S	Suite 1600	,	Cell (206) 240-0	644	
	Seattle, WA 98101				gladu@ae	com.com	
Phone	206-438-2700			Fax 206	10-		
Project Name/No	umber 60537920 Task 2.4	Project Location	D PENS	Tock			
₹Total Metals	A FAA (ppm ☐ Air Filter ☐ ICP (PPM ☐ Paint Chips ☐ GFAA (ppb) ☐ Drinking W☐ CVAA (ppb) ☐ Other	ater	C) Soil R	CRA 8 Barium U C Arsenic U N Selenium U C	_	RCRA 11 Silver © Copper Lead © Zinc © Other _	
Reporting Ins	tructions EMAIL EDD	G Fax ()	H RESULT	S SEmail _	shannon.n	nackay@aecom	n.com
Total Num	ber of Samples	2					
Sampl	e ID	Description					A/R
	5-Pb1-01						
	5-962-01						
3							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
1	Print Name	Signature	Sky	Сотралу		Date	Time
Sampled by	Shannon MacKay/D	avid Simon Sand	1 Sim	AECOM		9/4/18	8am-4pm
Relinquish by	Shannon MacKay	Atting		AECOM	1	10/08/18	5:00 pm
Office Use On Received b Analyzed b Called b Faxed/Email b	Sy Stint Name Sy File (1)	Signature	A	Company		Date 17/1	8 1700

October 5, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1819427.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819427.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018 Samples Received: 5

Samples Analyzed: 5

Attention: Ms. Nicole Gladu
Project Location: IGD Powerhouse

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18099571	IGDPH-Pb1-01	0.1436	70	83000	8.3
18099572	IGDPH-Pb2-01	0.1590	63	980	0.098
18099573	IGDPH-Pb3-01	0.1602	62	7200	0.72
18099574	IGDPH-Pb4-01	0.1754	57	860	0.086
18099575	IGDPH-Pb5-01	0.0095	530	150000	15

Comments: Small sample size (<0.05g) for IGDPH-Pb5-01.

Sampled by: Client

Analyzed by: Yasuyuki Hida Date Analyzed: 10/05/2018
Reviewed by: Shalini Patel Date Issued: 10/05/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-1005-3

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Α

	Company	AECOM-Seattle		NVL Batch Number 18'	19427.00	
	Address	1111 3rd Avenue Ste	e. 1600	TAT 4 Days	AH No	
		Seattle, WA 98101		Rush TAT		
Proje	ect Manager	Ms. Nicole Gladu		Due Date 10/8/2018	Time 5:00 PM	
	Phone (206) 438-2700			Email nicole.gladu@aeco	om.com	
		(206) 240-0644		Fax (866) 495-5288		
Pro	ject Name/	Number: 60537920 T	ask 2.4 Project Loc	ation: IGD Powerhouse		
Subo	category Fla	ame AA (FAA)				
lte	em Code EA	\A-02 E	PA 7000B Lead by FAA	<paint></paint>		
To	otal Numb	per of Samples	_5		Rush Samples	
	Lab ID	Sample ID	Description			A/R
1	18099571	IGDPH-Pb1-01				А
2	18099572	IGDPH-Pb2-01				А
3	18099573	IGDPH-Pb3-01				А
4	18099574	IGDPH-Ph4-01				А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Yasuyuki Hida		NVL	10/5/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 7:56 AM

5 18099575

IGDPH-Pb5-01

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Time

🗐 2 Hour ☐ 4 Hours

🗀 24 Hours

□ 2 Days ⊒ 5 Days

3 Days **△** 6-10 Days

Please call for TAT less than 24 Hours

Company	AECOM		Project Manager Nic	ole Gladu		
Address	1111 3rd Avenue,	Suite 1600	Cell (206	240-0644		
	Seattle, WA 98101			e.gladu@aecon	1.com	
Phone	206-438-2700		Fax (20	6) 495 - 5288	3	
Project Name/Nu	umber 60537920 Task 2.	Project Location	POWERHOUS	E		
X Total Metals	☐ FAA (ppm ☐ Air Filter ☐ ICP (PPM ☐ Paint Chip ☐ GFAA (ppb) ☐ Drinking V☐ CVAA (ppb) ☐ Other	X2 Paint Chips (%) s (cm) Dust Wipes Vater □ Waste Water	□ Soil RCRA 8 □ Barium □ □ Arsenic □ □ Selenium □	Chromium 🗀 Silver Mercury 📉 ead Cadmium	RCRA 11 Copper	
Reporting Inst	tructions EMMLE			shannon mac	kay@aecom.c	
Call .		□ Fax ()	¥ Email	SHAIII IOII.III AC	каушаесопт,с	OIII
Total Num Sampl		5 Description				_I A/R
1 IGDPH	1-861-01					
2 K -	P62-01					
3 u –	Pb3-01					
4 u -	P64-01					
5 1(-	Yb5-01					
6						
7						
8						
9						
10						-
12						+
13		-				+
14						#
15						
1	Print Name	Signature	Company	C	Pate	Time
Sampled by	Shannon MacKay/E	David Simon James	AECOI	1 7/19	418-9/18/18	Sam 4p
Relinquish by	Shannon MacKay	AGM	AECO	VI /0	102/18	5рт
Office Use On Received b Analyzed b Called b Faxed/Email b	Print, Namer + Chok	Signature 4	A Company	VL D	10/2/18	Time

October 5, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1819508.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1819508.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920 Task 2.4

Date Received: 10/2/2018

Samples Received: 1

Samples Analyzed: 1

P	roject Location:	IGD Spillway	

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18099986	IGDSW-Pb1-01	0.0880	110	< 110	<0.011	

Sampled by: Client

Analyzed by: Yasuyuki Hida Date Analyzed: 10/05/2018 Reviewed by: Shalini Patel Date Issued: 10/05/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-1004-13

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Compa	Company AECOM-Seattle		Batch Number 18	319508.0	0	
Addre	ess 1111 3rd Avenue Ste.	1600 TA1	f 4 Days		AH No	
	Seattle, WA 98101	Rus	sh TAT			
Project Mana	ger Ms. Nicole Gladu	Due	Date 10/8/2018	Time :	5:00 PM	
Pho	ne (206) 438-2700	Ema	ail nicole.gladu@ae	com.com		
(Cell (206) 240-0644	Fax	(866) 495-5288			
	ne/Number: 60537920 Ta Flame AA (FAA) FAA-02 EP	sk 2.4 Project Location: A 7000B Lead by FAA <pain< th=""><th></th><th></th><th></th><th></th></pain<>				
Total Nu	mber of Samples	1			Rush Samples	
Lab ID	Sample ID	Description				A/R
1 180999	86 IGDSW-Pb1-01					Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Shaina Mitchell		NVL	10/2/18	1700
Analyzed by	Yasuyuki Hida		NVL	10/5/18	
Results Called by					
Faxed Emailed					
Special Instructions:		'			

Date: 10/3/2018 Time: 12:11 PM

Entered By: Shaina Mitchell

METALS CHAIN OF CUSTODY

Turn Around Tin

🗀 2 Hour 🗓 4 Hours

C 24 Hours 🗷 4 Days

🗆 2 Days ☐ 5 Days

3 Days **□** 6-10 Days

Please call for TAT less than 24 Hours

Company	Company AECOM			Project Manager Nicole Gladu				
Address 1111 3rd Avenue, Suite 1600 Seattle, WA 98101		Cell (206) 240-0644						
					Email nicole.gladu@aecom.com			
Phone 206-438-2700			Fax (206) 495 - 5288					
Project Name/Ne	umber 605379	20 Task 2.4	Project Location 🎉	190	SPILLWAY			
Total Metals UTCLP					RCRA 8 Barium Chromium Silver Copper Arsenic Mercury Read Zinc Selenium Cadmium			
Reporting Ins	tructions	MAUREB	2 Atong to	HTH BE	BULTS			
Call ()	<u> </u>	□ Fax ()	4	X Email	shannon.m	ackay@aecom.c	om
Total Num		nples						
Sampl			Description					A/R
1 405	W-P61-	01						
3								-
4								+
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
	Print Name		Signature	-11	Company		Date	Time
Sampled by	Shannor	n MacKay/Dav	id Simon Sand	11	AECOM	4	117-9/18/18	8 mm - 4p1
Relinquish by	Shannor	n MacKay	Ston		AECOM		10/02/18	5:00 pm
Office Use On Received b Analyzed b Called b Faxed/Email b	Print Nam S - Wh	e the ll	Signature	₹	Company	VL	0318/2/18	1700

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

AECOM

Nicole Gladu 1111 3rd Avenue Suite 1600 Seattle, WA 98101

RE: Iron Gate Dam

Work Order Number: 1810400

October 31, 2018

Attention Nicole Gladu:

Fremont Analytical, Inc. received 1 sample(s) on 10/24/2018 for the analyses presented in the following report.

Polychlorinated Biphenyls (PCB) by EPA 8270 (GCMS)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway Laboratory Director Shannon Mackay

CC:

Date: 10/31/2018

CLIENT: AECOM Work Order Sample Summary

Project: Iron Gate Dam **Work Order:** 1810400

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

1810400-001 IGDPH-PCB1-01 09/17/2018 11:00 AM 10/24/2018 4:40 PM

Case Narrative

WO#: **1810400**Date: **10/31/2018**

CLIENT: AECOM

Project: Iron Gate Dam

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1810400**

Date Reported: 10/31/2018

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

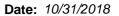
Surr - Surrogate

Analytical Report

Work Order: **1810400**Date Reported: **10/31/2018**

Client: AECOM Collection Date: 9/17/2018 11:00:00 AM

Project: Iron Gate Dam


Lab ID: 1810400-001 **Matrix:** Product

Client Sample ID: IGDPH-PCB1-01

Result	RL	Qual	Units	DF	Date Analyzed
y EPA 8270	(GCMS)		Batcl	n ID: 22	421 Analyst: IH
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
ND	1.02		mg/Kg	1	10/31/2018 1:02:25 PM
194	20 - 191	S	%Rec	1	10/31/2018 1:02:25 PM
103	20 - 173		%Rec	1	10/31/2018 1:02:25 PM
	ND N	ND 1.02	ND 1.02	ND 1.02 mg/Kg 194 20 - 191 S %Rec	ND 1.02 mg/Kg 1 ND 1.02 Ng/Kg 1 ND 1.

NOTES:

 $S - Outlying \ spike \ recovery \ observed \ (high \ bias). \ Samples \ are \ non-detect \ for \ this \ analyte; \ no \ further \ action \ required.$

Work Order: 1810400

QC SUMMARY REPORT

AECOM CLIENT:

Polychlorinated Biphenyls (PCB) by EPA 8270 (GCMS)

Sample ID MB-22421	SampType: MBLK			Units: mg/Kg		Prep Date	e: 10/26/2 0	018	RunNo: 472	290	
Client ID: MBLKS	Batch ID: 22421			3 3		Analysis Date			SeqNo: 920		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.100									
Aroclor 1221	ND	0.100									
Aroclor 1232	ND	0.100									
Aroclor 1242	ND	0.100									
Aroclor 1248	ND	0.100									
Aroclor 1254	ND	0.100									
Aroclor 1260	ND	0.100									
Aroclor 1262	ND	0.100									
Aroclor 1268	ND	0.100									
Surr: Decachlorobiphenyl	0.0488		0.05000		97.7	20	191				
Surr: Tetrachloro-m-xylene	0.0562		0.05000		112	20	173				
Sample ID LCS1-22421	SampType: LCS			Units: mg/Kg		Prep Date	e: 10/26/2 0	D18	RunNo: 472	290	
Client ID: LCSS	Batch ID: 22421					Analysis Date	e: 10/31/2 0	018	SeqNo: 920	925	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	0.954	0.100	1.000	0	95.4	38.4	155				
Aroclor 1260	1.05	0.100	1.000	0	105	42.8	168				
Surr: Decachlorobiphenyl	0.0540		0.05000		108	20	191				
Surr: Tetrachloro-m-xylene	0.0510		0.05000		102	20	173				
Sample ID LCS1D-22421	SampType: LCSD			Units: mg/Kg		Prep Date	e: 10/26/2 0	D18	RunNo: 472	290	
Client ID: LCSS02	Batch ID: 22421					Analysis Date	e: 10/31/2 0	018	SeqNo: 920	926	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	1.20	0.100	1.000	0	120	38.4	155	0.9542	22.8	30	
Aroclor 1260	1.27	0.100	1.000	0	127	42.8	168	1.047	19.0	30	
Surr: Decachlorobiphenyl	0.0511		0.05000		102	20	191		0		
			0.05000		113	20	173		0		

Page 6 of 9 Original

Date: 10/31/2018

1810400 Work Order:

QC SUMMARY REPORT

AECOM **CLIENT:**

Polychlorinated Biphenyls (PCB) by EPA 8270 (GCMS)

Project: Iron Gate Dam Polychlorinated Biphenyls (PCB)							CB) by EP	A 8270 (C	GCMS)		
Sample ID LCS2-22421	SampType: LCS			Units: mg/Kg		Prep Da	Prep Date: 10/26/2018		RunNo: 47290		
Client ID: LCSS	Batch ID: 22421					Analysis Da	te: 10/31/2	2018	SeqNo: 92	0962	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1254	1.14	0.100	1.000	0	114	40.9	164				
Surr: Decachlorobiphenyl	0.0509		0.05000		102	20	191				
Surr: Tetrachloro-m-xylene	0.0459		0.05000		91.8	20	173				

Page 7 of 9 Original

Sample Log-In Check List

С	lient Name:	URS		Work Order Numb	er: 1810400	
Lo	ogged by:	Clare Griggs		Date Received:	10/24/201	8 4:40:00 PM
Cha	in of Custo	ody				
		ustody complete?		Yes 🗸	No 🗌	Not Present
2.	How was the	sample delivered?		<u>Client</u>		
Log	ı İn					
_	Coolers are p	resent?		Yes	No 🗸	NA 🗆
٥.	осолого ало р			Product Sample		
4.	Shipping conf	tainer/cooler in good condition	?	Yes 🗹	No 🗌	
5.		s present on shipping contain ments for Custody Seals not		Yes	No 🗌	Not Required ✓
6.	Was an atten	npt made to cool the samples	?	Yes	No 🗌	NA 🗹
7.	Were all item	s received at a temperature o	f >0°C to 10.0°C*	Yes	No 🗌	NA 🗹
8.	Sample(s) in	proper container(s)?		Yes 🗸	No \square	
9.	Sufficient san	nple volume for indicated test	(s)?	Yes 🗸	No 🗌	
10.	Are samples	properly preserved?		Yes 🗸	No 🗌	
11.	Was preserva	ative added to bottles?		Yes	No 🗸	NA \square
12.	Is there head	space in the VOA vials?		Yes	No 🗌	NA 🗸
13.	Did all sample	es containers arrive in good c	ondition(unbroken)?	Yes 🗸	No 🗌	
14.	Does paperw	ork match bottle labels?		Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain o	f Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?		Yes 🗸	No 🗌	
17.	Were all hold	ing times able to be met?		Yes 🗸	No 🗌	
Spe	cial Handli	ing (if applicable)				
		otified of all discrepancies with	this order?	Yes	No 🗆	NA 🗹
	Person	Notified:	Dat	е		
	By Who	m:	Via	: eMail Pho	one Fax [In Person
	Regardi	ng:				
	Client In	structions:				
19.	Additional rer	narks:				
ltem	<u>Information</u>					
		Item #	Temp °C			
	Sample		22.6			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 9 of 9

COC 1.2 - 2.22.17

Same Day

APPENDIX D PERSONNEL AND LABORATORY CERTIFICATIONS

Certificate Of Completion

Asbestos Building Inspector Refresher Course

DOSH #:CA-015-06

Shannon MacKay

ABIR0115190004N18965

David Wallach

Principal Instructor

1/15/2019

Course Start Date

1/15/2019

Course End Date

Michael W. Home

Michael W. Horner

Training Director

1/15/2019

Exam Date

1/15/2020

Expiration Date

This course satisfies the education requirements for Asbestos accreditation under the Toxic Substances Control Act, Title II. This course has been approved by the Department of Industrial Relations, Division of Occupational Safety and Health of the State of California

NATEC International, Inc.

National Association of Training and Environmental Consulting

1100 Technology Circle-Suite A, Anaheim, CA 92805 • www.natecintl.com • 800-969-3228

Important Industry Contacts

CAL -OSHA:

Ph# (916) 574-2993 (916) 483-0572 Fax Notification Web: www.dir.ca.gov or calosha.com

CDPH/CLPPB:Ph# (510) 620-5600

Web: www.cdph.ca.gov/programs/CLPPB

Ph# (909) 396-3739 SCAQMD:

Fax#(909) 396-3342

Ph# (415) 749-4762 BAAQMD:

NATEC International, Inc.

National Association of Training and Environmental Consulting

Anaheim, CA . Dakland, CA . Fresno, CA . Sacramento, CA

Asbestos • Lead • Mold • HAZWOPER

P.O. Box 25205 Anaheim, CA 92825-5205 (714) 678-2750, (800) 969-3228, Fax (714) 678-2757

www.natecintl.com

NATEC International, Inc.

National Association of Training and Environmental Consulting

This Card Acknowledges That Shannon MacKay

Holds Training Certification For Asbestos Building Inspector Refresher Course

Expiration: 01/15/2020

Certificate No. ABIR0115190004N18965

Michael W. Horner Training Director

This is to certify that

Shannon R. MacKay

has satisfactorily completed 4 hours of refresher training as an

AHERA Building Inspector

to comply with the training requirements of TSCA Title II, 40 CFR 763 (AHERA)

EPA Provider # 1085

167196 Certificate Number

May 2, 2018

Expires in 1 year,

Date(s) of Training

Exam Score: If appropriate:

Instructor

ARGUS PACIFIC, INC / 1900 WEST NICKERSON ST. SUITE 315 / SEATTLE, WASHINGTON 98119 / 206, 285, 3373 / ARGUSPACIFIC, COM

ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

CERTIFICATE OF ENVIRONMENTAL ACCREDITATION

Is hereby granted to

NVL Laboratory

4708 Aurora Avenue North Seattle, WA 98103

Scope of the certificate is limited to the "Fields of Testing" which accompany this Certificate.

Continued accredited status depends on successful completion of on-site inspection, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No.: 2757

Expiration Date: 9/30/2019

Effective Date: 10/1/2018

Sacramento, California subject to forfeiture or revocation

Christine Sotelo, Chief

Environmental Laboratory Accreditation Program

CALIFORNIA STATE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Accredited Fields of Testing

NVL Laboratories, Inc.

PLM Dept.

4708 Aurora Avenue North

Seattle, WA 98103

Phone: (206) 547-0100

Certificate No.

2757

Expiration Date 9/30/2019

Field of Testing: 121 - Bulk Asbestos Analysis of Hazardous Waste

121.010 001

Bulk Asbestos

EPA 600/M4-82-020

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 102063-0

NVL Laboratories, Inc.

Seattle, WA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Asbestos Fiber Analysis

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-10-01 through 2019-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

AIHA Laboratory Accreditation Programs, LLC

acknowledges that

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: 101861

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2005 international standard, *General Requirements for the Competence of Testing and Calibration Laboratories* in the following:

LABORATORY ACCREDITATION PROGRAMS

- ✓ INDUSTRIAL HYGIENE
- ✓ ENVIRONMENTAL LEAD
- ✓ ENVIRONMENTAL MICROBIOLOGY
- □ FOOD
- ✓ UNIQUE SCOPES

Accreditation Expires: June 01, 2019

Accreditation Expires: June 01, 2019

Accreditation Expires: June 01, 2019

Accreditation Expires:

Accreditation Expires: June 01, 2019

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached **Scope of Accreditation**. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2005 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached **Scope of Accreditation**. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Um mull

William Walsh, CIH

Chairperson, Analytical Accreditation Board

Cheryl O. Morton

Managing Director, AIHA Laboratory Accreditation Programs, LLC

Revision 15: 03/30/2016

Date Issued: 05/31/2017

Laboratory ID: **101861**

Issue Date: 05/31/2017

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Industrial Hygiene Laboratory Accreditation Program (IHLAP)

Initial Accreditation Date: 04/01/1997

IHLAP Scope Category	Field of Testing (FoT) (FoTs cover all relevant IH matrices)	Technology sub-type/ Detector	Published Reference Method/Title of In- house Method	Method Description or Analyte (for internal methods only)
	Inductively-Coupled	ICP/AES	EPA 3051	
Spectrometry Core	Plasma	ICI/ALS	NIOSH 7300 Modified	
	X-ray Diffraction (XRD)		NIOSH 7500	
Asbestos/Fiber Microscopy Core	Phase Contrast Microscopy (PCM)		NIOSH 7400	
Miscellaneous Core	Gravimetric		NIOSH 0500 Modified	
Wiscenaneous Core	Gravimetric		NIOSH 0600 Modified	

A complete listing of currently accredited Industrial Hygiene laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 04/10/2015

101861_Scope_IHLAP_2017_05_31

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: **101861**Issue Date: 05/31/2017

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazard Reduction Act of 1992 and includes paint, soil and dust wipe analysis. Air and composited wipes analyses are not included as part of the NLLAP.

Environmental Lead Laboratory Accreditation Program (ELLAP)

Initial Accreditation Date: 02/07/1997

Field of Testing (FoT)	Technology sub-type/ Detector	Method	Method Description (for internal methods only)
Paint		EPA SW-846 3051	
Fami		EPA SW-846 7000B	
Soil		EPA SW-846 3051	
Son		EPA SW-846 7000B	
Sottled Dust by Wine		EPA SW-846 3051	
Settled Dust by Wipe		EPA SW-846 7000B	
Airborne Dust		EPA SW-846 3051	
All borne Dust		NIOSH 7082	

A complete listing of currently accredited Environmental Lead laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 10/14/2016 Scope_ELLAP_R7

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: **101861**Issue Date: 05/31/2017

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Environmental Microbiology Laboratory Accreditation Program (EMLAP)

Initial Accreditation Date: 02/01/1997

EMLAP Category	Field of Testing (FoT)	Method	Method Description (for internal methods only)
	Air - Direct Examination	SOP 12.133	In-House: Analysis of Spore Trap
Fungal	Bulk - Direct Examination	SOP 12.133	In-House: Bulk Analysis
	Surface - Direct Examination	SOP 12.133	In-House: Surface Analysis

A complete listing of currently accredited Environmental Microbiology laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 03/12/2013

101861_Scope_EMLAP_2017_05_31

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: **101861**Issue Date: 05/31/2017

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Unique Scopes Laboratory Accreditation Program (Unique Scopes)

Initial Accreditation Date: 04/01/2013

Unique Scope Category	Field of Testing (FoT)	Method	Method Description (for internal methods only)
	Lead in Paint and Other Similar Surface Coatings	CPSC-CH-E1003-09.1	
Consumer Product Testing	Total Lead in Metal Children's Products	CPSC-CH-E1001-08.2	
	Total Lead in Non-Metal Children's Products	CPSC-CH-E1002-08.1	

A complete listing of currently accredited Unique Scope laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 08/29/2014 Scope_UniqueScopes_R1

BTATE WATER RESOURCES CONTROL BOARD REGIONAL WATER QUALITY CONTROL BOARDS

CALIFORNIA STATE

ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

CERTIFICATE OF ENVIRONMENTAL LABORATORY ACCREDITATION

Is hereby granted to

EMSL Analytical Inc.

200 Route 130 North

Cinnaminson, NJ 08077

Scope of the certificate is limited to the "Fields of Testing" which accompany this Certificate.

Continued accredited status depends on successful completion of on-site inspection, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No.: 1877

Expiration Date: 3/31/2017

Effective Date: 4/1/2015

Sacramento, California subject to forfeiture or revocation

Christine Sotelo, Chief

Environmental Laboratory Accreditation Program

CALIFORNIA STATE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Accredited Fields of Testing

EMSL Analytical Inc.

200 Route 130 North Cinnaminson, NJ 08077 Phone: (800) 220-3675 Certificate No. Expiration Date

1877 3/31/2017

Field of	Testin	g: 102 - Inorganic Chemistry of Dri	nking Water
102.030		Bromide	EPA 300.0
102.030		Chloride	EPA 300.0
102.030		Fluoride	
102.030		Nitrate	EPA 300.0
102.030		Nitrite	EPA 300.0
102.030			EPA 300.0
		Phosphate, Ortho	EPA 300.0
102.030		Sulfate	EPA 300.0
102.100		Alkalinity	SM2320B
102.130		Conductivity	SM2510B
102.140		Total Dissolved Solids	SM2540C
102.175	001	Chlorine, Free and Total	SM4500-Cl G
102.190		Cyanide, Total	SM4500-CN E
102.192		Cyanide, amenable	SM4500-CN G
102.262	001	Total Organic Carbon TOC	SM5310C
102.270	001	Surfactants	SM5540C
102.520	001	Calcium	EPA 200.7
102.520	002	Magneslum	EPA 200.7
102.520	003	Potassium	EPA 200.7
102.520	004	Silica	EPA 200.7
102.520	005	Sodium	EPA 200.7
102.520	006	Hardness (calculation)	EPA 200.7
Field of	Testing	g: 103 - Toxic Chemical Elements o	of Drinking Water
103.030	001	Mercury	SM3112B
103.060	001	Aluminum	SM3120B
103.060	003	Barlum	SM3120E
03.060	007	Chromium	SM3120B
03.060	009	Iron	SM3120B
03.060	011	Manganese	SM3120B
03.060	015	Silver	SM3120B
103.060	017	Zinc	SM3120B
03.130	007	Chromium	EPA 200.7
03.130		Copper	EPA 200.7
03.130		Iron	
03.130		Manganese	EPA 200.7
03.130		Silver	EPA 200.7
03.130		Zinc	EPA 200.7
03.140			EPA 200.7
	001	Aluminum	EPA 200.0
03.140	UU2	Antimony	EPA 200.8

Certificate No 1877 Expiration Date 3/31/2017

				Expirati	on Date 3/31/2017
	103.140	003	Arsenic	EPA 200.8	
	103.140	004	Barium	EPA 200.8	
	103.140	005	Beryllium	EPA 200.8	
	103.140	006	Cadmium	EPA 200.8	
	103.140	007	Chromium	EPA 200.8	11 11
	103.140	008	Copper	EPA 200.8	
	103,140	009	Lead	EPA 200.8	
	103.140	010	Manganese	EPA 200.8	
	103.140		Nickel	EPA 200.8	
	103.140	013	Selenium	EPA 200.8	
	103.140	014	Silver	EPA 200.8	
	103.140	015	Thallium	EPA 200.8	
	103.140	016	Zinc	EPA 200.8	
	103.150	009	Lead	EPA 200.9	<u> </u>
	103.160	001	Mercury	EPA 245.1	<u> </u>
	103.300 103.301	001	Asbestos	EPA 100.1	
		001	Asbestos	EPA 100.2	<u> </u>
-		· .	g: 104 - Volatile Organic Chemistry of Drinking V		
	104.040	000	Volatile Organic Compounds	EPA 524.2	
	104.040	001	Benzene	EPA 524.2	
	104.040	007	n-Butylbenzene	EPA 524,2	<u> 18 - 18 19 19 19 19 19 19 19 19 19 19 19 19 19 </u>
	104.040	800	sec-Butylbenzene	EPA 524.2	<u> </u>
	1 <u>04.040</u> 1 <u>04.040</u>	009	tert-Butylbenzene	EPA 524.2	
	104.040	010	Carbon Tetrachloride Chlorobenzene	EPA 524.2	
	104.040	015	2-Chlorotoluene	EPA 524.2	<u> </u>
٠.	104.040	016	4-Chlorotoluene	EPA 524.2	<u> </u>
	104.040	019	1,3-Dichlorobenzene	EPA 524.2 EPA 524.2	· · · · · · · · · · · · · · · · · · ·
		020	1,2-Dichlorobenzene	EPA 524.2	
	104.040	021	1,4-Dichlorobenzene	EPA 524.2	
	104.040	022	Dichlorodifluoromethane	EPA 524.2	
		023	1,1-Dichloroethane	EPA 524.2	
	104.040	024	1,2-Dichloroethane	EPA 524.2	
	104.040	025	1,1-Dichloroethene	EPA 524.2	
	104.040	026	cis-1,2-Dichloroethene	EPA 524.2	
	104.040	027	trans-1,2-Dichloroethene	EPA 524.2	
	104.040	028	Dichloromethane	EPA 524.2	<u> </u>
٠.	104.040	029	1,2-Dichloropropane	EPA 524.2	
	104.040	033	cis-1,3-Dichloropropene	EPA 524.2	
	104.040	034	trans-1,3-Dichloropropene	EPA 524.2	
	104.040	035	Ethylbenzene	EPA 524.2	
	104.040	037	Isopropylbenzene	EPA 524.2	-
		039	Naphthalene	EPA 524.2	
	104.040	041	N-propylbenzene	EPA 524.2	
		042	Styrene	EPA 524.2	
	-	044	1,1,2,2-Tetrachloroethane	EPA 524.2	
	104.040	045	Tetrachloroethene	EPA 524.2	
_			<u> </u>		· · · · · · · · · · · · · · · · · · ·

As of 9/16/2015 , this list supersedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with the State.

Certificate No 1877 Expiration Date 3/31/2017

10	4.040	046	Toluane	EPA 524,2	
. –	4.040	048	1,2,4-Trichlorobenzene	EPA 524.2	
10	4.040	049	1,1,1-Trichloroethane	EPA 524.2	
10	4.040	050	1,1,2-Trichloroethane	EPA 524.2	
.10	4.040	051	Trichlomatherie	EPA 524.2	
. 10	4.040	052	Trichlorofluoromethane	EPA 524.2	
: 10	4.040	054	1,2,4-Trimethylbenzene	EPA 524.2	
10	4.040	055	1,3,5-Trimethylbenzene	EPA 524.2	
10	4.040	056	Vinyl Chloride	EPA 524.2	
10	4.040	057	Xylenes, Total	EPA 524.2	
10	4.045	001	Вготodichloromethane	EPA 524.2	-
10	4.045	002	Bromoform	EPA 524.2	
10	4.045	003	Chloroform	EPA 524.2	
10	4.045	004	Dibromochloromethane	EPA 524.2	
10	4.050	002	Methyl tert-butyl Ether (MTBE)	EPA 524.2	
10	4.050	006	tert-Butyl Alcohol (TBA)	EPA 524.2	
10	4.050	800	Carbon Disulfide	EPA 524.2	
104	4.050	009	Methyl Isobutyl Ketone	EPA 524,2	
Fie	old of 1	estino	: 109 - Toxic Chemical Elements of Wastewate	 -	
	9.010	001	Aluminum	EPA 200.7	
_	9.010	002	Antimony		
_	9.010	003	Arsenic	EPA 200.7	<u> </u>
	9.010	004	Barium	EPA 200.7	
_		005	Berylfum	EPA 200.7	
_		007	Cadmium	EPA 200.7	
_		009	Chromium	EPA 200.7	
-		010	Cobalt	EPA 200.7	
_		011	Соррег	EPA 200.7	
_		012	Iron	EPA 200.7	
_		013	Lead	EPA 200.7	
_		015		EPA 200.7	
_		016	Manganese Molybdenum	EPA 200.7	
_		017	Nicket	EPA 200.7	
	0.010			EPA 200.7	
_			Selenium	EPA 200.7	
_	0.010	021	Silver	EPA 200.7	
_		023	Thallium	EPA 200.7	
_			Tin Vanadi an	EPA 200.7	
_		026	Vanadium	EPA 200.7	<u>. Anno 1980 - /u>
. —	010		Zinc	EPA 200.7	
_		001	Aluminum	EPA 200.8	
_		002	Antimony	EPA 200.8	
		003	Arsenic	EPA 200.8	
_		004	Barium	EPA 200.8	
_		005	Beryllium	EPA 200.8	
_		006	Cadmium	EPA 200.8	
		007	Chromium	EPA 200.8	
109		800	Cobalt	EPA 200.8	
			the control of the co		

109.020 009 Copper	
109-020	
109.020	
109.020 013 Nickel EPA 200.8 109.020 014 Selentum EPA 200.8 109.020 015 Silver EPA 200.8 109.020 016 Thatilum EPA 200.8 109.020 017 Venadium EPA 200.8 109.020 018 Zinc EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Tri EPA 200.8 109.020 023 Teantum EPA 200.8 109.020 023 Teantum EPA 200.8 109.020 020 To Lead EPA 200.9 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 015 Plaintum SM3111B 109.370 015 Plaintum SM3111B 109.370 016 Plaintum SM3111B 109.370 017 Plaintum SM3112B 109.380 001 Auminum SM312B 109.430 001 Auminum SM312B 109.430 001 Auminum SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 014 Copper SM3120B 109.430 015 Manganese SM3120B 109.430 016 Manganese SM3120B 109.430 017 Nickel SM3120B 109.430 018 Selerium SM3120B	
109.020	
109.020 015 Silver EPA 200.8 109.020 017 Vanadlum EPA 200.8 109.020 018 Zine EPA 200.8 109.020 018 Zine EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Irin EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Titanlum EPA 200.8 109.020 023 Titanlum EPA 200.8 109.020 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 017 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Pladium SM3111B 109.370 016 Marcury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antimory SM3120B 109.430 005 Esperitum SM3120B 109.430 006 Chromium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B 109.430 017 Nickel SM3120B	
109.020 016 Thallium EPA 200.8 109.020 017 Venadlum EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Irin EPA 200.8 109.020 022 Trin EPA 200.8 109.020 023 Titanium EPA 200.8 109.020 020 Trin EPA 200.8 109.020 021 Iron EPA 200.8 109.020 021 Trin EPA 200.8 109.020 021 Trin EPA 200.8 109.020 022 Trin EPA 200.8 109.020 010 Lead EPA 200.9 109.020 010 Lead EPA 200.9 109.020 010 Marcury EPA 245.1 109.370 07 Gold SM3111B 109.370 011 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Anfmony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmilum SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B	· · · · · · · · · · · · · · · · · · ·
109.020 017 Vanadlum EPA 200.8 109.020 018 Zinc EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Tizenlum EPA 200.8 109.020 023 Tizenlum EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 240.9 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.370 016 Mercury SM3112B 109.430 001 Mercury SM3120B 109.430 002 Antimory SM3120B 109.430 005 Beryllum SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B	· · · · · · · · · · · · · · · · · · ·
109.020 018 Zinc EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Titanium EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 010 Lead SM3111B 109.370 011 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Marcury SM312B 109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 007 Cadmilum SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 014 Copper SM3120B 109.430 015 Manganese SM3120B 109.430 017 Cobalt SM3120B 109.430 018 Manganese SM3120B 109.430 019 Selenium SM3120B	
109.020 021 Iron EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Titanjum EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platirum SM3111B 109.400 001 Mercury SM312B 109.430 001 Aluminum SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 007 Cadmium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Manganese SM3120B 109.430 017 Iced SM3120B 109.430 018 Manganese SM3120B 109.430 019 Setenium SM3120B	
109.020 022 Tin EPA 200.8 109.020 023 Titanium EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Mercury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM312B 109.430 001 Aluminum SM3120B 109.430 002 Antimorry SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chronium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B 109.430 017 Nickel SM3120B	
109.020 023 Titanium EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 O01 Mercury SM3112B 109.430 O01 Aluminum SM3120B 109.430 O01 Aluminum SM3120B 109.430 O02 Antimorry SM3120B 109.430 O05 Beryllium SM3120B 109.430 O05 Chromium SM3120B 109.430 O10 Cobalt SM3120B 109.430 O11 Copper SM3120B 109.430 O12 Iron SM3120B 109.430 O15 Manganese SM3120B 109.430 O16 Molybderum	
109.025 010 Lead EPA 200.9 109.190 001 Mercury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Paladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antimory SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selerium	
109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Paladium SM3111B 109.370 015 Platinum SM3111B 109.430 001 Mercury SM312B 109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromitum SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 019 Selenium	 :
109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromitum SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 019 Selenium SM3120B	
109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antímony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderium SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	 `
109.370 015 Platinum \$M3111B 109.400 001 Mercury \$M3120B 109.430 001 Aluminum \$M3120B 109.430 002 Antimony \$M3120B 109.430 005 Beryllium \$M3120B 109.430 007 Cadmium \$M3120B 109.430 009 Chromium \$M3120B 109.430 010 Cobalt \$M3120B 109.430 011 Copper \$M3120B 109.430 012 Iron \$M3120B 109.430 015 Manganese \$M3120B 109.430 016 Molybderum \$M3120B 109.430 017 Nickel \$M3120B 109.430 019 Selenium \$M3120B 109.430 021 Silver \$M3120B	.
109.430 001 Mercury SM3112B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmlum SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	 .
109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	 .
109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmlum SM3120B 109.430 010 Chromium SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109,430 005 Beryllium SM3120B 109,430 007 Cadmium SM3120B 109,430 009 Chromium SM3120B 109,430 010 Cobalt SM3120B 109,430 011 Copper SM3120B 109,430 012 Iron SM3120B 109,430 013 Lead SM3120B 109,430 015 Manganese SM3120B 109,430 016 Molybdenum SM3120B 109,430 017 Nickel SM3120B 109,430 019 Selenium SM3120B 109,430 021 Silver SM3120B	
109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	· :
109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 021 Silver SM3120B	
	<u> </u>
109.430 024 Vanadium SM3120B	
109.430 025 Zinc SM3120B	
109.811 001 Chromium (VI) SM3500-Cr D (18th/19th)	_
Field of Testing: 114 - Inorganic Chemistry of Hazardous Waste	
114.010 001 Antimony EPA 6010B	
114.010 002 Arsenic EPA 6010B	
114.010 003 Barium EPA 6010B	· · · · · · · · · · · · · · · · · · ·
114.010 004 Beryllium EPA 6010B	
114.010 005 Cadmium EPA 6010B	
114.010 006 Chromium EPA 6010B	
114.010 007 Cobalt EPA 6010B	· · · · · · · · · · · · · · · · · · ·
114.010 008 Copper EPA 6010B	
114.010 009 Lead EPA 6010B	

			Expiration bate 3/31/2017
114.010	010	Molybdenum	EPA 6010B
114.010	011	Nickel	EPA 6010B
114.010	012	Selenium	EPA 6010B
114.010	013	Silver	EPA 6010B
1 <u>14</u> .010	014	Thallium	EPA 6010B
114.010	015	Vanadium	EPA 6010B
114.010	016	Zinc	EPA 6010B
114.020	001	Antimony	EPA 6020
114.020	002	Arsenic	EPA 6020
114.020	003	Banum	EPA 6020
114.020	004	Beryllium	EPA 6020
114.020		Cadmium	EPA 6020
114.020		Chromium	EPA 6020
114.020	007	Cobalt	EPA 6020
114.020	800	Соррег	EPA 6020
114.020	009	Lead	EPA 6020
114.020	010.	Molybdenum	EPA 6020
114.020	011	Nickel	EPA 6020
114.020	012	Selenium	EPA 6020
114.020		Silver	EPA 6020
: 114,020		Thallium	EPA 6020
114.020	015	Vanadium	EPA 6020
114.020	016	Zinc	EPA 6020
114.103	001	Chromium (VI)	EPA 7196A
114.130		Lead	EPA 7420
114.131	001	Lead	EPA 7421
114.140	0 01	Mercury	EPA 7470A
114.141	001	Mercury	EPA 7471A
Field of	Testing	: 115 - Extraction Test of Hazardous Waste	
115.020	001	Toxicity Characteristic Leaching Procedure (TCLP)	EPA 1311
115.030	001	Waste Extraction Test (WET)	CCR Chapter11, Article 5, Appendix II
Field of	Testing	; 116 - Volatile Organic Chemistry of Hazardou	s Waste
116.010	000	EDB and DBCP	EPA 8011
116.020	030	Nonhalogenated Volatiles	EPA 8015B
116.020	031	Ethanol and Methanol	EPA 8015B
116.030	001	Gasoline-range Organics	EPA 8015B
116.080	000	Volatlle Organic Compounds	EPA 8260B
116.080	120	Oxygenates	EPA 8260B
Fleid of	esting	: 117 - Semi-volatile Organic Chemistry of Haz	ardous Waste
117.010		Diesel-range Total Petroteum Hydrocarbons	EPA 8015B
117.110		Extractable Organics	EPA 8270C
117.210	000	Pesticides & PCBs	EPA 8081A
117.220	000	PCBs	EPA 8082
117.250	000	Chlorinated Herbicides	EPA 8151A
Field of 1	estina	; 121 - Bulk Asbestos Analysis of Hazardous W	· · · · · · · · · · · · · · · · · · ·
121.010		Bulk Asbestos	
	I		EPA 600/M4-82-020

EMSL Analytical Inc.

Certificate No 1877 Expiration Date 3/31/2017

Field of Testing: 129 - Cryptosporidium & Glardia			_			
129.020 001 Cryptospondium and Glardia	· · · · · · · · · · · · · · · ·	EPA 1623		· .		
129.030 001 Cryptosporidium and Glardia		EPA 1623.1				 :

Fremont Analytical, Inc.

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

EPA CODE: WA01224

3600 Fremont Ave. N Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

As of 5/10/2018 this list supersedes all previous lists for this certificate number.

Solids	EPA 8270D	5562	Azobenzene
		5595	Benzidine
		5575	Benzo(a)anthracene
		5580	Benzo(a)pyrene
		5590	Benzo(g,h,i)perylene
		9309	Benzo(j)fluoranthene
		5600	Benzo(k)fluoranthene
		5585	Benzo[b]fluoranthene
	/47 3	5610	Benzoic acid
	/ 1	5630	Benzyl alcohol
		5760	bis(2-Chloroe <mark>th</mark> oxy)meth <mark>an</mark> e
		5765	bis(2-Chloroethyl) ether
		5780	bis(2-Chloroisopropyl) ether
		6062	bis(2-Ethylhexyl)adipate
		5670	Butyl benzyl phthalate
		5680	Carbazole

6065	Di(2-ethylhexyl) phthalate	(bis(2-
	Ethylhexyl)phthalate, DEH	P)
9354	Dibenz(a, h) acridine	
5900	Dibenz(a, j) acridine	

5895 Dibenz(a,h) anthracene 9348 Dibenzo(a, h) pyrene 5890 Dibenzo(a,e) pyrene 5905 Dibenzofuran

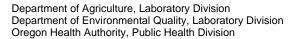
Chrysene

5855

6070 Diethyl phthalate
6135 Dimethyl phthalate
5925 Di-n-butyl phthalate
6200 Di-n-octyl phthalate

6205 Diphenylamine6265 Fluoranthene

6270 Fluorene6275 Hexachlorobenzene


4835 Hexachlorobutadiene6285 Hexachlorocyclopentadiene

4840 Hexachloroethane

6315 Indeno(1,2,3-cd) pyrene 6320 Isophorone

5005 Naphthalene5015 Nitrobenzene

n-Nitrosodiethylamine
n-Nitrosodimethylamine
n-Nitrosodi-n-propylamine
n-Nitrosodiphenylamine

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

JRELAP ID. WATOOOG

Fremont Analytical, Inc.

EPA CODE: WA01224

3600 Fremont Ave. N

Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

As of 5/10/2018 this list supersedes all previous lists for this certificate number.

Solids	EPA 8270D	6605	Pentachlorophenol		
_		6608	Perylene		
		6615	Phenanthrene		
		6625	Phenol		
		6665	Pyrene		
		5095	Pyridine	400	
	EPA 8270D SIM	.1	17.	10242509	Semivolatile Organic compounds by GC/MS Selective Ion Monitoring
		6380	1-Methylnaphthalene		
	/3/ 6	6385	2-Methylnaphthalene		
		5500	Acenaphthen <mark>e</mark>		
		5505	Acenaphthylene		
		5555	Anthracene		
		5575	Benzo(a)anthracene		
		5580	Benzo(a)pyrene		
		5590	Benzo(g,h,i)perylene		
		5600	Benzo(k)fluoranthene		
		5585	Benzo[b]fluoranthene		
		5670	Butyl benzyl phthalate		
		5855	Chrysene		
		6065	Di(2-ethylhexyl) phthalate (bis(2- Ethylhexyl)phthalate, DEHP)		
		5895 5905	Dibenz(a,h) anthracene		
			Dibenzofuran		
		6070	Diethyl phthalate		
		6135	Dimethyl phthalate		1/2/
		5925	Di-n-butyl phthalate		A 1/2/
		6200	Di-n-octyl phthalate		
		6265	Fluoranthene		
		6270	Fluorene	- 400	
		6315	Indeno(1,2,3-cd) pyrene		
		5005	Naphthalene		
		6605	Pentachlorophenol		
		6615	Phenanthrene		
		6665	Pyrene		
	EPA 8270E			988	Semivolatile Organic compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
		5155	1,2,4-Trichlorobenzene		,, ()
	EPA 8270E			10242543	Semivolatile Organic compounds by GC/MS
		5155	1,2,4-Trichlorobenzene		
		4610	1,2-Dichlorobenzene		
		6155	1,2-Dinitrobenzene		
		4615	1,3-Dichlorobenzene		

Fremont Analytical, Inc.

3600 Fremont Ave. N

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

EPA CODE: WA01224

Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

Solids	EPA 8270E	persedes all previous lists for this certificate number. 6160 1,3-Dinitrobenzene (1,3-DNB)
Jonas		4620 1,4-Dichlorobenzene
		6165 1,4-Dinitrobenzene
		6380 1-Methylnaphthalene
		4659 2,2-Oxybis(1-chloropropane)
		6735 2,3,4,6-Tetrachlorophenol
		6740 2,3,5,6-Tetrachlorophenol
		6835 2,4,5-Trichlorophenol
	/6/ 2	6840 2,4,6-Trichlorophenol
	/4/	6000 2,4-Dichlorophenol
		6130 2,4-Dimethylp <mark>h</mark> enol
		6175 2,4-Dinitrophenol
		6185 2,4-Dinitrotoluene (2,4-DNT)
		6190 2,6-Dinitrotoluene (2,6-DNT)
		5 <mark>795 2-Chloronaphthalene</mark>
		5800 2-Chlorophenol
		6360 2-Methyl-4,6-d <mark>initrophenol (4,6-Dinit</mark> ro-2 -methylphenol)
		5145 2-Methylaniline (o-Toluidine)
		6385 2-Methylnaphthalene
		6400 2-Methylphenol (o-Cresol)
		6460 2-Nitroaniline
		6490 2-Nitrophenol
		6412 3 & 4 Methylphenol
		5945 3,3'-Dichlorobenzidine
		6355 3-Methylcholanthrene
		6465 3-Nitroaniline
		5660 4-Bromophenyl phenyl ether (BDE-3)
		5700 4-Chloro-3-methylphenol
		5745 4-Chloroaniline
		5825 4-Chlorophenyl phenylether
		6470 4-Nitroaniline
		6500 4-Nitrophenol
		5500 Acenaphthene
		5505 Acenaphthylene
		5510 Acetophenone
		5545 Aniline
		5555 Anthracene
		5562 Azobenzene
		5570 Benzaldehyde
		5595 Benzidine
		5575 Benzo(a)anthracene
		5580 Benzo(a)pyrene

5590

Benzo(g,h,i)perylene

Fremont Analytical, Inc.

3600 Fremont Ave. N

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

EPA CODE: WA01224

Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

Solids	EPA 8270E	9309	Benzo(j)fluoranthene
0011010		5600	Benzo(k)fluoranthene
		5585	Benzo[b]fluoranthene
		5610	Benzoic acid
		5630	Benzyl alcohol
		5635	Benzyl chloride
		5760	bis(2-Chloroethoxy)methane
		5765	bis(2-Chloroethyl) ether
	/8/ .	5780	bis(2-Chloroisopropyl) ether
	/4/	6062	bis(2-Ethylhexyl)adipate
		5670	Butyl benzyl phthalate
		5680	Carbazole
		5855	Chrysene
		6065	Di(2-ethylhexyl) phthalate (bis(2- Ethylhexyl)phthalate, DEHP)
		9354	Dibenz(a, h) acridine
		5900	Dibenz(a, j) ac <mark>ridine</mark>
		5895	Dibenz(a,h) anthracene
		9348	Dibenzo(a, h) pyrene
		9351	Dibenzo(a, i) pyrene
		5890	Dibenzo(a,e) pyrene
		5905	Dibenzofuran
		6070	Diethyl phthalate
		6135	Dimethyl phthalate
		5925	Di-n-butyl phthalate
		6200	Di-n-octyl phthalate
	1000	6205	Diphenylamine
		6265	Fluoranthene
		6270	Fluorene
		6275	Hexachlorobenzene
		4835	Hexachlorobutadiene
		6285	Hexachlorocyclopentadiene
		4840	Hexachloroethane
		6315	Indeno(1,2,3-cd) pyrene
		5005	Naphthalene
		5015	Nitrobenzene
		6530	n-Nitrosodimethylamine
		6545	n-Nitrosodi-n-propylamine
		6535	n-Nitrosodiphenylamine
		6605	Pentachlorophenol
		6608	Perylene
		6615	Phenanthrene
		6625	Phenol

7985

Phorate

Seattle, WA 98103

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

Issue Date: 5/10/2018 Expiration Date: 5/9/2019

Fremont Analytical, Inc. EPA CODE: WA01224

3600 Fremont Ave. N **Certificate:** WA100009 - 012

As of 5/10/2018 this list supersedes all previous lists for this certificate number.

Solids	EPA 8270E	6665	Pyrene		
		5095	Pyridine		
	EPA 8270E SIM		DECO	989	Semivolatile Organic compounds by Gas Chromatography/Mass Spectrometry (GC/MS) SIM Mode
		6380	1-Methylnaphthalene	0	Spectrometry (Service) Shirt Wode
		5795	2-Chloronaphthalene	CA.	
		6385	2-Methylnaphthalene	~///	
		5500	Acenaphthene		
	19	5505	Acenaphthylene		- 16/
		5555	Anthracene		
		5575	Benzo(a)anthracene		
	/ 9	5580	Benzo(a)pyrene		
		5590	Benzo(g,h,i)perylene		
		5600	Benzo(k)fluoranthene		
		5585	Benzo[b]fluoranthene		
		5670	Butyl benzyl phthalate		
		5680	Carbazole		
		5855	Chrysene		
		6065	Di(2-ethylhexyl) phthalate (bis(2- Ethylhexyl)phthalate, DEHP)		
		5895	Dibenz(a,h) anthracene		
		5905	Dibenzofuran		
		6070	Diethyl phthalate		
		6135	Dimethyl phthalate		
		5925	Di-n-butyl phthalate		
		6200	Di-n-octyl phthalate		(A)
		6265	Fluoranthene		
		6270	Fluorene		
		6315	Indeno(1,2,3-cd) pyrene	- 11/2	
		5005	Naphthalene		
		6605	Pentachlorophenol		
		6615	Phenanthrene		
		6665	Pyrene		
	NWTPH-Dx			90018409	Oregon DEQ TPH Diesel Range
		9369	Diesel range organics (DRO)		
		9499	Motor Oil		
		2050	Total Petroleum Hydrocarbons (TPH)		
	NWTPH-Gx		<u> </u>	90018603	Oregon DEQ TPH Gasoline Range Organics by GC/FID-PID Purge & Tra
		9408	Gasoline range organics (GRO)		3 , 33 33 33
			' '		

Lower Klamath Project – FERC No.	14803	

Appendix B

California Waste Disposal Plan

Lower Klamath Project FERC Project No. 14803

California Waste Disposal Plan

Klamath River Renewal Corporation 2001 Addison Street, Suite 317 Berkeley, CA 94704

> Prepared by: Camas LLC 680 G Street, Suite C Jacksonville, OR 97530

> > December 2021

This page intentionally left blank.

Table of Contents

1.0	Intro	Introduction					
	1.1	Purpose of Waste Disposal Plan	1				
	1.2	Relationship to Other Management Plans	1				
2.0	Quai	ntity and Type of Anticipated Non-Hazardous Waste	1				
	2.1	Material Descriptions	3				
3.0	Upla	nd Disposal Sites	4				
	3.1	Erosion and Sediment Control	6				
4.0	Pow	erhouse, Tailrace, and Spillway Disposal Sites	6				
	4.1	Erosion and Sediment Control	10				
5.0	Refe	rences	10				

List of Tables

Table 2-1. Copco No. 1 and Copco No. 2 Developments Nort-Hazardous Waste Disposal	. ∠
Table 2-2. Iron Gate Development Non-Hazardous Waste Disposal	. 2
Table 2-3 Material Descriptions	. 3
Table 3-1. Upland Disposal Sites	. 5
Table 4-1. Powerhouse and Tailrace and Spillway Disposal Sites	. 7

Appendices

Appendix A Figures

1.0 Introduction

The California Waste Disposal Plan is a sub-plan of the Waste Disposal and Hazardous Materials Management Plan to be implemented as part of the Proposed Action for the Lower Klamath Project.

1.1 Purpose of Waste Disposal Plan

The California Waste Disposal Plan describes the measures the Renewal Corporation (directly or through its contractor) will implement to manage non-hazardous waste resulting from the Proposed Action for portions located in California.

Non-hazardous waste will be stored, managed, and disposed of in accordance with all local, state, and federal applicable laws.

1.2 Relationship to Other Management Plans

The California Waste Disposal Plan is supported by elements of the Waste Disposal and Hazardous Materials Management Plan (subplans) for effective implementation. So as to not duplicate information, elements from this other management plan are not repeated herein but are, where appropriate, referred to in this California Waste Disposal Plan.

2.0 Quantity and Type of Anticipated Non-Hazardous Waste

The precise quantities and types of non-hazardous wastes generated by the Proposed Action will be determined in connection with waste characterization activities at the time of generation. Generally accepted waste characterization procedures, which are described in the California Hazardous Materials Management Plan, will also be observed by the Renewal Corporation (directly or through its contractor) with respect to non-hazardous wastes.

Anticipated non-hazardous waste to be generated during the decommissioning of Copco No. 1, Copco No. 2, and Iron Gate Developments is presented in Table 2-1 and Table 2-2. Specifically, the approximate bulk quantity, type of anticipated non-hazardous waste, and the proposed disposal locations (on-site and off-site) are presented below and are based on the Knight Piesold and Kiewit 100% Design Report (KP/Kiewit 2020). A description of these materials is presented in Section 2.1 (Knight Piesold 2013).

Table 2-1. Copco No. 1 and Copco No. 2 Developments Non-Hazardous Waste Disposal

TYPE	QUANTITY	ANTICIPATED DISPOSAL LOCATION
Earthen Material (Inert waste ¹)	2,100 CY	Disposed of on-site: Copco No. 1 Disposal Site Copco No. 1 Powerhouse and Tailrace Disposal Site Copco No. 2 Powerhouse and Tailrace Disposal Site
Concrete Rubble ²	120,600 CY	Disposed of on-site: Copco No. 1 Disposal Site Copco No. 2 Powerhouse and Tailrace Disposal Site
Building Waste ³	2,600 CY	Disposed of off-site: City of Yreka Landfill
Rebar	1,400 tons	Disposed of off-site: Schnitzer (recycled)
Mechanical and Electrical Materials	3,300 tons	Disposed of off-site: Permitted landfill, pending selected contractor
Transmission Lines	9.5 miles	Disposed off-site: Permitted landfill, pending selected contractor

- 1. Subject to confirmation by waste characterization at the time of generation, it is anticipated that earthen materials removed during decommissioning will constitute Inert waste.
- 2. Building waste, which is anticipated to be non-hazardous solid waste subject to confirmation by waste characterization, includes but is not limited to steel penstocks, generator equipment, gates, valves, lighting, HVAC etc.

Table 2-2. Iron Gate Development Non-Hazardous Waste Disposal

TYPE	QUANTITY	ANTICIPATED DISPOSAL LOCATION
Earthen Material (Inert waste ¹)	1,257,000 CY	Disposed of on-site: Iron Gate Spillway Disposal Site Iron Gate Powerhouse and Tailrace Disposal Site Iron Gate Upland Disposal Site
Concrete Rubble ²	20,700 CY	Disposed of on-site: Iron Gate Upland Disposal Site Iron Gate Powerhouse and Tailrace Disposal Site
Building Waste ³	600 CY	Disposed of off-site: City of Yreka Landfill
Rebar	700 tons	Disposed of off-site: Schnitzer (recycled)
Mechanical and Electrical Materials	1,200 tons	Disposed of off-site: Permitted landfill, pending selected contractor
Transmission Lines	0.5 miles	Disposed off-site: Permitted landfill, pending selected contractor

- Subject to confirmation by waste characterization at the time of generation, it is anticipated that earthen materials removed during decommissioning will constitute Inert waste.

 Building waste, which is anticipated to be non-hazardous solid waste subject to confirmation by waste characterization,
- includes but is not limited to steel penstocks, generator equipment, gates, valves, lighting, HVAC etc.

2.1 **Material Descriptions**

Table 2-3 includes materials that will either be placed within on-site disposal sites, used as a capping material, or for erosion and sediment control purposes. In addition, the source of the material is included in the table.

Table 2-3 Material Descriptions

TYPE	DESCRIPTION	DEFINITION
E4	Select Fill	Cobbles, Gravel, and Sand, particles ranging from 4 in. to the #200 Sieve (0.0030 in.), low to no fines content, sourced from offsite.
E6	Bedding	Cobbles and Gravel, particles ranging from 3 in. to 3/8 in., low to no fines content, sourced from offsite.
E7	Erosion Protection	Boulders and Cobbles, particles ranging from +50 in. to 3 in., material subdivided into three classifications E7a/b/c, each with minimum D85, D50 and D15 values, sourced from existing erosion protection at the dam sites, or talus material sourced from nearby borrow areas within limits of work.
Е7а	Erosion Protection	Boulders and Cobbles with a nominal diameter size of 9 inches and varies from 5.5 inches to 11.5 inches
E7b	Erosion Protection	Boulders and Cobbles with a nominal diameter size of 21 inches and varies from 21 inches to 27.5 inches
E7c	Erosion Protection	Boulders and Cobbles with a nominal diameter size of 36 inches and varies from 22 inches to 47 inches
E8	Bedding Material	Cobbles and Gravel, particles ranging from 12 in. to 1 in., low to no fines content, sourced from offsite.
E9	General Fill (Earthen Material)	Boulders, Cobbles, Gravel, Sand and Fines, particles ranging from 20 in. to silt and clay, up to 30% fines content, sourced from project excavations or nearby borrow areas within limits of work.
E9a	General Fill (Earthen Material)	Boulders, Cobbles, Gravel, Sand and Fines, particles ranging from 20 in. to silt and clay, up to 40% fines content, sourced from project excavations or nearby borrow areas within limits of work.

TYPE	DESCRIPTION	DEFINITION
E9b	General Fill (Earthen Material)	Boulders, Cobbles, Gravel and Sand, particles ranging from 20 in. to the #200 sieve (0.0030 in), low to no fines content, sourced from project excavations or nearby borrows area within limits of work.
E10	Random Fill (Earthen Material)	Overburden, Rocks or Organics, no gradation requirements, sourced from project excavations.
CR1	Concrete Rubble ^{1,2}	Particles ranging from 36 in. to the #200 Sieve (0.0030 in.), with up to 30% fines content, steel reinforcement to remain concrete, sourced from demolition of onsite concrete structures.
CR2	Concrete Rubble ^{1,2}	Particles ranging from 24 in. to the #200 Sieve (0.0030 in.), with up to 30% fines content, steel reinforcement to remain concrete, sourced from demolition of onsite concrete structures.

1. Hazardous materials and substances will be removed prior to burying concrete rubble in a disposal site.

3.0 Upland Disposal Sites

General Fill (Earthen Material) and Concrete Rubble will be disposed of at two on-site upland disposal sites (Upland Disposal Sites). Details pertaining to the location, construction, size, disposal materials, and associated figures for each disposal site are presented in Table 3-1 and in Appendix A, Figures. Disposal site locations were selected where drainage patterns can be preserved, such that onsite disposal would not create a threat to water quality. Appendix A includes two figures: general site location and a plan and profile of the disposal sites.

Table 3-1. Upland Disposal Sites

LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES
	COPCO NO. 1 DIS	POSAL SITE		
Located within an existing depression between Copco No. 1 and Copco No. 2 dams, to the north. The location is approximately at 2675 (MSL), which is 175 feet above the current Klamath River active stream channel (2,500 MSL).	 Located above anticipated post-drawdown OHWM. Demolish existing structures. Relocate existing powerlines. Clear vegetation. Place disposal materials on existing ground surface. 3H:1V slope range (maximum). Cap with a minimum of 2-foot cover of General Fill (E9/E9b). Grade and slope for drainage to surrounding topography. Final stabilization (see Section 3.1) 	 Disposal area is approx. 5.2 acres. Infill capacity is approx. 180,000 CY. 	General Fill (E9). Concrete Rubble (CR1).	Appendix A: Figure A-1. Copco No. 1 Disposal Site Appendix A: Figure A-2. Copco No. 1 Disposal Site – Plan and Profile
	IRON GATE UPLAND	DISPOSAL SITE		
Located in the original borrow site for the Iron Gate dam construction on the south side of the reservoir. The location is approximately 300 to 400 feet above the anticipated Klamath River active stream channel.	 Located above anticipated post-drawdown OHWM. Clear vegetation. Place disposal materials on existing ground surface. 5H:1V slope range (maximum). Cap with a minimum of 2-foot cover of General Fill (E9/E9b). Grade and slope for drainage to surrounding topography. Final stabilization (see Section 3.1) 	Disposal area is approx. 36 acres Infill capacity is approx. – 1,000,000 CY.	General Fill (E9). Random Fill (E10).	Appendix A: Figure A-3. Iron Gate Disposal Site Locations Appendix A: Figure A-4. Iron Gate Upland Disposal— Plan and Profile

3.1 Erosion and Sediment Control

Erosion and sediment control temporary best management practices (BMPs) installed during the construction of the disposal sites will be presented in the site-specific Stormwater Pollution Prevention Plan (SWPP) required as part of the National Pollutant Discharge Elimination System (NPDES) California State Water Board Construction General Permit (CGP). If disposal areas are utilized during the raining season, the disposal sites shall be protected with appropriate BMPs to prevent erosion.

Following the final placement of material within the disposal sites, permanent BMPs will be installed for final stabilization. The Renewal Corporation will use native rock borrowed from within the limits of work and in accordance with regulatory requirements. The Renewal Corporation may add a limited soil topping and may plant native vegetation, subject to consultation with the State of California. Monitoring and reporting required as part of the CGP SWPP will be conducted to achieve final stabilization.

4.0 Powerhouse, Tailrace, and Spillway Disposal Sites

General Fill and Concrete Rubble will also be disposed of in existing structures (i.e., powerhouse, tailrace, and spillway). Details pertaining to the location, construction, size, disposal materials, location in relation to the anticipated post-drawdown Ordinary High-Water Mark (OHWM) and associated figures for each on-site disposal site are presented in Table 4-1. Appendix A includes two figures: general site location and a plan and profile of the disposal sites.

Table 4-1. Powerhouse and Tailrace and Spillway Disposal Sites

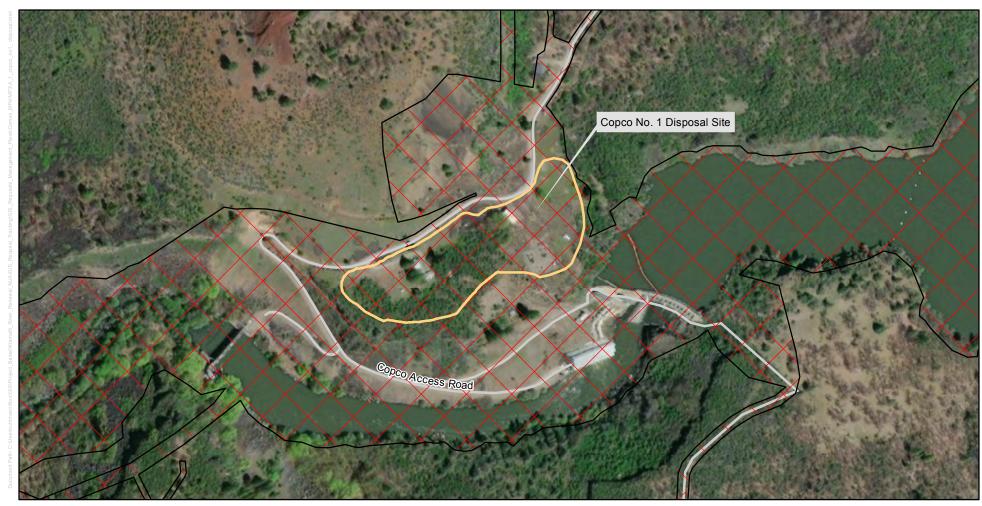
LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES			
	COPCO NO. 1 POWERHOUSE AND TAILRACE DISPOSAL SITE						
Located within a portion of existing Copco No.1 powerhouse and tailrace.	 Partially located below anticipated post-drawdown OHWM. Remove interior electrical, mechanical, and miscellaneous fixtures not imbedded in concrete from powerhouse prior to backfill. Place disposal materials within powerhouse and portion of tailrace. 1.5 H:1V slope range for powerhouse. 2 H:1V slope range for transition of powerhouse to tailrace. Cap with 4-foot cover of Select Fill (E4) on slope of former powerhouse. Cap with 1-foot cover of Bedding (E6) and 4-foot cover of Erosion Protection (E7c) on transition of powerhouse to tailrace. Final stabilization of former powerhouse (see Section 4.1). 	Disposal area is approx. 0.38 acres Infill capacity is approx3,950 CY	General Fill (E9/E9a) Concrete Rubble (CR2)	Appendix A: Figure A-5. Copco No. 1 Powerhouse and Tailrace Disposal Site Appendix A: Figure A-6. Copco No. 1 Powerhouse and Tailrace Disposal Site – Plan			
	COPCO NO. 2 POWERHOUSE AND	TAILRACE DISPOS	AL SITE				
Located within a portion of existing Copco No. 2 powerhouse and tailrace.	 Partially located below anticipated post-drawdown OHWM. Remove interior electrical, mechanical, and miscellaneous fixtures not imbedded in concrete from powerhouse prior to backfill. Place disposal materials within former tailrace and portion of powerhouse. 2.5 H:1V slope range with benching. 	Disposal area is approx. 0.38 acres Infill capacity is approx. 5,150 CY	 General Fill (E9a) Concrete Rubble (CR2) 	 Appendix A: Figure A-7. Copco No. 2 Powerhouse and Tailrace Disposal Site Appendix A: Figure A-8. Powerhouse and 			
	Cap with 2-foot cover of Bedding Material (E8) on slope (former tailrace) and			Tailrace Disposal Site – Plan and Profile			

LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES
	General Fill (E9) on horizontal portion (former powerhouse). • Final erosion and sediment control stabilization (see Section 4.1).			
	IRON GATE POWERHOUSE AND T	TAILRACE DISPOSA	AL SITE	
Powerhouse tailrace located south of dam.	 Located partially below anticipated post-drawdown OHWM. Remove interior electrical, mechanical, and miscellaneous fixtures not imbedded in concrete from powerhouse prior to backfill. Place disposal materials within former tailrace and portion of powerhouse. 2.5H:1V slope range Cap former powerhouse portion with 3-foot cover of General Fill (E9) and the former tailrace portion (E7b) with 3-foot cover of Erosion Protection (E7b). Final erosion and sediment control stabilization (see Section 4.1). 	 Disposal area is approx. 0.99 acres. Infill capacity is approx. – 22,615 CY. 	General Fill (E9) Concrete Rubble (CR1 and CR2)	 Appendix A: Figure A-3. Iron Gate Disposal Site Locations Appendix A: Figure A-9a. Iron Gate Powerhouse Disposal Site – Plan Appendix A: Figure A-9b. Iron Gate Powerhouse Disposal Site - Profile
	IRON GATE SPILLWAY	DISPOSAL SITE		
Spillway located west of dam on river right.	Located above anticipated post-drawdown OHWM. Place disposal materials in existing concrete spillway. Cap horizontal portion with 2-foot General Fill (E9) Place Erosion Protection (E7a) on downstream toe of spillway or riprap removed from downstream face of dam for lower spillway lifts to establish riprapped toe.	Disposal area is approx. 4.2 acres. Infill capacity is approx. – 249,200 CY.	General Fill (E9/E9a/E9b) Random Fill (E10)	Appendix A: Figure A-3. Iron Gate Disposal Site Locations Figure A-10. Iron Gate Spillway Disposal Site Plan and Profile

LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES
	• Final erosion and sediment control stabilization (see Section 4.1).			

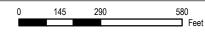
4.1 Erosion and Sediment Control

Erosion and sediment control temporary BMPs installed during the construction of the disposal sites will be presented in the site-specific SWPP required as part of the NPDES California State Water Board CGP. If disposal areas are utilized during the rainy season, the disposal sites will be protected with appropriate BMPs to prevent erosion.


Following the final placement of material within the disposal sites, permanent BMPs will be installed for final stabilization. The Renewal Corporation will use native rock borrowed from within the limits of work. The Renewal Corporation may add a limited soil topping and may plant native vegetation, subject to consultation with the State of California. Monitoring and reporting required as part of the CGP SWPP will be conducted to achieve final stabilization.

5.0 References

Knight Piésold and Kiewit. 2020. Klamath River Renewal Project Kiewit Contract #104168 100% Design Report. November 13, 2020.


Knight Piesold (2013) Technical Specification '31 05 00 – Materials for EarthWork. Revision H.

Lower Klamath Project – FERC No. 14803	
	Appendix A
	Figures

(At original document size of 8.5 x 11) 1:4,090

Notes
1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401

2. Data Sources: Disposal sites, Limits of Work and Access Routes: Knight

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

Legend

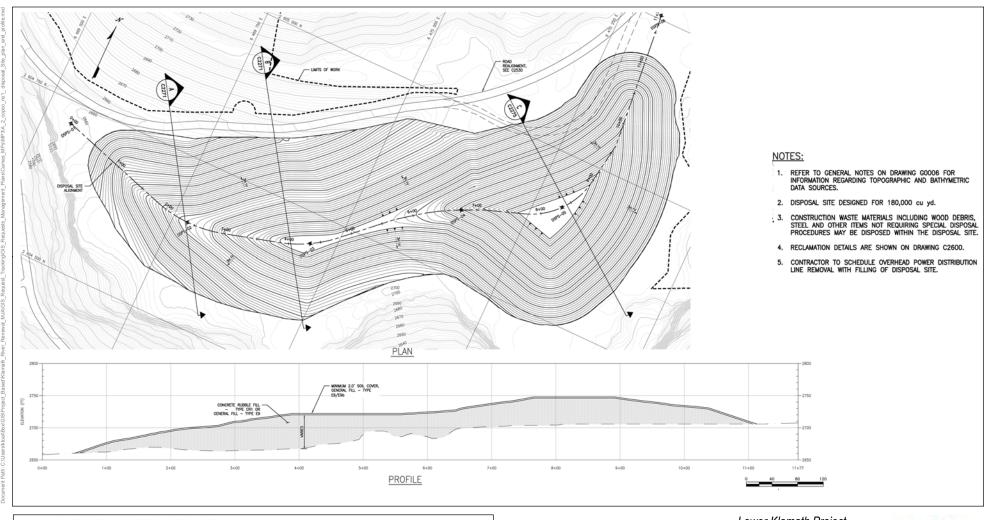

Lower Klamath Project

Figure A-1: Copco No. 1 Disposal Site

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

<u>Notes</u>

Coordinate System: NAD83 HARN StatePlane California I FIPS 0401
Feet

2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

---- LIMITS OF WORK

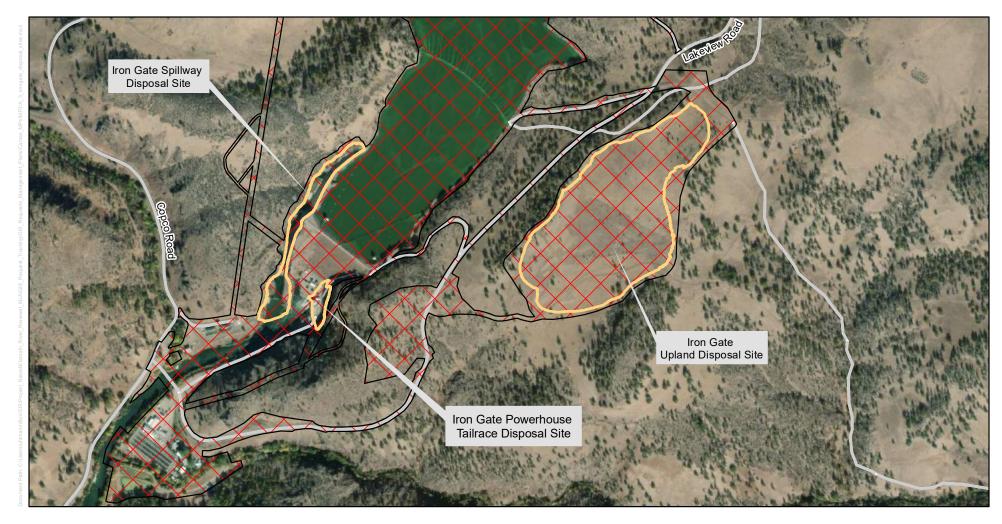
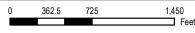

Lower Klamath Project

Figure A-2: Copco No. 1 Disposal Site - Plan and Profile


January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

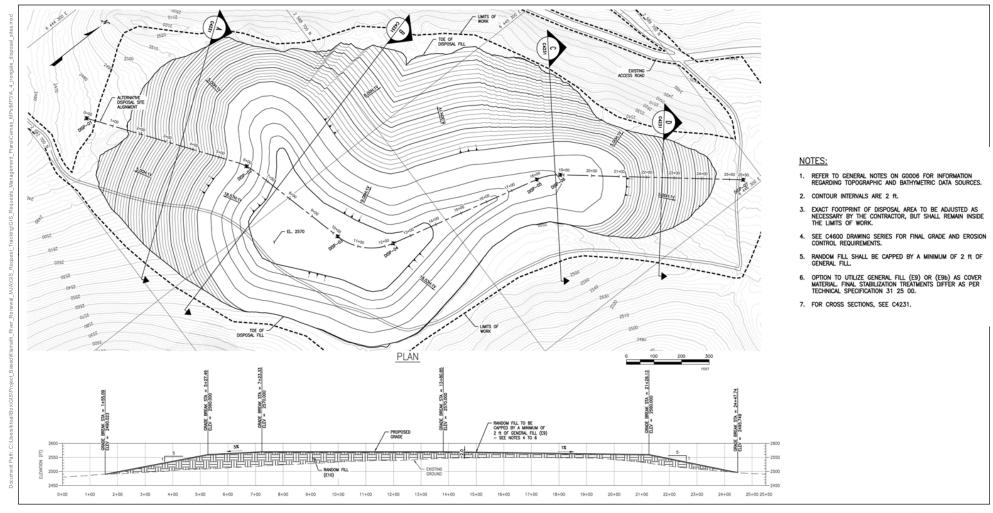
(At original document size of 8.5 x 11) 1:10,150

- 1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet
- 2. Data Sources: Disposal sites, Limits of Work and Access Routes: Knight
- 2. Data Gottles: Disposal sites, Enhins of Work and Access Footies, Knight Piesold 100 design

 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

Legend

Roads


Lower Klamath Project

A-3: Iron Gate **Disposal Site Locations**

October, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401

2.Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

GENERAL FILL (E9/E9b)

RANDOM FILL (E10)

Lower Klamath Project


Figure A-4: Iron Gate Upland Disposal Site Plan and Profile

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

- 1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet
- 2. Data Sources: Disposal sites, Limits of Work and Access Routes: Knight
- 2. Data Gottles: Disposal sites, Enhins of Work and Access Footies, Knight Piesold 100 design

 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

Legend

Lower Klamath Project

A-5 Copco No. 1 Powerhouse and Tailrace Disposal Site

October, 2021

RIVER RENEWAL

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401

2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

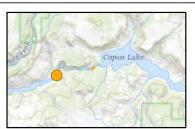
3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

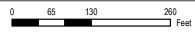
LEGEND:

LIMITS OF WORK

DEMOLITION / REMOVAL EROSION PROTECTION MATERIAL (E7b)

Lower Klamath Project


Figure A-6: Copco No. 1 Powerhouse and Tailrace Disposal Site Plan


January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

(At original document size of 8.5 x 11) 1:1,890

1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet

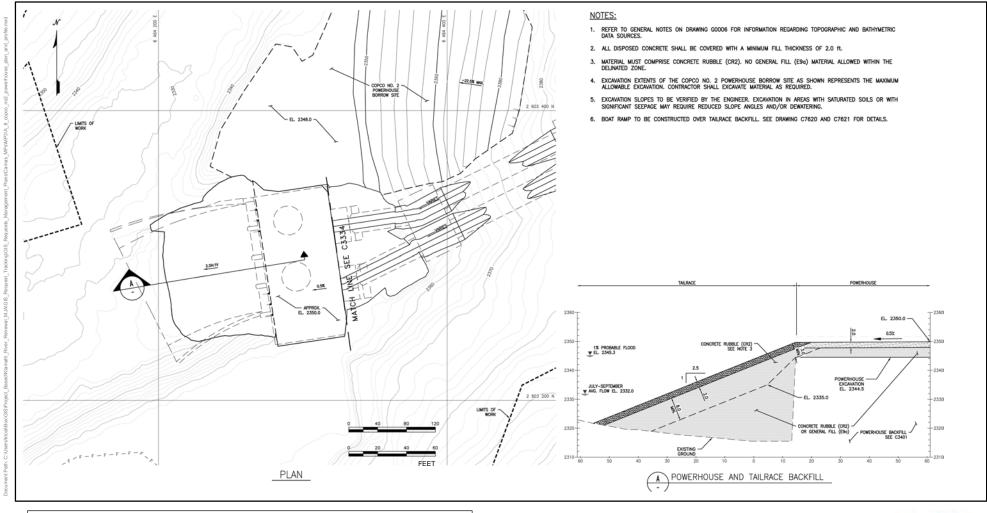
2.Data Sources: Disposal sites, Limits of Work and Access Routes: Knight

7 Piesold 100 design

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

Legend

Roads


Lower Klamath Project

A-7 Copco No. 2 Powerhouse and Tailrace Disposal Site

October, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

- 1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet
- 2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.
- 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

CONCRETE RUBBLE FILL (CR1) OR GENERAL FILL (E9)

---- LIMITS OF WORK

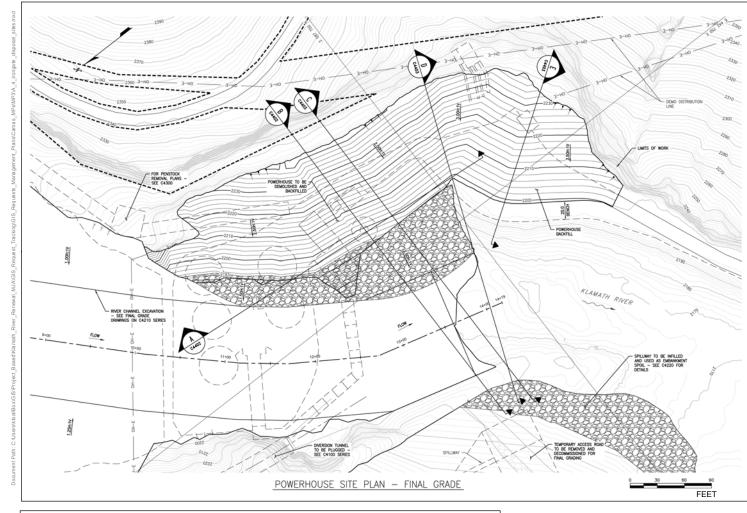

Lower Klamath Project

Figure A-8: Copco No. 2 Powerhouse and Tailrace Disposal Site Plan and Profile

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

IOTES:

- REMOVE ALL MECHANICAL AND ELECTRICAL EQUIPMENT PRIOR TO BACKFILL OF POWERHOUSE AND TAILRACE, WITH THE EXCEPTION OF EMBEDDED STEEL WHICH MAY BE BURIED IN PLACE.
- . ALL OIL AND WATER SUPPLY LINES TO BE FLUSHED PRIOR TO BACKFILL.
- . POWERHOUSE SITE INFILL AND SPOIL SHALL BE COMPRISED OF REMOVED EMBANKMENT MATERIALS (E9) OR CONCRETE RUBBLE (CR1).
- . ALL FILL SHALL BE CAPPED WITH A MINIMUM OF 3 ft OF COVER MATERIAL CONSISTENT WITH C4600 DRAWING SERIES.
- POWERHOUSE BACKFILL SHALL PROVIDE EROSION PROTECTION (ЕТЬ) UPTO A MINIMUM ELEVATION OF 2193 ft.

Coordinate System: NAD83 HARN StatePlane California I FIPS 0401
 Feet

2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

EROSION PROTECTION (E7b)

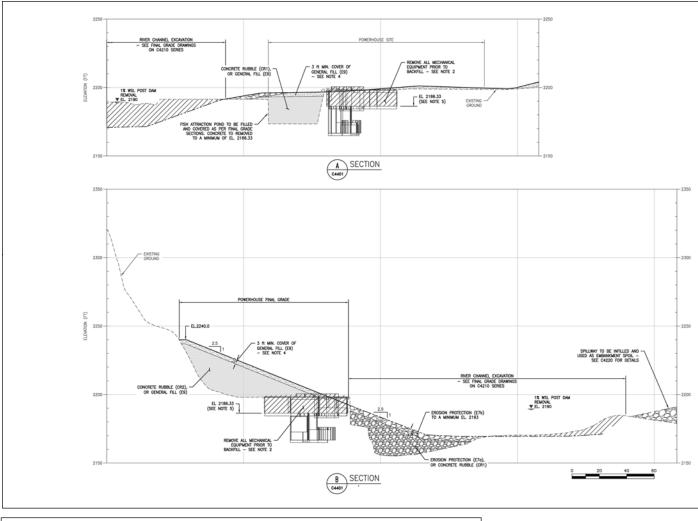

Lower Klamath Project

Figure A-9a: Iron Gate Powerhouse and Tailrace Disposal Site - Plan

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

NOTES:

- REMOVE ALL MECHANICAL AND ELECTRICAL EQUIPMENT PRIOR TO BACKFILL OF POWERHOUSE AND TAILRACE.
- ALL OIL AND WATER SUPPLY LINES TO BE FLUSHED PRIOR TO BACKFILL.
- POWERHOUSE SITE INFILL AND SPOIL SHALL BE COMPRISED OF REMOVED EMBANKMENT MATERIALS (E9) OR CONCRETE RUBBLE (CR1).
- WHERE CONCRETE RUBBLE IS SPOILED, IT MUST BE CAPPED BY A MINIMUM LAYER OF 3 ft OF COVER MATERIAI
- RECOMMENDED MINIMUM CONCRETE REMOVAL IS 2186.33 ft.
- 6. POWERHOUSE FILL AND SPILLWAY FILL TOES SHALL BE CONSTRUCTED OF STOCKPILED RIPRAP FROM THE DOWNSTREAM FACE OF THE DAM UP TO ELEVATION 2193 ft OR PROTECTED WITH EROSION PROTECTION, FILL TYPE E7b AND BEDDING TYPE E8.

<u>Notes</u>

Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet

 Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

DEMOLITION / REMOVAL

GENERAL FILL (E9)

CONCRETE RUBBLE (CR1/CR2)

EROSION PROTECTION (E7a/E7b)

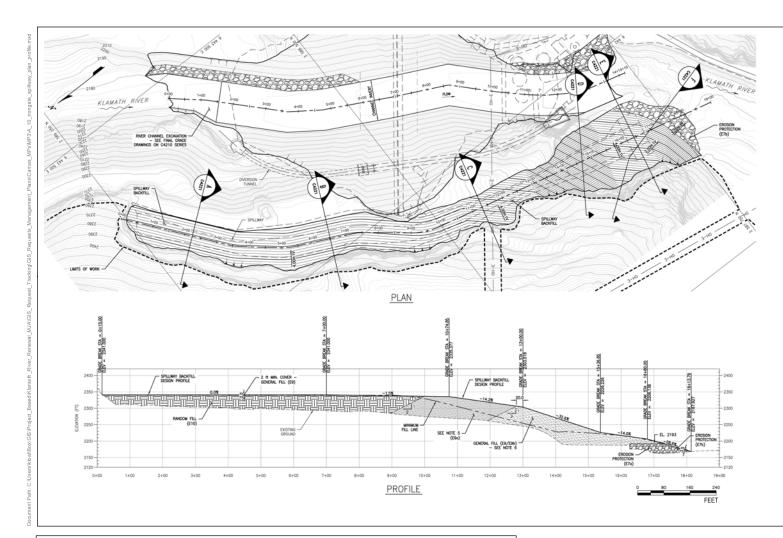

Lower Klamath Project

Figure A-9b: Iron Gate Powerhouse and Tailrace Disposal Site - Profile

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

NOTES:

- SPILLWAY INFILL MATERIALS SHALL BE COMPRISED OF REMOVED EMBANKMENT MATERIALS.
- SPILLWAY INFILL SHALL BE INITIAL EMBANKMENT MATERIAL SPOIL AREA FOR THE UPPER PORTIONS OF THE EMBANKMENT REMOVAL.
- 3. PLACE EROSION PROTECTION ON DOWNSTREAM TOE OF SPILLWAY FILL ONCE COMPLETE, UPON FINAL GRADING, OR USE RIPRAP REMOVED FROM DOWNSTREAM FACE OF DAM DURING STAGE 1 FOR THE LOWER SPILLWAY LIFTS TO ESTABLISH RIPRAPPED TOE.
- FOR EROSION AND SEDIMENT CONTROL DETAILS SEE DRAWING SERIES C4215 TO C4219.
- . WHERE E90 IS PLACED IN THE SPILLWAY DISPOSAL SITE, IT SHALL BE PLACED IN ACCORDANCE WITH THE LIFT THICKNESS AND COMPACTION REQUIREMENTS OF E9.
- OPTION TO UTILIZE GENERAL FILL (E9) OR (E9b) AS COVER MATERIAL. FINAL STABILIZATION TREATMENTS DIFFER AS PER TECHNICAL SPECIFICATION 31 25 00.

Notes

1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401

2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

DEMOLITION / REMOVAL

GENERAL FILL (E9)

CONCRETE RUBBLE (CR1/CR2)

EROSION PROTECTION (E7a/E7b)

Lower Klamath Project

Figure A-10: Iron Gate Spillway Disposal Site Plan and Profile

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

Lower Klamath Project – FERC No.	14803

Appendix C

Oregon Waste Disposal and Hazardous Materials

Management Plan

Lower Klamath Project FERC Project No. 14803

Oregon Waste Disposal and Hazardous Materials Management Plan

Klamath River Renewal Corporation 2001 Addison Street, Suite 317 Berkeley, CA 94704

> Prepared by: Camas LLC 680 G Street, Suite C Jacksonville, OR 97530

> > December 2021

This page intentionally left blank.

Table of Contents

1.0	Intro	oduction	1
	1.1	Purpose of Waste Disposal and Management Plan	1
	1.2	Relationship to Other Management Plans	1
2.0	Non-	-Hazardous Waste	1
	2.1	Quantity and Type of Anticipated Non-Hazardous Waste	1
	2.2	Material Descriptions	2
3.0	Disp	oosal Sites	3
	3.1	Upland Disposal Sites	3
	3.2	Powerhouse and Tailrace Disposal Site	7
	3.3	Erosion and Sediment Control	9
4.0	Haza	ardous Waste Types	9
	4.1	RCRA Hazardous Waste	9
	4.2	RCRA Characteristic Hazardous Wastes	9
	4.3	RCRA Listed Hazardous Wastes	10
	4.4	Non-RCRA Hazardous Waste	10
		4.4.1 Asbestos	10
		4.4.2 Lead	11
	4.5	Universal Waste	11
	4.6	Used Oil	11
	4.7	Oregon State Only Hazardous Waste	11
	4.8	Waste Characterization	12
5.0	Prev	vious Environmental Evaluations	12
	5.1	Phase I Environmental Site Assessments	12
	5.2	Hazardous Waste Surveys and Inventory	14
		5.2.1 Surveys	14
		5.2.2 Hazardous Materials Inventory	14
6.0	Haza	ardous Waste and Material Management	14
	6.1	Hazardous Waste Generator	14
	6.2	Training Requirements	15
	6.3	Personnel Safety	15

	6.4	Storag	ge	15
		6.4.1	Hazardous Waste Storage	15
		6.4.2	Universal Waste Storage	15
		6.4.3	Used Oil	15
	6.5	Transp	portation	15
		6.5.1	Hazardous Waste and Materials	16
		6.5.2	Universal Hazardous Waste and Materials	16
		6.5.3	Used Oil	16
	6.6	Contai	inment	16
		6.6.1	Hazardous Waste and Material Containment	16
7.0	Spill	Clean U	Jp, Notification and Reporting Procedures	17
8.0	Delet	terious \	Waste	17
9.0	9.0 References			

List of Tables

Table 2-1. Non-Hazardous Waste Disposal	2
Table 2-2. Material Descriptions	2
Table 3-1. Upland Disposal Sites	4
Table 3-2. Powerhouse and Tailrace Disposal Site	8

Appendices

Appendix A Figures

Appendix B J.C. Boyle Development – Hazardous Materials Survey Report

Appendix C Hazardous Materials Inventory

1.0 Introduction

The Oregon Waste Disposal and Hazardous Materials Management Plan is a sub-plan of the Waste Disposal and Hazardous Materials Management Plan to be implemented as part of the Proposed Action for the Lower Klamath Project.

1.1 Purpose of Waste Disposal and Management Plan

The Oregon Waste Disposal and Hazardous Materials Management Plan describes the measures the Renewal Corporation (directly or through its contractor) will implement to manage hazardous and non-hazardous waste and materials resulting from the Proposed Action for portions located in Oregon. The Renewal Corporation proposes to handle, store, transport, treat and dispose of hazardous waste and hazardous material in accordance with applicable federal, state, and local law.

In addition, the Oregon Waste Disposal and Hazardous Materials Management Plan states the measures the Renewal Corporation will implement to decommission existing septic tanks in accordance with the Oregon Administrative Rule (OAR) 340-71.

1.2 Relationship to Other Management Plans

The Oregon Waste Disposal and Hazardous Materials Management Plan is supported by elements of the Oregon Erosion and Sediment Control Plan for effective implementation. So as to not duplicate information, elements the Oregon Erosion and Sediment Control Plan are not repeated herein but are, where appropriate, referred to in this Oregon Waste Disposal and Hazardous Materials Management Plan.

2.0 Non-Hazardous Waste

2.1 Quantity and Type of Anticipated Non-Hazardous Waste

The precise quantities and types of non-hazardous wastes generated by the Proposed Action will be determined in connection with waste characterization activities at the time of generation. Generally accepted waste characterization procedures will also be observed by the Renewal Corporation (directly or through its contractor) with respect to non-hazardous wastes.

Non-hazardous waste will be stored, managed, and disposed of in accordance with all local, state, and federal applicable laws.

Anticipated non-hazardous waste to be generated during the decommissioning of the J.C. Boyle Development is presented in Table 2-1. Specifically, the approximate bulk quantity, type of non-hazardous waste, and the proposed disposal locations (on-site and off-site) are presented below and based on the Knight Piesold and Kiewit 100% Design Report (KP/Kiewit 2020). A description of these materials is presented in Section 2.2 (Knight Piesold 2013).

Table 2-1. Non-Hazardous Waste Disposal

TYPE	QUANTITY	ANTICIPATED DISPOSAL LOCATION
Earthen Material	130,800 CY	Disposed of on-site: Right Bank Disposal Site Left Bank Disposal Site Scour Hole Disposal Site Powerhouse and Tailrace Disposal Site
Concrete Rubble ¹	51,900 CY	Disposed of on-site: Scour Hole Disposal Site Powerhouse and Tailrace Disposal Site
Building Waste ²	2,700 CY	Disposed of off-site: Recycler or Permitted Landfill, pending selected contractor
Rebar	4,100 tons	Disposed of off-site: Recycler
Mechanical and Electrical Materials	2,500 tons	Disposed of off-site: Permitted Landfill, pending selected contractor
Transmission Lines	2.8 miles	Disposed of off-site: Permitted Landfill, pending selected contractor

- Subject to confirmation by waste characterization at the time of generation, it is anticipated that earthen materials removed during decommissioning will constitute Inert waste.
- Building waste, which is anticipated to be non-hazardous solid waste subject to confirmation by waste characterization, includes but is not limited to steel penstocks, generator equipment, gates, valves, lighting, HVAC etc.

2.2 Material Descriptions

Table 2-2 includes materials that will either be placed within on-site disposal sites, used as a capping material, or for erosion and sediment control purposes. In addition, the source of the materials is included in the table.

Table 2-2. Material Descriptions

TYPE	DESCRIPTION	DEFINITION
E	Earthfill (Earthen Material)	Natural earth materials excavated from the surrounding area.
E4	Select Fill	Cobbles, Gravel, and Sand, particles ranging from 4 in. to the #200 Sieve (0.0030 in.), low to no fines content, sourced offsite.
E9	General Fill (Earthen Material)	Boulders, Cobbles, Gravel, Sand and Fines, particles ranging from 20 in. to silt and clay, up to 30% fines content, sourced

TYPE	DESCRIPTION	DEFINITION
		from project excavations or nearby borrow areas within limits of work.
E9a	General Fill (Earthen Material)	Boulders, Cobbles, Gravel, Sand and Fines, particles ranging from 20 in. to silt and clay, up to 40% fines content, sourced from project excavations or nearby borrow areas within limits of work.
E9b	General Fill (Earthen Material)	Boulders, Cobbles, Gravel and Sand, particles ranging from 20 in. to the #200 sieve (0.0030 in), low to no fines content, sourced from project excavations or nearby borrows area within limits of work.
E10	Random Fill (Earthen Material)	Overburden, Rocks or Organics, no gradation requirements, sourced from project excavations.
CR1	Concrete Rubble ^{1,2}	Particles ranging from 36 in. to the #200 Sieve (0.0030 in.), with up to 30% fines content, steel reinforcement to remain concrete, sourced from demolition of onsite concrete structures ² .
CR2	Concrete Rubble ^{1,2}	Particles ranging from 24 in. to the #200 Sieve (0.0030 in.), with up to 30% fines content, steel reinforcement to remain concrete, sourced from demolition of onsite concrete structures.

1. Hazardous materials and substances will be removed prior to burying concrete rubble in a disposal site.

3.0 Disposal Sites

3.1 Upland Disposal Sites

General Fill (Earthen Material) and Concrete Rubble will be disposed of at four on-site upland disposal sites (Upland Disposal Sites). Details pertaining to the location, construction, size, disposal materials, and associated figures for each disposal site are presented in Table 3-1. The Renewal Corporation will divert non-earthen material from being placed into the disposal sites. Disposal site locations were selected where drainage patterns can be preserved, such that onsite disposal would not create a threat to water quality. Appendix A, Figures includes two figures: general site location and a plan and profile of the disposal sites.

Table 3-1. Upland Disposal Sites

LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES				
	SCOUR HOLE DISPOSAL SITE ¹							
 Located between J.C. Boyle canal spillway and the Klamath River. The location is approximately between 3,579 and 3,771 MSL, which is approximately 30 feet 	 Located above anticipated post-drawdown OHWM. Rock material eroded from scour hole to be left in place. Place disposal materials within scour hole. 	 Disposal area is approx. 1.8 acres Infill capacity is approx. 45,000 CY 	 Concrete Rubble (CR1/CR2) General Fill (E9/E9a/E9b) 	Appendix A Figure A-3– J.C. Boyle Disposal Site – Scour Hole				
above the anticipated Klamath River active stream channel.	 1.7H:1V slope range. Cap with minimum 6-foot cover of General Fill (E9 or E9b). Grade and slope for drainage to surrounding topography. Final erosion and sediment control 			Appendix A: Figure A-4a: J.C. Boyle Disposal Site – Scour Hole Plan				
	stabilization (see Section 3.3).			Appendix A: Figure A-4b: J.C. Boyle Disposal Site – Scour Hole Profile				
LEFT BANK DISPOSAL SITE								
Located on the left bank upstream of the dam. The location is approximately	Located above anticipated post- drawdown OHWM.	Disposal area is approx. 10.8 acres	Random Fill (E10)	Appendix A Figure A-5– J.C.				

¹ The Scour Hole Disposal Site is located on Bureau of Land Management-owned land.

LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES
between 3,768 and 3,798 MSL, which is approximately 60 feet above the anticipated Klamath River active stream channel.	 Remove residual reservoir sediment from bank. Place disposal materials on slope. Slope varies. Cap with minimum 6-foot cover of General Fill (E9/E9b). Grade and slope for drainage to surrounding topography. Final erosion and sediment control stabilization (see Section 3.3). 	Infill capacity is approx. 122,000 CY	• General Fill(E9/E9b)	Boyle Disposal Site – Right and Left Bank Appendix A: Figure A-6a: J.C. Boyle Disposal Site - Right and Left Bank Disposal Plan Appendix A: Figure A-6b: J.C. Boyle Disposal
				Site – Right and Left Bank Profile
	RIGHT BANK DISI	POSAL SITE		
Located on the right bank upstream of the dam The location is approximately between 3,778 and 3,798 MSL, which is approximately 60 feet above the anticipated Klamath River active stream channel.	 Located above anticipated post-drawdown OHWM. Remove residual reservoir sediment from bank. Place disposal materials on slope. Slope varies Cap with minimum 2-foot cover of General Fill (E9/E9b). Grade and slope for drainage to surrounding topography. Final erosion and sediment control stabilization (see Section 3.3). 	 Disposal area is approx. 2.3 acres Infill capacity is approx. 14,300 CY 	 Random Fill (E10) General Fill (E9/E9b) 	 Appendix A Figure A-5– J.C. Boyle Disposal Site – Right and Left Bank Appendix A: Figure A-6a: J.C. Boyle Disposal Site - Right and

LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES
				Left Bank
				Disposal Plan
				Appendix A:
				Figure A-6b: J.C.
				Boyle Disposal
				Site – Right and
				Left Bank Profile

3.2 Powerhouse and Tailrace Disposal Site

General Fill and Concrete Rubble will be disposed of in existing structures (i.e., powerhouse and tailrace). Details pertaining to the location, construction, size, disposal materials, location in relation to the anticipated post-drawdown Ordinary High-Water Mark (OHWM) and associated figures for the disposal site is presented in Table 3-2. The disposal site is detailed in two figures; one figure depicts general site location, and the second figure presents a plan and profile of the disposal site. Figures are presented in Appendix A.

Table 3-2. Powerhouse and Tailrace Disposal Site

LOCATION	CONSTRUCTION	SIZE/INFILL CAPACITY	DISPOSAL MATERIALS	FIGURES			
POWERHOUSE AND TAILRACE DISPOSAL SITE ²							
Located adjacent to the J.C. Boyle Powerhouse Road and the Klamath River.	 Located partially below anticipated post-drawdown OHWM. Remove interior electrical, mechanical, and miscellaneous fixtures not imbedded in concrete from powerhouse prior to backfill. Place disposal materials within former tailrace and portion of powerhouse. Cap with a minimum of 2-foot cover of General Fill (E9/E9b). Cap with a minimum of 2-foot cover of Select Fill (E4) on the downward slope of the toe for erosion protection. 	 Disposal area is approx. 0.3 acres Infill capacity is approx. 6,000 CY 	Concrete Rubble (CR2) General Fill (E9/E9b) • General Fill (E9/E9b)	Appendix A: Figure A-7– J.C. Boyle Disposal Site – Powerhouse and Tailrace Appendix A: Figure A-8a– J.C. Boyle Disposal Site – Powerhouse and Tailrace Plan			
				 Appendix A: Figure A-8b- J.C. Boyle Disposal Site - Powerhouse and Tailrace Profile 			

² The Powerhouse and Tailrace Disposal Site is located on Bureau of Land Management-owned land.

3.3 Erosion and Sediment Control

Erosion and sediment control methods and stabilization of the disposal sites will be conducted in accordance with the Oregon Erosion and Sediment Control Plan. The Renewal Corporation may add a limited soil topping and may plant native vegetation, subject to consultation with the Bureau of Land Management (BLM) as the federal land manager at the Scour Hole and J.C. Powerhouse and Tailrace Disposal sites. Please refer to the Construction Management Plan for additional details regarding BLM's requirements.

4.0 Hazardous Waste Types

Specific procedures are required to handle, store, transport, treat, and dispose of hazardous waste to maintain compliance with federal, state, and local regulations. The following section categorizes various waste types consistent with applicable laws and specifies what constitutes a waste of that type.

4.1 RCRA Hazardous Waste

Hazardous waste is federally regulated by environmental agencies including the Environmental Protection Agency (EPA). A waste is considered Resource Conservation and Recovery Act (RCRA) hazardous waste if:

- 1. It is not excluded or exempt from classification as a waste or a hazardous waste; and
- 2. It meets hazardous waste classification criteria including:
 - a. It exhibits any hazardous characteristic under applicable laws (ignitability, corrosivity, reactivity, or toxicity);
 - b. It is a "listed waste" appearing on one of four lists prepared and maintained by environmental agencies including EPA (the F, K, P and U lists); or
 - c. It is a mixture of a waste and one or more hazardous wastes. However, the mixtures of solid wastes and hazardous wastes listed in subpart D are not hazardous wastes (except by application of paragraph (a)(2) (i) or (ii) of 40 CFR 261.3) if the generator can demonstrate that the mixture consists of wastewater the discharge of which is subject to regulation under either section 402 or section 307(b) of the Clean Water Act (including wastewater at facilities which have eliminated the discharge of wastewater).

4.2 RCRA Characteristic Hazardous Wastes

A RCRA Characteristic hazardous waste is a solid waste that exhibits at least one of the four characteristics presented below:

Flammability/Ignitability

A solid waste is ignitable if it has any of the following properties: (1) it is a liquid and has a flash point below 140 °F, (2) it is not a liquid and can cause fire through friction, absorption of moisture or spontaneous chemical changes and when ignited it burns so vigorously that it creates a hazard, (3) it is an ignitable compressed gas, and (4) it is an oxidizer.

Corrosivity

A solid waste is corrosive if it has any of the following properties it is aqueous and has a pH less than or equal to 2 or greater than or equal to 12.5 or is a liquid and corrodes steel at a rate greater than 0.25 inches a year.

Reactivity

A solid waste is reactive if it has any of the following properties: (1) it is normally unstable and readily undergoes violent change without detonating, (2) it reacts violently with water, (3) it forms explosive mixtures with water, (4) when mixed with water it generates toxic gases, vapors, or fumes, (5) it is a cyanide or sulfide bearing waste, which when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors, or fumes, (6) capable of detonation or explosive reaction if subjected to a strong initiating source or if heated under confinement, and (7) it is readily capable of detonation or explosive reaction at standard temperature.

Toxicity

A solid waste exhibits the characteristic of toxicity if it is equal to or exceeds the Toxicity Characteristic Leaching Procedure (TCLP) limit listed in 40 CFR 261.24 Table I – Maximum Concentration of Contaminants for the Toxicity Characteristic.

4.3 RCRA Listed Hazardous Wastes

A RCRA Listed hazardous waste is a solid waste the EPA has determined to be hazardous waste. There are three categories of listed wastes:

- 1. Chemical products which are regulated as hazardous wastes when they are discarded commercial chemical products, off-specification species, container residues, and spill residues thereof (P and U waste codes listed materials).
- 2. Specific wastes from specific types of industrial processes (K waste code).
- 3. Wastes from non-specific types of industrial processes (F waste code).

4.4 Non-RCRA Hazardous Waste

4.4.1 Asbestos

Disturbance of any asbestos containing material (ACM) or asbestos containing waste material could generate airborne asbestos fibers and would be regulated by the Oregon Department of Environmental Quality (DEQ). DEQ worker health and safety regulations apply during any disturbance of ACM or asbestos containing waste material by a person while in the employ of another. Disturbance of any asbestos containing material (ACM) or asbestos containing waste material will be conducted by an Oregon-Licensed asbestos abatement contractor in accordance with OAR 340-248-0110(1).

4.4.2 Lead

Following determination of RCRA levels of lead (D008 is >5.0 mg/l), disturbance of lead containing products or surfaces (which does not include remediating a lead hazard or specifically designed to remove LBP to reduce or eliminate a known hazard), would be considered lead related construction work.

4.5 Universal Waste

Universal wastes are hazardous wastes that are common to the workplace and pose a lower risk to people and the environment than other hazardous wastes. Types of waste streams regulated as universal wastes include the following:

- Batteries
- Pesticides
- Mercury-containing equipment
- Mercury-containing lamps (fluorescent light tubes and high-intensity discharge or HID lamps)

4.6 Used Oil

The DEQ defines used oil as any oil that has been refined from crude or synthetic oil and used as one of the following: lubricant, electrical insulation oil, hydraulic fluid, heat transfer oil, brake fluid, refrigeration oil, grease, and machine cutting oil. Used oil can be recycled to make new lubricants or used as an industrial fuel under established safeguards. When properly recycled, it is excluded from hazardous waste regulation.

Used oil does not include the following: used oil mixed with hazardous waste except as allowed in 40 CFR 279.10(b), petroleum and synthetic-based products used as solvent, antifreeze, wastewaters, from which the oil has been removed, and oil-contaminated media or debris. Other materials that contain or are contaminated with used oil may also be subject to regulation as "used oil".

4.7 Oregon State Only Hazardous Waste

If no other federally listed RCRA codes apply, the DEQ recognizes RCRA listed wastes as hazardous, with a few exceptions that fall into the acutely hazardous category. Oregon adds to the federally listed hazardous wastes:

- Any residue, including manufacturing process wastes and unused chemicals, that has
 either: a 3 percent or greater concentration of any substance or mixture of substances
 listed in 40 CFR 261.33(e), or a 10 percent or greater concentration of any substance or
 mixture of substances listed in 40 CFR 261.33(f).
- Any residue or contaminated soil, water or other debris resulting from the cleanup of a spill into or on any land or water, of either: a residue identified in OAR 340-101-0033(2)(a)(A) or a residue identified in subsection OAR 340-101-0033 (2)(a)(B).

 X001 for Waste Pesticide residue, except for those that are managed as universal wastes; or whose constituents are listed in 40 CFR 261.24 (a) but are below the prescribed regulatory levels.

4.8 Waste Characterization

To determine the manner in which waste is required to be handled, stored, treated, transported or disposed, the waste generator must perform waste characterization in accordance with applicable laws. Generally accepted methods of waste characterization in Oregon (40 CFR 262.11) include the following:

- 1. Testing or sampling the waste according to approved methods (Sampling & Analysis); or
- 2. Applying knowledge of the hazardous properties of the waste considering the materials or the processes used and the characteristics (Process Knowledge).

5.0 Previous Environmental Evaluations

5.1 Phase I Environmental Site Assessments

Phase I Environmental Site Assessments (ESA) have been conducted for the Proposed Action to identify the presence, nature, and quantities of hazardous waste prior to commencement of dam removal. These ESAs are summarized below.

Phase I Environmental Site Assessment J.C. Boyle Dam, Copco No. 1 Dam, Copco No. 2 Dam, Iron Gate Dam, Iron Gate Fish Hatchery

Prepared by AECOM, for the Renewal Corporation November 2018

The 2018 ESA included an assessment of the J.C. Boyle, Copco No. 1, Copco No. 2, Iron Gate, and Iron Gate Fish Hatchery Developments. The summary provided below includes information pertaining to the J.C. Boyle Development and does not include the undeveloped lands surrounding the J.C. Boyle Development. The objectives of this report were to identify Recognized Environmental Conditions (RECs) that may exist at the J.C. Boyle Development. The 2018 ESA did not identify the presence of RECs associated with the J.C. Boyle Development. Although RECs were not identified as part of the ESA, additional findings included the following:

- An environmental regulatory database report identified an underground storage tank (UST) at the "J C BOYLE POWER PLANT". The report noted that this listing was an unmappable location due to poor or inadequate address information. No further information was available with regards to the specific location of the UST or whether it has been removed.
- One 500-gallon diesel and one-1,000-gallon gasoline above-ground storage tank (AST) and associated dispenser pumps are located adjacent to the Hazardous Material

Storage Shed. Both ASTs are double walled, are properly labeled and are underneath a permanent "cover", on top of concrete pads and appear to be in good condition with no observable signs of leakage. A metal grate was noted within the concrete fueling pad in front of the ASTs that drains to an oil-water separator. Although scattered snow and ice cover the areas surrounding the ASTs, no observable signs of staining, petroleum odors or distressed vegetation were noted.

According to PacifiCorp's 2019 SPCC Plan, there are no USTs located at the J.C. Boyle Development. Any gasoline in the AST will be excluded from the manifest, the generator category, and management as hazardous waste when managed under 40 CFR 261.2(c)(2)(ii)

Draft Phase I Environmental Site Assessment Parcel B Lands

Prepared by AECOM, for the Renewal Corporation January 2020

The subject of the 2020 ESA includes an assessment of the undeveloped land, known as Parcel B lands surrounding the J.C. Boyle Development. The objectives of this report were to identify RECs that may exist on the Parcel B lands surrounding the J.C. Boyle Development. Two RECS were identified as part of the Phase I ESA and are included below.

<u>Dispersed Recreation Area – 2</u>

A burn pit and stressed vegetation were identified on the north banks of the northeast side of the J.C. Boyle Reservoir, approximately 2,200 feet east of Spencer Creek. The burn pit is approximately 10 feet by 10 feet and contains ash, charred wood, broken glass, and other debris. The burning of these materials may generate contaminants that can leach into the soil and groundwater beneath the pit. A Phase II ESA soil and groundwater assessment is proposed to assess potential impacts.

Debris Piles

Three debris piles containing chopped wood, trees, household materials and appliances, potentially treated wood beams and metal scraps were observed approximately 600 feet west of Topsy Grade Road and 1,000 feet south of the J.C. Boyle Reservoir. Since the nature of this debris is unknown, a Phase II soil and groundwater assessment is proposed to assess potential impacts.

A Phase II ESA to address the aforementioned RECs will be conducted as part of the land transfer.

5.2 Hazardous Waste Surveys and Inventory

5.2.1 Surveys

The Renewal Corporation conducted surveys to identify and quantify hazardous waste with potential to be generated from demolition of dams and associated structures that will be managed and disposed of as part of the Proposed Action.

Hazardous Building Material Surveys (HBMSs)

J.C. Boyle Development

Prepared by AECOM, for the Renewal Corporation April 2019

A HBMS was conducted in April 2019 at the J.C. Boyle Developments. The purpose of the HBMS survey was to provide information regarding the presence of lead-based paint (LBP) containing coatings, polychlorinated biphenyls (PCB)-containing light ballasts, PCB-containing caulking, and mercury-containing sources, and the presence, location, and quantity of asbestos containing materials (ACMs), for the purposes of decommissioning planning. Hazardous materials identified as part of this survey are presented as part of the October 2020 surveys presented below.

Hazardous Materials Survey Report (HMS)

J.C. Boyle Development

Prepared by Entek Consulting Group, Inc. for NV5 October 2020

A HMS was conducted in October 2020 at the J.C. Boyle Development. The purpose of this survey was to conduct a supplementary investigation to the April 2019 HBMS for hazardous materials. The October 2020 survey results include the April 2019 survey results. Since the HMS report is a compilation of the surveys conducted in 2019 and 2020, this report is included as Appendix B.

5.2.2 Hazardous Materials Inventory

The hazardous wastes identified as part of the surveys are presented in the following tables within Appendix C.

- Table C-1.: Universal Waste Inventoary
- Table C-2.: Non-RCRA Hazardous Waste Inventory
- Table C-3.: Characteristic Hazardous Waste Inventory

6.0 Hazardous Waste and Material Management

6.1 Hazardous Waste Generator

As a likely generator or co-generator of hazardous waste, the Renewal Corporation will conduct waste characterization for solid waste streams associated with the Proposed Action at the time

of generation in compliance with generally accepted waste characterization procedures under applicable laws. The Renewal Corporation (directly or through its contractor) will manage all wastes characterized as hazardous waste produced as part of the Proposed Action in accordance with applicable federal and state law.

6.2 Training Requirements

Personnel will be trained to handle hazardous waste and materials in compliance with applicable federal and state laws. The Health and Safety Plan states additional personnel training requirements relevant to the handling of hazardous waste and hazardous materials.

6.3 Personnel Safety

Please reference the Health and Safety Plan for guidelines on personnel health and safety when handling hazardous waste and materials. The Renewal Corporation has also developed an Emergency Response Plan if accidents involving personnel.

6.4 Storage

Hazardous waste and materials will be stored in compliance with applicable laws and managed to prevent spills or releases of hazardous substances and to prevent the mixing of incompatible waste streams until they can be properly disposed of in accordance with local, state, and federal regulations. Storage locations will be selected prior to implementing the Proposed Action.

6.4.1 Hazardous Waste Storage

Hazardous waste will be stored prior to offsite transport and disposal in compliance with applicable laws and regulations, including rules governing waste generator pre-transport requirements and hazardous waste accumulation timelines.

6.4.2 Universal Waste Storage

The Renewal Corporation will store batteries, pesticides, mercury-containing equipment, and mercury-containing lamps (fluorescent light tubes and high-intensity discharge or HID lamps) in accordance with applicable universal waste storage regulations.

6.4.3 Used Oil

Used oil will be stored in accordance with applicable standards for management of used oil.

6.5 Transportation

Hazardous waste and materials will be transported in accordance with all local, state, and federal regulations.

6.5.1 Hazardous Waste and Materials

Hazardous waste and materials will be transported by a licensed hazardous waste transporter in accordance with applicable laws. Before being transported, waste and materials will be packaged, labeled, and marked in accordance with application requirements of governmental agencies. Hazardous waste transporters will obtain a completed and signed Uniform Hazardous Waste Manifest. Hazardous waste and materials will be contained in an appropriate container when transported.

6.5.2 Universal Hazardous Waste and Materials

Universal waste and materials will be transported to an offsite authorized universal waste off-site collection site or to a universal waste destination facility, which will be determined at the time of disposal. An off-site collection site is a location where the waste may be shipped for consolidation before shipment to a universal waste destination facility.

Universal waste shall be transferred to a destination facility that treats, recycles, or disposes of universal will meet applicable state and federal transportation requirements for packaging, labeling, placarding, and shipping papers.

6.5.3 Used Oil

Used oil generators shipping more than 55 gallons of used oil at a time will use a DEQ registered used oil transporter. The transporter will deliver used oil collected from the generator to:

- Another used oil transporter who also has obtained a DEQ or EPA identification number
- A used oil processing/re-refining facility that has obtained a DEQ/EPA identification number
- An off-specification used oil burning facility that has obtained a DEQ/EPA identification number
- An on-specification used oil burning facility

6.6 Containment

Containment of hazardous wastes will be managed in accordance with applicable local, state, and federal regulations.

6.6.1 Hazardous Waste and Material Containment

As discussed above, hazardous waste and materials will be stored in compliance with applicable laws and regulations, including rules governing waste generator pre-transport requirements and hazardous waste accumulation timelines.

Storage locations for hazardous waste and materials to be used in connection with the Proposed Action will include secondary containment units so that if a leak occurs, it will be contained and not allowed to enter the surrounding environment. If there is a fuel storage on-

site, the containment will have a minimum volume of 120 percent of the volume of the largest container stored in that area. Secondary containment will be maintained, clean, and free of standing water.

Hazardous waste and materials will be stored and protected from rain and runoff to avoid contamination of soil or transfer to a water source. Along with utilizing the correct storage container, the Renewal Corporation will label, tag, or mark each substance with overall signage including the name of the substance, the hazard warning (e.g., corrosive, poison, etc.), and the manufacturer's contact information. Hazardous waste and materials will be contained in an appropriate container when transported.

7.0 Spill Clean Up, Notification and Reporting Procedures

As discussed herein, the Project will take customary steps to avoid unauthorized spills, releases, or discharges of hazardous substances. In the event of a spill or release of hazardous waste materials into the environment, the Renewal Corporation may initiate testing to determine the level of response and abatement required. Monitoring of the spill site will continue until full abatement has been reached and if necessary, the details of the spill event and actions taken in response to the spill will be reported to the appropriate agencies and/or authorities. For additional measures relevant to spill events, reporting procedures, and notification process please refer to the Oregon Spill Prevention, Control and Countermeasure Plan.

8.0 Deleterious Waste

The Renewal Corporation will not place biologically harmful material including but not limited to petroleum products, chemicals, cement cured less than 24 hours, welding slag and grindings, concrete saw cutting by-products, sandblasted materials, chipped paint, tires, wire, steel posts, and asphalt where such materials could enter waters of the state, including wetlands. To ensure these protections occur the Renewal Corporation will do the following:

- Cure concrete, cement, or grout for at least 24 hours prior to any contact with flowing waters.
- Use only clean fill, free of waste and polluted substances.
- Employ all practicable controls to prevent discharges of spills of deleterious materials to surface or ground water.
- Maintain at the project construction site, and deploy as necessary, an adequate supply
 of materials needed to contain deleterious materials during a weather event.
- Remove foreign materials, refuse, and waste from the project area.
- Always employ general good housekeeping practices.

9.0 References

Electronic Code of Federal Regulations (eCFR) Title 29, Part 1910. Hazardous Waste Operations and Emergency Response. *Accessed October 10, 2020.*

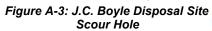
- Electronic Code of Federal Regulations (eCFR) Title 40, Part 260. Hazardous Waste Management System: General. *Accessed October 10, 2020.*
- Electronic Code of Federal Regulations (eCFR) Title 40, Part 261. Identification and Listing of Hazardous Waste. *Accessed October 10, 2020.*
- Electronic Code of Federal Regulations (eCFR) Title 40, Part 262. Standards Applicable to Generators of Hazardous Waste. *Accessed October 10, 2020.*
- Electronic Code of Federal Regulations (eCFR) Title 40, Part 264. Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities. *Accessed October 10, 2020.*
- Electronic Code of Federal Regulations (eCFR) Title 40, Part 273. Standards for Universal Waste Management. *Accessed October 10, 2020.*
- Electronic Code of Federal Regulations (eCFR) Title 40, Part 279. Standards for the Management of Used Oil. *Accessed October 10, 2020.*
- Electronic Code of Federal Regulations (eCFR) Title 40, Part 302. Designation, Reportable Quantities, and Notification. *Accessed October 10, 2020.*
- Electronic Code of Federal Regulations (eCFR) Title 49, Part 172. Hazardous materials table, special provisions, hazardous materials communications, emergency response information, training requirements, and security plans. *Accessed October 10, 2020.*
- Electronic United States Code (eUSC) Title 42, Chapter 103, Subchapter 1, Section 9601.

 Comprehensive Environmental Response, Compensation, and Liability Act.
- Klamath River Restoration Corporation (KRRC). 2020. Klamath River Renewal Project 100% Design Report.
- Klamath River Renewal Corporation (KRRC). 2018. Definite Plan for the Lower Klamath Project. June.
- Knight Piésold and Kiewit. 2020. Klamath River Renewal Project Kiewit Contract #104168 100% Design Report. November 13, 2020.
- Knight Piesold (2013) Technical Specification '31 05 00 Materials for EarthWork. Revision H.
- Oregon Administrative Rules (eOAR) Chapter 340, Division 113: Universal Waste Management. *Accessed online December 10, 2020.*

- Oregon Administrative Rules (eOAR) Chapter 340, Division 111: Used Oil Management. *Accessed online December 10, 2020.*
- Oregon Administrative Rules (eOAR) Chapter 340, Division 101: Identification and Listing of Hazardous Waste. *Accessed online December 10, 2020.*
- Oregon Department of Environmental Quality (ODEQ). 2018. Clean Water Act Section 401
 Certification for the Klamath River Renewal Corporation License Surrender and Removal of the Lower Klamath Project (FERC No. 14803) Klamath County, Oregon. September.

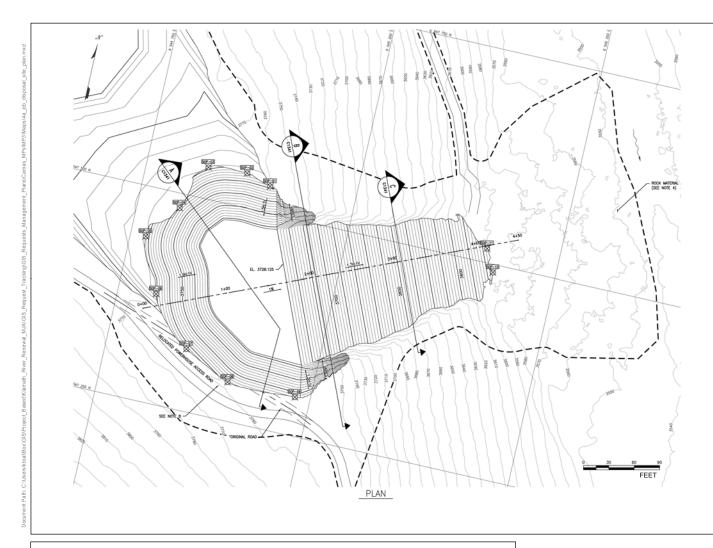
Lower Klamath Project – FERC No. 14803	
Lower Mamatri Toject – 1 ENO No. 14003	
	Appendix A
	Appendix A
	Figures
	_

- 1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401
- 2. Data Sources: Disposal sites, Limits of Work and Access Roads: Knight
- Piesold 100 design.


 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

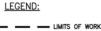
Legend

Roads


Lower Klamath Project

October, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)


NOTES:

- REFER TO GENERAL NOTES ON DRAWING GOODS FOR INFORMATION REGARDING TOPOGRAPHIC AND BATHYMETRIC DATA SOURCES.
- CONTRACTOR TO ADJUST SITE SLOPES AND GRADES FOR SAFETY AS NECESSARY.
- 3. EXCAVATED MATERIAL FROM FOREBAY GRADING TO BE USED AS COVER MATERIAL FOR SCOUR HOLE FILL.
- 4. ROCK MATERIAL ERODED FROM SCOUR HOLE TO BE LEFT IN PLACE.
- SCOUR HOLE FILL LIMITED TO CONCRETE RUBBLE (CR1/CR2) AND GENERAL FILL (E9/E90/E9b) MATERIALS. MATERIAL THAT DOES NOT MEET THESE REQUIREMENTS TO BE PLACED AT THE LEFT BANK DISPOSAL SITE.
- ALL CONCRETE TO BE BURIED WITH A MINIMUM 6 ft OF COVER MATERIALS.
- MAXIMUM POTENTIAL FILL SHOWN ON DRAWING TO BE GRADED TO DRAIN.
- BOULDERS TO BE PLACED BETWEEN POWERHOUSE ROAD REALIGNMENT AND SCOUR HOLE FILL. DETAILS SHOWN ON DRAWING C1511.
- ELEVATION CONTOURS OF SCOUR HOLE FILL DENOTE FINAL GRADE.

<u>Notes</u>

- Coordinate System: NAD83 HARN StatePlane California I FIPS 0401
 Feet
- 2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.
- 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

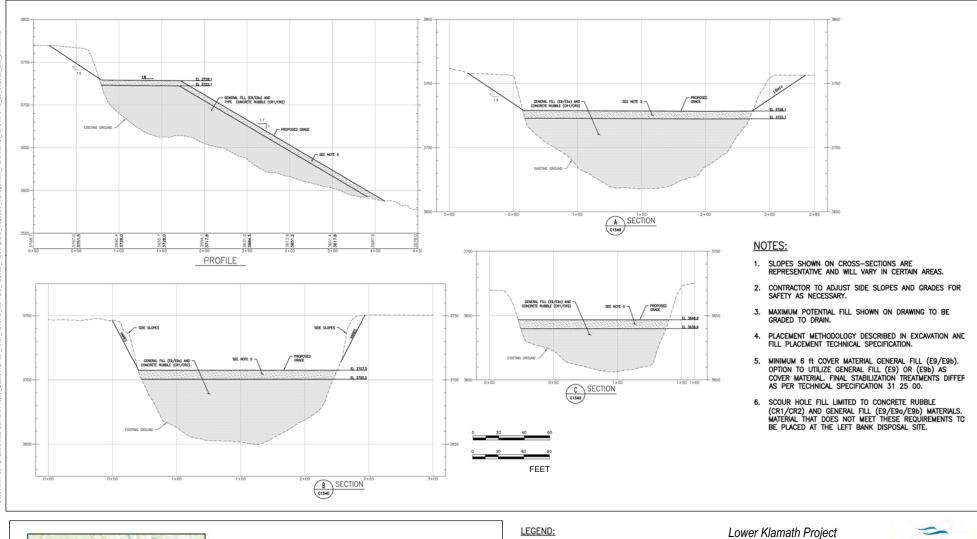

Lower Klamath Project

Figure A-4a: J.C. Boyle Disposal Site Scour Hole - Plan

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

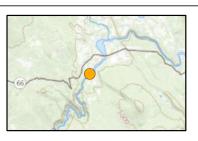
- 1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet
- 2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.
- 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

(E) EARTHFILL

CONCRETE RUBBLE (CR1/CR2)

GENERAL FILL (E9/E9a/E9b)


Figure A-4b: J.C. Boyle Disposal Site
Scour Hole Profile

KLAMATH
RIVER RENEWAL
CORPORATION

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

Notes

1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet

2. Data Sources: Disposal Sites, Limits of Work and Access Routes: Knight Piesold 100 design

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

Legend

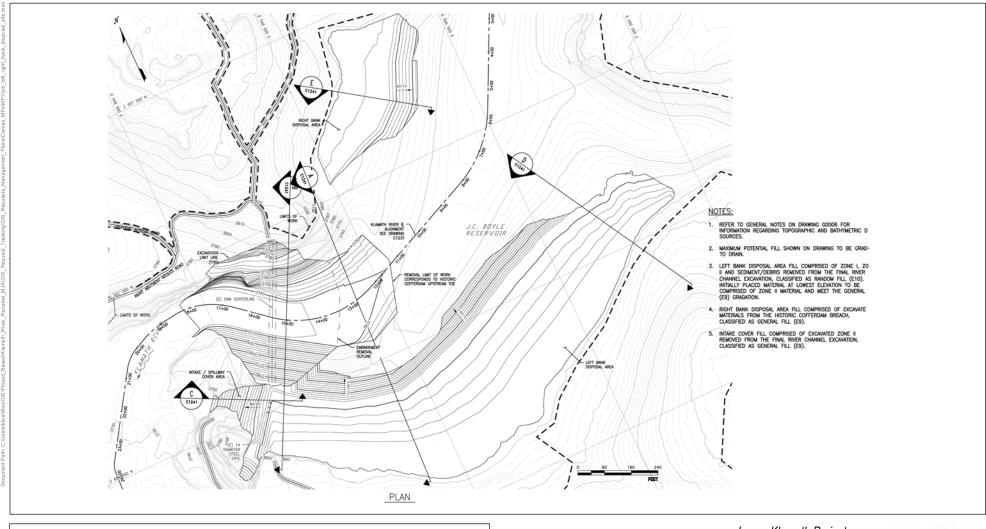

Lower Klamath Project

Figure A-5 J.C. Boyle Left and Right Bank Disposal Sites

October, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

<u>Notes</u>

Coordinate System: NAD83 HARN StatePlane California I FIPS 0401
Feet

2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

LIMITS OF WORK

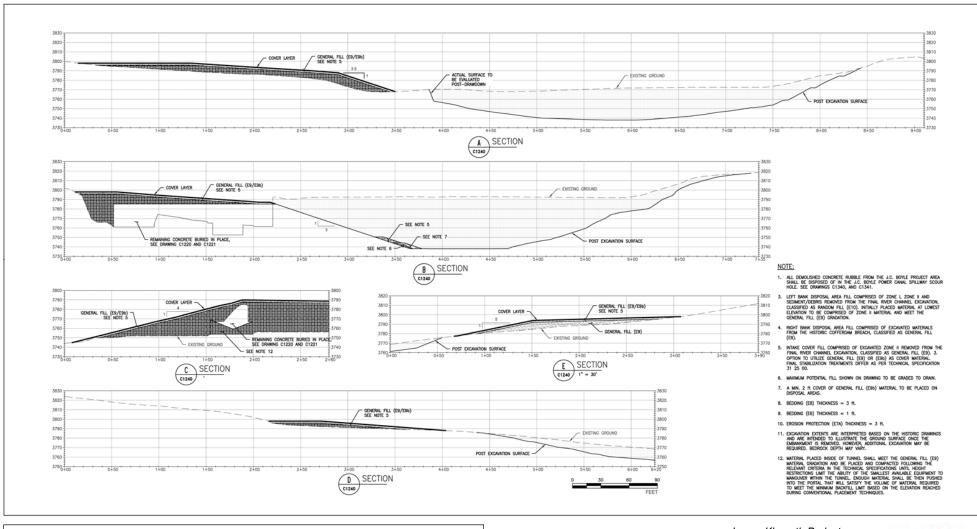

Lower Klamath Project

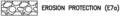
Figure A-6a: J.C. Boyle Right and Left Bank Disposal Sites -Plan

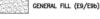
January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

<u>lotes</u>

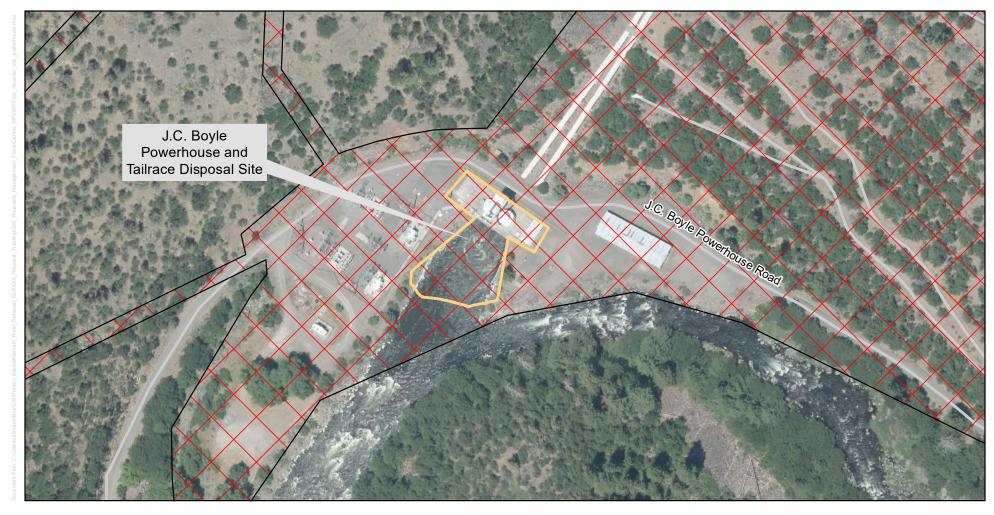
1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401

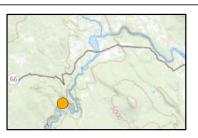

2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

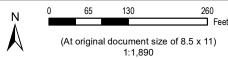

3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

LEGEND:

RANDOM FILL (E10)

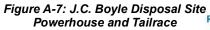

Lower Klamath Project


Figure A-6b: J.C. Boyle Right and Left Bank Disposal Sites -Profile



January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)


- 1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401
- 2. Data Sources: Disposal Sites, Limits of Work, Access Roads: Knight
- Piesold 100 design.

 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

Legend

Lower Klamath Project

October, 2021

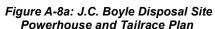
PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

Notes

 Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet

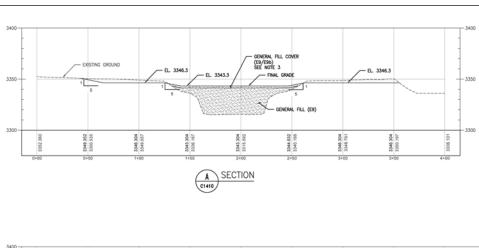
2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.

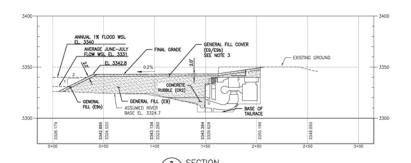
3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.


LEGEND:

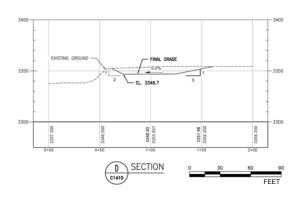
LIMITS OF WORK

ASPHALT


Lower Klamath Project



January, 2021


PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

EXISTING GROUND EL 3344.6 3346.791

C SECTION C1410

NOTES:

- THE INTENT OF THE POWERHOUSE TAILRACE AREA REGRADING, AFTER POWERHOUSE AND ANCILLARY REGRADING, AF IER POWERHOUSE AND ANCILLART FACILITIES DEMOLITION AND REMOVAL, IS TO FILL THE TAILRACE CHANNEL WITH ADJACENT PAD AREA EXCAVATE ALLUVAL MATERIALS. THE OBJECTIVE IS TO BALANCE THE CUT AND FILL VOLUMES.
- 2. DRAINAGE DETAILS INCLUDED ON DRAWING C1624.
- OPTION TO UTILIZE GENERAL FILL (E9) OR (E9b) AS COVER MATERIAL. FINAL STABILIZATION TREATMENTS DIFFER AS PER TECHNICAL SPECIFICATION 31 25 00.

- 1. Coordinate System: NAD83 HARN StatePlane California I FIPS 0401 Feet
- 2. Data Sources: Disposal sites: Knight Piesold 100 design; Access routes: Knight Piesold 100 design.
- 3. Background: National Geographic, Esri, Garmin, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.

CONCRETE RUBBLE (CR2)

Lower Klamath Project

Figure A-8b: J.C. Boyle Disposal Site Powerhouse and Tailrace Profile

January, 2021

PRELIMINARY DESIGN (NOT FOR CONSTRUCTION)

Lower Klamath Project – FERC No. 14803	
	Appendix B

J.C. Boyle Hazardous Waste Survey Report

Fax (916) 632-6812 www.entekgroup.com

HAZARDOUS MATERIALS SURVEY FINAL REPORT

CLIENT

NV5 48 Bellarmine Court, Ste. 40 Chico, CA 95928

CONTACT

Heidi Cummings, PG, QSD Senior Geologist

SURVEY ADDRESS

JC Boyle Development

BUILDINGS SURVEYED

Multiple Structures at JC Boyle Development Klamath River Renewal Project

PREPARED BY

Andy Roed
CAC #16-5695 & CDPH I/A 29001
Entek Consulting Group, Inc.
4200 Rocklin Road, Suite 7
Rocklin, CA 95677

Entek Project #20-5562

November 4, 2020

ASBESTOS LEAD MOLD INDOOR AIR QUALITY NOISE MONITORING TRAINING HEALTH AND SAFETY AUDITS

TABLE OF CONTENTS

Executive Summary	3
Introduction	4
Building Description	4
Asbestos Inspection and Sample Collection Protocols	7
Asbestos Bulk Sample Results	8
Asbestos Regulatory Requirements	12
Lead Inspection and Sampling	13
Lead Sampling Results	13
Lead Regulatory Compliance	15
Fluorescent Light Tubes and Polychlorinated Biphenyls (PCBs)	15
Thermostats With Mercury Switches	17
Freon and Fluorocarbons	17
Smoke Detectors Which May Contain a Radioactive Element	17
Limitations	17

Appendices

- A. Asbestos Related Documents
- B. Lead Related Documents
- C. Sample Location Maps
- D. Backup Documentation
- E. Historical Documents

Executive Summary

Entek Consulting Group, Inc. (Entek) was contracted to conduct a supplementary investigation for hazardous materials specific to areas at the JC Boyle Development as designated by NV5 and Kiewit Infrastructure West Co. (Kiewit) as part of the Klamath River Renewal Project. Based on documentation provided to Entek, AECOM Technical Services, Inc. (AECOM) conducted a hazardous materials survey in April of 2019. Entek utilized AECOM's survey and the sample results to minimize the number of samples and time required to complete the survey. This report combines AECOM's final report as well as Entek's supplemental sampling into one report. AECOM's report is also attached to this report for your records. The investigation included an assessment of the following:

- Asbestos Materials
- Lead in Paint, Coatings, Ceramic Products and other Construction Components
- Fluorescent Light Tubes
- Light Ballasts
- Polychlorinated Biphenyls (PCB)
- Mercury Containing Thermostats and Switches
- Smoke Detectors with Radioactive Americium 241
- Exit Signs with Radioactive Gas Tritium
- Freon

Entek did not specifically inspect for mercury containing fluorescent light tubes or light ballast which may contain polychlorinated biphenyls (PCBs), thermostats which may contain mercury switches, equipment or systems which may contain Freon or other fluorocarbons, or smoke detectors which may contain a radioactive element. However, information pertaining to these materials is included in this report for your use and reference, since these light systems are present on the project.

The purpose of the inspection was to comply with the US EPA NESHAP requirements and the California Air Resource Board which has jurisdiction for this project site to determine if asbestos containing materials are present which may be impacted during an upcoming demolition project.

The United States Environmental Protection Agency, National Emission Standards for Hazardous Air Pollutants (US EPA NESHAP), 40 CFR Part 61 - Nov. 20, 1990, requires an owner or operator of a demolition or renovation project to thoroughly inspect the affected facility or part of the facility where the demolition or renovation operation will occur for the presence of asbestos-containing materials (ACM) prior to the commencement of that project.

This inspection was requested by Ms. Heidi Cummings, Senior Geologist with NV5. The attached drawings show approximate sample locations. Materials are classified in the tables of this report as Regulated Asbestos Containing Material (RACM), Category I (CAT-I) or Category II (CAT-II) ACM, or Asbestos Containing Construction Material (ACCM). The report must be read in its entirety prior to making any interpretations, or conclusions pertaining to the information. Any conclusions made by the reader about the information provided in the body of this report which are contradictory or not included in

this report are the responsibility of the reader.

Introduction

This report presents results of a supplemental asbestos and lead survey performed by Entek which included the interior and exterior of select structures as outlined in the building descriptions below. These buildings are located at the JC Boyle Development. Fluorescent lights were observed at this project site; therefore, this report also includes references to regulations pertaining to handling practices and waste disposal of PCB light ballasts and mercury containing light tubes and thermostats which may be impacted during this project.

The inspection was conducted by Mr. Andy Roed and Mr. Richard Perrelli on September 17, 2020. Mr. Roed and Mr. Perrelli are Cal/OSHA Certified Asbestos Consultants (CAC) and State of California Department of Public Health (CDPH) certified Lead Inspector/Assessors.

This report was prepared for Ms. Heidi Cummings, Senior Geologist with NV5.

Building Description

The following structures were not accessible by Entek and/or AECOM during either survey. The company in parenthesis was unable to access the structure due to safety or instructed to not enter structure by the building owner.

- Residence 1(Entek)
- Residence 2 (Entek/AECOM)
- Structure above Stop log gates on metal support beams (Entek/AECOM)

Canal Headgate (JCCH)

The Canal Headgate is connected to the Intake Structure by a 14' steel pipeline.

Communication Building (JCCB)

The Communication Building is located south of the dam. It is an approximately 360 square feet paneled building with a slab-on-grade concrete foundation. The exterior siding and roofing consists of pre-fabricated steel. The interior consists of pre-fabricated metal wall siding and unfinished concrete flooring. The building contains a work station, electrical panels and two 32 units battery bank in secondary containment systems.

Emergency Spill Equipment Shed (JCES)

The Emergency Spill Equipment Shed is adjacent to the Powerhouse, is approximately 100 square feet, and is a single-story concrete slab on grade shed with engineered wood siding and asphaltic shingle roofing. The interior of the shed is unfinished wood. The structure is currently being used as storage for emergency spill purposes.

Fire Protection Building (JCFP)

The Fire Protection Building is located east of the diversion dam along the west bank of the reservoir. It is an approximately 600 square feet cinder block building with a slab-on-grade concrete floor and wooden ceiling. The structure houses water piping, compressed air tanks and electrical cabinets. The interior finishes consist of concrete flooring, CMU siding, and exposed metal ceiling.

Fish Ladder (JCFL)

The Fish Ladder is north of the Intake Structure. It is constructed of concrete.

Gate Control Center Building (JCGC)

The Fire Protection Building is located east of the diversion dam along the west bank of the reservoir. It is an approximately 600 square feet cinder block building with a slab-on-grade concrete floor and wooden ceiling. The structure houses water piping, compressed air tanks and electrical cabinets. The interior finishes consist of concrete flooring, CMU siding, and exposed metal ceiling.

Groundwater Pumphouse (JCGWPH)

The Groundwater Pumphouse is a prefabricated shed located southeast of the outdoor storage area. It is approximately 100 square feet. The exterior consists of metal siding and roofing. The interior of the building consists of unfinished wood throughout.

HazMat Shed and Above Ground Storage Tanks (JCHM)

The HazMat Shed and Above Ground Storage Tanks are located about 50 feet east of the Office and Warehouse building. The HazMat Shed is approximately 240 square feet. The HazMat Shed exterior consists of pre-fabricated metal siding with a slab-on-grade concrete foundation. The interior of the storage shed consists of unfinished metal siding and ceiling and unfinished concrete flooring. One each 500 gallon diesel and 1,000 gallon gasoline above ground storage tanks are located adjacent to the Hazardous Material Storage Shed. Both are double walled ASTs and are underneath a permanent "cover" and on top of concrete pads.

Intake Structure (JCIS)

The Intake Structure is located on the western side of the JC Boyle Reservoir. The south end of the structure includes a Fish Screen Building accessed by a wooden bridge. The perimeter of the Fish Screen Building is encircled by a wooden walkway above the reservoir to access metal fish screens. The exterior of the Fish Screen Building consists of corrugated metal siding and roofing. The interior of the Fish Screen Building consists of concrete flooring, walls, and ceiling. The JC Boyle Dam extends north of the Fish Screen Building, including stop log gates, metal grating walkways, electrical panels, and mules. The Fish Ladder extends west on the north end of the dam.

Office and Warehouse (JCOW)

The Office and Warehouse Building is approximately 1,800 square feet with a slab-on-grade concrete foundation. It resembles a "Red Barn" and is located approximately 300 feet west of the dam. The office portion contains a small kitchen with a sink and a restroom with water discharged to a septic tank. The maintenance warehouse portion is a large open area for typical repair and maintenance activities, the storage

maintenance equipment, tools and miscellaneous supplies, and has a side fenced storage area.

Outdoor Storage Area (JCBY)

The Outdoor Storage Area (also referred to as the boneyard) is located south of the Vehicle Storage Shed. Various items are scattered throughout the Outdoor Storage Area, including scrap metal and a decommissioned storage tank.

Penstocks (JCPS)

The Penstocks extend downhill from the surge tank, on the north side of the Powerhouse, and feed the turbines inside the Powerhouse.

Powerhouse (JCPH)

The Powerhouse is approximately 7,000 square feet and is a reinforced concrete structure and contains three levels; above ground, first lower level, and second lower level. The above ground level contains the upper portions of two vertical-shafts and Francis-type turbines contained in their own concrete vaults. A single 150-ton gantry crane was observed over the two turbines. The first lower level contained the lower portions of the turbines that were housed in concrete vaults, electrical panels, tanks, air compressors, oil, water and air piping, a small open office, and a restroom connected to an outdoor septic tank. The second lower level contained the piping, penstock intakes, and sump pumps. Exterior and interior wall, floor, and ceiling finishes consist of concrete and CMU that are primarily painted throughout.

Residence 1 (JCR1)

Residence 1 is approximately 2,000 square feet and is located east of the Vehicle Storage Shed. The building exterior consists of wood siding and asphaltic shingle roofing. The interior of the building contains bedrooms, bathrooms, a kitchen, a living room, and closets. The interior finishes include gypsum walls and ceilings, vinyl floor sheeting, and carpeting.

Residence 2 (JCR2)

Residence 2 is approximately 2,000 square feet and is located east of the Vehicle Storage Shed. The interior of the building was inaccessible during the inspection. The building exterior consists of wood siding and asphaltic shingle roofing.

Spillway Control Center Building (JCSW)

The Spillway Control Center Building is approximately 420 square feet and is located adjacent to the Spillway. The exterior consists of metal siding and roofing. The interior of the building was not accessed during the inspection due to the observable presence of bats.

Substation (JCST)

The Substation is located inside the Switchyard and was not accessed during the inspection due to safety considerations.

Switchyard (JCSW)

The Switchyard is approximately 23,000 square feet, is located west of the Powerhouse, and was not accessed during the inspection due to safety considerations. The Switchyard

contains electrical transformers, substations, transmission poles and lines within a fenced gravel area.

Timber Bridge (JCWB)

The Timber Bridge is approximately 1,600 square feet, and is located near the 14' diversion pipe, at the base of the Headgate.

Vehicle Storage Shed (JCVS)

The Vehicle Storage Shed is located east of the Office/Warehouse building and is approximately 4,400 square feet. The exterior of the building consists of metal siding and corrugated metal roofing. The interior finishes consist of unfinished metal framed walls and ceiling with batt insulation and unfinished concrete flooring.

Warehouse (JCWH)

The Warehouse is approximately 4,800 square feet. The exterior of the building consists of metal siding and corrugated metal roofing. The interior of the building consists of unfinished metal framed walls and ceiling with batt insulation and unfinished concrete flooring.

Asbestos Inspection and Sample Collection Protocols

Entek included all specific designated interior and exterior areas of the buildings included in this report. Entek did not use any demolition methods to look within enclosed wall or ceiling cavities during this investigation. Entek did include all suspect materials observed in, on, or associated with the areas included in this report.

Entek reviewed the report prepared by AECOM prior to and during the site inspection. Materials sampled by AECOM were not resampled as part of this assessment. Only new material or materials which were assumed to contain asbestos by AECOM were sampled where possible.

Bulk samples were collected of various materials suspected to contain asbestos by utilizing a power drill and coring tube, cutting the materials with a razor knife, or use of other appropriate hand tools.

Surfacing materials were collected in a statistically random manner representative of the associated homogenous area as required in 40 CFR Part 763, Asbestos-Containing Materials in Schools; Final Rule and Notice, published October 30, 1987.

Miscellaneous materials were collected from each homogenous area in a manner sufficient to determine whether the material is or is not ACM as required in 40 CFR Part 763, Asbestos-Containing Materials in Schools; Final Rule and Notice, published October 30, 1987.

Approximate locations of all samples collected during this inspection are indicated on the "Bulk Asbestos Material Analysis Request Form for Entek", which served as the chain of custody for the samples, and on the building diagram(s) attached to this report.

Asbestos Bulk Sample Results

There were several materials observed which are considered "suspect" under US EPA guidelines. Under current US EPA guidelines for conducting building inspections for ACM, all "suspect" materials must be assumed to contain asbestos until otherwise determined by laboratory testing.

The samples of materials suspected of containing asbestos were submitted to Asbestech, a laboratory located in Carmichael, California. These samples were subsequently analyzed by polarized light microscopy (PLM) with dispersion staining.

The US EPA NESHAP uses the terms Regulated Asbestos Containing Material (RACM), Category I, and Category II when identifying materials which contain asbestos in amounts greater than 1%. Cal/OSHA uses the term ACCM which indicates a manufactured construction material contains greater than 0.1% asbestos by weight by the PLM method. This definition can be found in Title 8, 1529.

Copies of Asbestech's laboratory reports and accreditations are attached.

Bulk samples were collected of all the materials considered to be "suspect", which had not been previously sampled, and were observed during this investigation. Some of those samples contained multiple layers which were individually analyzed to determine their asbestos content. Analysis of all samples collected was by PLM with dispersion staining. Results of the analysis for materials found to contain asbestos by both AECOM and Entek compiled in the table on the following pages

For all materials tested and found not to contain asbestos by Entek, refer to all laboratory results that are attached. In addition, the report by AECOM provides a list of materials with laboratory results of materials they collected, which include materials found to be positive and negative for asbestos.

Suspect Materials Found or Assumed TO Contain >1% Asbestos						
Sample ID#'s	Suspect Material	Location	NESHAP Category	Asbestos Content/Type (%) by PLM	Total Estimated Quantity	
		Communications Building (JCCB)				
JCCB-04	Tan Caulking	Base of Interior Wall/Concrete Interface	Cat. II	2% Chrysotile	78 Linear Feet	
	HazMat Shed and Fuel Shed (JCHM)					
JCHM-01	Asphaltic Concrete Crack Sealant	Asphalt Pad Associated with HazMat Shed and Above Ground Storage Tank	Cat. II	2% Chrysotile	20 Linear Feet	
JCHM-03	Off-White Caulking	On Above Ground Storage Tank Casing Pipe Threads and Penetrations	Cat. II	<1% Chrysotile (Confirmed by 1,000 Point Count)	4 Each (Penetrations)	
JCHM-06	Off-White Sealant	Ceiling/Roof Seams of HazMat Shed	Cat. II	45% Chrysotile	100 Linear Feet	
		Office Warehouse (JCOW)				
N/A	Silver Woven Electrical Wire Insulation	Throughout Office and Warehouse	Cat. II	Assumed to Contain Asbestos	Not Quantified	
Powerhouse (JCPH)						
N/A	Gaskets	Piping and Mechanical Equipment Throughout Powerhouse	Cat. II	Assumed to Contain Asbestos	Not Quantified	
JCPH-08	Gray Door Sealant	Entry into upper level of Powerhouse (Interior and Exterior of Door)	Cat. II	3-6% Chrysotile	32 Linear Feet	
N/A	Metal Clad Fire Doors	Doors Throughout Powerhouse	Cat. II	Assumed to Contain Asbestos	5 Each	

Suspect Materials Found or Assumed TO Contain >1% Asbestos						
Sample ID#'s	Suspect Material	Location	NESHAP Category	Asbestos Content/Type (%) by PLM	Total Estimated Quantity	
N/A	Wicket Gates	Associated with Turbines	Cat. II	Assumed to Contain Asbestos	2 Each	
		Warehouse (JCWH)				
JCWH-01	Black Asphaltic Slip Sheet with Cementitious Material	Exterior Interface between metal Siding and Concrete Foundation	Cat. II	10-14% Chrysotile	200 Linear Feet	
JCWH-05	Tan Brittle Caulking	Metal Seems around roll-up door	Cat. II	4% Chrysotile	330 Square Feet	
	Residence 1 (JCR2)					
N/A	Ceiling Texture	Ceiling Throughout	N/A	<1% Chrysotile (Confirmed by 1,000 Point Count)	2,000 Square Feet	
Residence 2 (JCR2) This Structure was not accessible by Entek or AECOM. The materials listed below are provided as an estimate of what materials may be present as requested by the client. It is recommended that a survey of the structure be completed prior to asbestos abatement activities. More of less materials may be actually present.						
N/A	Asphaltic Roofing and Associated Felt Paper	Roof Throughout	Cat. II	Assumed to Contain Asbestos	2,000 Square Feet	
N/A	Felt Paper Behind Wood Siding	Siding Throughout	Cat. II	Assumed to Contain Asbestos	1,500 Square Feet	
N/A	Drywall And Joint Compound	Interior Walls and Ceiling Throughout	Cat. II	Assumed to Contain Asbestos	4,500 Square Feet	
N/A	Wall and Ceiling Texture	Interior Walls and Ceiling Throughout	RACM	Assumed to Contain Asbestos	4,500 Square Feet	

Suspect Materials Found or Assumed TO Contain >1% Asbestos						
Sample ID#'s	Suspect Material	Location	NESHAP Category	Asbestos Content/Type (%) by PLM	Total Estimated Quantity	
N/A	Vinyl Sheet Flooring and Mastic	Throughout Floor of Structure	Cat. II	Assumed to Contain Asbestos	2,000 Square Feet	
	Throughout JC Boyle Development					
N/A	Transite Piping	Assumed to be present underground throughout the JC Boyle Development	Cat. II	Assumed To Contain Asbestos	Unable to Quantify	

NOTE: Any CAT-I or CAT-II materials identified in the previous tables which will be subjected to mechanical removal, must be considered RACM for the purposes of notification to US EPA Region IX, CARB, or Local AQMD and classification of waste. Removal of any CAT-I or CAT-II materials prior to demolition of a building is dependent upon how the materials will be impacted and if the impact will cause the materials to become friable. If any remaining CAT-I or CAT-II materials will become friable they must be removed prior to the initiation of demolition.

NOTE: Cal/OSHA regulates all materials containing greater than 0.1% asbestos. As a result, impact to materials identified as ACCM and ACM must be performed by properly asbestos trained personnel utilizing appropriate personal protection, work practices, as well as, properly constructed and demarcated work areas or containments, in accordance with Cal/OSHA asbestos regulations.

The tables above provide an estimate of the amount of materials in square feet or linear feet. Contractors are responsible for quantifying the exact quantity of materials impacted by the renovation or demolition and shall not rely on the quantities in the above tables.

US EPA AHERA uses three terms when determining the classification of a material for the purpose of sampling. These terms include miscellaneous, surfacing, and thermal system insulation (TSI).

<u>Miscellaneous materials</u> are building materials on structural components, structural members or fixtures, such as floor and ceiling tiles, and do not include surfacing material or TSI.

<u>Surfacing materials</u> are materials that are sprayed-on, troweled-on, or otherwise applied to surfaces, such as acoustical plaster on ceiling and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, or other purposes.

<u>TSI</u> is material applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain, water condensation, or for other purposes.

The information provided in the tables of this report are for use by the Owner in determining where asbestos containing materials are located, and whether or not any future work may impact those materials. The information is also provided for use by any contractor who may perform work in areas impacting the materials listed in this report, and for use as appropriate by asbestos abatement contractors to provide costs related to work impacting ACM.

Any building materials which are considered "suspect" for containing asbestos which have not been identified in this report must be assumed to contain asbestos in amounts >1% until properly investigated and/or tested.

Materials commonly excluded from being suspected for containing asbestos include, but are not limited to: unwrapped pink and yellow fiberglass insulating materials or products, foam insulation, wood, metal, plastic, or glass. All other types of building materials or coatings on the materials listed above are commonly listed as "suspect" and must be tested prior to impact by a Contractor. Work impacting these untested or newly discovered materials must cease until an investigation can be completed.

Asbestos Regulatory Requirements

<u>US EPA</u>

A demolition is the wrecking, taking out, or burning of any load supporting structural member. A renovation is everything else. 10 day written notification to the US EPA Region IX, CARB or local AQMD is required prior to the performance of any demolition project regardless of asbestos being present or not. This notification would also apply to any renovation project which involves the wrecking, taking out, or burning of any load bearing structural member during a renovation as well.

There is a sufficient amount of ACM present to require a 10 day notification to the US EPA Region IX, CARB or local AQMD be submitted prior to starting work which will impact

materials identified as RACM or CAT-I and CAT-II materials if they are made friable. If more than 160 square feet, 260 linear feet or 35 cubic feet of RACM is planned for removal on the project, formal written notification to US EPA Region IX, CARB or local AQMD is required.

Oregon OSHA

Disturbance of any ACM or ACCM could generate airborne asbestos fibers and would be regulated by Oregon OSHA. Oregon OSHA worker health and safety regulations apply during any disturbance of ACM or ACCM by a person while in the employ of another. This is true regardless of friability or quantity disturbed. The contractor shall comply with all Oregon OSHA regulations and notification requirements prior to the disturbance of the material.

Lead Inspection and Sampling

An X-ray fluorescence (XRF) Spectrum Analyzer was used during the lead inspection portion of this survey as a screening tool in determining if lead is present in quantities which would require existing paints and/or coatings to be classified as Lead-Based Paint (LBP).

In XRF spectroscopy, the process begins by exposing the sample in question to a source of x-rays or gamma rays. As these high energy photons strike the sample, they tend to knock electrons out of their orbits around the nuclei of the atoms that make up the sample. When this occurs, an electron from an outer orbit, or "shell", of the atom will fall into the shell of the missing electron. Since outer shell electrons are more energetic than inner shell electrons, the relocated electron has an excess of energy that is expended as an XRF photon. This fluorescence is unique to the composition of the sample. The detector collects this spectrum and converts them to electrical impulses that are proportional to the energies of the various x-rays in the sample's spectrum. Since each element has a different and identifiable x-ray signature, we can look at specific parts of the emitted spectrum, and by counting the pulses in the sector, determine the presence and concentration of the element(s) in question within the sample. Entek used a Niton XRF spectrum analyzer which is specific to measuring only lead in the building substrate.

Lead Sampling Results

XRF Spectrum Analyzer testing indicated lead was present in concentrations >1.0 mg/cm² on various building components. XRF direct reading technology is not capable of determining lead concentrations below 1.0 mg/cm². The limit of detection for this device with a 95% confidence level is 1.0 mg/cm². As a result, any reading provided by the XRF technology does not provide adequate information to determine the actual content of lead in the paint/coating being tested. Any XRF reading less than 1.0 mg/cm² (including readings of 0.00) only indicate lead is not present at levels high enough to classify the paint/coating as LBP. Coatings or materials which resulted in a lead concentration of below 1.0 mg/cm² were then sampled and analyzed by atomic absorption spectrometry (AAS) for lead content. Results of the XRF analysis and laboratory analysis are included in the tables below. Coating which reported concentrations below the laboratories detection limit are included in the laboratory results attached to this report.

Paints/Coatings/ Materials Determined to Contain Lead				
Paint/Coating Color or Material	Lead Content	Component/Location	LBP/ LCP	
	Са	nal Headgate (JCCH)		
Tan/Silver/orange Paint	350,000 ppm	Diversion Piping	LBP	
	Commu	nications Building (JCCB)		
Tan Paint	140 ppm	Exterior Metal Trim	LCP	
	Fire Pr	otection Building (JCFP)		
Red Paint	56 ppm	Metal Piping Throughout Structure	LCP	
	Н	azMat Shed (JCHM)		
Tan Paint	290,000 ppm	Throughout Exterior Siding of Small Shed Next To HazMat Storage Shed	LBP	
Silver/Orange Paint	220,000 ppm	Roof of Small Shed Next To HazMat Storage Shed	LBP	
Red Paint	560 ppm	Interior Structural Steel of HazMat Shed	LCP	
	Int	ake Structure (JCIS)		
Gray Paint on Brown Paint	19,000 ppm	Metal Handrails on Fish Ladder bridge	LBP	
Tan Paint	490 ppm	Throughout exterior metal siding of reservoir level gauge house	LCP	
Gray Paint	740 ppm	Exterior Underhang of Fish Screen House	LCP	
White Paint	120 ppm	Concrete Interior Walls of Fish Screen Building	LCP	
Green/Silver Paint	12,000 ppm	Interior Piping of Fish Screen Building	LBP	
Gray Paint	68 ppm	Metal Interior Mechanical Fish Screen Building on Traveling Water Screens	LCP	
Silver/Orange Paint	57,000 ppm	Metal Intake Structure Supports	LBP	
Silver Paint	74,000 ppm	Metal Screen on Exterior of Fish Screen Building	LBP	
	Outdo	oor Storage Area (JCBY)		
Silver Paint	15,000 ppm	Out of Commission tank in Outdoor Storage Area	LBP	
		Penstock (JCPS)		
Tan on Orange Paint	97,000 ppm	Metal Penstock Piping	LBP	
	F	Powerhouse (JCPH)		
White Paint	680 ppm	CMU Walls Throughout	LCP	
Gray Paint	180 ppm	Concrete Floor of Powerhouse	LCP	
White Paint	360 ppm	Concrete Walls of Powerhouse	LCP	
Orange Paint	100,000 ppm	Handrails throughout Powerhouse	LBP	
Silver Paint	21,000 ppm	Exterior Track on top of powerhouse	LBP	
Silver Paint	3.6 mg/cm ²	Metal Crane Structure	LBP	

Paints/Coatings/ Materials Determined to Contain Lead				
Paint/Coating Color or Material	Lead Content	Component/Location	LBP/ LCP	
Spillway (JCSW)				
Beige Paint	2,200	Concrete Spillway Canal Walls	LCP	
	Vehicle Storage Shed (JCVS)			
Yellow Paint	150 ppm	Concrete Bollards	LCP	
Warehouse (JCWH)				
Red Paint	15,000 ppm	Metal Interior Structural Support Beams	LBP	

LBP - Materials/coatings/paints meeting the definition of lead-based paint as defined by the CDPH and the US EPA, currently defined as containing lead in concentrations equal to or greater than 1.0 mg/cm², 5,000 ppm, or 0.5% by weight.

LCP - Materials/coatings/paints which contain measurable amounts of lead. The disturbance of these materials/coatings/paints is regulated by Cal/OSHA.

Lead Regulatory Compliance

Any upcoming project which may result in the disturbance of lead containing products or surfaces, but is not intended to remediate a lead hazard or specifically designed to remove LBP to reduce or eliminate a known hazard, would be considered "lead related construction work".

Lead related construction work means any "construction, alteration, painting, demolition, salvage, renovation, repair, or maintenance of any residential or public building, including preparation and cleanup that, by using or disturbing lead-containing material or soil, may result in significant exposure of adults or children to lead".

Currently, Oregon OSHA has not established a definition for LBP, nor have they established minimum concentrations where their regulations do not apply. Oregon OSHA regulates all construction activities involving materials containing lead, including LBP.

Oregon OSHA has not established a concentration of lead in a product where their regulations do not apply, therefore, any disturbance to products containing lead come under the jurisdiction of Oregon OSHA and their regulations. Disturbance of paints/coatings or materials determined to be LBP may trigger a pre-work notification to Oregon OSHA if "trigger tasks" disturb 100 square feet or more of those paints/coatings or materials.

Fluorescent Light Tubes and Polychlorinated Biphenyls (PCBs)

Fluorescent light tubes which contain mercury are considered a universal waste and must be packaged and recycled appropriately if they are removed from a building and not used again. The regulation, called the Universal Waste Rule, is in the California Code of Regulations (CCR), Title 22, Division 4.5, Chapter 23.

Fluorescent light tubes are the bulb or tube portion of an electric lighting device and are

commonly referred to as "lamps". Examples of other common electric lamps considered to be universal wastes include, but are not limited to, high intensity discharge, neon, mercury vapor, high pressure sodium, and metal halide lamps. Any lamp which is not spent and has been designated to be reused is not classified as a waste and does not meet the requirements of a hazardous waste or a universal waste.

Spent lamps typically contain concentrations of mercury exceeding the established Total Threshold Limit Concentration (TTLC) and/or the Soluble Threshold Limit Concentration (STLC) values. Therefore, these lamps must be sent to an authorized recycle facility or to a universal waste consolidator for shipment to an authorized recycling facility.

At a minimum, if removed lamps will not be reused they must be packaged in boxes/packages/containers which are structurally sound, adequate to prevent breakage, and compatible with the content of the lamps. These packages must remain closed and be free of damage which could cause leakage under reasonably foreseeable conditions. Each container must be labeled or marked clearly with one of the following phrases: "Universal Waste Lamp(s)," or "Used Lamp(s)." Entek recommends shipping any lamp not designated for reuse to a universal waste recycling facility once they have been packaged.

PCB containing light ballasts are considered a hazardous waste, and must be properly manifested for transport to a hazardous waste facility. Any contractor who may perform PCB related work (inspection, removal, clean-up) must be trained and qualified to do so. All workers must also follow current OSHA regulations including 29 CFR 1910.120 and 8 CCR 5192, as well as, other applicable federal, state, and local laws, and regulations. While light ballasts marked "No PCB" are not considered a hazardous waste, they are considered a universal waste. As a result, removal, packaging, and disposal/recycling of these types of ballasts must be conducted in accordance with current regulations of Title 22.

Entek and AECOM made an effort to assist in quantifying select materials throughout the structure. The below quantities are estimates based on observations during the assessment. It shall be the contractor responsibility to verify the total quantities present.

Universal Waste Inventory		
Other Regulated Building Material Description	Approximate Quantity	
Mercury-Containing fluorescent light tubes (4' length)	68	
Mercury-Containing fluorescent light tubes (6' length)	10	
Mercury-Containing fluorescent light tubes (8' length)	8	
Magnetic light ballasts	50	
HID Lamps	39	
Mercury-containing switches, controls, and recorders	None Observed	

PCB Caulking Results		
Material Description Material Location Sample Result (mg/kg)		
Flexible Gray Expansion Joint Sealant	Powerhouse Roof at Expansion Joints	<0.82

Thermostats with Mercury Switches

It is possible existing thermostats may utilize switches containing mercury. The mercury in these switches would be considered a hazardous waste if removed and disposed. Any work requiring removal of thermostats containing mercury switches, must include having the switches inspected for the presence of mercury, and subsequently following all requirements for packaging and disposal of any switch found to contain mercury.

Freon and Fluorocarbons

Freon and other fluorocarbon products associated with HVAC systems, refrigerators, etc. may be present in or on the exterior of the buildings included in this investigation. Prior to demolition of a structure or removal of existing HVAC systems, refrigerators, or any other type of equipment which typically uses these types of coolant products shall have the coolant materials investigated prior to their demolition and removed from the mechanical systems and recycled in accordance with EPA requirements.

Smoke Detectors Which May Contain a Radioactive Element

It is possible existing smoke detectors may contain a radioactive element. These types of detectors are easily identified by reviewing the label which is usually found on the back of the detector. Older units may display the international radiation symbol (three bladed propeller) and the radioactive content. Newer units state the radioactive content and their Nuclear Regulatory Agency (NRC) license number.

Any work requiring the removal of smoke detectors with a radioactive element must include contacting the manufacturer of the smoke detector to determine their return policies.

Limitations

Entek inspected only the specific designated areas identified by the Owner to be included in the upcoming project. Select structures as outlined in the building description portion of this report were not assessed due to either safety concerns or at the request of the building owner. As a result the information provided in this inspection report may not be used to extend the inspection results to areas not included in this report without additional review and sampling as necessary.

Entek did not perform any destructive sampling to look into ceiling and wall cavities. As a result, it may be possible for materials to be hidden in these areas which are not included in this report. Entek also did not employ any destructive measures on floors of interior spaces or exterior areas covered with asphalt, concrete, or dirt.

If any new materials not listed as having been sampled, or listed as assumed for containing asbestos in this report are discovered, the new material must be assumed to contain asbestos until properly inspected and tested for asbestos content.

Entek's policy is to retain a full copy of these written documents for three (3) years once the file is closed. At the end of the 3 year period the written files will be destroyed without further notice. It is suggested copies of the file(s) are maintained as per your policy.

Entek will be providing only this electronic copy of the report and its attachments for your use. However, if you would like a hard copy of this report please do not hesitate to ask. Entek will be happy to mail the report upon receipt of your request.

Thank you for choosing Entek for your environmental needs. Please call me at (916) 632-6800 if you have any questions regarding this report.

Prepared by:

Andy Roed, CIH, CSP, CAC

President

Cal/OSHA CAC #16-5695

CDPH I/A Certification #29001

Appendices

- A. Asbestos Related Documents
- B. Lead Related Documents
- C. Sample Location Maps
- D. Backup Documentation
- E. Historical Documents

APPENDIX A ASBESTOS RELATED DOCUMENTS

- Bulk Asbestos Analysis Report From Asbestech
- Bulk Asbestos Material Analysis Request Form for Entek

Client:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

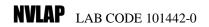
Job: 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67972 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20


Sample No. Color/Description % Type Asbestos Other Materials

ECG-20-5562-JCWH-

01A Gray concrete stem wall near door NONE DETECTED Granular Mins.

O2A Gray concrete foundation of bldg. NONE DETECTED Granular Mins.

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Jangle

LAB DIRECTOR: TOM CONLON ANALYST: JIM J

Client: Job:

Entek Consulting Group, Inc.

4200 Rocklin Rd., Suite 7

Rocklin, CA 95677

20-5562 NV5

JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67978 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562- 01A	JCVS- Black asphalt sealant, perimeter of vehicle shed	NONE DETECTED	Tar Binder Calcite
02A	Gray concrete, foundation of bldg.	NONE DETECTED	Granular Mins.
03A	White caulking, base of roll-up doors	NONE DETECTED	Synthetics

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES

Client: Job:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT


LAB JOB # 67977 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562	-JCPS-		
01A	Gray concrete on overflow spillway	NONE DETECTED	Granular Mins.
02A	Black rubber gasket on concrete overflow spillway near canal headgate	NONE DETECTED	Rubber
03A	Black rubber gasket at penstock piping	NONE DETECTED	Calcite Opaques
04A	Gray concrete at base of metal supports for penstock	NONE DETECTED	Granular Mins.
05A	Gray concrete on support structure of penstock	NONE DETECTED	Granular Mins.

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES

LAB DIRECTOR: TOM CONLON ANALYST: JIM JUNG

Client: Job:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT


LAB JOB # 67976 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562-J0	CPH- Black asphaltic roofing, emergency	NONE DETECTED	Tar Binder
UIA	spill shed	NONE DETECTED	Fibrous Glass
02A	Gray concrete, foundation of emergency spill shed	NONE DETECTED	Granular Mins.
03A	Black vibration cloth on crane tracks	NONE DETECTED	Opaques
04A	Black asphaltic roofing, pump house roof near powerhouse	NONE DETECTED	Tar Binder Fibrous Glass
	Black felt paper	NONE DETECTED	Tar Binder Cellulose

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Jangles

Client: Job:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67973 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562-J0	COW- Gray concrete foundation	NONE DETECTED	Granular Mins.
	Black asphaltic sealant	NONE DETECTED	Tar Binder
02A	Gray brittle caulking at base of metal siding	NONE DETECTED	Granular Mins.
03A	Black asphalt, parking area	NONE DETECTED	Granular Mins. Tar Binder

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES

Gem Gangle

LAB DIRECTOR: TOM CONLON ANALYST:

Client:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

Job: 20-5562 NV5 JC Boyle

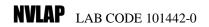
BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67974 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No. Color/Description % Type Asbestos Other Materials


ECG-20-5562-JCIS-

01A Red gasket on piping of intake structure NONE DETECTED Calcite Cellulose

O2A Green gasket on piping of intake structure NONE DETECTED Granular Mins.

Cellulose

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Jangles

LAB DIRECTOR: TOM CONLON ANALYS

Client:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

Job: 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67980 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562-	-JCHM-		
01A	Gray concrete, foundation of fuel tank	NONE DETECTED	Granular Mins.
02A	Gray concrete, foundation of hazmat	NONE DETECTED	Granular Mins.
	storage shed		
03A	Black asphalt road near hazmat shed	NONE DETECTED	Granular Mins.
			Tar Binder

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Gangle

LAB DIRECTOR: TOM CONLON AN.

Client:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

Job: 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67971 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562-	-JCHG-		
01A	Gray CMU, canal headgate exterior	NONE DETECTED	Granular Mins.
	Gray grout	NONE DETECTED	Granular Mins.
02A	Gray CMU, canal headgate exterior	NONE DETECTED	Granular Mins.
	Gray grout	NONE DETECTED	Granular Mins.
03A	Gray CMU, canal headgate exterior	NONE DETECTED	Granular Mins.
	Gray grout	NONE DETECTED	Granular Mins.

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES

LAB DIRECTOR: TOM CONLON

Client:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677

Job: 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67989 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No. Color/Description % Type Asbestos Other Materials

ECG-20-5562-JCGWPH-

01A Gray concrete foundation of NONE DETECTED Granular Mins.

groundwater pump house

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS

TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Jangle

LAB DIRECTOR: TOM CONLON ANALYST: JIM JUN

Client: Job:

Entek Consulting Group, Inc. 4200 Rocklin Rd., Suite 7 Rocklin, CA 95677 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67981 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562-J	CED		
01A	Gray CMU, exterior of structure	NONE DETECTED	Granular Mins.
	Gray grout	NONE DETECTED	Granular Mins.
02A	Gray concrete, foundation of structure	NONE DETECTED	Granular Mins.
03A	Gray concrete patch , pipe penetration	NONE DETECTED	Granular Mins.
04A	Gray concrete block for anchoring near water	NONE DETECTED	Granular Mins.
05A	Green foam insulation , pipe penetration	NONE DETECTED	Synthetics
06A	Red gaskets, pipe connections in bldg.	NONE DETECTED	Calcite Opaques
07A	Black gaskets, pipe connections in bldg.	NONE DETECTED	Rubber Synthetics

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Gangles

Client:
Entek Consulting Group, Inc.

Brown felt

4200 Rocklin Rd., Suite 7 Rocklin, CA 95677 **Job:** 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67979 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

 Sample No.
 Color/Description
 % Type Asbestos
 Other Materials

 ECG-20-5562-JCFL-01A
 Gray concrete , fish ladder wall
 NONE DETECTED
 Granular Mins.

 02A
 Gray concrete , fish ladder
 NONE DETECTED
 Granular Mins.

NONE DETECTED

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Jangle

Cellulose

LAB DIRECTOR: TOM CONLON

Client:
Entek Consulting Group, Inc.

4200 Rocklin Rd., Suite 7 Rocklin, CA 95677 Job: 20-5562 NV5 JC Boyle

BULK ASBESTOS ANALYSIS REPORT

LAB JOB # 67975 NVLAP Lab Code 101442-0

Date/Time Collected: 9/22/20 CDPH # 1153

Date Received: 10/16/20 Date Analyzed: 10/17/20

Sample No.	Color/Description	% Type Asbestos	Other Materials
ECG-20-5562- 01A	JCCB- Gray concrete, foundation of bldg.	NONE DETECTED	Granular Mins.
02A	Gray paper fibrous material at seams of metal siding	NONE DETECTED	Calcite Opaques
03A	Clear sealant, bolt hole penetrations	NONE DETECTED	Synthetics

THE ANALYSIS USES POLARIZED LIGHT MICROSCOPY AND DISPERSION STAINING FOLLOWING E.P.A. METHOD 600/R-93/116. NON-FRIABLE MATERIALS WERE ANALYZED APPLYING THE SAME METHOD. THE LOWER DETECTION LIMIT IS <1 % WITH THE PROVISO THAT PLM MAY NOT DETECT FIBERS <0.25 MICRONS IN DIAMETER THAT MAY BE PRESENT IN SAMPLES SUCH AS FLOOR TILES. IN ACCORDANCE WITH TITLE 22, CCR, SECTION 66261.24(a)(2)(A), THE MCL IS 1 %. SAMPLES WERE NOT COLLECTED BY ASBESTECH. THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF ASBESTECH. THIS REPORT RELATES ONLY TO THE ITEMS TESTED. THIS REPORT MUST NOT BE USED TO CLAIM PRODUCT ENDORSEMENT BY N.V.L.A.P. OR ANY AGENCY OF THE U.S. GOVERNMENT. ASBESTECH ACCEPTS TECHNICAL RESPONSIBILITY FOR THIS REPORT AND DATE OF ISSUE.

ANALYST: JIM JUNGLES Jem Gangle

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

Date: 10 / 20 /20 Time: 5 pm

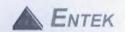
ANALYSIS REQUESTED: Asbestos by PLM

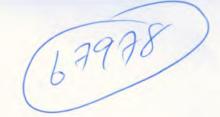
with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION	LOCATION
ECG-20-5562-JCWH-01A	Concrete / Stem Wall Near Door	+
ECG-20-5562-JCWH-02A	Concrete / Foundation of Building	


C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCWH\Bulk Request 10-14-2020.wpd


Delivered by:

Date: 10 1 4 120 Time: 4 AMPM

Date: 10 1 /61 20 Time: 9 AM/PM

Page 1 of 1

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining


Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE #	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCVS-01A	Black Asphalt Sealant / Perimeter of Vehicle Shed	
ECG-20-5562-JCVS-02A	Concrete / Foundation of Building	
FCG-20-5562-JCVS-03A	White Caulking / Base of Roll-up Doors	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCVS\Bulk Request 10-14-2020.wpd

Date: 10 114 120 Time: AM/PM Delivered by: Date: 10 1/6120 Time: AM/PM Received by:

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCPS-01A	Concrete on Overflow Spillway	
ECG-20-5562-JCPS-02A	Black Runbber Gasket on Concrete Overflow Spillway near canal headgate	
ECG-20-5562-JCPS-03A	Red Rubber gasket at Penstock piping	
ECG-20-5562-JCPS-04A	Concrete at Base of metal Supports for Penstock	
FCG-20-5562-JCPS-05A	Concrete on Support Structure of Penstock	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCPS\Bulk Request 10-14-2020.wpd

Delivered by:

Date: 10 1/4 1 20 Time:

AMARM

Received by:

Date: 10 1/6 120 Time:

AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

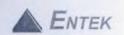
Date: 10 / 20 /20 Time: 5 pm

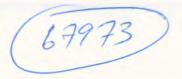
ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.


SAMPLE #	SAMPLE # MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCPH-01A	Asphaltic Roofing / Emergency Spill Shed	
ECG-20-5562-JCPH-02A	Concrete / Foundation of Emergency Spill Shed	
ECG-20-5562-JCPH-03A	Black Vibration Cloth on Crane Tracks	
ECG-20-5562-JCPH-04A	Black Asphaltic Roofing with Felt Paper / Pump House Roof Near Powerhouse	


C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCPH\Bulk Request 10-14-2020 wpd

Delivered by:

Date: 10 1/4 40 Time: 4 AM/PM

Date: 10 1/6120 Time: 9 AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Offerit Harrie. 1445

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

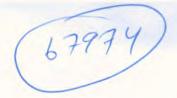
with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCOW-01A	Concrete Foundation with Asphaltic Sealant	
ECG-20-5562-JCOW-02A	Gray Brittle Caulking at Base of Metal Siding	
FCG-20-5562-JCOW-03A	Asphalt / Parking Area	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCOW\Bulk Request 10-14-2020.wpd


Delivered by:

Date: 10 1/4/20 Time: 4 AM/PM

Date: 10 1/6/20 Time: 9 AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

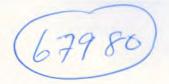
Collected by: Andy Roed

Turnaround Time: Day: Tuesday Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.


Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCIS-01A	Red Gasket on Piping of Intake Structure	
ECG-20-5562-JCIS-02A	Green Gasket on Piping of Intake Structure	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\UCB\COCs\JCIS\Bulk Request 10-14-2020.wpd

Date: 10 119120 Time: AM/RM Delivered by: Date: 10 1/6 120 Time: AM/PM Received by:

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCHM-01A	Concrete / Foundation of Fuel Tank	
ECG-20-5562-JCHM-02A	Concrete / Foundation of Hazmat Storage Shed	
FCG-20-5562-JCHM-03A	Asphalt / Road Base Near Hazmat Shed	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCHM\Buik Request 10-14-2020.wpd

Date: 10 1/4 120 Time: AM/RM Delivered by: Date: 10 1/6 120 Time: AM/PM Received by:

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Asbestech Lab:

Collected by: Andy Roed

Turnaround Time: Day: Tuesday Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCHG-01A	CMU and Grout / Canal Headgate Exterior	
ECG-20-5562-JCHG-02A	CMU and Grout / Canal Headgate Exterior	
ECG-20-5562-JCHG-03A	CMU and Grout / Canal Headgate Exterior	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCHG\Bulk Request 10-14-2020.wpd

Date: 10 1/412 Time: Delivered by: AMAM Date: 10 16 120 Time: Received by:

Page 1 of 1

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday
Date: 10 / 20 / 20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCGWPH-01A	Concrete Foundation of Groundwater Pump House	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Dociments\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCGWPH\Bulk Request 10-14-2020.wpd

Delivered by:

Date: 10 1/4/20 Time: 4 AM/PM

Received by:

Date: 10 1/6/20 Time: 9 AM/PM

Page 1 of 1

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday

Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-JCFP-01A	CMU and Grout / Exterior of Structure
ECG-20-5562-JCFP-02A	Concrete / Foundation of Structure
ECG-20-5562-JCFP-03A	Concrete Patch / Pipe Penetration
ECG-20-5562-JCFP-04A	Concrete / Block for Anchoring Near Water
ECG-20-5562-JCFP-05A	Green Foam Insulation / Pipe Penetration
ECG-20-5562-JCFP-06A	Red Gaskets / Pipe Connections in Building
ECG-20-5562-JCFP-07A	Black Gaskets / Pipe Connections in Building

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCFP\Bulk Request 10-14-2020 wpd

10-14-2020,wpd

Delivered by:

Date: 10 1/4/20 Time: 4 AM/PM

Date: 10 1/6/20 Time: 9 AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

August State Company

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday
Date: 10 / 20 / 20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCEB-01A	Concrete / Fish Ladder Wall	
ECG-20-5562-JCGB-02A	Concrete / Fish Ladder	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCFL\Bulk Request 10-14-2020.wpd

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 09-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Asbestech

Collected by: Andy Roed

Turnaround Time: Day: Tuesday
Date: 10 / 20 /20 Time: 5 pm

ANALYSIS REQUESTED: Asbestos by PLM

with Dispersion Staining

Special Instruction: Stop Analysis upon first positive result (>1%) for sample in a series. Also stop analysis upon first positive result (>1%) in the joint compound for sample series.

Please e-mail results at mainoffice@entekgroup.com as soon as available and include copy of submittal with those results.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCCB-01A	Concrete / Foundation Of Building	
ECG-20-5562-JCCB-02A	Gray Paper/Fibrous Material / At Seams of Metal Siding	
FCG-20-5562-JCCB-03A	Sealant / Bolt Hole Penetrations	

C:\Users\selbert\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\JCB\COCs\JCCB\Bulk Request 10-14-2020.wpd

Date: 10 114 1 20 Time: Delivered by: AM/PM Date: 101/6120 Time: Received by: AMPM

APPENDIX B LEAD RELATED DOCUMENTS

- Lead in Paint Samples Analysis Report From EMLAB
- Bulk Lead Material Analysis Request Form for Entek
- XRF Data

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562, NV5; JC Boyle

EMĹ ID: 2505172

Approved by:

Undew Heda

Technical Manager Andrew Ikeda Dates of Analysis: Lead - Flame AA: 10-20-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group

Date of Sampling: 09-22-2020

C/O: Andy Roed

Re: 20-5562, NV5; JC Boyle

Date of Receipt: 10-19-2020

Date of Report: 10-26-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-JCPH-01Pb: Gray Paint on Exterior Wooding Siding of Spill Shed	ECG-20-5562-JCPH-02Pb: Brown Paint on Exterior Wooding Siding of Pump House
Comments (see below)	None	None
Lab ID-Version‡:	11935353-1	11935354-1
Analysis Date:	10/20/2020	10/20/2020
Sample type	Paint Chip sample	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	65 ppm	96 ppm
Sample size	0.1531 grams	0.1045 grams
§Total Lead Result	< 65 ppm	< 96 ppm

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

^{*}Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562, NV5; JC Boyle

EML ID: 2502976

Approved by:

Technical Manager Andrew Ikeda

Indus Heda

Dates of Analysis:

Lead - Flame AA: 10-15-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group C/O: Andy Roed

Re: 20-5562, NV5; JC Boyle

Date of Sampling: 09-22-2020 Date of Receipt: 10-15-2020 Date of Report: 10-22-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-JCHM-01Pb: Red Paint on Bollard	
Comments (see below)	None	
Lab ID-Version‡:	11924887-1	
Analysis Date:	10/15/2020	
Sample type	Paint Chip sample	
Method*	NIOSH 7082 & EPA 7000B modified	
† Method Reporting Limit	120 ppm	
Sample size	0.0844 grams	
§Total Lead Result	370 ppm	

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- *Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.
- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562, NV5; JC Boyle

EML ID: 2502978

Approved by:

Technical Manager Andrew Ikeda

Indus Heda

Dates of Analysis:

Lead - Flame AA: 10-16-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group

C/O: Andy Roed

Re: 20-5562, NV5; JC Boyle

Date of Sampling: 09-22-2020 Date of Receipt: 10-15-2020 Date of Report: 10-22-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-JCHG-01Pb: Gray Paint on Concrete Flooring of Canal Head Gate Building	ECG-20-5562-JCHG-02Pb: White Paint on Wood Walls of Canal Head Gate Building
Comments (see below)	None	None
Lab ID-Version‡:	11924898-1	11924899-1
Analysis Date:	10/16/2020	10/16/2020
Sample type	Paint Chip sample	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	300 ppm	71 ppm
Sample size	0.0330 grams	0.1407 grams
§Total Lead Result	< 300 ppm	< 71 ppm

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

^{*}Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562, NV5; JC Boyle

EML ID: 2502974

Approved by:

Undundleda Technical Manager

Andrew Ikeda

Dates of Analysis: Lead - Flame AA: 10-15-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group

C/O: Andy Roed

Re: 20-5562, NV5; JC Boyle

Date of Sampling: 09-22-2020 Date of Receipt: 10-15-2020 Date of Report: 10-22-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5562-JCGWPH-01Pb: Red Paint on Wood Door
Comments (see below)	None
Lab ID-Version‡:	11924869-1
Analysis Date:	10/15/2020
Sample type	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	92 ppm
Sample size	0.1090 grams
§Total Lead Result	< 92 ppm

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- *Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.
- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC EMLab ID: 2502974, Page 2 of 2

Report for:

Andy Roed Entek Consulting Group 4200 Rocklin Road, Suite 7 Rocklin, CA 95677

Regarding:

Project: 20-5562; JC Boyle

EML ID: 2502977

Approved by:

Technical Manager Andrew Ikeda

Indus Heda

Dates of Analysis:

Lead - Flame AA: 10-16-2020

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Entek Consulting Group
C/O: Andy Roed
Date of Sampling: 09-22-2020
Date of Receipt: 10-15-2020
Date of Report: 10-22-2020

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	ECG-20-5662-JCCB-01Pb: Black on Metal Chase for Cables
Comments (see below)	A
Lab ID-Version‡:	11924888-1
Analysis Date:	10/16/2020
Sample type	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	1400 ppm
Sample size	0.0074 grams
§Total Lead Result	< 1400 ppm

Comments: A) Sample weight is below method requirements and was analyzed at client request.

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

- † The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.
- § Total Lead Result has been rounded to two significant figures to reflect analytical precision.
- ‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

^{*}Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Emlab P & K - Irvine

Collected by: Andy Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION	
ECG-20-5562-JCPH-01Pb	Gray Paint on Exterior Wooding Siding of Spill Shed	
ECG-20-5562-JCPH-02Pb	Brown Paint on Exterior Wooding Siding of Pump House	

C3Users(subert/Entex Consulting Group, InclEntekgroup - Documents\Clients\NV5/20-5562 Klammeth Dems\Field Documents\UCB\COCs\UCPH\Bulk Request Pb 10-14-2020.wpd

Delivered by: Date: 10-16-20 Time: 4 AM/PM

Received by: Date: 10-19-1200 Time: 9/36 AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Emlab P & K - Irvine

Collected by: Andy Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-JCHM-01Pb	Red Paint on Bollard

C.\Users\sailberfiEntek Consulting Group, InclEntekgroup - Documents\Clients\NV5\20-6562 Klammath Dams\Field Documents\UCB\COCs\UCHM\Bulk Request Pb 10-14-2020 wpd

Delivered by:

Date: /0 //4/20 Time:

AM/RM

Received by:

Date: 10 / 5 /700 Time: 0.54

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-22-2020

Client Name: NV5

Job Number: 20-5562

Site Address: JC Boyle

Lab: Emlab P & K - Irvine

Collected by: Andy Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as

possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-JCHG-01Pb	Gray Paint on Concrete Flooring of Canal Head Gate Building
ECG-20-5562-JCHG-02Pb	White Paint on Wood Walls of Canal Head Gate Building

C.UserstaelbertEntek Consulting Group, InclEntekgroup - Documents/Clients/NV5/20-5562 Klammath DensiField Documents/JCB/COCs/JCHG/Bulk Request Pb

Delivered by: Date: 10 1/4/28 Time: AM/RM Received by: Date: 10 /15 //(11) Time:

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-22-2020

Site Address: JC Boyle

Job Number: 20-5562 Client Name: NV5

Lab: Emlab P & K - Irvine

Collected by: Andy Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-JCGWPH-01Pb	Red Paint on Wood Door

C:\Users\selbert\Ent\ell Consulting Group, Inc\Ent\ellgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Field Documents\UCB\COCs\UCGWPH\Bulk Request Pb 10-14-2020 wpd

Delivered by: Date: /0 / /4/20 Time: AM/PM Received by: 115 (2010) Time: 9,5 (AM/PM

ENTEK CONSULTING GROUP, INC.

4200 ROCKLIN ROAD, SUITE 7 ROCKLIN, CA 95677 (916) 632-6800 PHONE (916) 632-6812 FAX mainoffice@entekgroup.com

Date of Sampling: 9-22-2020

Job Number: 20-5562

Client Name: NV5

Site Address: JC Boyle

Lab: Emlab P & K - Irvine

Collected by: Andy Roed

Turnaround Time: Standard

ANALYSIS REQUESTED: Lead by Flame Atomic

Absorption Spectroscopy

Special Instruction: Please report result in PPM and % by weight. Please email results as soon as possible.

SAMPLE#	MATERIAL DESCRIPTION/LOCATION
ECG-20-5562-JCCB-01Pb	Black on Metal Chase for Cables

C.\Users\selbert\Entek Consulting Group, InclEntekgroup - Documents\Clients\NV5Q0-5562 Klammath Dams\Field Documents\UCB\COCs\UCCB\Bulk Request Pb 10-14-2020 wpd

Delivered by: 1/4/20 Time: AM/PM Received by: 10 / 1) / 7ND Time: 9:54

Lead Testing Data Sheet (OSHA)

Iron Gate Development

Entek Project # 20-5562 Niton: XLp-300A Lead Analyzer Date: 9-22, 2020

Address: JC Boyle Development XRF Serial No.: 24015 Source No.: TR3580

Room Equivalent: JC Boyle Development Inspector(s): Andy Roed

Component	Substrate	Color	Test Locations	XRF Reading (mg/cm²)
Cable Chase	Metal	Black	Communications Building - Metal Chase for Cabels	0.0
Door	Wood	Red	Ground Water Pump House	0.1
Floor	Concrete	Gray	Canal Head Gate Building	0.0
Wall	Wood	White	Canal Head Gate Building Interior	0.0
Siding	Wood	Gray	Spill Shed - Wood Siding	0.0
Siding	Wood	Brown	Pump House Exterior Siding	0.0

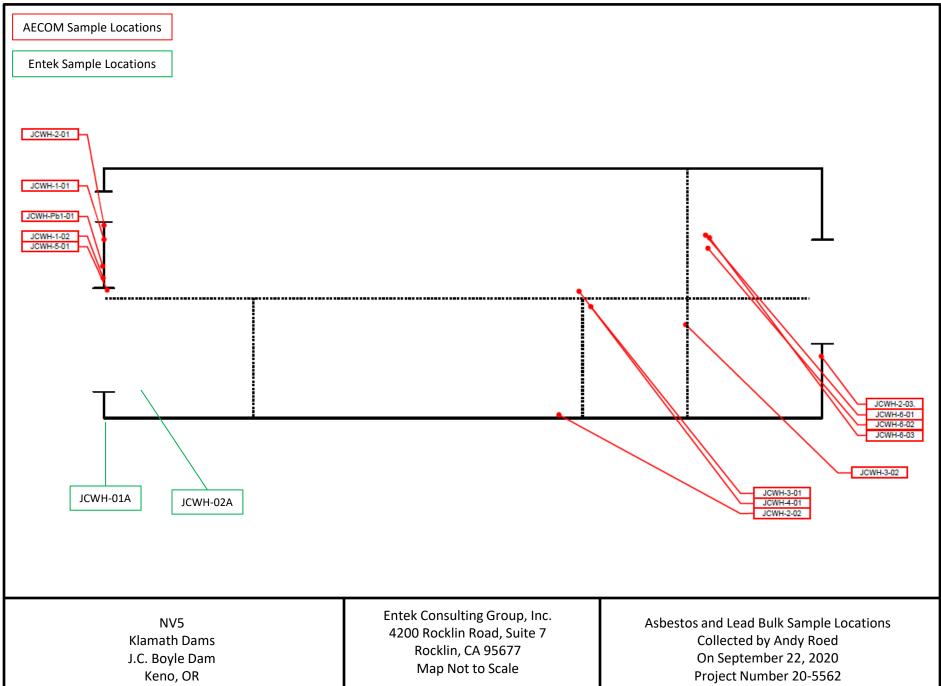
I J I C:\Users\andy\Entek Consulting Group, Inc\Entekgroup - Documents\Clients\NV5\20-5562 Klammath Dams\Reports\JC Boyle\Lead Test Data SheetOSHA.wpd

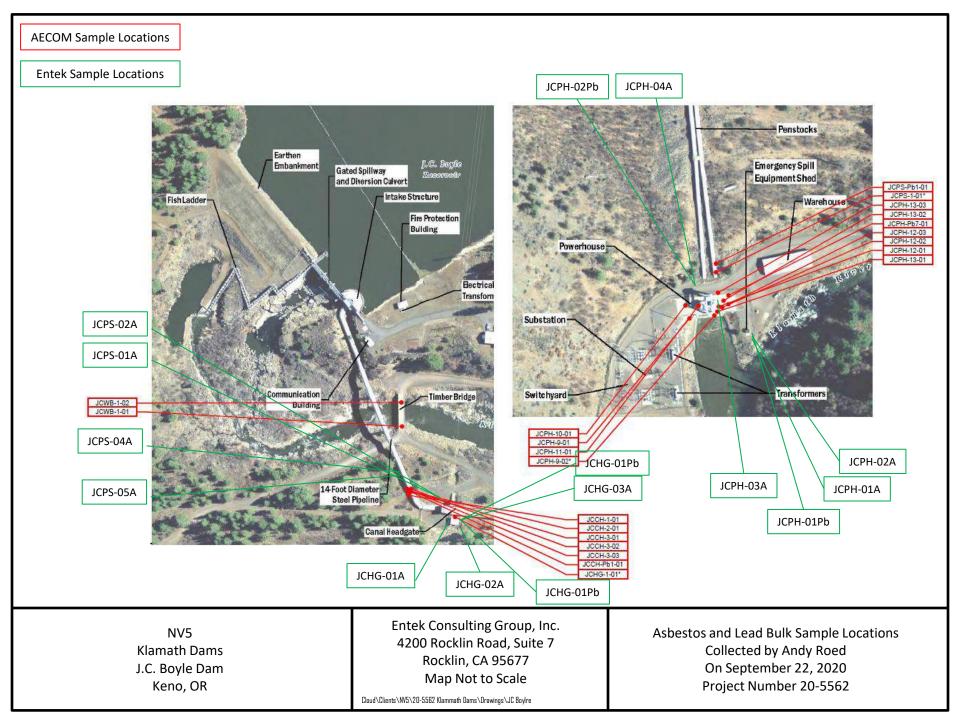
Calibration Check Test Results

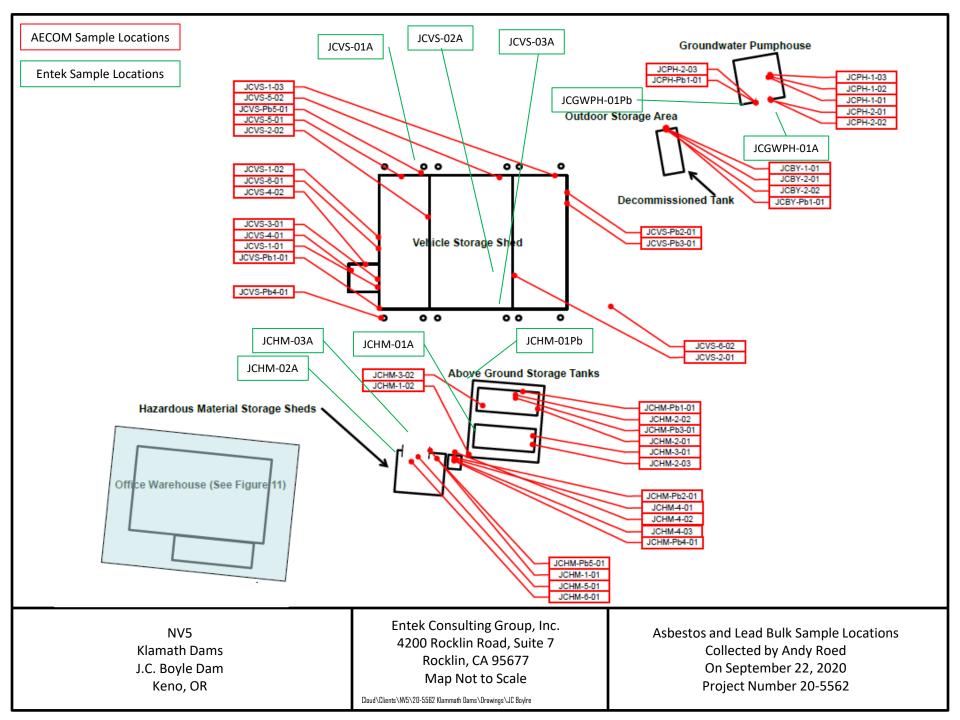
Klamath River Dams

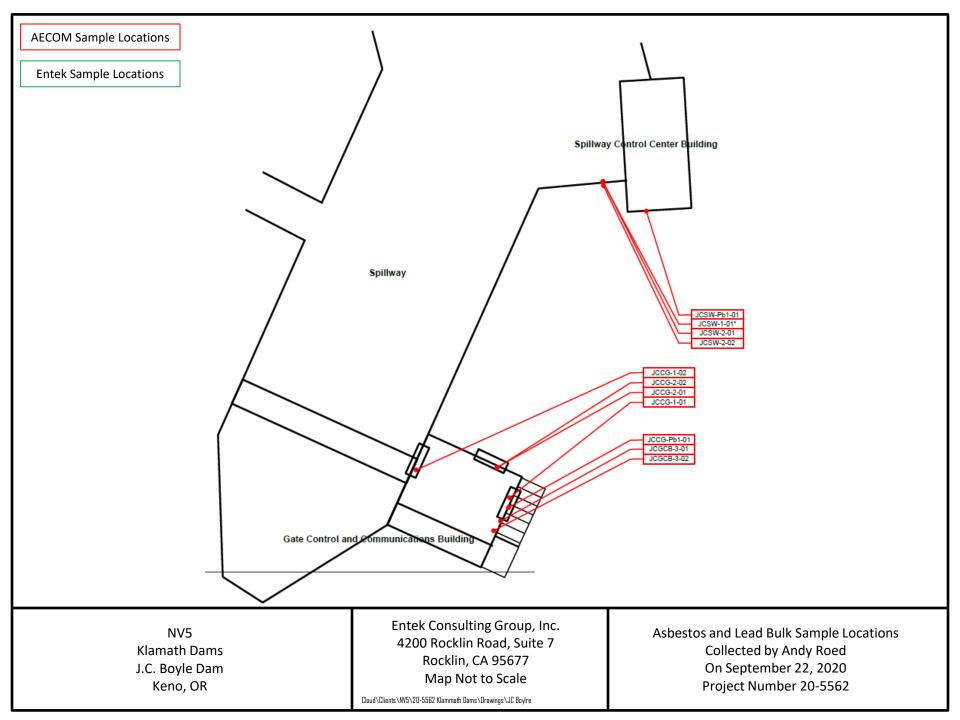
Site Name:	ne: JC Boyle Development		Date:	9-22-2020				
City:	Hornbrook	CA						
Device:	Niton XIp 3	00	Source Assay Date:	12-1-19				
XRF Serial No.	24015		Source Number:	TR3580				
Contractor:	Entek Cons	sulting Group, Inc.						
Inspector Name: Andy Roed								
Inspector Signat	ture:							
Calibration Check Tolerance Used 1.04 ±0.06								
First Calibration C								
Red SRM (2573) 0.8 to 1.2 mg/cm ²			Do All Three Checks Meet the	Standard?				
First Reading	Second Reading	Third Reading	Yes					
1.0	1.0	0.9						
Second Calibratio	on Check <u>1700</u>	hours						
Red SRM (2573) 0.8 to 1.2 mg/cm ²		Do All Three Checks Meet the	Standard?					
First Reading	Second Reading	Third Reading	Vaa					
1.0	1.1	1.0	Yes					
Third Calibration (Check N/A	_						
Red SRM (2573) 0.8 to 1.2 mg/cm ²		Do All Three Checks Meet the	Standard?					
First Reading	Second Reading	Third Reading	N/A					
N/A	N/A	N/A						
Fourth Calibration	n Check <u>N/A</u>							
Red S	RM (2573) 0.8 to 1.2	mg/cm²	Do All Three Checks Meet the Stand	ard?				
First Reading	Second Reading	Third Reading	N/A					

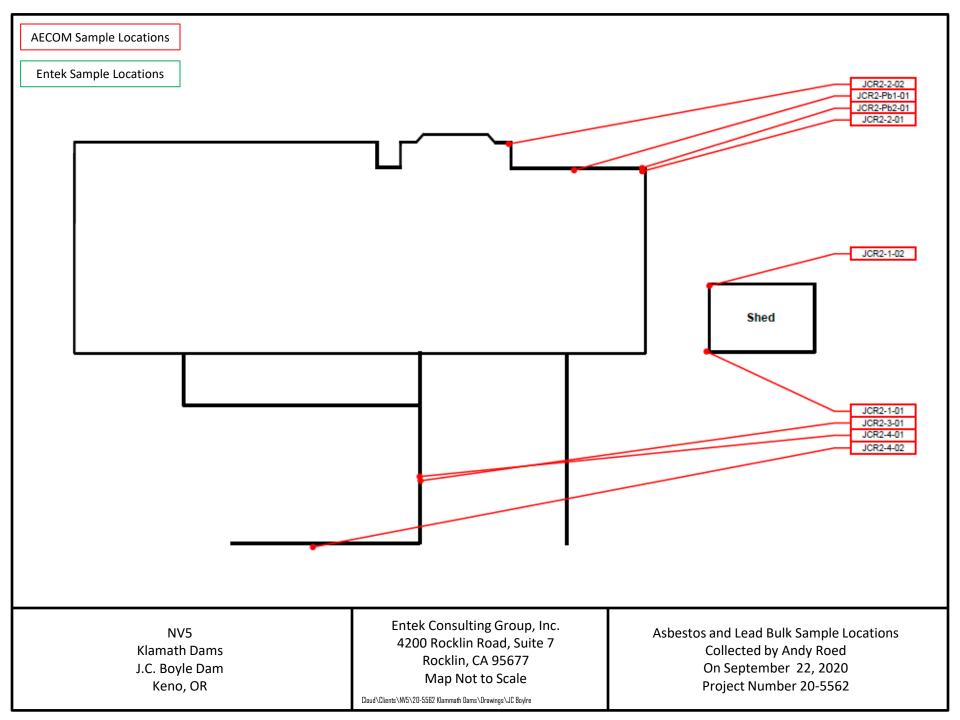
^{*} If the Calibration Check from the red SRM film value is greater or less than the specified Calibration Check Tolerance for this device, consult the manufacturer's recommendations to bring the instrument back into control. Retest all testing combinations tested since the last successful Calibration Check test.

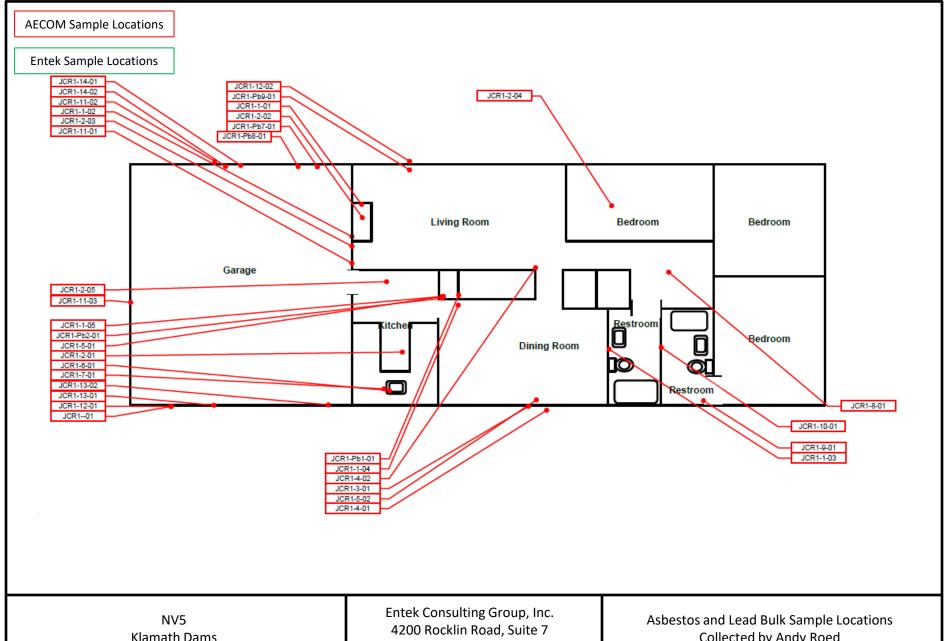

 $[\]label{lem:consulting} C:\label{lem:consulting} Group, Inc\enterspace{2.00cm} Inc\enterspace{2.00cm} Calibration CheckTestResult.wpd$


APPENDIX C


Sample Location Maps


Asbestos and Lead Sample Location Diagrams

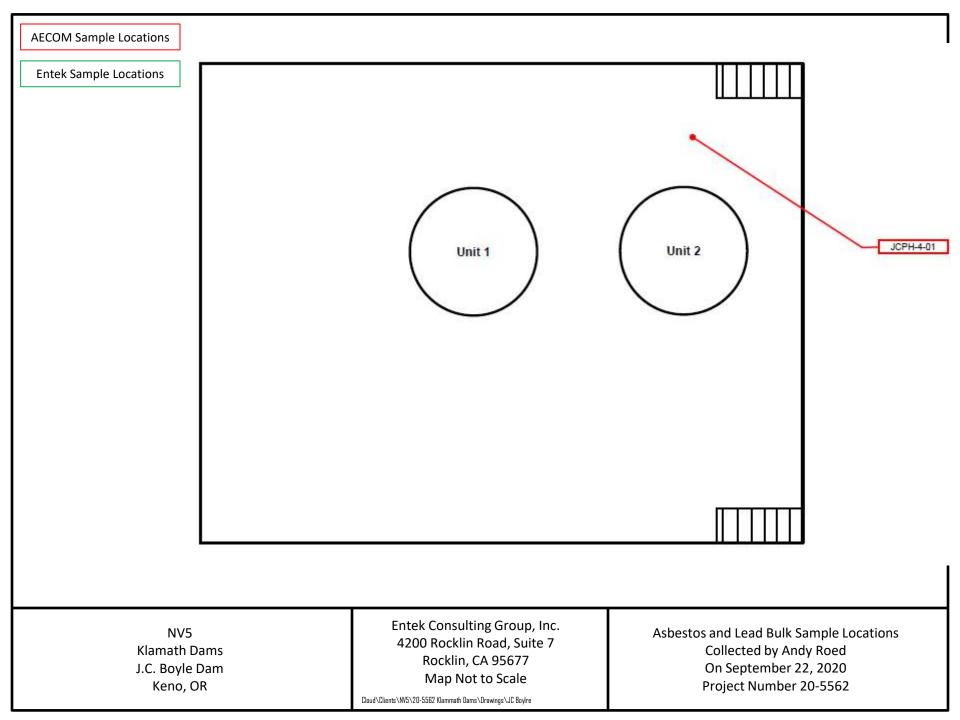


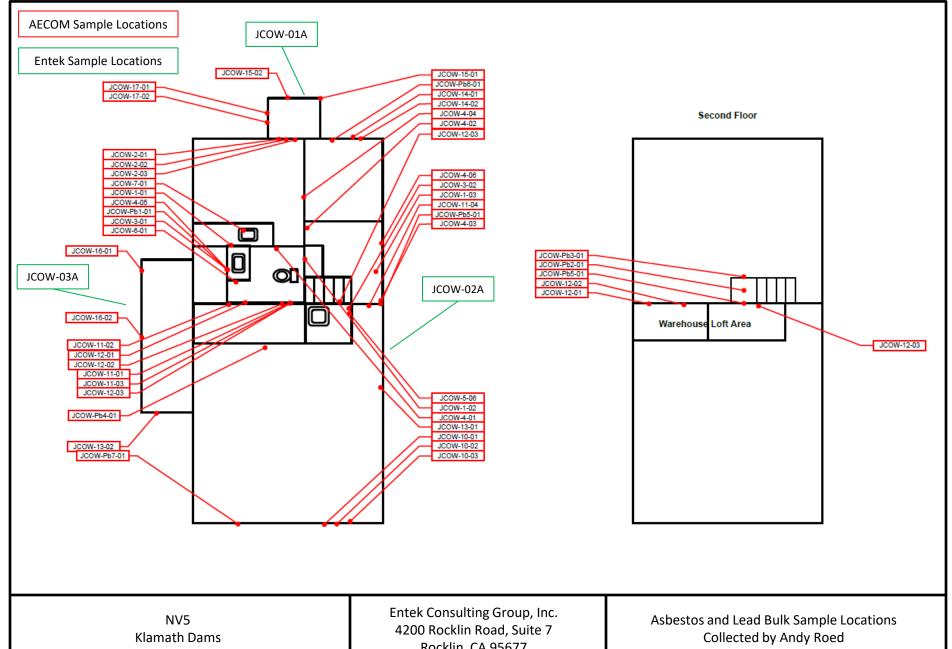

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\JC Boylre

Klamath Dams J.C. Boyle Dam Keno, OR Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\JC Boylre

Asbestos and Lead Bulk Sample Locations
Collected by Andy Roed
On September 22, 2020
Project Number 20-5562

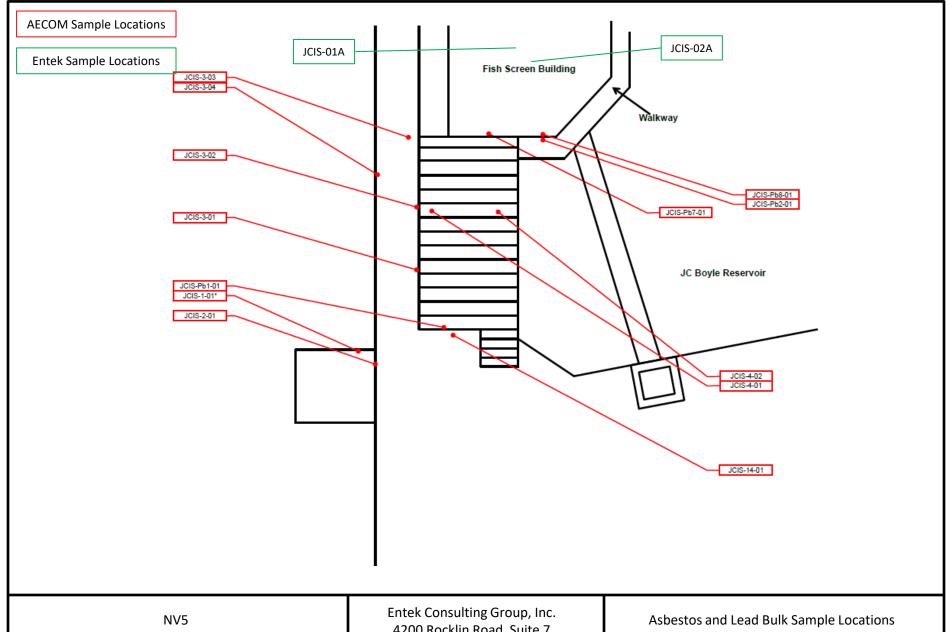

AECOM Sample Locations Entek Sample Locations JCPH-3-01 JCPH-Pb5-01 Air Intake Air Intake JCPH-1-02 Room Room JCPH-2-01 JCPH-Pb4-01 JCPH-6-02 JCPH-6-01 JCPH-7-01 Unit 2 Unit 1 Switchgear JCPH-Pb1-01 JCPH-1-01 JCPH-Pb2-01 JCPH-Pb3-01 Governor Governor Battery Roon


> NV5 Klamath Dams J.C. Boyle Dam Keno, OR

Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\JC Boylre

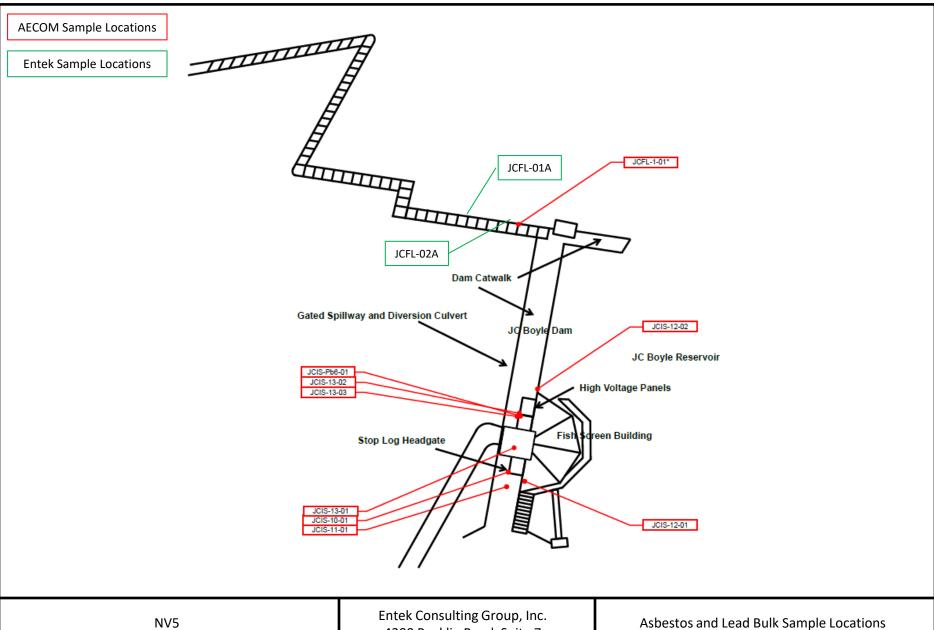
Asbestos and Lead Bulk Sample Locations Collected by Andy Roed On September 22, 2020 Project Number 20-5562



J.C. Boyle Dam Keno, OR

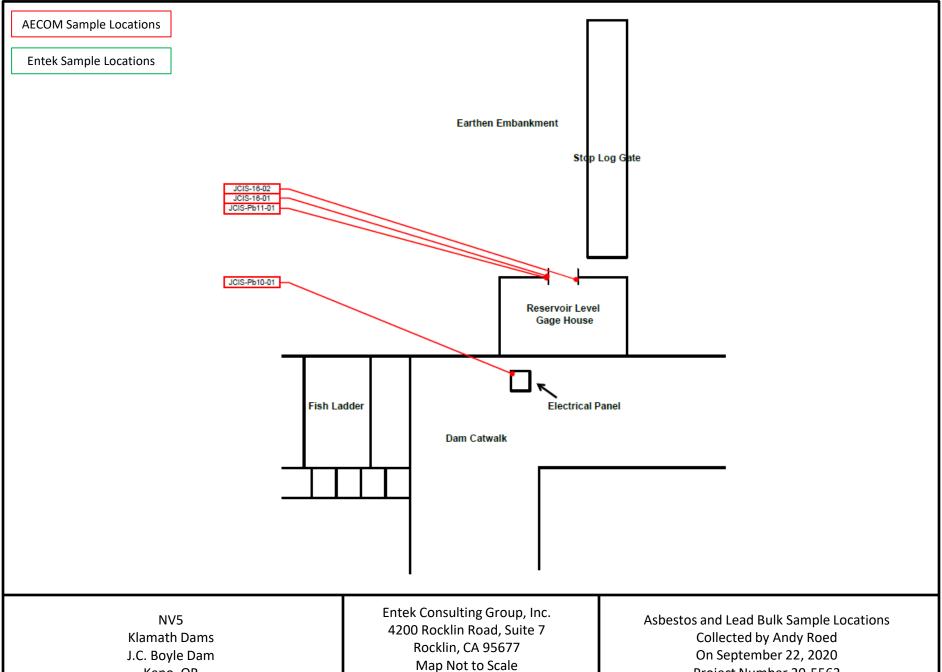
Rocklin, CA 95677 Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\JC Boylre


On September 22, 2020 Project Number 20-5562

NV5 Klamath Dams J.C. Boyle Dam Keno, OR Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

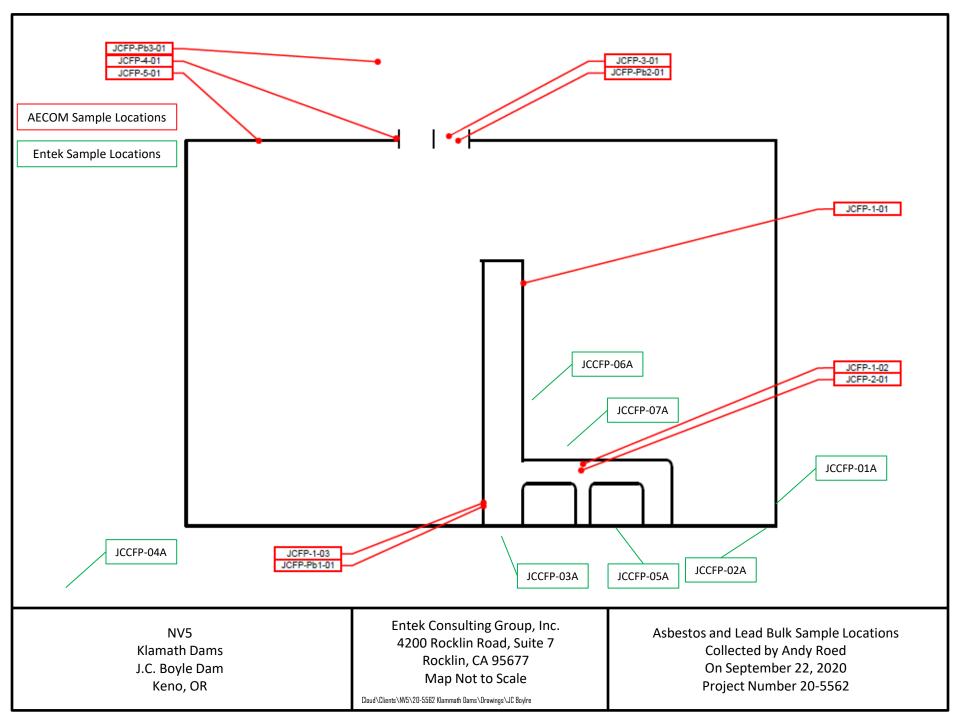
Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\JC Boylre

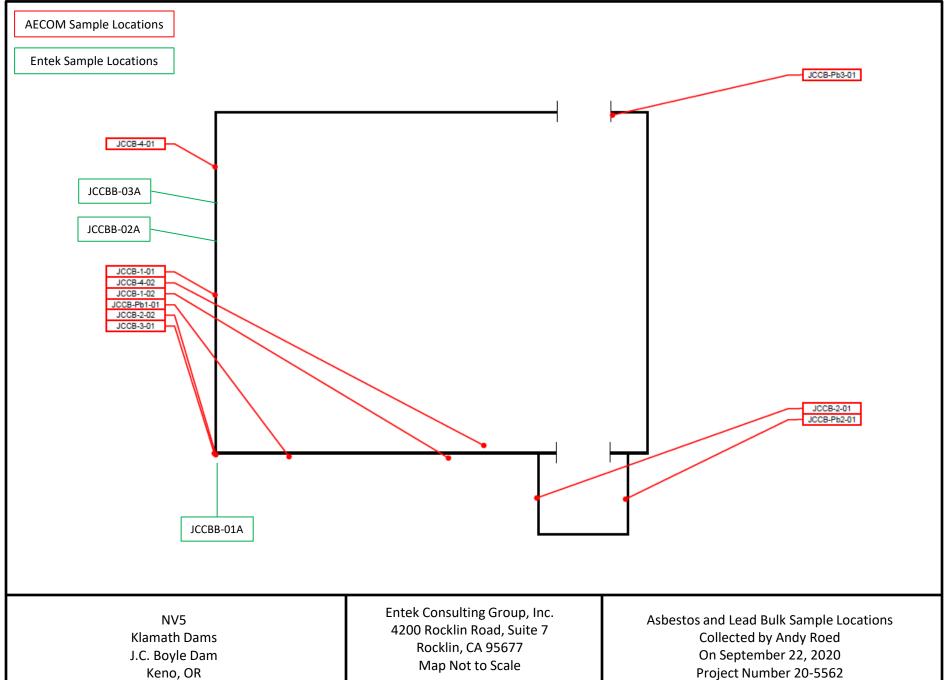

Asbestos and Lead Bulk Sample Locations Collected by Andy Roed On September 22, 2020 Project Number 20-5562

NV5 Klamath Dams J.C. Boyle Dam Keno, OR Entek Consulting Group, Inc. 4200 Rocklin Road, Suite 7 Rocklin, CA 95677 Map Not to Scale

Cloud\Clients\NV5\20-5562 Klammath Dams\Drawings\JC Boylre

Asbestos and Lead Bulk Sample Locations
Collected by Andy Roed
On September 22, 2020
Project Number 20-5562


 ${\tt Cloud \C lients \NV5 \20-5562\ Klammath\ Dams \Drawings \3C\ Boylre}$


Keno, OR

Project Number 20-5562

AECOM Sample Locations Entek Sample Locations JCIS-Pb5-01 Fish Screen JCIS-Pb3-03 JCIS-Pb9-01 JCIS-6-03 JCIS-15-02 JCIS-6-02 JCIS-7-01 JCIS-5-01 JCIS-6-01 Fish Screen JCIS-Pb4-01 JCIS-15-03 Punip Fish Screen JCIS-9-03 JCIS-9-02 JCIS-9-01 Fish Screen Entek Consulting Group, Inc. NV5 Asbestos and Lead Bulk Sample Locations 4200 Rocklin Road, Suite 7 Klamath Dams Collected by Andy Roed Rocklin, CA 95677 J.C. Boyle Dam On September 22, 2020 Map Not to Scale Keno, OR Project Number 20-5562

 ${\tt Cloud \C lients \NV5 \20-5562\ Klammath\ Dams \Drawings \3C\ Boylre}$

 ${\tt Cloud \C lients \NV5 \2D-5562\ Klammath\ Dams \Drawings \JC\ Boylre}$

Project Number 20-5562

APPENDIX D

BACK UP DOCUMENTATION

- Inspector Accreditations and Certifications
- Laboratory Accreditations for Asbestos and Lead Analysis

State of California Division of Occupational Safety and Health Certified Asbestos Consultant

Andrew R Roed

Name

Certification No. 16-5695

Expires on 08/17/21

This certification was issued by the Division of Occupational Safety and Health as authorized by Sections 7180 at seq. of the Business and Professions Code.

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC HEALTH

LEAD-RELATED CONSTRUCTION CERTIFICATE

INDIVIDUAL:

CERTIFICATE TYPE:

NUMBER:

EXPIRATION DATE:

Lead Inspector/Assessor

LRC-00002989

9/11/2021

Disclaimer. This document alone should not be relied upon to confirm certification status. Compare the individual's photo and name to another valid form of government issued photo identification. Verify the individual's certification status by searching for Lead-Related Construction Professionals at www.cdph.ca.gov/programs/clppb or calling (800) 597-LEAD.

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 101442-0

ASBESTECH

Carmichael, CA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Asbestos Fiber Analysis

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2020-07-01 through 2021-06-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ASBESTECH

6825 Fair Oaks Blvd., Suite 103 Carmichael, CA 95608 Mr. Tommy Conlon

Phone: 916-481-8902 Fax: 916-481-3975 Email: asbestech@sbcglobal.net http://www.asbestechlab.com

ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 101442-0

Bulk Asbestos Analysis

-	٦.		_1	Γ.	
	- 4	ъ.	а	60	,

Description

18/A01

EPA -- 40 CFR Appendix E to Subpart E of Part 763, Interim Method of the Determination of

Asbestos in Bulk Insulation Samples

18/A03

EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials

Airborne Asbestos Analysis

Code

Description

18/A02

U.S. EPA's "Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory-and Mandatory Section to Determine Completion of Response Actions" as found in

40 CFR, Part 763, Subpart E, Appendix A.

For the National Voluntary Laboratory Accreditation Program

CALIFORNIA STATE

ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

CERTIFICATE OF ENVIRONMENTAL ACCREDITATION

Is hereby granted to

Asbestech

6825 Fair Oaks Boulevard Carmichael, CA 95608

Scope of the certificate is limited to the "Fields of Testing" which accompany this Certificate.

Continued accredited status depends on successful completion of on-site inspection, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No.: 1153

Expiration Date: 3/31/2022

Effective Date: 4/1/2020

Sacramento, California subject to forfeiture or revocation

Christine Sotelo, Chief

Environmental Laboratory Accreditation Program

CALIFORNIA STATE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Accredited Fields of Testing

Asbestech

6825 Fair Oaks Boulevard Carmichael, CA 95608 Phone: 9164818902 Certificate No. 1153 Expiration Date 3/31/2022

Field of Testing: 121 - Bulk Asbestos Analysis of Hazardous Waste

121.010 001 Bulk Asbestos EPA 600/M4-82-020

AIHA Laboratory Accreditation Programs, LLC

acknowledges that

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

Laboratory ID: 178697

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2017 international standard, *General Requirements for the Competence of Testing and Calibration Laboratories* in the following:

LABORATORY ACCREDITATION PROGRAMS

- INDUSTRIAL HYGIENE Accreditation Expires: September 01, 2021
 ENVIRONMENTAL LEAD Accreditation Expires: September 01, 2021
 ENVIRONMENTAL MICROBIOLOGY Accreditation Expires: September 01, 2021
- ☐ FOOD Accreditation Expires:
 ☐ UNIQUE SCOPES Accreditation Expires:

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached **Scope of Accreditation**. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2017 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached **Scope of Accreditation**. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Bets Bair

Elizabeth Bair Chairperson, Analytical Accreditation Board

Revision 17 - 09/11/2018

Cheryl O. Morton

Cheryl O. Charton

Managing Director, AIHA Laboratory Accreditation Programs, LLC

Date Issued: 08/21/2019

AIHA Laboratory Accreditation Programs, LLC SCOPE OF ACCREDITATION

Laboratory ID: **178697** Issue Date: 08/21/2019

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Industrial Hygiene Laboratory Accreditation Program (IHLAP)

Initial Accreditation Date: 06/01/2011

IHLAP Scope Category	Field of Testing (FoT) (FoTs cover all relevant IH matrices)	Technology sub-type/ Detector	Published Reference Method/Title of In- house Method	Method Description or Analyte (for internal methods only)
Asbestos/Fiber Microscopy Core	Phase Contrast Microscopy (PCM)		NIOSH 7400	

A complete listing of currently accredited Industrial Hygiene laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 04/10/2015 Scope_IHLAP_R8

Page 1 of 1

AIHA Laboratory Accreditation Programs, LLC SCOPE OF ACCREDITATION

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

Laboratory ID: **178697**Issue Date: 08/21/2019

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Environmental Microbiology Laboratory Accreditation Program (EMLAP)

Initial Accreditation Date: 07/01/2005

EMLAP Category	Field of Testing (FoT)	Method	Method Description (for internal methods only)
	Air - Direct Examination	EM-MY-S-1038	Preparation and Analysis of Spore Trap (Air) Samples for Fungal Spores, Other Biological and Non-Biological Particles
Fungal	Bulk - Direct Examination	EM-MY-S-1039	Preparation and Analysis of Tape, Swab, Wipe, Bulk and Dust - Soil Samples for Qualitative Direct Microscopic Examination
	Surface - Direct Examination	EM-MY-S-1041	Preparation and Analysis of Tape, Swab, Wipe, Bulk, and Dust - Soil Samples for Quantitative Direct Microscopic Examination
Roctorial	Bacterial Legionella	EM-BT-S-1045	Enumeration of Legionella. International Standard ISO 11731:2017
Dacterial		EM-BT-S-1687	CDC Laboratory protocol 2016

A complete listing of currently accredited Environmental Microbiology laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 03/12/2013 Scope_EMLAP_R6

Page 1 of 1

AIHA Laboratory Accreditation Programs, LLC SCOPE OF ACCREDITATION

Laboratory ID: **178697**

Eurofins EMLab P&K

17461 Derian Ave. Suite 100, Irvine, CA 92614

Issue Date: 08/21/2019 The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the

laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazard Reduction Act of 1992 and includes paint, soil and dust wipe analysis. Air and composited wipes analyses are not included as part of the NLLAP.

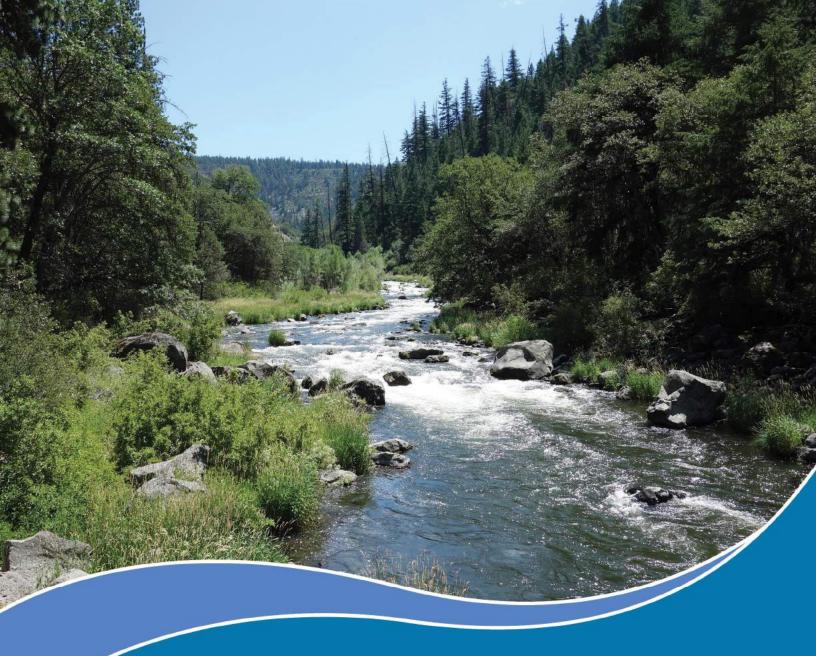
Environmental Lead Laboratory Accreditation Program (ELLAP)

Initial Accreditation Date: 03/01/2017

Field of Testing (FoT)	Technology sub-type/ Detector	Method	Method Description (for internal methods only)
		EPA SW-846 7000B	
Paint		Modified	
		NIOSH 7082	
		EPA SW-846 7000B	
Settled Dust by Wipe		Modified	
		NIOSH 7082	

A complete listing of currently accredited Environmental Lead laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 10/14/2016 Scope ELLAP R7


Page 1 of 1

APPENDIX E

HISTORICAL SURVEY DOCUMENTATION

AECOM Technical Services, Inc. Report Dated April 2019

Klamath River Renewal Project

J.C. Boyle Development Hazardous Building Materials Survey

Prepared for:

Klamath River Renewal Corporation

Assessment Conducted by:

AECOM Technical Services, Inc.

300 Lakeside Drive, Suite 400 Oakland, California 94612

Assessment Personnel

Ms. Shannon MacKay

AHERA-Certified Building Inspector Number: CA-015-06 (exp. 5/2/2019)

Ms. Kim Riche

AHERA-Certified Building Inspector Number: 168531 (exp. 7/11/2019)

Assessment Dates

August 20 to 23 and December 6, 2018

Report Prepared by:

Shannon MacKay

Environmental Consultant

Report Reviewed by:

David I Simon

David Simon

CDPH-Certified Asbestos Consultant (CAC)

Nicole Gladu

EHS Compliance Manager

2 April 2019

Table of Contents

Exe	cutiv	ve Sur	nmary	8
	Proje	ect Backg	ground:	8
	Haza	ardous Bu	uilding Materials Survey:	9
	Obje	ctive:		9
	Sum	marized	HBMS Results:	9
1.	Intr	roduct	tion	12
	1.1	Project	Description	12
	1.2	Survey	Limitations	12
2.	Scope of Services			15
	2.1	Asbesto	os Assessment	15
		2.1.1	Methodology	15
		2.1.2	Naturally Occurring Asbestos	16
	2.2	Sampli	ng Procedures	16
	2.3	Sampli	ng and Analysis	17
	2.4	Lead As	ssessment	19
		2.4.1	Sampling Methodology	19
	2.5	Other R	Regulated Building Materials	19
		2.5.1	Universal Waste Inventory Methodology	19
		2.5.2	PCB-Containing Caulking	19
3.	Site Description			22
	3.1	J.C. Boy	yle Development	22
		3.1.1	Description of J.C. Boyle Development Structures	22
4.	Conclusions and Recommendations			27
	4.1 Asbestos			27
		4.1.1	Asbestos Regulations	28
	4.2	Lead		30
	4.3	Other F	Regulated Building Materials	30

4.4

4.5 Tables.	
st of F	igures (Appendix A)
Figure 1	Aerial Site Photo
Figure 2	Aerial Site Photo
Asbestos and	Lead Sample Locations:
Figure 3	Communications Building
Figure 4	Fire Protection Building
Figure 5	Intake Structure, Gated Spillway and Diversion Culvert, and Fish Ladde
Figure 6	Intake Structure/JC Boyle Dam - South Section
Figure 7	Intake Structure Fish Screen Building
Figure 8	Intake Structure/JC Boyle Dam - North Section
Figure 9	Gate Control and Communications and Spillway Control Center
Figure 10	Groundwater Pumphouse, Outdoor Storage Area, Vehicle Storage Shed
Hazardous M	aterials Storage Sheds and Above Ground Storage Tanks
Figure 11	Office Warehouse
Figure 12	Powerhouse Main Level
Figure 13	Powerhouse Basement Level
Figure 14	Timber Bridge, Powerhouse Roof, and Penstock
Figure 15	Residence 1
Figure 16	Residence 2
Figure 17	Warehouse
Approximate A	ACM Locations:
Figure 18 – C	ommunications Building
Figure 19 –Ha	azardous Materials Storage Sheds and Above Ground Storage Tanks and
Office/Wareh	ouse
Figure 20 – P	owerhouse Main Level
Figure 21 – W	/arehouse

Treated Wood31

4 Table of Contents April 2019

List of Appendices

Appendix A Figures

Appendix B HSA Photologs

Appendix C Laboratory Analytical Results

Appendix D Personnel and Laboratory Certifications

Acronyms and Abbreviations

ACM Asbestos-Containing Material
AECOM Technical Services, Inc.

AHERA Asbestos Hazard Emergency Response Act

AST Aboveground Storage Tank

CC1 Copco 1 Dam
CC2 Copco 2 Dam

CFR Code of Federal Regulations

DEQ Oregon Department of Environmental Quality

HEPA High Efficiency Particulate Air
HSA Homogenous Sampling Area

IGD Iron Gate Dam

IGH Iron Gate Hatchery

JCB/JC JC Boyle Dam

KHSA Klamath Hydroelectric Settlement Agreement

KRRC Klamath River Renewal Corporation

LCP Lead-Containing Paint mg/kg milligrams per kilogram

NESHAP National Emission Standards for Hazardous Air Pollutants

NOA Naturally Occurring Asbestos

NVLAP National Voluntary Laboratory Accreditation Program

OAR Oregon Administrative Rules

ODEQ Oregon Department of Environmental Quality

OR-OSHA Oregon Occupational Safety and Health Administration

O&M Operations & Maintenance

PACM Presumed Asbestos-Containing Material

PCB Polychlorinated Biphenyl

April 2019 Table of Contents 5

RCRA Resource Conservation and Recovery Act

RM river miles

USEPA United States Environmental Protection Agency

6 Table of Contents April 2019

EXECUTIVE SUMMARY

Project Background:

AECOM Technical Services (AECOM) was retained by Klamath River Renewal Corporation (KRRC) to conduct a Hazardous Building Materials Survey (HBMS) of the J.C. Boyle Development. This report includes the findings of the HBMS conducted at the J.C. Boyle Development and associated support buildings and structures on August 20 to 23 and December 6, 2018. The J.C. Boyle Development is located near Keno, Oregon, and is a remote secured industrial facility owned and operated by PacifiCorp Energy.

The J.C. Boyle Development and original supporting structures were completed in 1958 and are located between RM 233 and 224.9 in Klamath County, Oregon. The J.C. Boyle address is 26020 Highway 66, Keno, Oregon 97627. The J.C Boyle Dam impounds a narrow reservoir of 350 acres (aka J.C. Boyle Reservoir, aka Topsy Reservoir). Main features at J.C. Boyle include the reservoir, a combination embankment and concrete dam, gated spillway, diversion culvert, water conveyance system, forebay and powerhouse.

Other supporting structures include a fish ladder, 14 foot diameter pipeline, canal headgate and associated structure, timber bridge, a combined office/warehouse building, a vehicle storage shed, a fire protection building, a communications building, a hazardous materials shed, two residences, a vehicle storage shed, a spillway control building and gate control communications building near the forebay, and a warehouse and switchyard near the powerhouse.

Four dams and associated structures including the J. C. Boyle Development, Copco No. 1 Development, Copco No. 2 Development, Iron Gate Development and the Iron Gate Fish and Fall Creek Hatcheries (the Sites) have been identified for decommissioning and removal under the 2016 Amended Klamath Hydroelectric Settlement Agreement (KHSA, 2016) following the U.S. Department of the Interior Bureau of Reclamation's Detailed Plan for Dam Removal – Klamath River Dams, Klamath Hydroelectric Project FERC License No. 2082 Oregon – California (Detailed Plan) (USBR 2012). The Iron Gate Fish Hatchery, Fall Creek Fish Hatchery, and the City of Yreka Diversion Dam have been identified for improvements under the KHSA. All four developments will be transferred to their respective states after dam decommissioning and removal.

The Sites are located on land currently owned by PacifiCorp. An HBMS was conducted at each of the seven Sites, and an HBMS report issued for the Sites as follows:

- 1. J.C. Boyle Development
- 2. Copco No. 1 Development
- 3. Copco No. 2 Development
- 4. Iron Gate Development

8 00 | Executive Summary April 2019

- 5. Iron Gate and Fall Creek Hatcheries
- 6. City of Yreka Diversion

Hazardous Building Materials Survey:

AECOM assessed J.C. Boyle Development and support facilities for the following hazardous building materials:

- Asbestos-containing materials (ACMs);
- Asbestos-containing construction materials (ACCMs);
- Assumed asbestos-containing materials;
- Lead-containing coatings (paints);
- Mercury-containing light tubes, switches, and thermostats;
- Polychlorinated Biphenyl (PCB)-containing caulking, putties, gaskets, and membranes;
- Suspected high-intensity discharge (HID) lamps; and
- Suspected PCB-containing fluorescent light ballasts and transformers.

Objective:

The objective of the HBMS was to provide information regarding the presence of lead-containing coatings, PCB-containing light ballasts, PCB-containing caulking, and mercury-containing sources, and the presence, location, and quantity of ACMs, ACCMs, and assumed ACMs, and for the purposes of decommissioning planning.

Summarized HBMS Results:

Two-hundred and three bulk samples of suspect asbestos-containing materials were collected and analyzed using Polarized Light Microscopy (PLM) during this assessment. Seven materials (HSAs) were found to contain detectable asbestos above 0.1%, five materials were assumed to contain asbestos, and three materials were visually assessed and determined to be non-suspect. Per the EPA National Emission Standard for Hazardous Air Pollutants (NESHAP) requirements and the analytical results, four sample layers were further analyzed using PLM Point Count Method.

In addition, six concrete bulk samples were collected and analyzed using PLM California Air Resources Board (CARB) 435 method to determine the content of Naturally Occurring Asbestos (NOA). No concrete samples were found to contain detectable NOA above the PLM point count threshold of 0.25%.

Sixteen paint chip samples were collected and analyzed for total lead content using Atomic Absorption Spectrophotometry; fifteen of the samples were found to contain reportable levels of lead.

Mercury-containing fluorescent light tubes, HID lamps, and magnetic light ballasts labeled "No-PCBs" were observed during the assessment. In the switchyard, the yellow glass portion of the high voltage transformer bushings may contain PCBs in the oil. One caulking sample was collected and analyzed for PCBs using EPA method 8270 by gas chromatography/mass spectrometry (GCMS). No PCBs were detected in the caulking sample.

See Section 4.5: Tables for tabulated HBMS Results.

10 00 | Executive Summary April 2019

Chapter 1: Introduction

1. INTRODUCTION

1.1 Project Description

AECOM Technical Services (AECOM) was retained by KRRC to conduct an HBMS of the J.C. Boyle Development and support facilities. This report includes the findings of the HBMS conducted at the J.C. Boyle Development and associated support buildings and structures on August 20 to 23 and December 6, 2018. The J.C. Boyle Development is located near Keno, Oregon, and is a remote secured industrial facility owned and operated by PacifiCorp.

1.2 Survey Limitations

The conclusions of this report are AECOM's professional opinions, based solely upon visual site observations and interpretations of laboratory analyses, as described in this report. The opinions presented herein apply to the site conditions existing at the time of AECOM's assessment and interpretation of current regulations pertaining to asbestos, lead-containing paint, PCB-containing ballasts and building materials, and mercury-containing components. Therefore, AECOM's opinions and recommendations may not apply to future conditions that may exist at the site which we have not had the opportunity to evaluate. All applicable state, federal, and local regulations should always be verified prior to any work that will disturb materials containing asbestos and other hazardous building materials.

AECOM has performed the services set forth in the Scope of Work in accordance with generally accepted industrial hygiene practices in the same or similar localities, related to the nature of the work accomplished, at the time the services were performed.

Additional sampling needs to be conducted of structures not assessed and inaccessible areas prior to demolition. Suspect regulated building materials throughout the J.C. Boyle Development and support facilities that are not included in this regulated building materials assessment are assumed to be asbestoscontaining unless they are sampled by an AHERA-accredited Building Inspector and analyzed by a National Voluntary Laboratory Accrediation Program (NVLAP)-accredited laboratory to confirm the presence of asbestos prior to the disturbing such materials.

The regulated building materials and conditions presented in this report represent those observed on the dates we conducted the sampling. This sampling is intended for the exclusive use of KRRC for specific application to the proposed decommissioning. This assessment is not intended to replace construction or demolition plans, specifications, or bidding documents. This report is not meant to represent a legal opinion.

This report was prepared pursuant to an agreement between KRRC and AECOM and is for the exclusive use of KRRP. No other party is entitled to rely on the conclusions, observations, specifications, or data contained herein without first obtaining AECOM's written consent and provided any such party signs an AECOM-

12 01 | Introduction April 2019

generated Reliance Letter. A third party's signing of the AECOM Reliance Letter and AECOM's written consent are conditions precedent to any additional use or reliance on this report.

The passage of time may result in changes in technology, economic conditions, site variations, or regulatory provisions, which would render the report inaccurate. Reliance on this report after the date of issuance as an accurate representation of current site conditions shall be at the user's sole risk.

April 2019 01 | Introduction 13

Chapter 2: Scope of Services

2. SCOPE OF SERVICES

2.1 Asbestos Assessment

Ms. Shannon MacKay and Ms. Kim Riche, both AHERA-accredited building inspectors, (Certification 167196, expiration date: 5/2/2019; and, Certification 168531, expiration date: 7/11/2019, respectively), performed the sampling at the J.C. Boyle Development and support buildings from August 20 to 23 and on December 6, 2018. Copies of their certifications are included in Appendix C.

The following materials/areas were inaccessible during the site work and should be assumed to contain asbestos until such time as the area becomes accessible and is sampled by an AHERA-accredited building inspector and analyzed by a NVLAP-accredited laboratory:

- Residence 2
- Structure above stop log gates on metal support beams, associated with the Intake Structure

2.1.1 Methodology

This assessment was conducted using a modified protocol adapted from AHERA. The protocol is as follows:

- Identify suspect asbestos-containing materials.
- Group materials into homogeneous sampling areas/materials.
- Quantify each homogeneous material and collect representative samples. The number of samples
 collected of miscellaneous materials was determined by the inspector.
- Samples of each material were taken to the substrate, ensuring that all components and layers of the material were included.
- Sample locations are referenced on the field data forms according to sample number.
- Sampling was performed by a CAC or CSST, and the use of proper protective equipment and procedures was followed.

April 2019 02 | Scope of Services 15

2.1.2 Naturally Occurring Asbestos

For informational purposes, AECOM collected samples of concrete and submitted them to EMSL Laboratories to analyze for NOA. The sampling was conducted as a preliminary screen for NOA. Sampling was conducted discretely in areas where damage to concrete was already present.

2.2 Sampling Procedures

This sampling was conducted using the following procedures:

- 1. Spread the plastic drop cloth (if needed) and set up other equipment, e.g., ladder.
- 2. Don protective equipment (respirator and protective clothing if needed).
- 3. Label sample container with its identification number and record number. Record sample location and type of material sampled on a sampling data form.
- 4. Moisten area where sample is to be extracted (spray the immediate area with water).
- 5. Extract sample using a clean knife, drill capsule, or cork boring tool to cut out or scrape off approximately one tablespoon of the material. Penetrate all layers of material.
- 6. Place sample in a container and tightly seal it.
- 7. Wipe the exterior of the container with a wet wipe to remove any material that may have adhered to it during sampling.
- 8. Clean tools with wet wipes and wet mop; or vacuum area with HEPA vacuum to clean all debris.
- 9. Discard protective clothing, wet wipes and rags, cartridge filters, and drop cloth in a labeled plastic waste bag.

AECOM inspected the buildings and structures for suspect ACM including thermal systems insulation, surfacing materials, and miscellaneous materials (e.g., floor tiles, ceiling tiles). When materials suspected of containing asbestos were identified, AECOM's inspectors collected representative bulk samples from each Homogeneous Sampling Area using the protocol presented in the Table 2-1:

16 02 | Scope of Services April 2019

Table 2-1 Suspect ACM Sampling Protocol

Suspect ACM Sampling Protocol			
Homogeneous Sampling Area (HSA) Category	HSA Size	Minimum Number of Samples	
Surfacing Materials	1,000 SF or Less	3	
	1,001-5,000 SF	5	
	>5,000 SF	7 or more	
Thermal System Insulation (TSI)	No Stipulation	3 of each type of TSI. (Must also sample all repair patches)	
Miscellaneous Materials	No Stipulation	1 or more samples of each miscellaneous material	

A Homogeneous Sampling Area is defined to include surfacing materials, thermal systems insulations, and miscellaneous materials, which are uniform in color, texture, construction and application date, and general appearance.

Additional suspect ACMs may be present in inaccessible or concealed spaces. These spaces include, but are not limited to, areas not assessed, areas not accessible at the time of the assessment, fire doors, electrical systems, pipe chases, spaces between wall/ceiling/door/floor cavities, interior of mechanical components, beneath foundation pads, etc. If future maintenance, renovation, and/or demolition activities make these areas accessible, AECOM recommends that a thorough assessment of these spaces be conducted at that time to identify and confirm the presence or absence of additional suspect ACMs. Until then, all such unidentified materials must be treated as assumed ACMs in accordance with applicable federal, state, and local regulations.

AECOM did not sample suspect ACM in the following circumstances:

- The AECOM inspector could not safely access the material for sampling;
- The residence was still occupied;
- The AECOM inspector concluded that the materials were inaccessible for sampling; or
- The AECOM inspector determined that destructive sampling would compromise the integrity of the material and/or the structure.

2.3 Sampling and Analysis

The EPA National Emission Standard for Hazardous Air Pollutants (NESHAP) (40 CFR 61, Subparts A and M) also has requirements related to the assessment of suspect ACM in buildings. NESHAP defines a "friable" material to be a material that when dry, can be crumbled, pulverized, or reduced to powder with hand pressure or by the forces expected to act on the material in the course of demolition or renovation activities.

April 2019 02 | Scope of Services 17

AECOM applied this NESHAP definition of friable for the purposes of determining which analytical method to be used to quantify the asbestos content of a specific material.

The collected samples of suspect ACM were analyzed by NVL Laboratories, Inc. for asbestos content using the PLM visual estimation method and the PLM Point Counting Method. NVL Laboratories, Inc. is accredited for these asbestos analytical methods by the NVLAP Accreditation Program. Appendix C contains NVL Laboratories, Inc.'s certificate of laboratory accreditation and licensure. The collected samples of suspect NOA in concrete were analyzed by EMSL Analytical, Inc. for asbestos content using PLM CARB Method 435. EMSL Analytical, Inc. is accredited for these asbestos analytical methods by the NLAP Accreditation Program. Appendix C contains EMSL Analytical, Inc.'s certificate of laboratory accreditation and licensure.

Polarized Light Microscopy (PLM)

The PLM method is a visual estimation of the asbestos content of a sample. The PLM analysis was performed by NVL Laboratories, Inc. following the United States Environmental Protection Agency's (USEPA) PLM method EPA-600R/M4-82-020 for determining asbestos content in bulk building materials.

Polarized Light Microscopy Point Count (PLM Point Count)

According to the NESHAP, when the asbestos content of a friable material is visually estimated by the PLM visual technique to be detectable but less than 10%, the inspector may either (1) assume that the amount is greater than 0.1% and treat the material as ACCM or (2) conduct a second analysis, the PLM Point Count Method EPA/600-R93/116, to verify the percentage of asbestos in the material.

Per NESHAP, AECOM used the results of the PLM visual method analyses for friable materials to determine whether additional laboratory analysis was warranted (i.e., PLM Point Count), or whether the material would be treated as ACCM. Based on PLM analytical results, four samples were further analyzed by PLM Point Count analysis (See Appendix C).

If the results obtained by PLM Point Count Method and the PLM visual estimation method are different, the PLM Point Count result is used. When no asbestos is detected by the first PLM visual method, the additional technique using PLM Point Count Method is not required. The analytical results are reported in percent asbestos as derived from a 1000 point counting technique, which yields a detection limit of 0.1%.

Naturally Occurring Asbestos (NOA)

Asbestos fibers may be released from serpentine rock formations. The CARB 435 method is used to determine the asbestos content of serpentine aggregate, or NOA, in concrete, storage piles, on conveyor belts, and on surfaces such as road beds, road shoulders, and parking lots. Samples are crushed using a mill to produce a material of which the majority is less than 200 Tyler mesh (0.75 microns). CARB defines NOA as having >0.25% asbestos by PLM point counting. The analytical results are reported in percent asbestos as derived from a 400 PLM point counting technique, which yields a detection limit of 0.25%.

18 02 | Scope of Services April 2019

2.4 Lead Assessment

2.4.1 Sampling Methodology

Homogeneous painted surfaces were defined by substrate, application, and color. The paint chip samples were collected to the substrate to ensure that all layers present on the substrate were included in the laboratory analysis. The samples were collected and stored in a heavy-duty, self-sealing plastic bag and delivered to NVL Laboratories in Seattle, Washington. The samples were analyzed via Atomic Absorption Spectrophotometry in accordance with Method EPA 7000B. NVL Laboratories in Seattle, Washington is accredited by American Industrial Hygiene Association (AIHA) for lead analysis.

2.5 Other Regulated Building Materials

2.5.1 Universal Waste Inventory Methodology

An inventory of fluorescent light tubes, HID lamps, mercury-containing sources, and potential PCB-containing ballasts was conducted in accessible Project Areas.

Where fluorescent light fixtures were accessible, the ballast covers were removed, and the ballast labels were visually examined. Where fluorescent light fixtures could not be visually examined, the number of potential PCB-containing ballasts in each fixture was estimated based on the following assumptions:

- Each single light tube fluorescent fixture contains one ballast;
- Each HID lamp contains one ballast and one mercury bulb;
- Each multiple light tube fluorescent fixture contains one ballast for every pair of light tubes; and
- All light ballasts are assumed to contain PCBs unless the ballasts are labeled as not containing PCBs or are determined to be electronic.

Fluorescent light tubes, HID lamps, fluorescent light fixtures and PCB-containing transformers were identified in the buildings in the quantities listed in Table 4-4.

2.5.2 PCB-Containing Caulking

Suspected PCB-containing caulking samples were collected in the same manner as suspected asbestos-containing bulk samples. Each sample was collected and stored in a glass jar and delivered to Fremont Analytical, Inc. in Seattle, Washington. Samples were analyzed via Gas Chromatography in accordance with EPA Method 8270, "Polychlorinated Biphenyls (PCBs) by Gas Chromatography/Mass Spectrometry". Fremont Analytical, Inc. in Seattle, Washington is accredited by the National Environmental Lab Accreditation

April 2019 02 | Scope of Services 19

program as administered by the National Laboratory Accreditation Committee for analysis of PCBs by EPA Method 8270 (reporting in parts per million). Analytical results are presented in Table 4-5.

20 02 | Scope of Services April 2019

Chapter 3: Site Description

SITE DESCRIPTION

3.1 J.C. Boyle Development

AECOM Technical Services (AECOM) was retained by Klamath River Renewal Corporation (KRRC) to conduct a Hazardous Building Materials Survey (HBMS) of the J.C. Boyle Development. This report includes the findings of the HBMS conducted at the J.C. Boyle Development and associated support buildings and structures on August 20 to 23 and December 6, 2018. The J.C. Boyle Development is located near Keno, Oregon, and is a remote secured industrial facility owned and operated by PacifiCorp.

The J.C. Boyle Development and original supporting structures were completed in 1958 and are located between RM 233 and 224.9 in Klamath County, Oregon. The J.C. Boyle address is 26020 Highway 66, Keno, Oregon 97627. The J.C Boyle Dam impounds a narrow reservoir of 350 acres (aka J.C. Boyle Reservoir, aka Topsy Reservoir). Main features at J.C. Boyle include the reservoir, a combination embankment and concrete dam, gated spillway, diversion culvert, water conveyance system, forebay and powerhouse.

Other supporting structures include a fish ladder, 14 foot diameter pipeline, canal headgate and associated structure, timber bridge, a combined office/warehouse building, a vehicle storage shed, a fire protection building, a communications building, a hazardous materials shed, two residences, a vehicle storage shed, a spillway control building and gate control communications building near the forebay, and a warehouse and switchyard near the powerhouse.

3.1.1 Description of J.C. Boyle Development Structures

The following J.C. Boyle Development support structures were assessed during the HBMS:

Canal Headgate (JCCH)

The Canal Headgate is connected to the Intake Structure by a 14' steel pipeline.

Communication Building (JCCB)

The Communication Building is located south of the dam. It is an approximately 360 square feet paneled building with a slab-on-grade concrete foundation. The exterior siding and roofing consists of pre-fabricated steel. The interior consists of pre-fabricated metal wall siding and unfinished concrete flooring. The building contains a work station, electrical panels and two 32 units battery bank in secondary containment systems.

Emergency Spill Equipment Shed (JCES)

The Emergency Spill Equipment Shed is adjacent to the Powerhouse, is approximately 100 square feet, and is a single-story concrete slab on grade shed with engineered wood siding and asphaltic shingle roofing. The

22 03 | Site Description April 2019

interior of the shed is unfinished wood. The structure is currently being used as storage for emergency spill purposes. The structure was inaccessible during the HBMS due to the presence of wasps.

Fire Protection Building (JCFP)

The Fire Protection Building is located east of the diversion dam along the west bank of the reservoir. It is an approximately 600 square feet cinder block building with a slab-on-grade concrete floor and wooden ceiling. The structure houses water piping, compressed air tanks and electrical cabinets. The interior finishes consist of concrete flooring, CMU siding, and exposed metal ceiling.

Fish Ladder (JCFL)

The Fish Ladder is north of the Intake Structure. It is constructed of concrete.

Gate Control Center Building (JCGC)

The Fire Protection Building is located east of the diversion dam along the west bank of the reservoir. It is an approximately 600 square feet cinder block building with a slab-on-grade concrete floor and wooden ceiling. The structure houses water piping, compressed air tanks and electrical cabinets. The interior finishes consist of concrete flooring, CMU siding, and exposed metal ceiling.

Groundwater Pumphouse (JCGWPH)

The Groundwater Pumphouse is a prefabricated shed located southeast of the outdoor storage area. It is approximately 100 square feet. The exterior consists of metal siding and roofing. The interior of the building consists of unfinished wood throughout.

HazMat Shed and Above Ground Storage Tanks (JCHM)

The HazMat Shed and Above Ground Storage Tanks are located about 50 feet east of the Office and Warehouse building. The HazMat Shed is approximately 240 square feet. The HazMat Shed exterior consists of pre-fabricated metal siding with a slab-on-grade concrete foundation. The interior of the storage shed consists of unfinished metal siding and ceiling and unfinished concrete flooring. One each 500 gallon diesel and 1,000 gallon gasoline above ground storage tanks are located adjacent to the Hazardous Material Storage Shed. Both are double walled ASTs and are underneath a permanent "cover" and on top of concrete pads.

Intake Structure (JCIS)

The Intake Structure is located on the western side of the JC Boyle Reservoir. The south end of the structure includes a Fish Screen Building accessed by a wooden bridge. The perimeter of the Fish Screen Building is encircled by a wooden walkway above the reservoir to access metal fish screens. The exterior of the Fish Screen Building consists of corrugated metal siding and roofing. The interior of the Fish Screen Building consists of concrete flooring, walls, and ceiling. The JC Boyle Dam extends north of the Fish Screen Building,

April 2019 03 | Site Description 23

including stop log gates, metal grating walkways, electrical panels, and mules. The Fish Ladder extends west on the north end of the dam.

Office and Warehouse (JCOW)

The Office and Warehouse Building is approximately 1,800 square feet with a slab-on-grade concrete foundation. It resembles a "Red Barn" and is located approximately 300 feet west of the dam. The office portion contains a small kitchen with a sink and a restroom with water discharged to a septic tank. The maintenance warehouse portion is a large open area for typical repair and maintenance activities, the storage maintenance equipment, tools and miscellaneous supplies, and has a side fenced storage area.

Outdoor Storage Area (JCBY)

The Outdoor Storage Area (also referred to as the boneyard) is located south of the Vehicle Storage Shed. Various items are scattered throughout the Outdoor Storage Area, including scrap metal and a decommissioned storage tank.

Penstocks (JCPS)

The Penstocks extend downhill from the surge tank, on the north side of the Powerhouse, and feed the turbines inside the Powerhouse.

Powerhouse (JCPH)

The Powerhouse is approximately 7,000 square feet and is a reinforced concrete structure and contains three levels; above ground, first lower level, and second lower level.

The above ground level contains the upper portions of two vertical-shafts and Francis-type turbines contained in their own concrete vaults. A single 150-ton gantry crane was observed over the two turbines. The first lower level contained the lower portions of the turbines that were housed in concrete vaults, electrical panels, tanks, air compressors, oil, water and air piping, a small open office, and a restroom connected to an outdoor septic tank. The second lower level contained the piping, penstock intakes, and sump pumps.

Exterior and interior wall, floor, and ceiling finishes consist of concrete and CMU that are primarily painted throughout.

Residence 1 (JCR1)

Residence 1 is approximately 2020 square feet and is located east of the Vehicle Storage Shed. The building exterior consists of wood siding and asphaltic shingle roofing. The interior of the building contains bedrooms, bathrooms, a kitchen, a living room, and closets. The interior finishes include gypsum walls and ceilings, vinyl floor sheeting, and carpeting.

24 03 | Site Description April 2019

Residence 2 (JCR2)

Residence 2 is approximately 2020 square feet and is located east of the Vehicle Storage Shed. The interior of the building was inaccessible during the inspection. The building exterior consists of wood siding and asphaltic shingle roofing.

Spillway Control Center Building (JCSW)

The Spillway Control Center Building is approximately 420 square feet and is located adjacent to the Spillway. The exterior consists of metal siding and roofing. The interior of the building was not accessed during the inspection due to the observable presence of bats.

Substation (JCST)

The Substation is located inside the Switchyard and was not accessed during the inspection due to safety considerations.

Switchyard (JCSW)

The Switchyard is approximately 23,000 square feet, is located west of the Powerhouse, and was not accessed during the inspection due to safety considerations. The Switchyard contains electrical transformers, substations, transmission poles and lines within a fenced gravel area..

Timber Bridge (JCWB)

The Timber Bridge is approximately 1,600 square feet, and is located near the 14' diversion pipe, at the base of the Headgate.

Vehicle Storage Shed (JCVS)

The Vehicle Storage Shed is located east of the Office/Warehouse building and is approximately 4,400 square feet. The exterior of the building consists of metal siding and corrugated metal roofing. The interior finishes consist of unfinished metal framed walls and ceiling with batt insulation and unfinished concrete flooring.

Warehouse (JCWH)

The Warehouse is approximately 4,800 square feet. The exterior of the building consists of metal siding and corrugated metal roofing. The interior of the building consists of unfinished metal framed walls and ceiling with batt insulation and unfinished concrete flooring.

April 2019 03 | Site Description 25

Chapter 4: Conclusions and Recommendations

CONCLUSIONS AND RECOMMENDATIONS

On August 20 to 23 and December 6, 2018, AECOM conducted a Hazardous Building Materials Survey of the J.C. Boyle Development located in Keno, Oregon. AECOM assessed the site buildings for a variety of regulated building materials that would require removal or special handling during decommissioning and demolition. Section 4.5: Tables includes the tabulated results of the survey. The following are AECOM's general recommendations related to the HBMS findings:

- Plans and specifications should be developed by an appropriately qualified professional (e.g., CAC) to outline the planned scope of work, phasing, training and certification requirements, policies and procedures for the proper handling, removal packaging, disposal/recycling, and transportation of the materials.
- The findings of this report should be communicated to contractors planning to work on or bid on work at the site.
- Additional material-specific recommendations as listed below.

4 1 **Asbestos**

Two-hundred and three bulk samples of suspect asbestos-containing materials were collected and analyzed using Polarized Light Microscopy (PLM) during this assessment. Seven materials (HSAs) were found to contain detectable asbestos above 0.1%, five materials were assumed to contain asbestos, and three materials were visually assessed and determined to be non-suspect. Per the EPA NESHAP requirements and the analytical results, four sample layers were further analyzed using PLM Point Count Method.

In addition, six concrete bulk samples were collected and analyzed using PLM CARB 435 method to determine the content of NOA. No concrete samples were found to contain detectable NOA above the PLM point count threshold of 0.25%.

The results of the analyses are presented in Section 4.5, Tables 4-1, 4-2, and 4-3. Appendix C contains the laboratory reports of analytical results for each discrete sample.

Additional suspect ACMs may be present in inaccessible or concealed spaces. These spaces include, but are not limited to; below grade exterior materials, electrical systems, pipe chases, spaces between wall/ceiling/door/floor cavities, interior of mechanical components, beneath foundation pads, etc. If future demolition activities make these areas accessible, AECOM recommends that a thorough assessment of these spaces be conducted at that time to identify and confirm the presence or absence of additional ACMs

and ACCMs. Until then, all such unidentified materials must be treated as assumed ACMs in accordance with applicable federal, state, and local regulations.

If the analytical results indicate that all the samples collected per HSA do not contain asbestos, then the HSA (material) is considered a non-ACM. If the analytical results of one or more of the samples collected per HSA indicate that asbestos is present in quantities of greater than 0.1% asbestos as defined by Cal/OSHA, all of the HSA (material) is considered to be an ACM or ACCM regardless of any other analytical results.

Any material that contains greater than 0.1% asbestos is considered an ACCM and must be handled according to Cal/OSHA regulations. Any material greater than one percent asbestos is considered an ACM and must be handled according to EPA regulations, and applicable state and local regulations. The EPA NESHAP regulations (40 CFR 61, Subparts A and M) have a requirement related to assessment of suspect ACM in buildings. When the asbestos content of a friable material is visually estimated by PLM to be detectable but less than ten percent, your firm may elect to (1) assume the amount is greater than one percent and treat the material as asbestos-containing or (2) require verification of the amount by the PLM point counting technique. If the results obtained by point counting and visual estimation are different, the point count result must be used. When no asbestos is detected by PLM, point counting is not required.

4.1.1 Asbestos Regulations

Asbestos-related work must be performed in compliance with local, federal, and state regulations including Cal/OSHA, the Siskiyou County Air Pollution Control District, EPA NESHAP, and relevant federal, state and local regulations pertaining to handling of asbestos.

The EPA NESHAP regulations (Renovation and Demolition NESHAP 40 CFR 61, Subparts A and M) for asbestos apply to certain demolition and renovation projects in facilities containing ACM and/or assumed ACM. The NESHAP rule usually requires that all friable ACM and some categories of non-friable ACM be removed before a building is demolished, and may require localized removal prior to demolition. The following NESHAP definitions of ACM are very important in interpreting which NESHAP requirements may apply to your building:

- Friable asbestos-containing material: any material containing more than 1 percent asbestos that when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.
- Category I non-friable asbestos-containing material: asbestos-containing packings, gaskets, resilient
 floor covering, and asphalt roofing products containing more than 1 percent asbestos that, when dry,
 cannot be crumbled, pulverized, or reduced to powder by hand pressure.
- Category II non-friable asbestos-containing material: any material excluding Category I non-friable ACM, containing more than 1 percent asbestos that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure.
- Regulated asbestos-containing material (RACM): (1) friable ACM, (2) Category I non-friable ACM that has become friable (3) Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading, or (4) Category II non-friable ACM that has a high probability of

becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the materials in the course of demolition or renovation operations regulated by NESHAP.

NESHAP also requires that the local air district be notified before certain renovations or demolition impacting RACM begin. When ACCM is removed or disturbed during demolition or renovation, the Cal/OSHA regulations also apply. The NESHAP regulations should be studied in detail for a thorough delineation of these and other requirements.

Cal/OSHA regulates employee exposure to asbestos (T8, CCR 1529). The Cal/OSHA asbestos standards mandate a permissible exposure limit (PEL) of 0.1 fibers (equal to or longer than 5 micrometers) per cubic centimeter of air (fibers/cc) determined as an 8-hour, time-weighted average (TWA) and an excursion limit of 1 fiber/cc as a 30-minute TWA.

Also, for asbestos removal or renovation involving ACM, the Cal/OSHA Asbestos Construction Standard (T8, CCR 1529) requires that specific procedures be followed, including enclosure of the work area to control asbestos exposure of building occupants, as well as, employees involved in abatement or renovation activities.

The following are selected Cal/OSHA definitions regarding asbestos work:

- Class I asbestos work means activities involving the removal of TSI and surfacing ACM and PACM.
- Class II asbestos work means activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestoscontaining wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastics.
- Class III asbestos work means repair and maintenance operations, where "ACM", including TSI and surfacing ACM and PACM, is likely to be disturbed.
- Class IV asbestos work means maintenance and custodial activities during which employees contact but do not disturb ACM or PACM and activities to clean up dust, waste and debris resulting from Class I, II, and III activities.
- Intact means that the ACM has not crumbled, been pulverized, or otherwise deteriorated so that asbestos is no longer likely to be bound with its matrix.

AECOM identified materials that were assumed to contain asbestos, but were not assessed because the inspector determined them to be ACM, for the safety of the inspector and to preserve building system integrity.

During demolition activities, inaccessible materials may be uncovered which were not identified or sampled during this assessment. Personnel in charge of demolition should be alerted to note materials uncovered during these activities which were not identified in this report. The following are AECOM's recommendations:

If the buildings are scheduled for abatement and demolition (AECOM's recommendation), an abatement project design manual should be prepared with technical specifications and abatement plans. The design must be prepared by a CAC.

- The results of this sampling should be communicated to any Contractors working in the Project Areas and a copy of the assessment report must be on-site during demolition activities.
- Abatement work must be performed by CA-licensed asbestos abatement contractor with trained asbestos workers and supervisors.
- Any concealed building materials discovered during demolition activities, which are suspected to contain asbestos, should be sampled by a CSST or CAC and analyzed by a NVLAP- and CA ELAPaccredited laboratory to confirm the presence of asbestos prior to disturbing such materials or be assumed to be ACM.
- If the facilities assessed during the HBMS are not scheduled for demolition, AECOM recommends the development of an O&M Plan by a CAC.

4.2 Lead

Sixteen paint chip samples were collected and analyzed for total lead content; fifteen of the paint chip samples were found to contain detectable levels of lead. The results of the analyses are presented in Section 4.5 Table 4-3. Appendix C contains the laboratory reports of analytical results for each discrete sample.

Cal/OSHA requires worker training, worker protection, and exposure assessments be conducted during operations that may disturb the lead-containing paint in such a way that the airborne exposure may reach or exceed the Action Level of 30 micrograms per cubic meter (µg/m³) or the Permissible Exposure Limit of 50 µg/cm³. The worker protection requirements of Cal/OSHA 1532.1 "Lead" apply.

4.3 Other Regulated Building Materials

Mercury-containing fluorescent light tubes and HID lamps were observed during the assessment. In the switchyard, the yellow glass portion of the high voltage transformer bushings may contain PCBs in the oil. One caulking sample was collected and analyzed for PCBs using EPA method 8270 by gas chromatography/mass spectrometry (GCMS). No PCBs were detected in the caulking sample.

Fluorescent light tubes, switches, and thermostats may contain mercury. Fluorescent light ballasts, transformer oil, and HID lamp ballasts may contain PCBs. PCB wastes are regulated by Department of Toxic Substance Control Act (DTSC) Title 22 CCR 66261.24, Resource Conservation Recovery Act (RCRA) Title 40 CFR 761, and Toxic Substance Control Act (TSCA) 15 USC 2695. DTSC has classified PCBs as a hazardous waste when the concentrations are equal to or greater than 5 mg/l in liquids or when the total concentrations are equal to or greater than 50 mg/kg in non-liquids (Title 22, CCR, 66261.24). If the PCB waste is greater than 50 mg/l, then it is also to be managed under the RCRA and TSCA requirements. Employers must inform their employees of mercury and PCB hazards in accordance with Cal/OSHA.

Light ballasts in representative locations were visually assessed where possible. All light ballasts observed during the course of the HBMS were electronic ballasts or magnetic ballasts labeled "No PCBs". During the

course of decommissioning or demolition activities, magnetic light ballasts may be discovered that are not labeled "No PCBs" and should be disposed of per DTSC requirements.

Fluorescent light tubes must be removed and recycled or disposed of as hazardous waste or universal waste prior to demolition as per 22 CFR 66261.50 and 66273.8.

The results of the Universal Waste Inventory are presented in Section 4.5 Table 4-5.

Treated Wood 4 4

Wood treated with creosote was observed in the following locations:

- Power poles throughout J.C. Boyle Development, including within the Switchyard
- Wooden bridge associated with the Intake Structure
- **Timber Bridge**

4.5 **Tables**

Table 4-1: Confirmed ACMs, ACCMs, and Assumed ACMs lists the HSAs (materials) that were tested and confirmed to contain greater than 0.1 percent asbestos as well as the HSAs that could not be tested and are assumed to contain asbestos. NESHAP categories and approximate quantities of each material are identified, when possible.

Table 4-2: Asbestos Sample Results by Layer lists the tabulated analytical results for each discrete asbestos sample, listed by building then by HSA. Confirmed ACMs, ACCMs and Non-ACMs are included.

Table 4-3: Visually Negative Materials lists the materials that were visually assessed and determined to be non-suspect.

Table 4-4: Lead Paint Sample Results lists the tabulated analytical results for each discrete lead paint sample.

Table 4-5: Universal Waste Inventory presents the tabulated approximate quantities of fluorescent light tubes, suspect PCB containing light ballasts, non-PCB containing magnetic light ballasts, HID Lamps, and PCB-containing transformers.

Table 4-6: PCB-Caulking Sample Results lists the tabulated analytical results for each PCB caulking sample.

Appendix A contains figures of structures, sampling locations, and asbestos-containing material locations.

Appendix B contains HSA Photologs, by building, then by HSA.

Appendix C contains the laboratory reports of analytical results for each discrete sample.

Appendix D contains personnel and laboratory certifications.

Table 4-1 Confirmed ACMs, ACCMs, and Assumed ACMs

		and Assumed ACMs						
Building	HSA#	HSA Description	Material Location	AHERA Class	Friability	NESHAP Category	Summarized Results	Quantity
Communication Building	JCCB-04	Asbestos-containing tan caulking	At base of interior wall/concrete interface	Misc.	NF	Cat II	Positive	78 LF
HazMat Shed and Fuel Shed	JCHM-01	Asbestos-containing asphaltic concrete crack sealant	Asphalt pad associated with HazMat Shed and Above Ground Storage Tanks	Misc.	NF	Cat II	Positive	20 LF
HazMat Shed and Fuel Shed	JCHM-03	Asbestos-containing off- white caulking	On above ground storage tank concrete casing in Fuel Shed	Misc.	NF	Cat II	Positive	4 EA (penetrations)
HazMat Shed and Fuel Shed	JCHM-06	Asbestos-containing off- white sealant	Ceiling/roof seams of HazMat Shed	Misc.	NF	Cat II	Positive	~100 LF
Office Warehouse	JCOW-08	Assumed asbestos- containing silver woven electrical wire insulation	Throughout Office and Warehouse	Misc.	NF	Cat II	Assumed	Not quantified
Powerhouse	JCPH-05	Assumed asbestos- containing gaskets	Piping and mechanical equipment throughout Powerhouse	Misc.	-	-	Assumed	Not quantified*
Powerhouse	JCPH-08	Asbestos-containing gray door sealant	Entry into upper level of Powerhouse (interior and exterior of door)	Misc.	NF	Cat II	Positive	32 LF
Powerhouse	JCPH-14	Assumed asbestos- containing metal clad fire doors	Throughout Powerhouse	Misc.	NF	Cat II	Assumed	5 EA
Powerhouse	JCPH-15	Assumed asbestos- containing wicket gates	Associated with turbines	Misc.	NF	Cat II	Assumed	2 EA
Warehouse	JCWH-01	Asbestos-containing black asphaltic slip sheet with cementitious material	Exterior interface between metal siding and concrete foundation	Misc.	NF	Cat II	Positive	192 LF
Warehouse	JCWH-05	Asbestos-containing tan brittle caulking	At metal seems around interior roll -up door	Misc.	NF	Cat II	Positive	330 SF

NF: Non-Friable; HSA: material that is uniform in color, texture, general appearance, and construction and application date, Surf.: Surfacing material per AHERA, Misc.: Miscellaneous material per AHERA, SF: Square Feet, EA: Each; LF: Linear Feet; Cat II: Category II per NESHAPS; Materials that were unable to be sampled (typically because of inaccessibility or sampling would be too destructive while facilities were still operational) are assumed to be asbestos-containing. *Not quantified because of unknown extent of material not accessible at time of inspection; as-built drawings needed for approximate quantification.

Table 1: Confi	rmed ACMs	and Assumed ACMs						
Building	HSA#	HSA Description	Material Location	AHERA Class	Friability	NESHAP Category	Summarized Results	Quantity
Throughout JC Boyle Development	-	Assumed asbestos- containing buried Transite piping	Based on piping found at Copco 2, it is reasonable to assume that buried Transite piping also exists throughout the JC Boyle Development	Misc.	NF	Cat II	Assumed	Not quantified*

NF: Non-Friable; HSA: material that is uniform in color, texture, general appearance, and construction and application date, Surf.: Surfacing material per AHERA, Misc.: Miscellaneous material per AHERA, SF: Square Feet, EA: Each; LF: Linear Feet; Cat II: Category II per NESHAPS; Materials that were unable to be sampled (typically because of inaccessibility or sampling would be too destructive while facilities were still operational) are assumed to be asbestos-containing. *Not quantified because of unknown extent of material not accessible at time of inspection; as-built drawings needed for approximate quantification.

Table 4-2 Asbestos Sample Results by Layer

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%)	Asbestos Type
						Asbestos	
Canal Headgate and 14' Pipeline	JCCH-1-01	1	Black soft material with paint chips	Around 14' diversion pipeline	Misc.		None Detected
Canal Headgate and 14' Pipeline	JCCH-2-01	1	Silver paint	Around 14' diversion pipe down spout	Misc.		None Detected
Canal Headgate and 14' Pipeline		2	Red rubbery material	Around 14' diversion pipe down spout	Misc.		None Detected
Canal Headgate and 14' Pipeline	JCCH-3-01	1	Silver paint	14' diversion pipe	Misc.		None Detected
Canal Headgate and 14' Pipeline	JCCH-3-02	1	Silver paint	14' diversion pipe	Misc.		None Detected
Canal Headgate and 14' Pipeline	JCCH-3-03	1	Silver paint	14' diversion pipe	Misc.		None Detected
Communication Building	JCCB-1-01	1	Light gray soft foamy material with paint	Exterior metal siding seams	Misc.		None Detected
Communication Building	JCCB-1-02	1	Light gray soft foamy material with debris	Exterior metal siding seams	Misc.		None Detected
Communication Building	JCCB-2-01	1	Black asphaltic material	Exterior asphalt crack repairs	Misc.		None Detected
Communication Building	JCCB-2-02	1	Black soft asphaltic material	Exterior asphalt crack repairs	Misc.		None Detected
Communication Building	JCCB-3-01	1	Black asphaltic material	Exterior asphalt	Misc.		None Detected
Communication Building	JCCB-4-01	1	Light gray soft material	At base of interior wall/concrete interface	Misc.	2%	Chrysotile
Communication Building	JCCB-4-02	1	Light gray soft material	At base of interior wall/concrete interface	Misc.	2%	Chrysotile
Fire Protection Building	JCFP-1-01	1	Red brittle material with paint	Piping throughout Fire Protection Building	Misc.		None Detected
Fire Protection Building	JCFP-1-02	1	Red brittle material with paint	Piping throughout Fire Protection Building	Misc.		None Detected
Fire Protection Building	JCFP-1-03	1	Red soft material with paint	Piping throughout Fire Protection Building	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA	Percent	Asbestos
					Classification	(%) Asbestos	Туре
Fire Protection Building	JCFP-2-01	1	Black rubbery soft material with red paint and inter fill-loose fibrous	Piping throughout Fire Protection Building	Misc.		None Detected
Fire Protection Building	JCFP-3-01	1	Brown fibrous material with rush	Interior of metal double doors (deterioration exposed insulation)	Misc.		None Detected
Fire Protection Building	JCFP-4-01	1	Light gray sandy/brittle material	Exterior walls	Misc.		None Detected
Fire Protection Building	JCFP-5-01	1	Off-white brittle/soft mastic	Around exterior vents	Misc.		None Detected
Gate Control and Communication Building	JCGCB-1-01	1	Gray brittle window putty	Interior window frames	Misc.		None Detected
Gate Control and Communication Building	JCGCB-1-02	1	Gray brittle window putty	Interior window frames	Misc.		None Detected
Gate Control and Communication Building	JCGCB-2-01	1	Red fire stop	Interior wall, at electrical conduit penetrations	Misc.		None Detected
Gate Control and Communication Building	JCGCB-2-02	1	Red fire stop	Interior wall, at electrical conduit penetrations	Misc.		None Detected
Gate Control and Communication Building	JCGCB-3-01	1	Gray sealant	Exterior metal siding seams	Misc.		None Detected
Gate Control and Communication Building	JCGCB-3-02	1	Gray sealant	Exterior metal siding seams	Misc.		None Detected
Groundwater Pumphouse	JCPH-1-01	1	Tan paper with asphalt	Batt insulation above wood ceiling	Misc.		None Detected
Groundwater Pumphouse		2	Pink fibrous material	Batt insulation above wood ceiling	TSI		None Detected
Groundwater Pumphouse	JCPH-1-02	1	Tan paper with asphalt	Batt insulation above wood ceiling	Misc.		None Detected
Groundwater Pumphouse		2	Pink fibrous material	Batt insulation above wood ceiling	TSI		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Groundwater Pumphouse	JCPH-1-03	1	Tan paper with asphalt	Batt insulation above wood ceiling	Misc.		None Detected
Groundwater Pumphouse		2	Pink fibrous material	Batt insulation above wood ceiling	TSI		None Detected
Groundwater Pumphouse	JCPH-2-01	1	Black asphaltic fibrous material	Underneath corrugated metal siding, throughout exterior	Misc.		None Detected
Groundwater Pumphouse	JCPH-2-02	1	Black asphaltic fibrous material	Underneath corrugated metal siding, throughout exterior	Misc.		None Detected
Groundwater Pumphouse	JCPH-2-03	1	Black asphaltic fibrous material with brown paint	Underneath corrugated metal siding, throughout exterior	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-1-01	1	Black soft asphaltic material	Asphalt pad associated with HazMat Shed and Above Ground Storage Tanks	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-1-02	1	Black soft asphaltic material	Asphalt pad associated with HazMat Shed and Above Ground Storage Tanks	Misc.		None Detected
HazMat Shed and Fuel Shed		2	Black asphaltic material	Asphalt pad associated with HazMat Shed and Above Ground Storage Tanks	Misc.	2%	Chrysotile
HazMat Shed and Fuel Shed	JCHM-2-01	1	Beige brittle/sandy material with off-white paint	On above ground storage tank concrete casing in Fuel Shed	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-2-02	1	Beige brittle/sandy material with off-white paint	On above ground storage tank concrete casing in Fuel Shed	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-2-03	1	Light graybrittle/sandy material with off-white paint	On above ground storage tank concrete casing in Fuel Shed	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-3-01	1	White soft material	On above ground storage tank concrete casing in Fuel Shed piping	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-3-02	1	Beige soft/brittle material with gray paint	On above ground storage tank concrete casing in Fuel Shed	Misc.	<0.1%*	Chrysotile
HazMat Shed and Fuel Shed	JCHM-4-01	1	Gray/silver paint	Roof of small storage shed adjacent to HazMat Shed	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-4-02	1	Orange/silver paint	Roof of small storage shed adjacent to HazMat Shed	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
HazMat Shed and Fuel Shed	JCHM-4-03	1	Orange/silver paint	Roof of small storage shed adjacent to HazMat Shed	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-5-01	1	White soft material	On roll-up door to HazMat Shed	Misc.		None Detected
HazMat Shed and Fuel Shed	JCHM-6-01	1	Light gray compressed fibrous material	Ceiling/roof seams of HazMat Shed	Misc.	45%	Chrysotile
Intake Structure	JCIS-10-01	1	Gray brittle material	Structure around stop logs	Misc.		None Detected
Intake Structure	JCIS-1-01	1	Gray brittle material with debris	Driveway area of intake structure	Misc.		None Detected
Intake Structure	JCIS-11-01	1	Gray rubbery material with sand	At walkway expansion joints	Misc.		None Detected
Intake Structure	JCIS-12-01	1	Off-whtie brittle material	Fish screen flooring area around fish screen building	Misc.		None Detected
Intake Structure	JCIS-12-02	1	Gray brittle material with paint	Fish screen flooring area around fish screen building	Misc.		None Detected
Intake Structure		2	Off-white brittle material	Fish screen flooring area around fish screen building	Misc.		None Detected
Intake Structure	JCIS-13-01	1	Silver paint	Stop log structural cage frame	Misc.		None Detected
Intake Structure		2	Metal oxide with paint	Stop log structural cage frame	Misc.		None Detected
Intake Structure	JCIS-13-02	1	Silver paint	Stop log structural cage frame	Misc.		None Detected
Intake Structure		2	Metal oxide	Stop log structural cage frame	Misc.		None Detected
Intake Structure	JCIS-13-03	1	Silver paint	Stop log structural cage frame	Misc.		None Detected
Intake Structure	JCIS-14-01	1	Gray brittle material	At beginning of wood bridge	Misc.		None Detected
Intake Structure	JCIS-15-01	1	Silver paint	Exterior of intake structure, below fish screen house lower section	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Intake Structure		2	Metal oxide with paint	Exterior of intake structure, below fish screen house lower section	Misc.		None Detected
Intake Structure	JCIS-15-02	1	Silver paint	Exterior of intake structure, below fish screen house lower section	Misc.		None Detected
Intake Structure		2	Metal oxide with paint	Exterior of intake structure, below fish screen house lower section	Misc.		None Detected
Intake Structure	JCIS-15-03	1	Soft flaky material with metallic paint	Exterior of intake structure, below fish screen house lower section	Misc.		None Detected
Intake Structure	JCIS-16-01	1	Black asphaltic fibrous material with paint	Underneath wood walls of Intake Structure Reservoir Level Building	Misc.		None Detected
Intake Structure	JCIS-16-02	1	Black asphaltic fibrous material with paint	Underneath wood walls of Intake Structure Reservoir Level Building	Misc.		None Detected
Intake Structure	JCIS-2-01	1	Black sticky material with mineral grains	Driveway area of intake structure	Misc.		None Detected
Intake Structure	JCIS-3-01	1	Gray sandy rubbery material	Intake structure walkway	Surf.		None Detected
Intake Structure		2	Gray brittle material	Intake structure walkway	Misc.		None Detected
Intake Structure	JCIS-3-02	1	Gray sandy rubbery material	Intake structure walkway	Misc.		None Detected
Intake Structure		2	Gray brittle material	Intake structure walkway	Misc.		None Detected
Intake Structure	JCIS-3-03	1	Gray sandy rubbery material	Intake structure walkway	Misc.		None Detected
Intake Structure	JCIS-3-04	1	Gray brittle material	Intake structure walkway	Misc.		None Detected
Intake Structure	JCIS-4-01	1	Black asphaltic mastic	On wood bridge to intake structure	Misc.		None Detected
Intake Structure	JCIS-4-02	1	Black asphaltic mastic	On wood bridge to intake structure	Misc.		None Detected
Intake Structure	JCIS-5-01	1	Silver paint	Flex pipe connection associated with pump inside Fish Screen Building	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Intake Structure		2	Brown woven fibrous material with brittle brown mastic	Flex pipe connection associated with pump inside Fish Screen Building	Misc.		None Detected
Intake Structure	JCIS-6-01	1	Silver paint	Piping connecting traveling water screens inside Fish Screen Building	Misc.		None Detected
Intake Structure		2	Green and brown paint	Piping connecting traveling water screens inside Fish Screen Building	Misc.		None Detected
Intake Structure	JCIS-6-02	1	Silver paint	Piping connecting traveling water screens inside Fish Screen Building	Misc.		None Detected
Intake Structure		2	Green orange and brown paint	Piping connecting traveling water screens inside Fish Screen Building	Misc.		None Detected
Intake Structure	JCIS-6-03	1	Silver paint	Piping connecting traveling water screens inside Fish Screen Building	Misc.		None Detected
Intake Structure		2	Green orange and brown paint	Piping connecting traveling water screens inside Fish Screen Building	Misc.		None Detected
Intake Structure	JCIS-7-01	1	White rubbery material with paint	At concrete wall/wood ceiling interface inside Fish Screen Building	Misc.		None Detected
Intake Structure		2	Brown rubbery material with paint and wood flakes	At concrete wall/wood ceiling interface inside Fish Screen Building	Misc.		None Detected
Intake Structure	JCIS-7-02	1	White rubbery material with paint	At concrete wall/wood ceiling interface inside Fish Screen Building	Misc.		None Detected
Intake Structure		2	Brown rubbery material with paint and wood flakes	At concrete wall/wood ceiling interface inside Fish Screen Building	Misc.		None Detected
Intake Structure	JCIS-8-01	1	Brown paper with black asphaltic mastic	Above ceiling in Fish Screen Building	Misc.		None Detected
Intake Structure		2	Pink fibrous material	Above ceiling in Fish Screen Building	TSI		None Detected
Intake Structure	JCIS-8-02	1	Brown paper with black asphaltic mastic	Above ceiling in Fish Screen Building	Misc.		None Detected
Intake Structure		2	Pink fibrous material	Above ceiling in Fish Screen Building	TSI		None Detected
Intake Structure		3	Off-white paint	Above ceiling in Fish Screen Building	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Intake Structure	JCIS-8-03	1	Brown paper with black asphaltic mastic	Above ceiling in Fish Screen Building	TSI		None Detected
Intake Structure		2	Pink fibrous material	Above ceiling in Fish Screen Building	Misc.		None Detected
Intake Structure	JCIS-9-01	1	Silver paint	On traveling water screen machinery	Misc.		None Detected
Intake Structure		2	Gray and brown paint	On traveling water screen machinery	Misc.		None Detected
Intake Structure	JCIS-9-02	1	Silver paint	On traveling water screen machinery	Misc.		None Detected
Intake Structure		2	Gray and brown paint	On traveling water screen machinery	Misc.		None Detected
Intake Structure	JCIS-9-03	1	Silver paint	On traveling water screen machinery	Misc.		None Detected
Intake Structure		2	Gray and brown paint	On traveling water screen machinery	Misc.		None Detected
Office Warehouse	JCOW-10-01	1	Tan fibrous material with mastic and metal foil	Insulation inside two roll-up doors in Warehouse	Misc.		None Detected
Office Warehouse		2	Off-white foamy material	Insulation inside two roll-up doors in Warehouse	Misc.		None Detected
Office Warehouse	JCOW-10-02	1	Tan fibrous material with mastic and metal foil	Insulation inside two roll-up doors in Warehouse	Misc.		None Detected
Office Warehouse		2	Off-white foamy material	Insulation inside two roll-up doors in Warehouse	Misc.		None Detected
Office Warehouse	JCOW-10-03	1	Tan fibrous material with mastic and metal foil	Insulation inside two roll-up doors in Warehouse	Misc.		None Detected
Office Warehouse		2	Off-white foamy material	Insulation inside two roll-up doors in Warehouse	Misc.		None Detected
Office Warehouse	JCOW-1-01	1	Gray sheet vinyl	Flooring in break room, shower room, office, hallway, and restroom	Misc.		None Detected
Office Warehouse		2	Gray fibrous backing with mastic (on wood)	Flooring in break room, shower room, office, hallway, and restroom	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Office Warehouse	JCOW-1-02	1	Gray sheet vinyl	Flooring in break room, shower room, office, hallway, and restroom	Misc.		None Detected
Office Warehouse		2	Tan fibrous backing with mastic (on wood)	Flooring in break room, shower room, office, hallway, and restroom	Misc.		None Detected
Office Warehouse		3	Black asphaltic fibrous material	Flooring in break room, shower room, office, hallway, and restroom	Misc.		None Detected
Office Warehouse	JCOW-1-03	1	Gray sheet vinyl	Flooring in break room, shower room, office, hallway, and restroom	Misc.		None Detected
Office Warehouse		2	Gray fibrous backing with mastic (on wood)	Flooring in break room, shower room, office, hallway, and restroom	Misc.		None Detected
Office Warehouse	JCOW-11-01	1	Black asphaltic mastic with paper	Above ceiling in attic of Warehouse	Misc.		None Detected
Office Warehouse		2	Pink fibrous material	Above ceiling in attic of Warehouse	TSI		None Detected
Office Warehouse	JCOW-11-02	1	Black asphaltic mastic with paper	Above ceiling in attic of Warehouse	Misc.		None Detected
Office Warehouse		2	Pink fibrous material	Above ceiling in attic of Warehouse	TSI		None Detected
Office Warehouse	JCOW-11-03	1	Black asphaltic mastic with paper	Above ceiling in attic of Warehouse	Misc.		None Detected
Office Warehouse		2	Pink fibrous material	Above ceiling in attic of Warehouse	TSI		None Detected
Office Warehouse	JCOW-11-04	1	Black asphaltic mastic with paper and paint	Above ceiling in attic of Warehouse	Misc.		None Detected
Office Warehouse		2	Pink fibrous material	Above ceiling in attic of Warehouse	TSI		None Detected
Office Warehouse	JCOW-12-01	1	Black asphaltic mastic with paper and paint	Behind wood wall, loft area of Warehouse	Misc.		None Detected
Office Warehouse		2	Yellow fibrous material	Behind wood wall, loft area of Warehouse	TSI		None Detected
Office Warehouse	JCOW-12-02	1	Black asphaltic mastic with paper and paint	Behind wood wall, loft area of Warehouse	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Office Warehouse		2	Yellow fibrous material	Behind wood wall, loft area of Warehouse	TSI		None Detected
Office Warehouse	JCOW-12-03	1	Black asphaltic mastic with paper and paint	Behind wood wall, loft area of Warehouse	Misc.		None Detected
Office Warehouse		2	Yellow fibrous material	Behind wood wall, loft area of Warehouse	TSI		None Detected
Office Warehouse	JCOW-13-01	1	Black asphaltic soft material	At base of exterior metal walls, at wall/concrete interface	Misc.		None Detected
Office Warehouse	JCOW-13-02	1	Black asphaltic soft material	At base of exterior metal walls, at wall/concrete interface	Misc.		None Detected
Office Warehouse	JCOW-14-01	1	Off-white putty material with paint	Exterior window panes	Misc.		None Detected
Office Warehouse	JCOW-14-02	1	Off-white putty material with paint	Exterior window panes	Misc.		None Detected
Office Warehouse	JCOW-15-01	1	Black asphaltic fibrous felt	Underneath corrugated metal roof, throughout	Misc.		None Detected
Office Warehouse	JCOW-15-02	1	Black asphaltic fibrous felt with paint	Underneath corrugated metal roof, throughout	Misc.		None Detected
Office Warehouse	JCOW-16-01	1	Black asphaltic fibrous felt	Underneath corrugated metal siding of Office Warehouse shed	Misc.		None Detected
Office Warehouse	JCOW-16-02	1	Black asphaltic fibrous felt	Underneath corrugated metal siding of Office Warehouse shed	Misc.		None Detected
Office Warehouse	JCOW-17-01	1	Black asphaltic fibrous material	Underneath corrugated metal siding throughout Office Warehouse	Misc.		None Detected
Office Warehouse	JCOW-17-02	1	Black asphaltic fibrous material	Underneath corrugated metal siding throughout Office Warehouse	Misc.		None Detected
Office Warehouse	JCOW-2-01	1	Gray fibrous material with paint	Ceiling in entry way	Misc.		None Detected
Office Warehouse	JCOW-2-02	1	Gray fibrous material with paint	Ceiling in entry way	Misc.		None Detected
Office Warehouse	JCOW-2-03	1	Gray fibrous material with paint	Ceiling in entry way	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Office Warehouse	JCOW-3-01	1	Gray rubbery material	Walls throughout office main floor	Misc.		None Detected
Office Warehouse		2	White soft mastic	Walls throughout office main floor	Misc.		None Detected
Office Warehouse		3	White compacted powdery material with paint	Walls throughout office main floor	Misc.		None Detected
Office Warehouse	JCOW-3-02	1	Gray rubbery material	Walls throughout office main floor	Misc.		None Detected
Office Warehouse		2	White soft mastic	Walls throughout office main floor	Misc.		None Detected
Office Warehouse		3	White compacted powdery material with paint	Walls throughout office main floor	Misc.		None Detected
Office Warehouse	JCOW-4-01	1	White compacted powdery material with paint	Walls throughout office main floor	Surf.		None Detected
Office Warehouse		2	White chalky material with paper	Walls throughout office main floor	Misc.		None Detected
Office Warehouse	JCOW-4-02	1	White textured powdery material with paint	Walls throughout office main floor	Surf.		None Detected
Office Warehouse		2	White chalky material with paper	Walls throughout office main floor	Misc.		None Detected
Office Warehouse	JCOW-4-03	1	White compacted powdery material with paint	Walls throughout office main floor	Surf.		None Detected
Office Warehouse		2	White chalky material with paper	Walls throughout office main floor	Misc.		None Detected
Office Warehouse	JCOW-4-04	1	White compacted powdery material with paint	Walls throughout office main floor	Surf.		None Detected
Office Warehouse		2	White chalky material with paper	Walls throughout office main floor	Misc.		None Detected
Office Warehouse	JCOW-4-05	1	White compacted powdery material with paint	Walls throughout office main floor	Surf.		None Detected
Office Warehouse		2	White chalky material with paper	Walls throughout office main floor	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Table 2: Asbesto	os Sample Resu	ults by Laye	er				
Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Office Warehouse	JCOW-4-06	1	White compacted powdery material with paint	Walls throughout office main floor	Surf.		None Detected
Office Warehouse		2	White chalky material with paper	Walls throughout office main floor	Misc.		None Detected
Office Warehouse	JCOW-6-01	1	White soft elastic material	Restroom counter	Misc.		None Detected
Office Warehouse		2	White compacted powdery material with paint and paper	Restroom counter	Misc.		None Detected
Office Warehouse	JCOW-7-01	1	Black plastic	Underneath restroom counter	Misc.		None Detected
Office Warehouse		2	Yellow soft adhesive	Underneath restroom counter	Misc.		None Detected
Outdoor Storage Area	JCBY-1-01	1	Red soft rubbery material	Out of service storage tank in Outdoor Storage Area	Misc.		None Detected
Outdoor Storage Area		2	Yellow soft mastic	Out of service storage tank in Outdoor Storage Area	Misc.		None Detected
Outdoor Storage Area	JCBY-2-01	1	Black brittle asphaltic material with granules	Out of service storage tank in Outdoor Storage Area	Misc.		None Detected
Outdoor Storage Area	JCBY-2-02	1	Black brittle asphaltic material with granules	Out of service storage tank in Outdoor Storage Area	Misc.		None Detected
Outdoor Storage Area	JCBY-3-01	1	Silver paint	Out of service storage tank in Outdoor Storage Area	Misc.		None Detected
Outdoor Storage Area		2	Yellow brittle material	Out of service storage tank in Outdoor Storage Area	Misc.		None Detected
Penstock	JCPS-01-01	1	Gray brittle cementitious material	Penstock piping support blocks	Misc.		None Detected
Powerhouse	JCPH-10-01	1	Gray sticky material	Walls throughout Powerhouse	Misc.		None Detected
Powerhouse	JCPH-1-01	1	Gray brittle material	Walls throughout Powerhouse	Misc.		None Detected
Powerhouse	JCPH-1-02	1	Gray brittle material with paint	Walls throughout Powerhouse	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Powerhouse	JCPH-11-01	1	Gray rubbery material	Concrete pad/roof top side of Powerhouse	Misc.		None Detected
Powerhouse	JCPH-12-01	1	Gray brittle material	Concrete pad/roof top side of Powerhouse	Misc.		None Detected
Powerhouse		2	Tan brittle material	Concrete pad/roof top side of Powerhouse	Misc.		None Detected
Powerhouse	JCPH-12-02	1	Gray brittle material	Concrete pad/roof top side of Powerhouse	Misc.		None Detected
Powerhouse	JCPH-12-03	1	Gray brittle material	Concrete pad/roof top side of Powerhouse	Misc.		None Detected
Powerhouse		2	Tan brittle material	Concrete pad/roof top side of Powerhouse	Misc.		None Detected
Powerhouse	JCPH-13-01	1	Silver paint	Crane train tracks top side of Powerhouse	Misc.		None Detected
Powerhouse	JCPH-13-02	1	Silver paint	Crane train tracks top side of Powerhouse	Misc.		None Detected
Powerhouse	JCPH-13-03	1	Silver paint	Crane train tracks top side of Powerhouse	Misc.		None Detected
Powerhouse	JCPH-2-01	1	Off-white crumbly material with debris	Interior window panes	Misc.		None Detected
Powerhouse	JCPH-2-02	1	Tan crumbly material with paint	Interior window panes	Misc.		None Detected
Powerhouse	JCPH-3-01	1	Black rubbery material	Restroom walls	Misc.		None Detected
Powerhouse		2	Yellow soft mastic	Walls in upper level restroom	Misc.		None Detected
Powerhouse	JCPH-4-01	1	Red rubbery material with paint	Associated with generator piping, pumphouse lower level	Misc.		None Detected
Powerhouse		2	Black sticky mastic	Associated with generator piping, pumphouse lower level	Misc.		None Detected
Powerhouse	JCPH-6-01	1	White compacted powdery material with paint	Walls in upper level entry way	Surf.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA	Percent	Asbestos
					Classification	(%) Asbestos	Туре
Powerhouse		2	White chalky material with paper	Walls in upper level entry way	Misc.		None Detected
Powerhouse	JCPH-6-02	1	White compacted powdery material with paint	Walls in upper level entry way	Surf.		None Detected
Powerhouse		2	White chalky material with paper	Walls in upper level entry way	Misc.		None Detected
Powerhouse	JCPH-6-03	1	White compacted powdery material with paint	Walls in upper level entry way	Surf.		None Detected
Powerhouse		2	White chalky material with paper	Walls in upper level entry way	Misc.		None Detected
Powerhouse	JCPH-7-01	1	Off-white rubbery material with paint	Entry into switchgear room, associated with HVAC system	Misc.		None Detected
Powerhouse	JCPH-8-01	1	Brown sticky material with paint	Entry into upper level of Powerhouse (interior and exterior of door)	Misc.	3%	Chrysotile
Powerhouse	JCPH-8-02	1	White crumbly material with paint	Entry into upper level of Powerhouse (interior and exterior of door)	Misc.	6%	Chrysotile
Powerhouse		2	Brown sticky material	Entry into upper level of Powerhouse (interior and exterior of door)	Misc.	3%	Chrysotile
Powerhouse	JCPH-9-01	1	Off-white brittle material	Concrete pad/roof top side of Powerhouse	Misc.		None Detected
Residence 1	JCR1-10-01	1	Gray crumbly material	Around vent in bathroom	Misc.		None Detected
Residence 1	JCR1-1-01	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected
Residence 1		2	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-1-02	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected
Residence 1		2	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-1-03	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Residence 1		2	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-1-04	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected
Residence 1		2	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-1-05	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected
Residence 1		2	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-11-01	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected
Residence 1		2	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-11-02	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected
Residence 1		2	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-11-03	1	White compacted powdery material with paint	Walls throughout	Surf.		None Detected
Residence 1		2	White compacted powdery material with paper	Walls throughout	Misc.		None Detected
Residence 1		3	White chalky material with paper	Walls throughout	Misc.		None Detected
Residence 1	JCR1-12-01	1	Black fibrous material	Underneath corrugated metal roof throughout	Misc.		None Detected
Residence 1	JCR1-12-02	1	Black fibrous material	Underneath corrugated metal roof throughout	Misc.		None Detected
Residence 1	JCR1-13-01	1	Black sticky material	Base of wood siding throughout exterior	Misc.		None Detected
Residence 1		2	Gray brittle material with paint	Base of wood siding throughout exterior	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Residence 1	JCR1-13-02	1	Black sticky material	Base of wood siding throughout exterior	Misc.		None Detected
Residence 1	JCR1-14-01	1	Off-white sandy brittle material	At interface between garage and driveway	Misc.		None Detected
Residence 1	JCR1-14-02	1	Off-white sandy brittle material	At interface between garage and driveway	Misc.		None Detected
Residence 1	JCR1-2-01	1	White compacted powdery material with paint	Ceilings throughout	Surf.		None Detected
Residence 1	JCR1-2-02	1	White compacted powdery material with paint	Ceilings throughout	Surf.		None Detected
Residence 1	JCR1-2-03	1	White compacted powdery material with paint	Ceilings throughout	Surf.	0.2%*	Chrysotile
Residence 1	JCR1-2-04	1	White compacted powdery material with paint	Ceilings throughout	Surf.	<0.1%*	Chrysotile
Residence 1	JCR1-2-05	1	White compacted powdery material with paint	Ceilings throughout	Surf.	0.3%*	Chrysotile
Residence 1	JCR1-3-01	1	White rubbery material with debris	At base of french doors in dining room	Misc.		None Detected
Residence 1		2	Off-white sheet vinyl	At base of french doors in dining room	Misc.		None Detected
Residence 1	JCR1-4-01	1	Black rubbery material	Walls in dining room and kitchen	Misc.		None Detected
Residence 1		2	Yellow firm mastic	Walls in dining room and kitchen	Misc.		None Detected
Residence 1		3	White compacted powdery material with paint	Walls throughout (HSA JCR1-2)	Misc.		None Detected
Residence 1	JCR1-4-02	1	Black rubbery material	Walls in dining room and kitchen	Misc.		None Detected
Residence 1		2	Yellow firm mastic with paint	Walls in dining room and kitchen	Misc.		None Detected
Residence 1	JCR1-5-01	1	Tan sheet vinyl	Flooring in dining room and kitchen	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Residence 1		2	Yellow sticky mastic	Flooring in dining room and kitchen	Misc.		None Detected
Residence 1	JCR1-5-02	1	Tan sheet vinyl	Flooring in dining room and kitchen	Misc.		None Detected
Residence 1		2	Yellow sticky mastic	Flooring in dining room and kitchen	Misc.		None Detected
Residence 1	JCR1-6-01	1	Gray crumbly material	Kitchen sink	Misc.		None Detected
Residence 1	JCR1-7-01	1	Off-white crumbly material	Kitchen sink	Misc.		None Detected
Residence 1		2	Black sticky material	Kitchen sink	Misc.		None Detected
Residence 1	JCR1-8-01	1	Black fibrous material	Above rafters in attic, throughout	Misc.		None Detected
Residence 1	JCR1-9-01	1	Tan sheet vinyl	Flooring in bathroom off of bedroom	Misc.		None Detected
Residence 1		2	Clear sticky adhesive	Flooring in bathroom off of bedroom	Misc.		None Detected
Residence 1		3	Gray crumbly material	Flooring in bathroom off of bedroom	Misc.		None Detected
Residence 1		4	Off-white sheet vinyl	Flooring in bathroom off of bedroom	Misc.		None Detected
Residence 1		5	Gray fibrous material with hard yellow mastic	Flooring in bathroom off of bedroom	Misc.		None Detected
Residence 2	JCR2-1-01	1	Black asphaltic fibrous material with granules	Shed roofing, throughout	Misc.		None Detected
Residence 2		2	Black asphaltic fibrous felt	Shed roofing, throughout	Misc.		None Detected
Residence 2	JCR2-1-02	1	Black asphaltic fibrous material with granules	Shed roofing, throughout	Misc.		None Detected
Residence 2		2	Black asphaltic fibrous felt	Shed roofing, throughout	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA	Percent	Asbestos
Dunung	Sample 15	Layer	Sample Description	Waterial Eccation	Classification	(%) Asbestos	Type
Residence 2	JCR2-2-01	1	White fibrous material	Underneath exterior wood siding, throughout	Misc.		None Detected
Residence 2	JCR2-2-02	1	White fibrous material	Underneath exterior wood siding, throughout	Misc.		None Detected
Residence 2	JCR2-3-01	1	Black brittle asphaltic material	Driveway	Misc.		None Detected
Residence 2	JCR2-4-01	1	Black soft asphaltic material	Driveway	Misc.		None Detected
Residence 2	JCR2-4-02	1	Black soft asphaltic material	Driveway	Misc.		None Detected
Spillway Control Center Building	JCSW-1-01	1	Gray brittle cementitious material	Support concrete associated with Spillway Control Center Building	Misc.		None Detected
Spillway Control Center Building	JCSW-2-01	1	Black brittle asphaltic material	Associated with wood shoring on hill in front of Spillway Control Center Building	Misc.		None Detected
Spillway Control Center Building	JCSW-2-02	1	Black brittle asphaltic material	Associated with wood shoring on hill in front of Spillway Control Center Building	Misc.		None Detected
Timber Bridge	JCWB-1-01	1	Brittle orange material	Throughout Timber Bridge	Misc.		None Detected
Timber Bridge	JCWB-1-02	1	Brittle orange material	Throughout Timber Bridge	Misc.		None Detected
Timber Bridge		2	Brown woody material	Throughout Timber Bridge	Misc.		None Detected
Vehicle Storage Shed	JCVS-1-01	1	Yellow fibrous material with mastic and vinyl surface	Insulation throughout	TSI		None Detected
Vehicle Storage Shed	JCVS-1-02	1	Yellow fibrous material with mastic and vinyl surface	Insulation throughout	TSI		None Detected
Vehicle Storage Shed	JCVS-1-03	1	Yellow fibrous material with mastic and vinyl surface	Insulation throughout	TSI		None Detected
Vehicle Storage Shed	JCVS-2-01	1	Gray crumbly material	Expansion joints throughout interior flooring	Misc.		None Detected
Vehicle Storage Shed		2	Gray soft elastic material	Expansion joints throughout interior flooring	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%)	Asbestos
					Classification	(%) Asbestos	Туре
Vehicle Storage Shed		3	Dark gray brittle material	Expansion joints throughout interior flooring	Misc.		None Detected
Vehicle Storage Shed	JCVS-2-02	1	Gray soft elastic material	Expansion joints throughout interior flooring	Misc.		None Detected
Vehicle Storage Shed		2	Gray brittle material	Expansion joints throughout interior flooring	Misc.		None Detected
Vehicle Storage Shed		3	Brown brittle material	Expansion joints throughout interior flooring	Misc.		None Detected
Vehicle Storage Shed	JCVS-3-01	1	White soft material	Exterior siding	Misc.		None Detected
Vehicle Storage Shed	JCVS-4-01	1	Black asphaltic fibrous felt	Roof of entry way, under corrugated roof	Misc.		None Detected
Vehicle Storage Shed	JCVS-4-02	1	Black asphaltic fibrous felt	Roof of entry way, under corrugated roof	Misc.		None Detected
Vehicle Storage Shed	JCVS-5-01	1	Black asphaltic material	Seams around exterior perimeter - at roll-up doors	Misc.		None Detected
Vehicle Storage Shed	JCVS-5-02	1	Black asphaltic material	Seams around exterior perimeter - at roll-up doors	Misc.		None Detected
Vehicle Storage Shed	JCVS-6-01	1	Black asphaltic soft material	Penetrations around exterior perimeter	Misc.		None Detected
Vehicle Storage Shed	JCVS-6-02	1	Black asphaltic soft material	Penetrations around exterior perimeter	Misc.		None Detected
Warehouse	JCWH-1-01	1	Black asphaltic material with gray surface	Exterior interface between metal siding and concrete foundation	Misc.	10%	Chrysotile
Warehouse	JCWH-1-02	1	Black asphaltic material with gray surface	Exterior interface between metal siding and concrete foundation	Misc.	14%	Chrysotile
Warehouse	JCWH-2-01	1	Black asphaltic mastic with mesh and paper	Old insulation throughout interior	Misc.		None Detected
Warehouse		2	Yellow fibrous material	Old insulation throughout interior	TSI		None Detected
Warehouse	JCWH-2-02	1	Black asphaltic mastic with mesh and paper	Old insulation throughout interior	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Table 2: Asbe	stos Sample Res	ults by Laye	er				
Building	Sample ID	Layer	Sample Description	Material Location	AHERA Classification	Percent (%) Asbestos	Asbestos Type
Warehouse		2	Yellow fibrous material	Old insulation throughout interior	Misc.		None Detected
Warehouse	JCWH-2-03	1	Black asphaltic mastic with mesh and paper	Old insulation throughout interior	Misc.		None Detected
Warehouse		2	Yellow fibrous material	Old insulation throughout interior	Misc.		None Detected
Warehouse	JCWH-3-01	1	Black asphaltic material	At uneven expansion joints, concrete floor throughout interior	Misc.		None Detected
Warehouse	JCWH-3-02	1	Black asphaltic material	At uneven expansion joints, concrete floor throughout interior	Misc.		None Detected
Warehouse	JCWH-4-01	1	Gray brittle material	At uneven expansion joints, concrete floor throughout interior	Misc.		None Detected
Warehouse	JCWH-5-01	1	Off-white putty material	At metal seems around interior roll - up door (potentially at all seams, but more was not visible during inspection)	Misc.	4%	Chrysotile
Warehouse	JCWH-6-01	1	Tan fibrous material with paper	Debris on ground - appeared to be deteriorated from ceiling above	Misc.		None Detected
Warehouse	JCWH-6-02	1	Tan fibrous material with paper	Debris on ground - appeared to be deteriorated from ceiling above	Misc.		None Detected
Warehouse	JCWH-6-03	1	White fibrous material	Debris on ground - appeared to be deteriorated from ceiling above	Misc.		None Detected
Warehouse		2	Tan fibrous material	Debris on ground - appeared to be deteriorated from ceiling above	Misc.		None Detected
Warehouse		3	Black asphaltic material	Debris on ground - appeared to be deteriorated from ceiling above	Misc.		None Detected

^{*}Confirmed by layer via PLM Point Count at 1000 points; HSA: Material that is uniform in color, texture, general appearance, and construction and application date; Surf.: Surfacing material per AHERA; TSI: Thermal system insulation per AHERA; Misc.: Miscellaneous material per AHERA; Layers in bolded text are asbestoscontaining

Table 4-3 Lead Paint Sample Results

Building	Sample ID	Description	Substrate	Location	Results in (mg/kg)
Canal Headgate	JCCH-Pb1-01	Tan/silver/orange paint	Metal	Diversion piping	350,000
Communication Building	JCCB-Pb1-01	Yellow paint	Metal	Exterior metal tread walkway at entrance	<44
Communication Building	JCCB-Pb2-01	Tan paint	Metal	Exterior metal trim	140
Communication Building	JCCB-Pb3-01	White paint	Metal	Throughout interior metal siding	<200
Fire Protection Building	JCFP-Pb1-01	Red paint	Metal	Pump piping throughout interior	56
Fire Protection Building	JCFP-Pb2-01	Gray paint	Metal	Double doors at entrance	<49
Fire Protection Building	JCFP-Pb3-01	Red paint	Concrete	Exterior bollards	<63
HazMat Shed	JCHM-Pb1-01	Tan paint	Metal	Throughout exterior siding	65
Gate Control Communication Building	JCCG-Pb1-01	Tan paint	Metal	Exterior siding and equipment throughout	3,300
HazMat Shed	JCHM-Pb2-01	Tan paint	Metal	Throughout exterior siding of small shed next to HazMat Storage Shed	290,000
HazMat Shed	JCHM-Pb3-01	White paint	Concrete	Above ground concrete casings	<59
HazMat Shed	JCHM-Pb4-01	Silver/orange paint	Metal	Roof of small shed next to HazMat Storage Shed	220,000
HazMat Shed	JCHM-Pb5-01	Red paint	Metal	Throughout interior structural steel of HazMat Shed	560
Intake Structure	JCIS-Pb10-01	Gray paint on brown paint	Metal	Metal handrails on fish ladder bridge	19,000
Intake Structure	JCIS-Pb1-01	Yellow paint	Metal	Driveway block	<89
Intake Structure	JCIS-Pb11-01	Tan paint	Metal	Throughout exterior metal siding on reservoir level gage house	490
Intake Structure	JCIS-Pb2-01	Gray paint	Wood	Exterior underhang of Fish Screen House	740
Intake Structure	JCIS-Pb3-01	White paint	Concrete	Throughout interior walls of Fish Screen Building	120
Intake Structure	JCIS-Pb4-01	Green/silver paint	Metal	Throughout interior piping of Fish Screen Building	12,000

Building	Sample ID	Description	Substrate	Location	Results in (mg/kg)
Intake Structure	JCIS-Pb5-01	Gray paint	Metal	Interior mechanical of Fish Screen Building, on traveling water screens	68
Intake Structure	JCIS-Pb6-01	Silver/orange paint	Metal	Intake structural support	57,000
Intake Structure	JCIS-Pb7-01	Tan paint	Metal	Exterior siding of Fish Screen Building	<180
Intake Structure	JCIS-Pb8-01	Brown paint	Wood	Exterior walkway decking around Fish Screen Building, lower section directly above water	<51
Intake Structure	JCIS-Pb9-01	Silver paint	Metal	Metal screens on exterior of Fish Screen Building	74,000
Office Warehouse	JCOW-Pb1-01	White paint	Gypsum wallboard	Throughout interior walls of office spaces	<46
Office Warehouse	JCOW-Pb2-01	Gray paint	Wood	Wood floor throughout second floor	<59
Office Warehouse	JCOW-Pb3-01	White paint	Wood	Wood walls throughout second floor	<59
Office Warehouse	JCOW-Pb4-01	Yellow paint	Concrete	Associated with trip hazards in warehouse	<55
Office Warehouse	JCOW-Pb5-01	White paint	Wood	Walls in first floor warehouse	<56
Office Warehouse	JCOW-Pb6-01	White paint	Wood	Frames on first and second floor exterior windows	<52
Office Warehouse	JCOW-Pb7-01	Red paint	Metal	Exterior corrugated metal siding	<96
Outdoor Storage Area	JCBY-Pb1-01	Silver paint	Metal	Out of commission tank in outdoor storage area	15,000
Penstock	JCPS-Pb1-01	Tan paint on orange paint	Metal	Penstock piping	97,000
Powerhouse	JCPH-Pb1-01	White paint	СМИ	CMU walls throughout	680
Powerhouse	JCPH-Pb2-01	Gray paint	Concrete	Floors throughout Powerhouse	180
Powerhouse	JCPH-Pb3-01	White paint	Concrete	Walls throughout Powerhouse	360
Powerhouse	JCPH-Pb4-01	Orange paint	Metal	Handrails throughout Powerhouse	100,000
Powerhouse	JCPH-Pb5-01	White paint	Concrete	Exterior walls throughout Powerhouse	<68
Powerhouse	JCPH-Pb6-01	Orange paint	Metal	Exterior handrails throughout	<140
Powerhouse	JCPH-Pb7-01	Silver paint	Metal	Exterior tracks top side of Powerhouse (roof)	21,000

Table 4: Tabulat	ted Analytical Results	for Each Lead Paint Sample			
Building	Sample ID	Description	Substrate	Location	Results in (mg/kg)
Pumphouse	JCPH-Pb1-01	Brown paint	Wood	Wood door to pumphouse	<60
Residence 1	JCRI-Pb1-01	Light beige paint	Gypsum wallboard	Interior walls throughout	<75
Residence 1	JCRI-Pb2-01	Light beige paint	Wood	Interior trim throughout	<60
Residence 1	JCRI-Pb7-01	Green paint	Wood	Exterior siding throughout	<53
Residence 1	JCRI-Pb8-01	Off-white paint	Wood	Exterior trim throughout	<46
Residence 1	JCRI-Pb9-01	Green paint	Concrete	Exterior concrete foundation	<52
Residence 2	JCR2-Pb1-01	Green paint	Wood	Exterior siding throughout	<58
Residence 2	JCR2-Pb2-01	White paint	Wood	Exterior trim throughout	<98
Spillway	JCSW-Pb1-01	Beige paint on concrete	Concrete	Spillway canal walls	2,200
Vehicle Storage Shed	JCVS-Pb1-01	Red paint	Metal	Structural steel throughout interior	<120
Vehicle Storage Shed	JCVS-Pb2-01	Tan paint	Metal	Door frames throughout Vehicle Storage	<51
Vehicle Storage Shed	JCVS-Pb3-01	White paint	Wood	Interior walls throughout	<58
Vehicle Storage Shed	JCVS-Pb4-01	Yellow paint	Concrete	Exterior bollards	150
Vehicle Storage Shed	JCVS-Pb5-01	Tan paint	Metal	Exterior corrugated metal siding	<57
Warehouse	JCWH-Pb1-01	Red paint	Metal	Interior structural support beams	15,000

<: Below the reporting limit

Table 4-4 Universal Waste Inventory

Table 4: Universal Waste Inventory	
Other Regulated Building Materials Description	Approximate Quantity
Mercury-containing fluorescent light tubes (4' length)	68
Mercury-containing fluorescent light tubes (6' length)	10
Mercury-containing fluorescent light tubes (8' length)	8
Magnetic light ballasts	50
HID lamps	39
Mercury-containing switches, controls, and recorders	None observed

Table 4-5 PCB-Caulking Sample Results

Table 5: PCB Caulking Results		
Sample Number and Description	Material Location	Samples Results in Parts Per Million (ppm)
Flexible gray expansion joint sealant	Powerhouse roof – at expansion joints	ND

ND: None Detected

APPENDIX A FIGURES

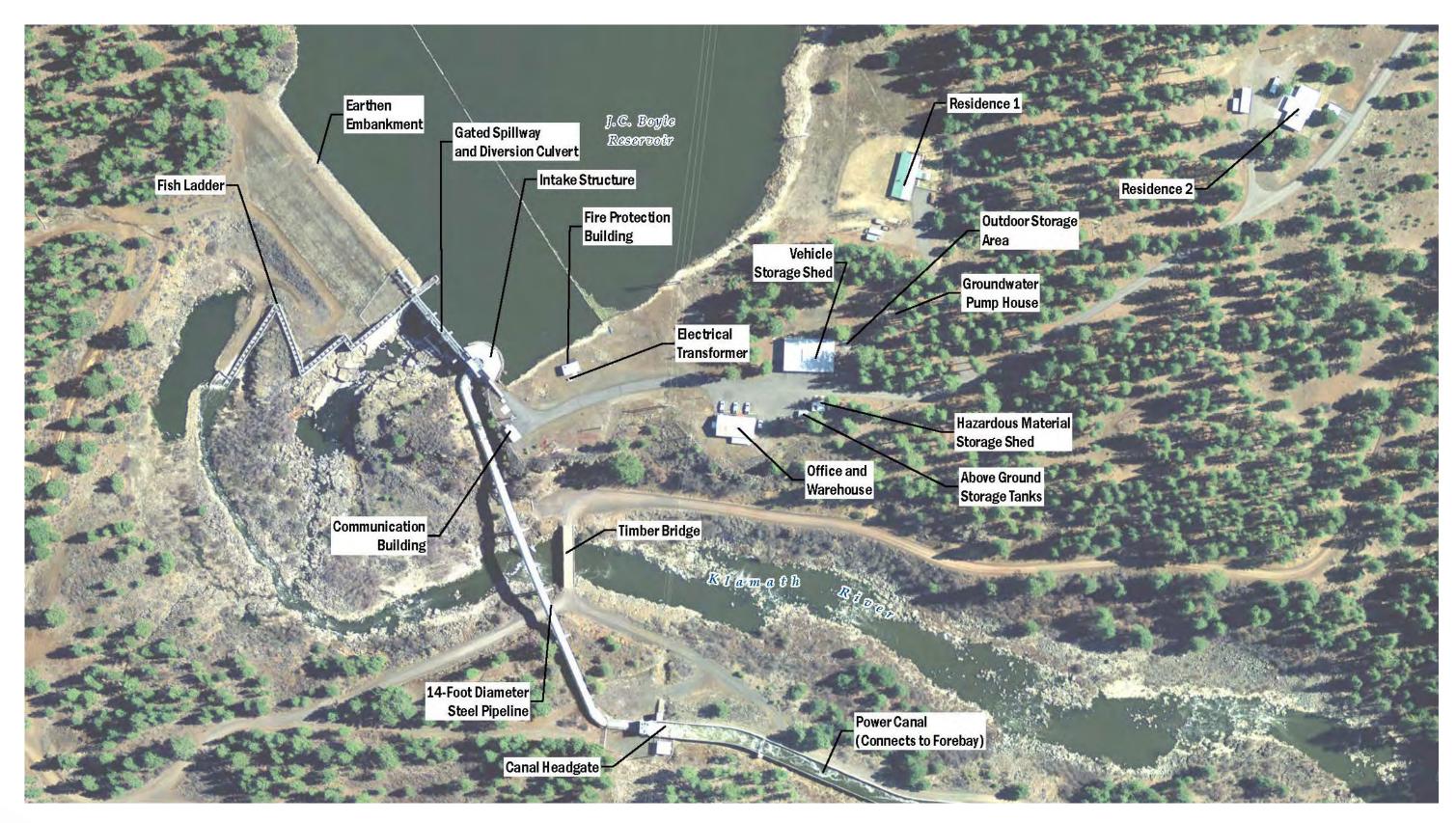
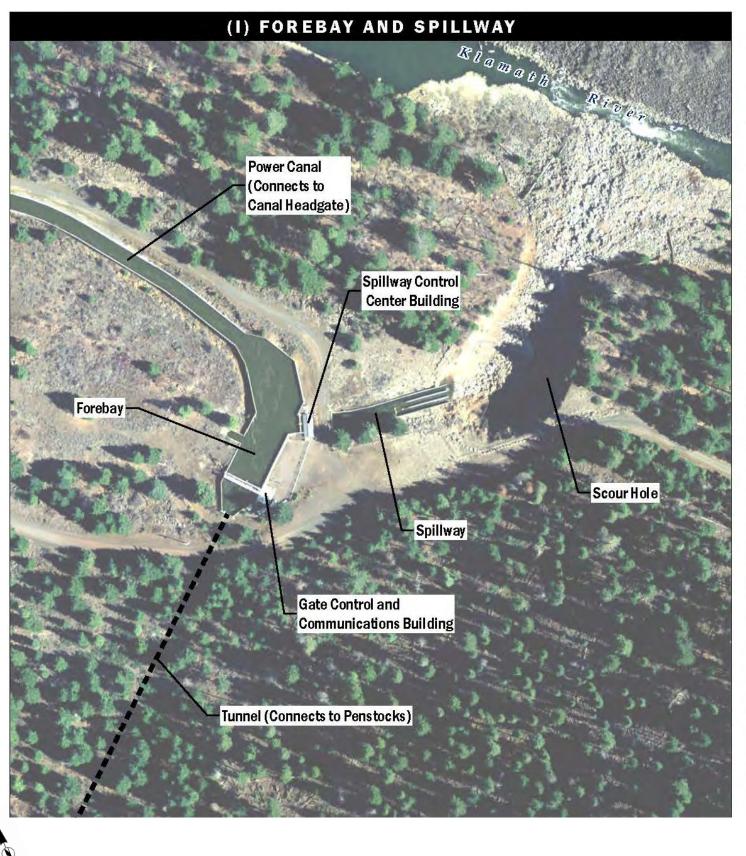



Figure 1 JC Boyle Dam Aerial Site Photo

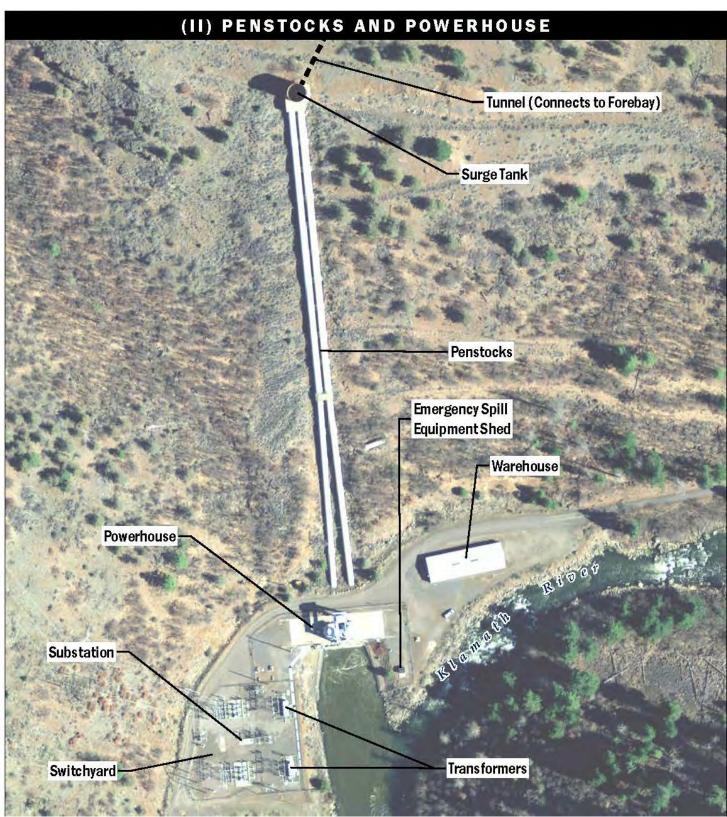
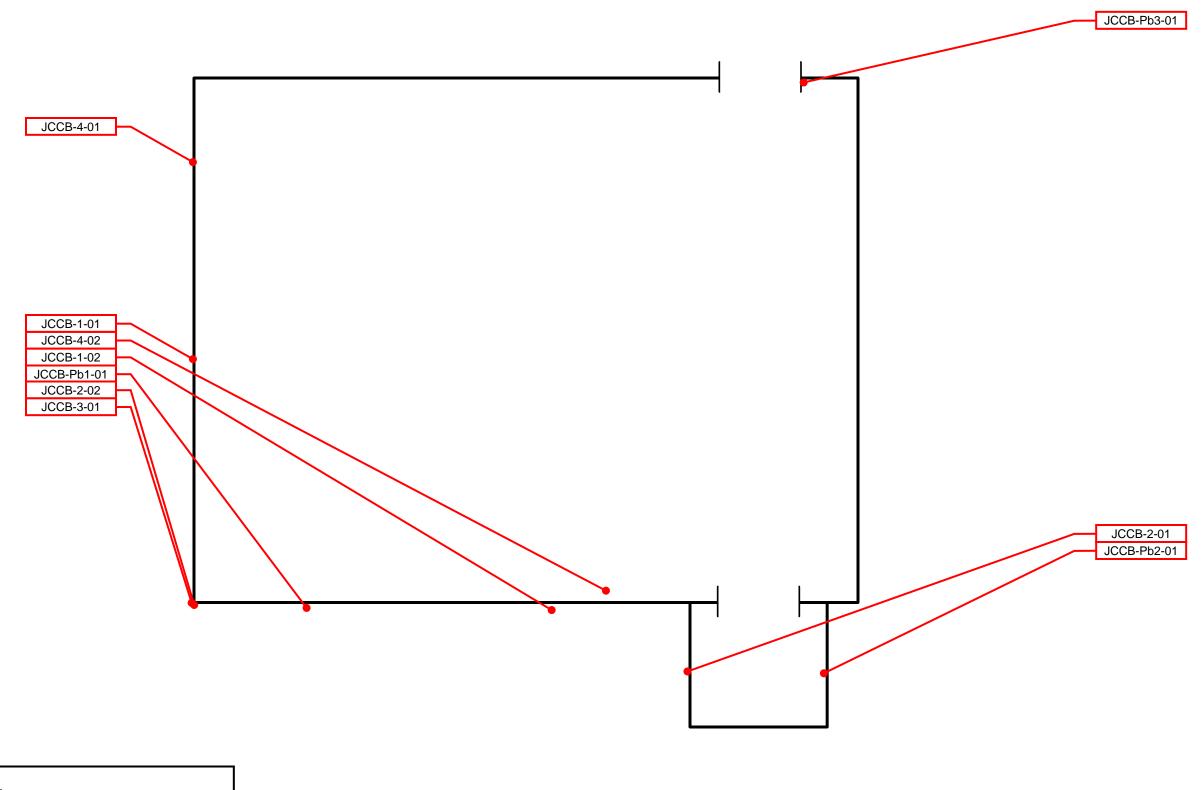



Figure 2 JC Boyle Dam Aerial Site Photo

Job No. 60537920

Legend

JCCB - HSA# - ## = Asbestos sample location

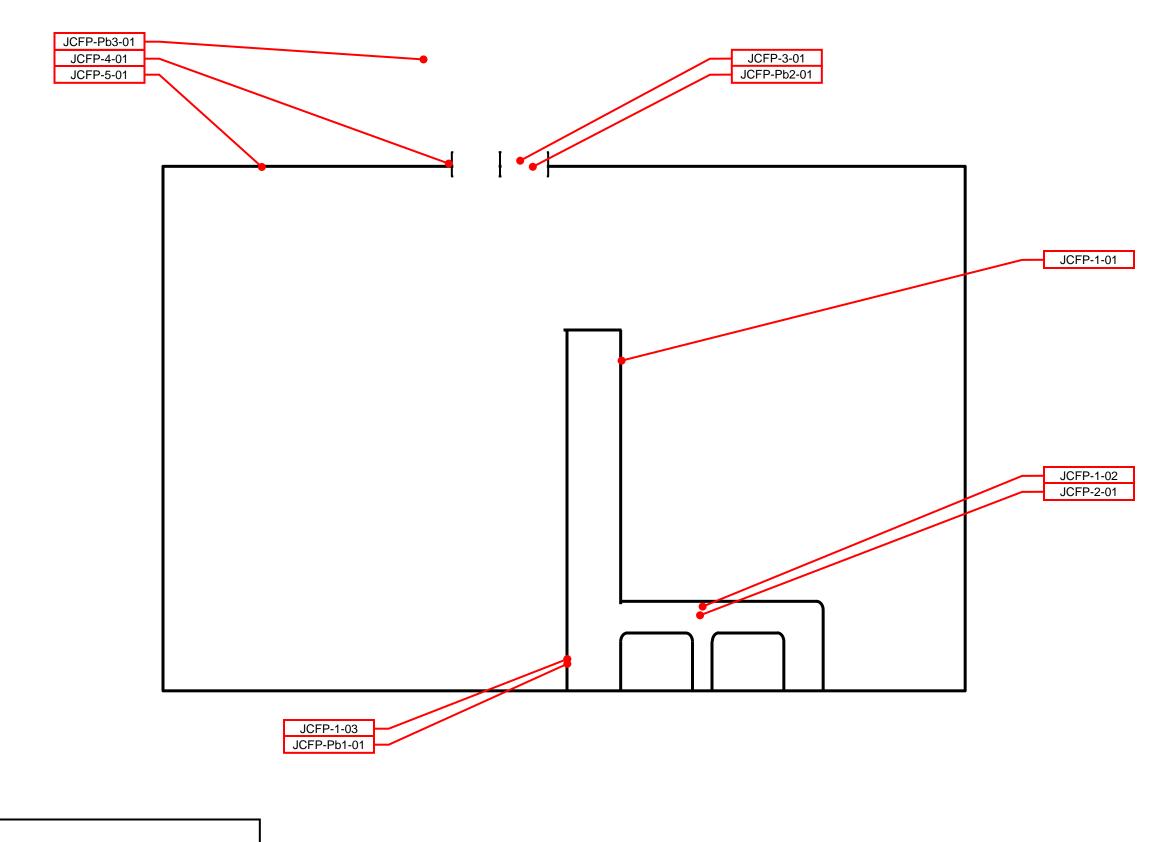

JCCB - Pb# - ## = Lead paint sample location

Figure 3
Asbestos and Lead Sample Locations
Communications Building

Job No. 60537920

Drawing Not to Scale - Schematic Only

Legend

JCFP - HSA# - ## = Asbestos sample location

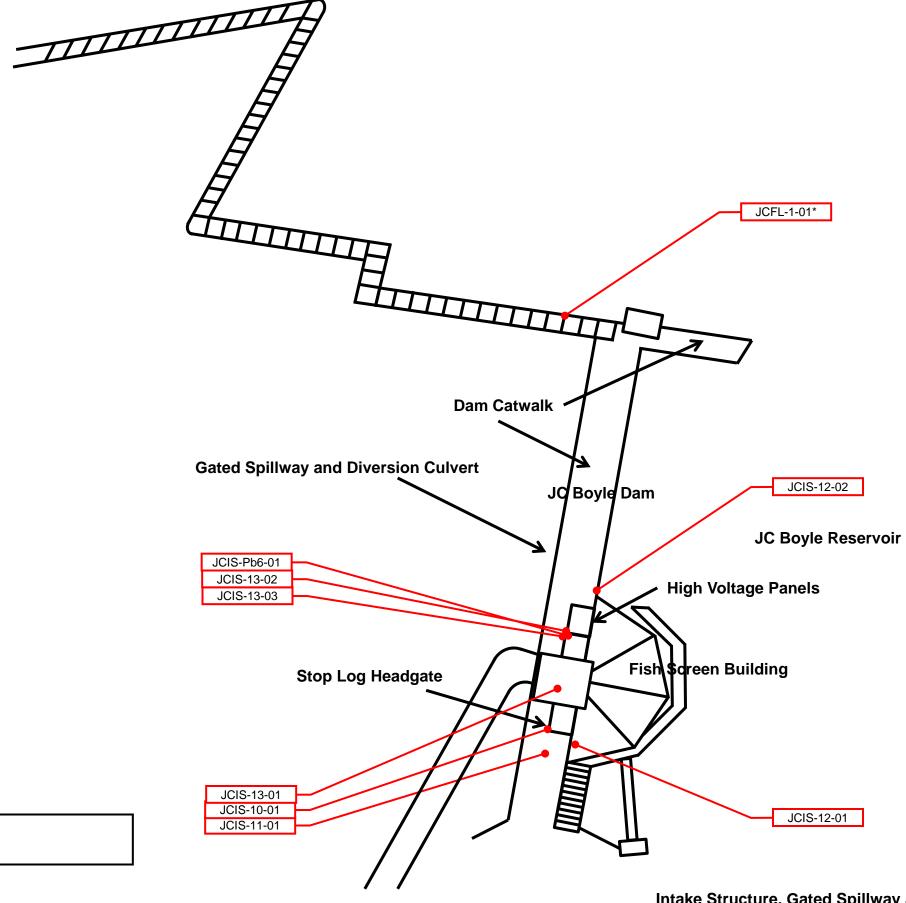

JCFP - Pb# - ## = Lead paint sample location

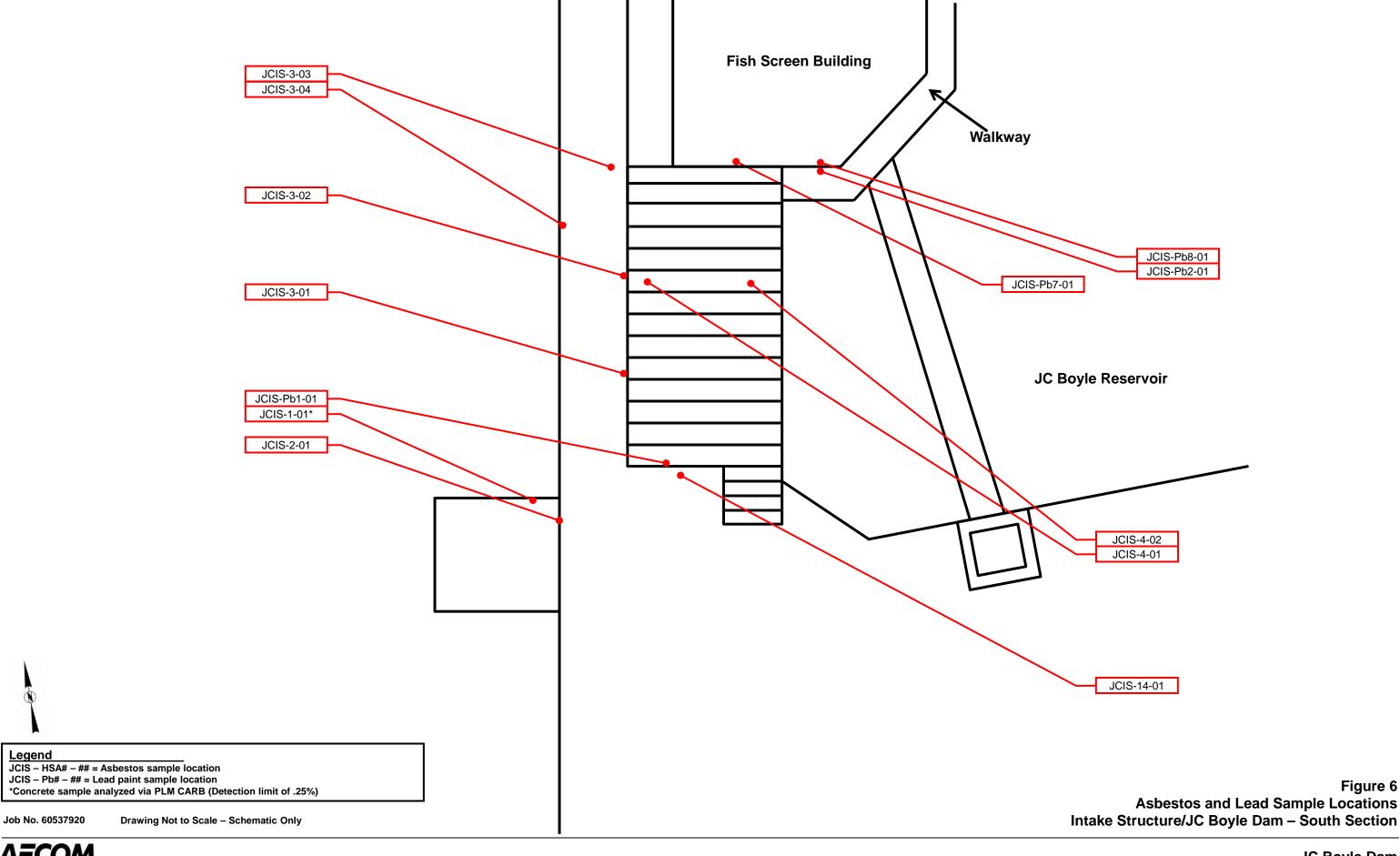
Figure 4
Asbestos and Lead Sample Locations
Fire Protection Building

Job No. 60537920

Drawing Not to Scale - Schematic Only

Legend

JCIS - HSA# - ## = Asbestos sample location


JCIS - Pb# - ## = Lead paint sample location

Job No. 60537920

Drawing Not to Scale – Schematic Only

Figure 5 **Asbestos and Lead Sample Locations** Intake Structure, Gated Spillway and Diversion Culvert, and Fish Ladder

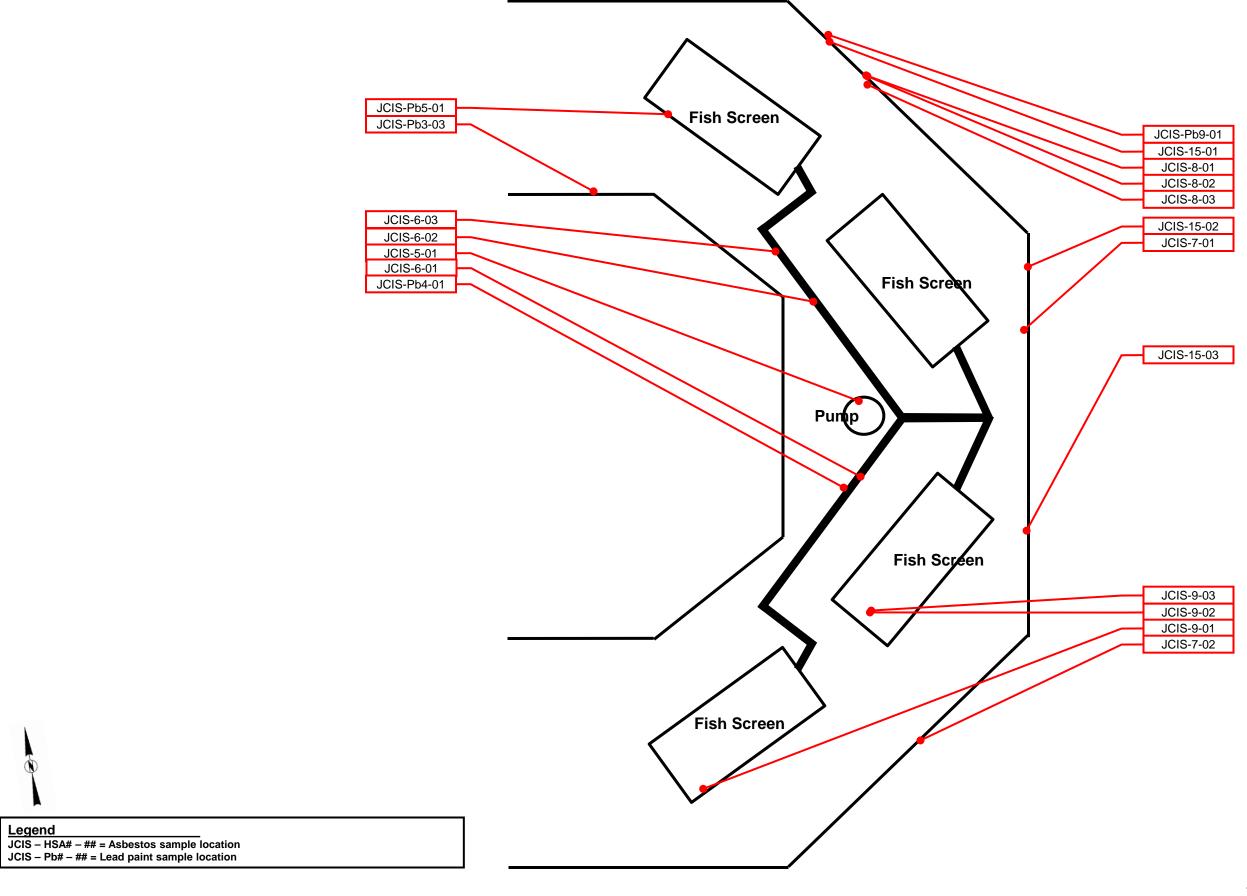
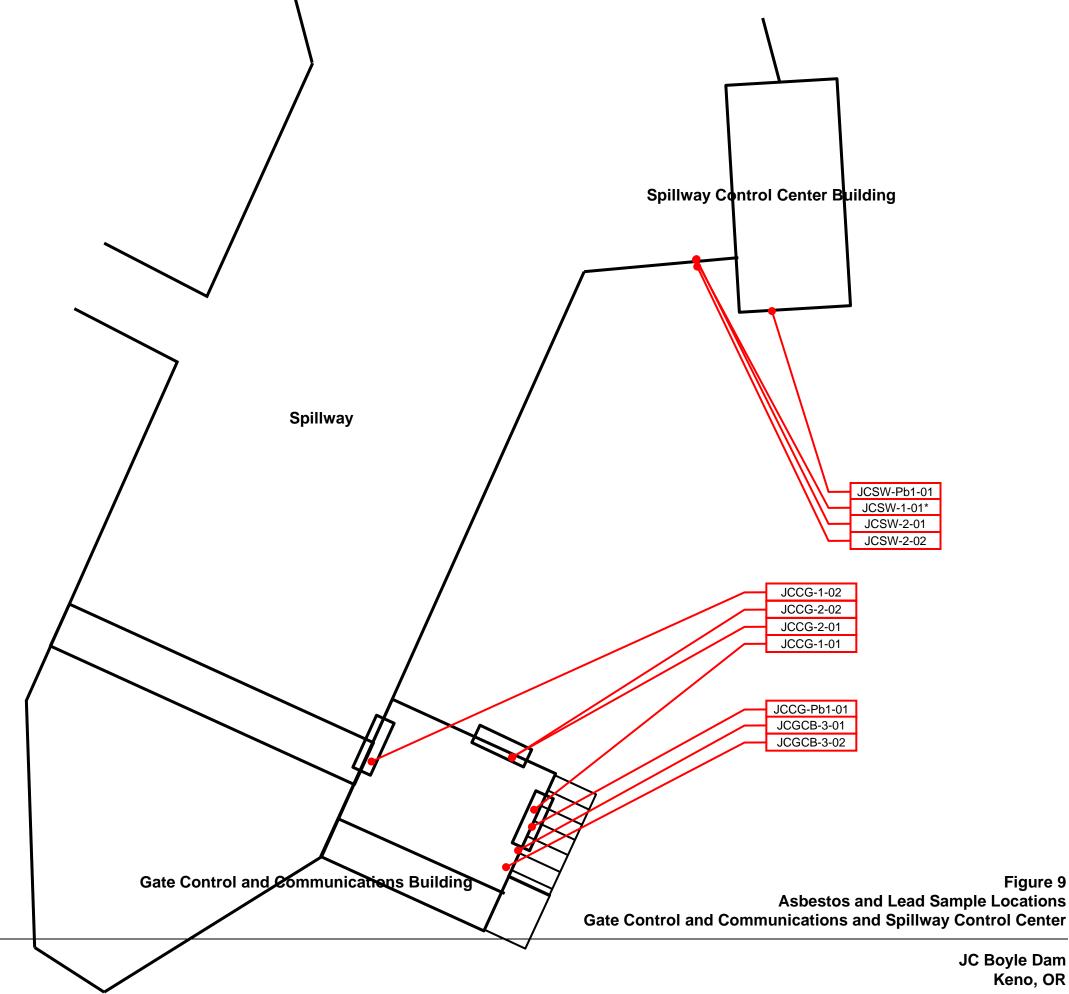



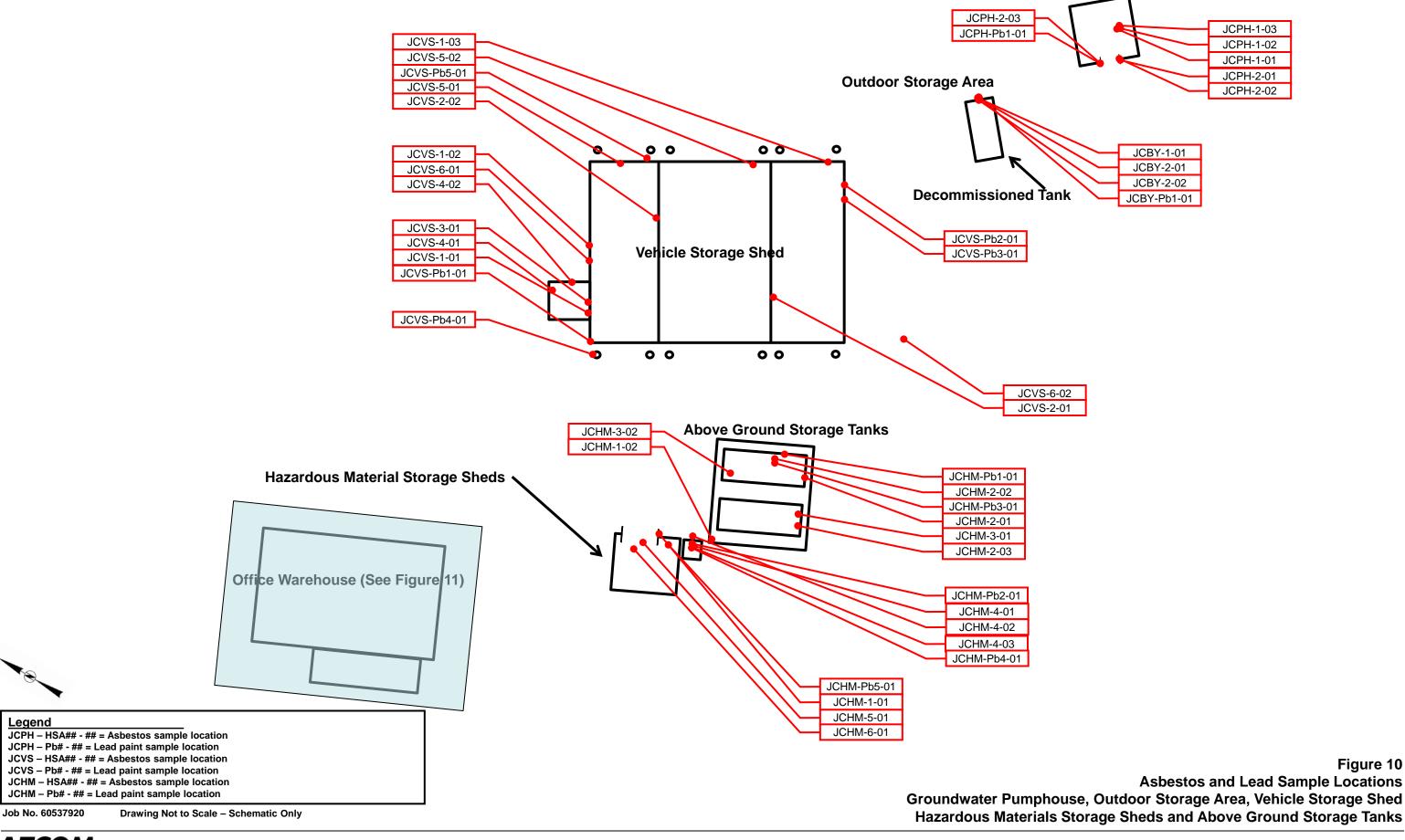
Figure 7
Asbestos and Lead Sample Locations
Intake Structure Fish Screen Building

Job No. 60537920

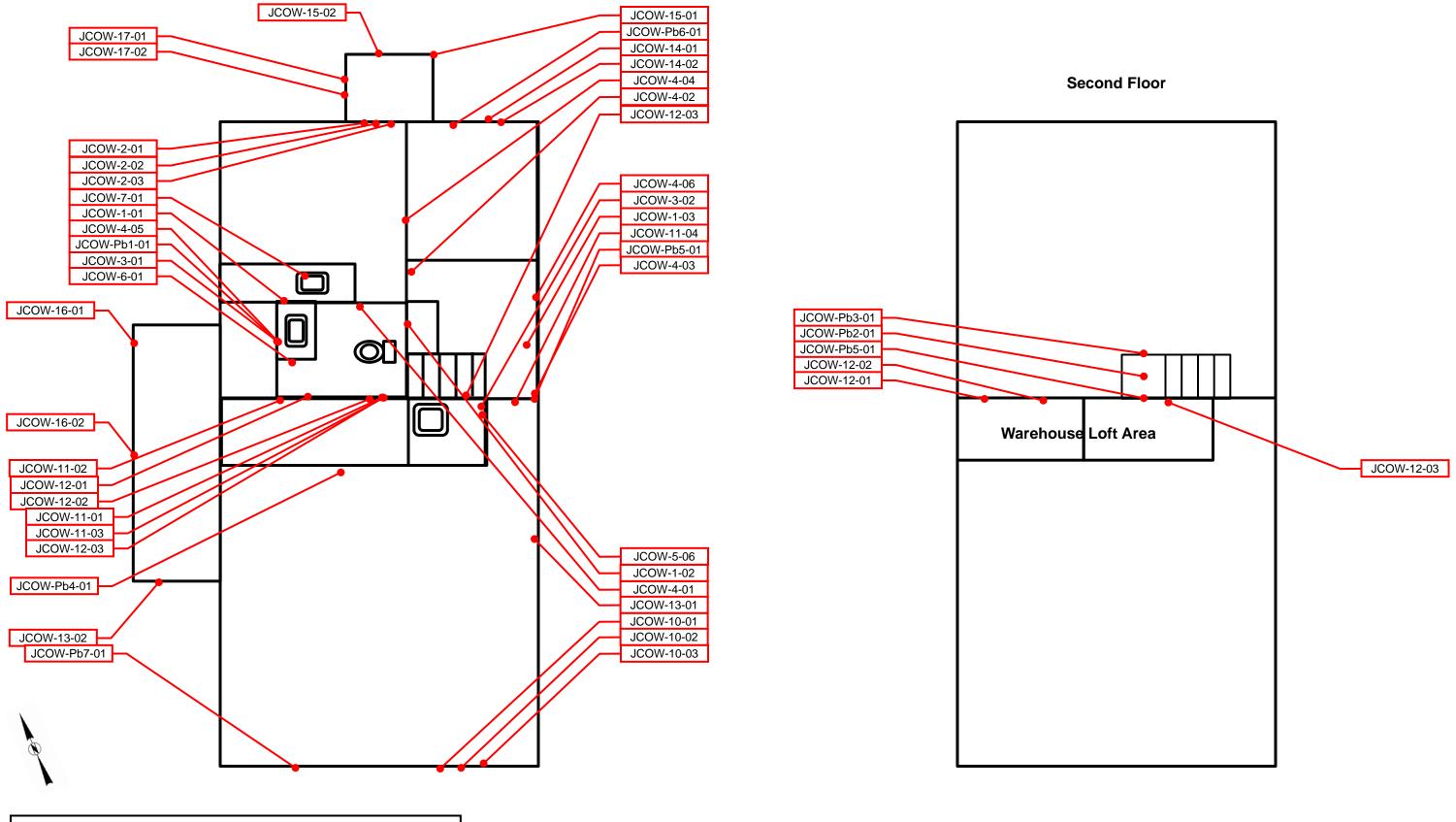
<u>Legend</u> JCGCB – HSA## – ## = Asbestos sample location

JCCG - Pb# - ## = Lead paint sample location

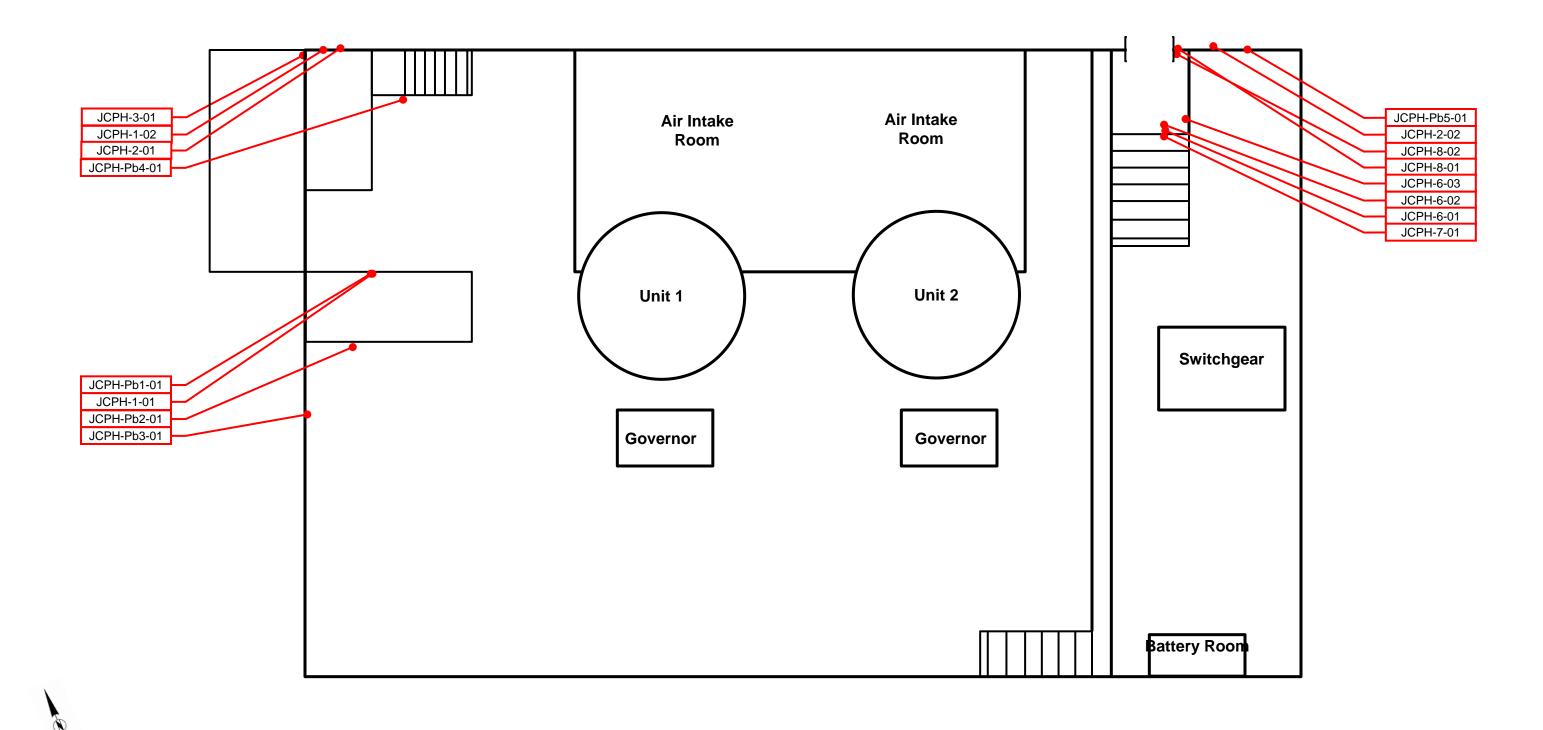
JCSW - HSA## - ## = Asbestos sample location JCSW - Pb# - ## = Lead paint sample location


*Concrete sample analyzed via PLM CARB (Detection limit of .25%)

Job No. 60537920

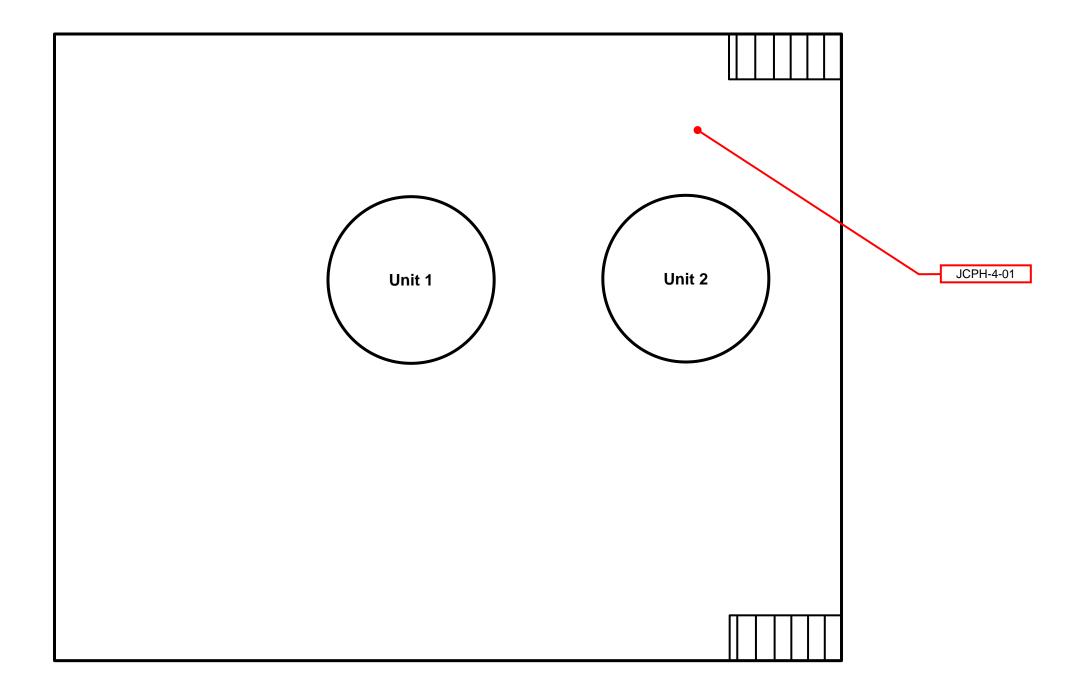

Drawing Not to Scale - Schematic Only

JC Boyle Dam Keno, OR


Groundwater Pumphouse

Legend
JCOW - HSA## - ## = Asbestos sample location
JCOW - Pb# - ## = Lead paint sample location

Job No. 60537920


Legend
JCPH - HSA## - ## = Asbestos sample location
JCPH - Pb# - ## = Lead paint sample location

Job No. 60537920

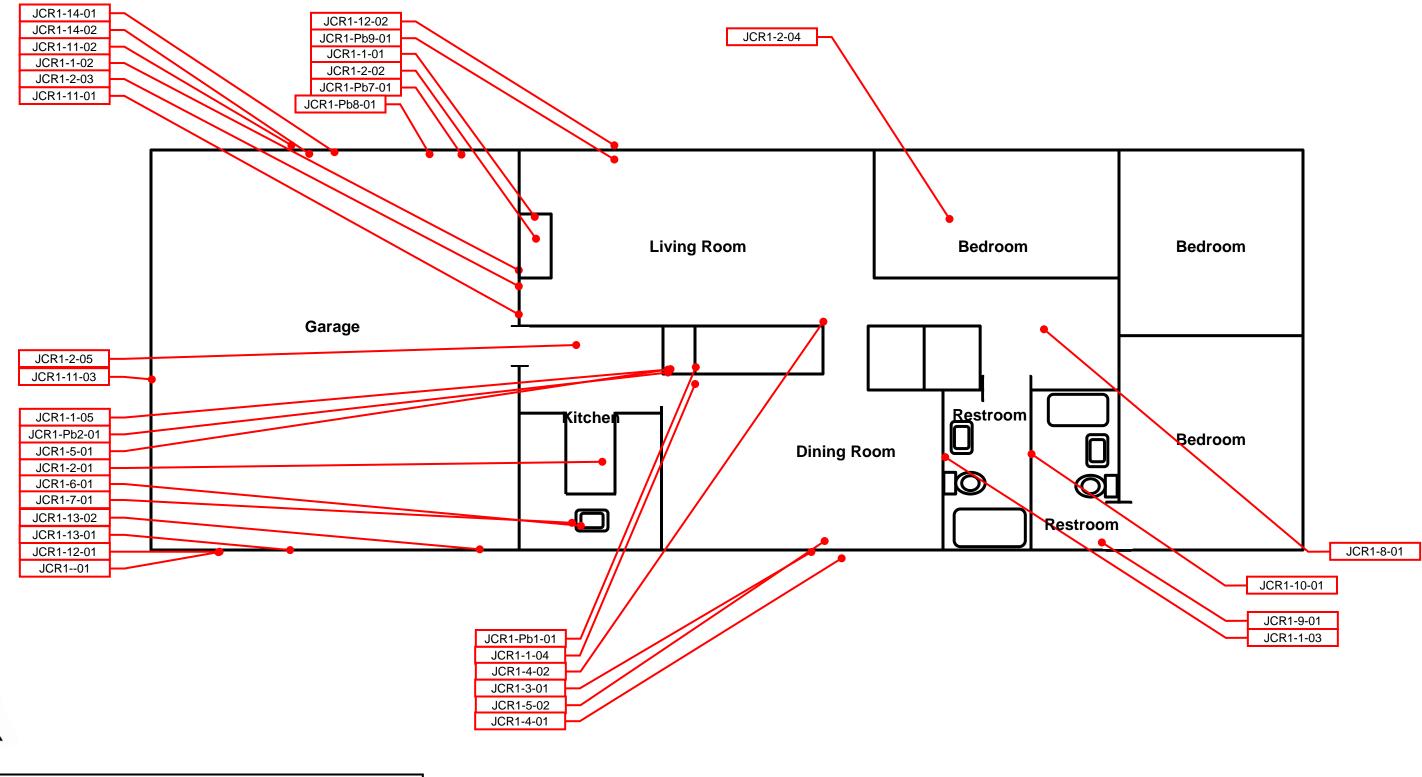
Drawing Not to Scale - Schematic Only

Figure 12 Asbestos and Lead Sample Locations Powerhouse Main Level



Legend
JCPH - HSA## - ## = Asbestos sample location
JCPH - Pb# - ## = Lead paint sample location

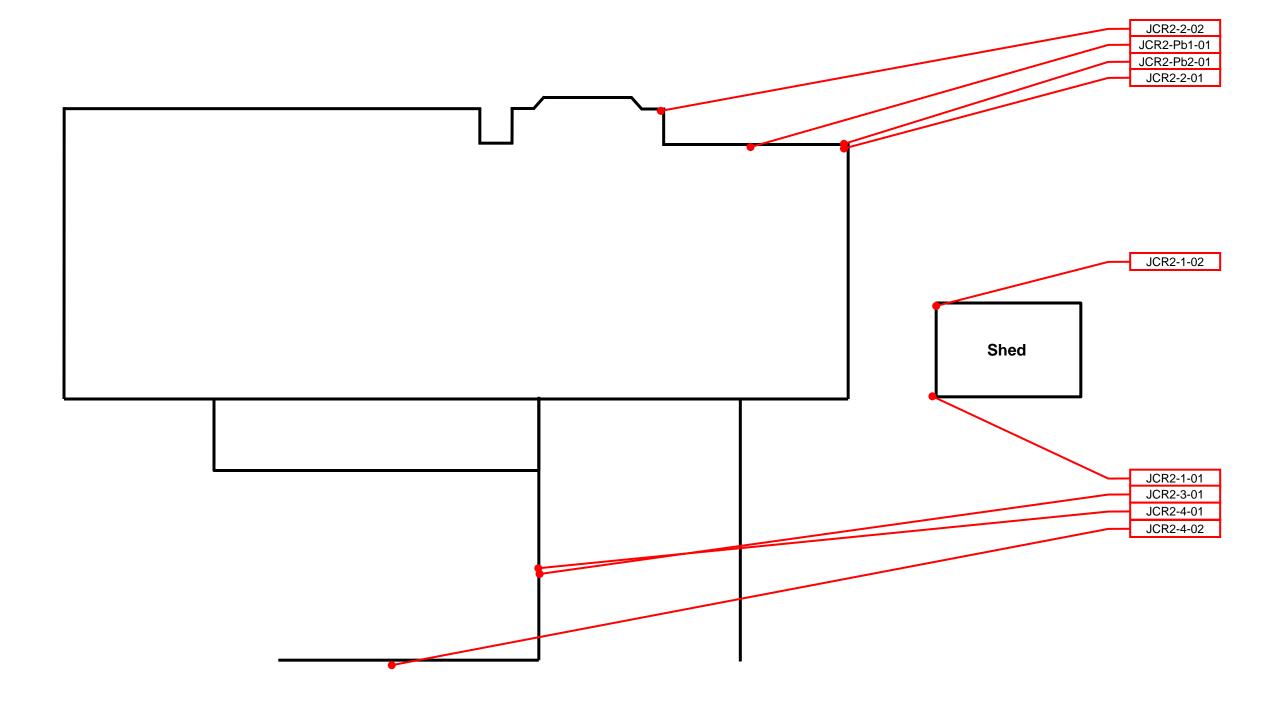
Job No. 60537920



AECOM

Timber Bridge, Powerhouse Roof, and Penstock

Legend

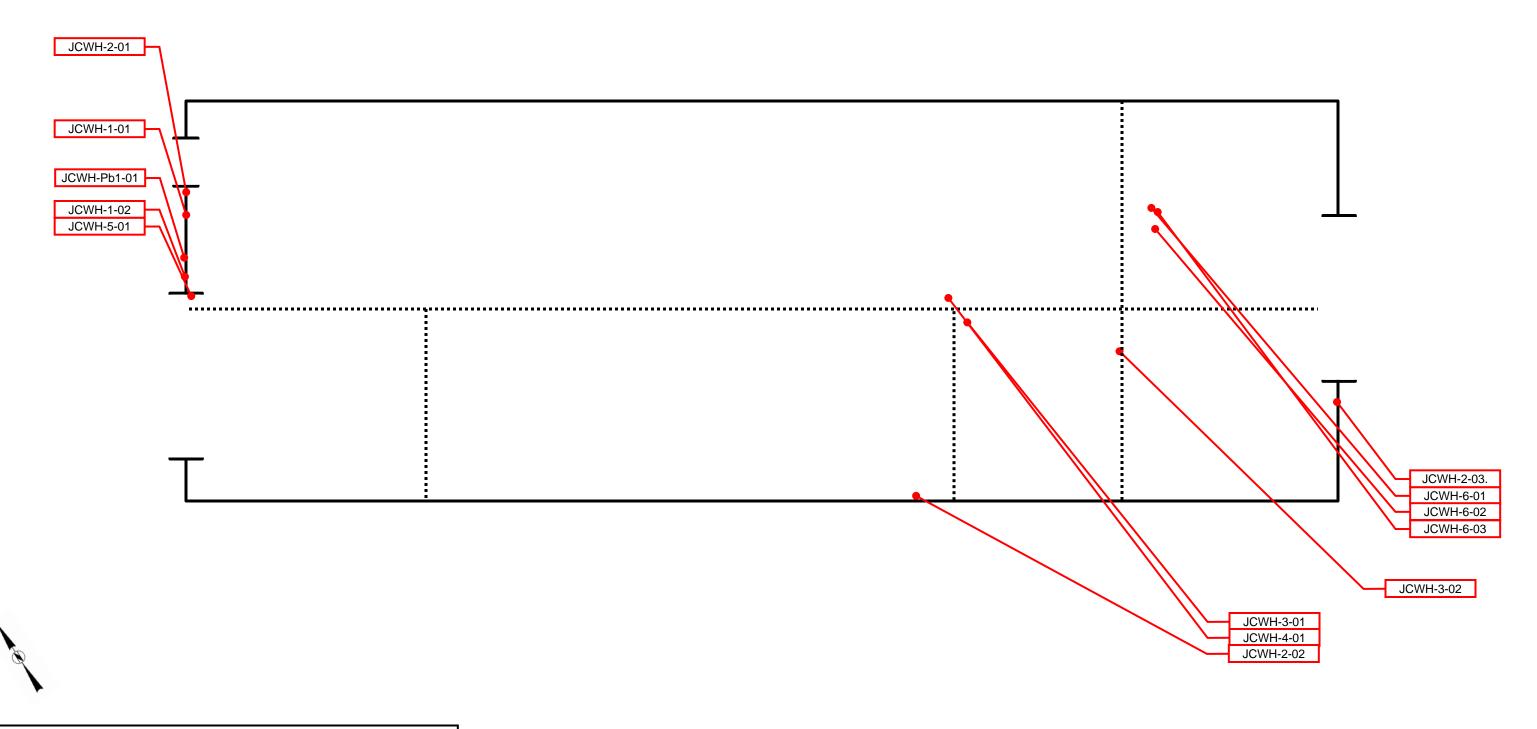

JCR1 - HSA## - ## = Asbestos sample location

JCR1 - Pb# - ## = Lead paint sample location

Figure 15 **Asbestos and Lead Sample Locations** Residence 1

Job No. 60537920

Legend


JCCG - HSA## - ## = Asbestos sample location

JCCG - Pb# - ## = Lead paint sample location

Figure 16
Asbestos and Lead Sample Locations Residence 2

Job No. 60537920

Legend
JCWH - HSA## - ## = Asbestos sample location
JCWH - Pb# - ## = Lead paint sample location

Figure 17
Asbestos and Lead Sample Locations Warehouse

Job No. 60537920

JCCB-04: Asbestos-containing tan caulking (M)

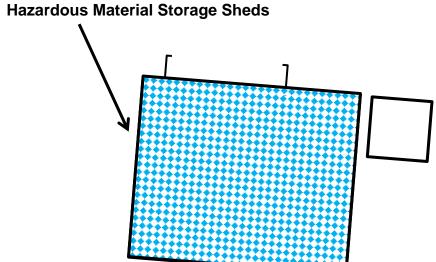
Drawing should be printed in color

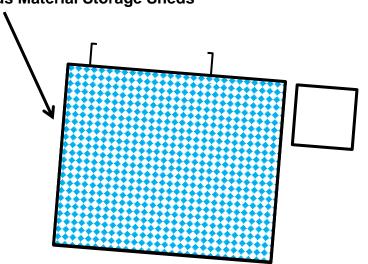
Figure 18
Approximate ACM Locations
Communications Building

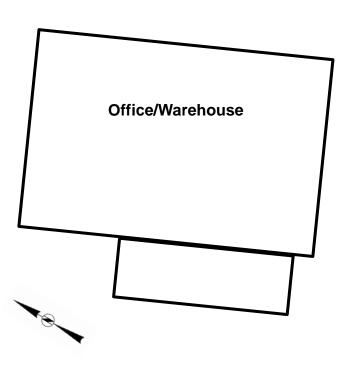
Legend

HSA JCHM-06: Asbestoscontaining off-white sealant (M)

HSA JCHM-03:Asbestos-containing off-white caulking (M)

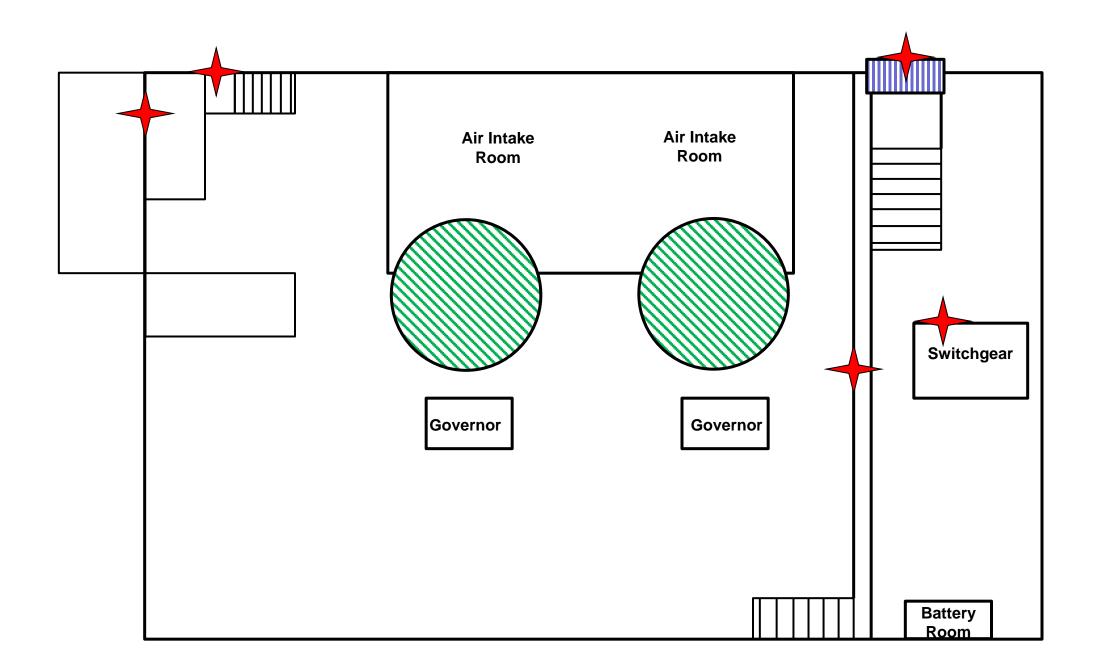

HSA JCHM-01: Asbestoscontaining concrete crack sealant (M) Not Shown. Located throughout asphalt pad associated with the HazMat Shed and Above **Ground Storage Tanks.**


HSA JCOW-08: Assumed asbestoscontaining silver woven electrical wire insulation (M) Not Shown. **Throughout Office/Warehouse** building


Assumed asbestos-containing buried Transite piping is assumed to be throughout the JC Boyle **Development. Not shown on** figures.

Drawing should be printed in color

Above Ground Storage Tanks



Job No. 60537920

Drawing Not to Scale - Schematic Only

Figure 19 **Approximate ACM Locations** Hazardous Materials Storage Sheds and Above Ground Storage Tanks and Office/Warehouse

Legend

HSA JCPH-08: Asbestoscontaining gray door sealant (M)

HSA JCPH-14: Assumed asbestoscontaining metal-clad fire door insulation (M)

HSA JCPH-15: Assumed asbestoscontaining wicket gates associated with the turbines (M)

HSA JCPH-05: Assumed asbestoscontaining gaskets (M) Not shown. Located throughout both levels of the Powerhouse associated with mechanical equipment.

Drawing should be printed in color

Legend

JCPH - HSA## - ## = Asbestos sample location


JCPH - Pb# - ## = Lead paint sample location

Job No. 60537920

Drawing Not to Scale - Schematic Only

Figure 20 **Asbestos and Lead Sample Locations Powerhouse Main Level**

Job No. 60537920

APPENDIX B HSA PHOTOLOGS

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Canal Headgate and 14' Pipeline

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Canal Headgate and 14' Pipeline

Photo No./ Material ID:

JCCH - 01

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Canal Headgate and 14' Pipeline/ Around 14' diversion pipeline

*Description (by layer):

1: Black asphaltic sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Canal Headgate and 14' Pipeline

Project No. 60537920

Photo No./ **Material ID:**

JCCH - 02

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Canal Headgate and 14' Pipeline/ Around 14' diversion pipe down spout

*Description (by layer):

1: Red gasket (M)

Photo No./ **Material ID:**

Date:

JCCH - 03

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Canal Headgate and 14' Pipeline/ 14' diversion pipeline

*Description (by layer):

1: Silver paint (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Gate Control and Communications Building

Project No. 60537920

Photo No./ Material ID:

Date:

12/06/2018

Structure:

JC Boyle Dam Gate Control and Communications Building

Photo No./ Material ID:

Date:

JCGCB - 01

12/06/2018

Structure/Material Location:

JC Boyle Dam Gate Control and Communications Building/ Interior window frames

*Description (by layer):

1: Gray brittle window putty (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Gate Control and Communications Building

Project No. 60537920

Photo No./ Material ID:

Date:

JCGCB - 02

12/06/2018

Structure/Material Location:

JC Boyle Dam Gate Control and Communications Building / Interior wall at electrical conduit penetrations

*Description (by layer):

1: Red fire stop sealant (M)

Photo No./ Material ID:

Date:

JCGCB - 03

12/06/2018

Structure/Material Location:

JC Boyle Dam Gate Control and Communications Building / Exterior siding seams

*Description (by layer):

1: Gray sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Emergency Spill Equipment Shed

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Emergency Spill Equipment Shed

Client Name: Klamath River Renewal **Site Location:** J.C. Boyle Development, Fire Protection Building

Project No. 60537920

Photo No./ Material ID:

Corporation

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Fire Protection Building

Photo No./ Material ID:

JCFP - 01

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Fire Protection Building/ Piping throughout Fire Protection Building

*Description (by layer):

1: Red gasket (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Fire Protection Building

Project No. 60537920

Photo No./ Material ID:

JCFP - 02

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Fire Protection Building/ Exterior asphalt crack repairs

*Description (by layer):

1: Black rubber gasket (M)

Photo No./ Material ID:

JCFP - 03

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Fire Protection Building/ Interior of metal double doors (deterioration exposed insulation)

*Description (by layer):

1: Fire door insulation (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Fire Protection Building

Project No. 60537920

Photo No./ Material ID:

JCFP - 04

Date: 8/20/2018 to

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Fire Protection Building/ Exterior walls

*Description (by layer):

1: Gray CMU and grout (M)

Photo No./ Material ID:

Date:

JCFP - 05

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Fire Protection Building/ Around exterior vents

*Description (by layer):

1: Off-white sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Groundwater Pumphouse

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Groundwater Pumphouse

Photo No./ Material ID:

JCPH - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Groundwater Pumphouse/ Out of service storage tank in Groundwater Pumphouse

*Description (by layer):

- 1: Tan paper backing with black mastic (M)
- 2: Pink fiberglass batt insulation (T)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Groundwater Pumphouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCPH - 02

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Groundwater Pumphouse/ Underneath corrugated metal siding, throughout exterior

*Description (by layer):

1: Black asphaltic vapor barrier paper (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, HazMat Shed and Above Ground Storage Tanks

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam HazMat Shed and Above Ground Storage Tanks

Photo No./ Material ID:

JCHM - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam HazMat Shed and Above Ground Storage Tanks/

*Description (by layer):

- 1: Asphalt (M)
- 2: Asphaltic concrete crack sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, HazMat Shed and Above Ground Storage Tanks

Project No. 60537920

Photo No./ Material ID:

Date:

JCHM - 02

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam HazMat Shed and Above Ground Storage Tanks/ On above ground storage tank concrete casing in Fuel Shed

*Description (by layer):

1: Textured coating (M)

Photo No./ Material ID:

Date:

JCHM - 03

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam HazMat Shed and Above Ground Storage Tanks/ On above ground storage tank concrete casing in Fuel Shed piping

*Description (by layer):

1: Off-white caulking (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, HazMat Shed and Above Ground Storage Tanks

Project No. 60537920

Photo No./ Material ID:

JCHM - 04

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam HazMat Shed and Above Ground Storage Tanks/ Roof of small storage shed adjacent to HazMat Shed

*Description (by layer):

1: Thick silver paint (M)

Photo No./ Material ID:

Date:

JCHM - 05

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam HazMat Shed and Above Ground Storage Tanks/ On roll-up door to HazMat Shed

*Description (by layer):

1: White caulking (M)

Client Name: Klamath River Renewal **Site Location:** J.C. Boyle Development, HazMat Shed and Above Ground Storage Tanks

Project No. 60537920

Photo No./ Material ID:

Corporation

Date:

JCHM - 06

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam HazMat Shed and Above Ground Storage Tanks/ Around exterior vents

*Description (by layer):

1: Off-white sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Intake Structure

Photo No./ Material ID:

JCIS - 01

Date: 8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Driveway area of intake structure

*Description (by layer):

1: Concrete pad (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

JCIS - 02

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Intake Structure/ Driveway area of intake structure

*Description (by layer):

1: Asphaltic concrete crack sealant (M)

Photo No./ Material ID:

JCIS - 03

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Intake structure walkway

*Description (by layer):

1: Textured cementitious coating on walkway (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

JCIS - 04

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Intake Structure/ On wood bridge to intake structure

*Description (by layer):

1: Asphaltic creosote (M)

Photo No./ Material ID:

JCIS - 05

Date: 8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Flex pipe connection associated with pump inside Fish Screen Building

*Description (by layer):

1: Brown woven gasket (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

JCIS - 06

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Intake Structure/ Piping connecting traveling water screens inside Fish Screen Building

*Description (by layer):

- 1: Thick silver paint (M)
- 2: Paint on piping (M)

Photo No./ Material ID:

JCIS - 07

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ At concrete wall/wood ceiling interface inside Fish Screen Building

*Description (by layer):

- 1: White caulking (M)
- 2: Brown caulking (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

Date:

JCIS - 08

8/20/2018 to 8/23/2018

Structure/Material Location:

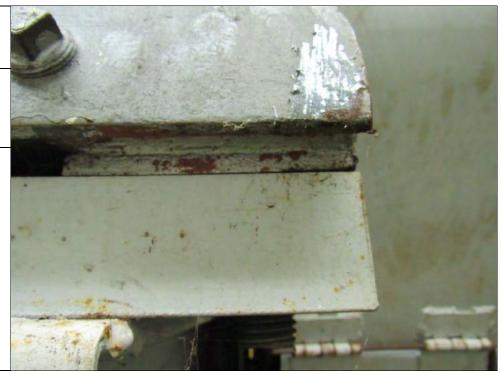
JC Boyle Dam Intake Structure/ Around exterior vents

*Description (by layer):

- 1: Black asphaltic mastic and paper (M)
- 2: Fiberglass batt insulation (T)
- 3: Off-white paint (M)

Photo No./ Material ID:

Date:


JCIS - 09

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Around exterior vents

- 1: Thick silver paint (M)
- 2: Paint on piping (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

JCIS - 10

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Structure around stop logs

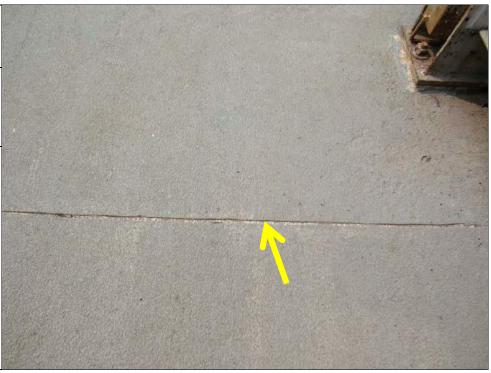
*Description (by layer):

1: Concrete stop log gate structural bed (M)

Photo No./ Material ID:

JCIS - 11

Date:


8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ At walkway expansion joints

*Description (by layer):

1: White sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

JCIS - 12

Date: 8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Around exterior vents

*Description (by layer):

- 1: Light weight concrete coating (M)
- 2: Light weight concrete coating (M)

Photo No./ Material ID:

Date:

JCIS - 13

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Stop log structural cage frame

- 1: Thick silver paint (M)
- 2: Residual corroded metal (M)

Client Name: Klamath River Renewal Corporation **Site Location:** J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

Date:

JCIS - 14

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ At beginning of wood bridge

*Description (by layer):

1: Concrete patch (M)

No Photo

Photo No./ Material ID:

Date:

JCIS - 15

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Intake Structure/ Exterior of intake structure, below fish screen house lower section

- 1: Thick silver paint (M)
- 2: Residual corroded metal (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Intake Structure

Project No. 60537920

Photo No./ Material ID:

JCIS - 16

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Intake Structure/ Underneath wood walls of Intake Structure Reservoir Level Building

*Description (by layer):

1: Black asphaltic vapor barrier paper (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Office and Warehouse

Photo No./ Material ID:

JCOW - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Flooring in break room, shower room, office, hallway, and restroom

*Description (by layer):

1: Gray vinyl floor sheeting with light gray pebble pattern (M) 2: Gray paper backing with mastic (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

JCOW - 02

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Ceiling in entry way

*Description (by layer):

1: 12"x12" white tongue and groove nailed-on ceiling tiles with fissure pattern (M)

Photo No./ Material ID:

JCOW - 03

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Walls throughout office main floor

- 1: 4" tan rubber cove base (M)
- 2: White mastic (M)

Client Name:

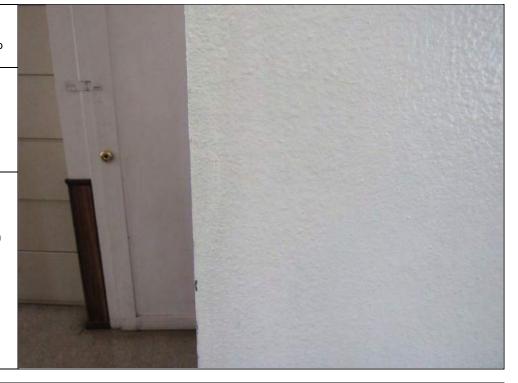
Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

JCOW - 04


Date: 8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Associated with generator piping, pumphouse lower level

*Description (by layer):

White spray-applied wall texture (S)
 White gypsum wallboard with paper (M)

Date:
al Location:
layer):

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCOW - 06

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Restroom counter

*Description (by layer):

1: White sink caulking (M)

Photo No./ Material ID:

Date:

JCOW - 07

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Underneath restroom counter

- 1: Black plastic sink patch (M)
- 2: Yellow mastic (M)

Client Name: Klamath River Renewal **Site Location:** J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

Corporation

Date:

JCOW - 08

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Throughout Office and Warehouse

*Description (by layer):

Assumed asbestos-containing silver woven electrical wire insulation (M)

Photo No./ Material ID:

Date:

JCOW - 09

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Throughout Office and Warehouse

*Description (by layer):

Assumed electrical wire insulation inside conduit (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

JCOW - 10

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Insulation inside two roll-up doors in Warehouse

*Description (by layer):

- 1: Yellow mastic with foam and foil backing (M)
- 2: Off-white foam material (M)

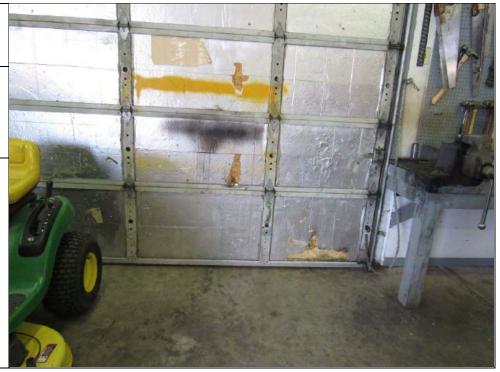


Photo No./ Material ID:

JCOW - 11

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Above ceiling in attic of Warehouse

- 1: Black asphaltic mastic with paper (M)
- 2: Pink fiberglass batt insulation (T)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCOW - 12

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Behind wood wall, loft area of Warehouse

*Description (by layer):

- 1: Black asphaltic mastic with paper (M)
- 2: Yellow fiberglass batt insulation (T)

Photo No./ Material ID:

Date:

JCOW - 13

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ At base of exterior metal walls, at wall/concrete interface

*Description (by layer):

1: Black caulking (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

JCOW - 14

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Exterior window panes

*Description (by layer):

1: White brittle window putty (M)

Photo No./ Material ID:

Date:

JCOW - 15

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Underneath corrugated metal roof, throughout

*Description (by layer):

1: Black asphaltic roofing paper (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Office and Warehouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCOW - 16

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Underneath corrugated metal siding of Office Warehouse shed

*Description (by layer):

1: Brown asphaltic vapor barrier paper (M)

Photo No./ Material ID:

Date:

JCOW - 17

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Office and Warehouse/ Underneath corrugated metal siding throughout Office Warehouse

*Description (by layer):

1: Brown asphaltic vapor barrier paper (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Outdoor Storage Area

Project No. 60537920

Photo No./ Material ID:

Date:

9/17/2018

Structure:

JC Boyle Dam Outdoor Storage Area

Photo No./ Material ID:

JCBY - 01

9/17/2018

Date:

Structure/Material Location:

JC Boyle Dam Outdoor Storage Area/ Out of service storage tank in Outdoor Storage Area

- 1: Red gasket (M)
- 2: Yellow mastic (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Outdoor Storage Area

Project No. 60537920

Photo No./ Material ID:

Date:

JCBY - 02

9/17/2018

Structure/Material Location:

JC Boyle Dam Outdoor Storage Area/ Out of service storage tank in Outdoor Storage Area

*Description (by layer):

1: Residual black asphaltic material with granules (M)

Photo No./ Material ID:

Date:

JCBY - 03

9/17/2018

Structure/Material Location:

JC Boyle Dam Outdoor Storage Area/ Walls throughout office main floor

- 1: Silver paint (M)
- 2: Yellow brittle material (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Powerhouse

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Powerhouse

Photo No./ Material ID:

JCPH - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Walls throughout Powerhouse

- 1: Grout associated with CMU (M)
- 2: Grout associated with CMU (M)

Client Name: Klamath River Renewal Site Location: J.C. Boyle Development, Powerhouse

Project No. 60537920

Photo No./ Material ID:

Corporation

Date:

JCPH - 02

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Interior window panes

*Description (by layer):

1: Gray window putty (M)

Photo No./ Material ID:

Date:

JCPH - 03

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Restroom walls

- 1: 2" black rubber cove base (M)
- 2: Yellow mastic (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Powerhouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCPH - 04

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Associated with generator piping, pumphouse lower level

*Description (by layer):

- 1: Red gasket (M)
- 2: Black mastic (M)

Photo No./ Material ID:

Date:

JCPH - 05

08/20/18 to 08/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Piping and mechanical equipment throughout Pumphouse

*Description (by layer):

Assumed asbestos-containing gaskets

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Powerhouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCPH - 06

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Entry into switchgear room, associated with HVAC system

*Description (by layer):

- 1: White spray-applied texture wall coating (S)
- 2: White gypsum wallboard with paper (M)

Photo No./ Material ID:

Date:

JCPH - 07

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Entry into switchgear room, associated with HVAC system

*Description (by layer):

1: White sealant (M)

Client Name: Klamath River Renewal Corporation Site Location: J.C. Boyle Development, Powerhouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCPH - 08

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Throughout Powerhouse

*Description (by layer):

- 1: White door sealant (M)
- 2: Gray door sealant (M)

Photo No./ Material ID:

Date:

JCPH - 09

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Concrete pad/roof top side of Powerhouse

*Description (by layer):

1: Concrete (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Powerhouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCPH - 10

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Insulation inside two roll-up doors in Warehouse

*Description (by layer):

- 1: Yellow mastic with foam and foil backing (M)
- 2: Off-white foam material (M)

Photo No./ Material ID:

Date:

JCPH - 11

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Above ceiling in attic of Warehouse

- 1: Black asphaltic mastic with paper (M)
- 2: Pink fiberglass batt insulation (T)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Powerhouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCPH - 12

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ Behind wood wall, loft area of Warehouse

*Description (by layer):

- 1: Black asphaltic mastic with paper (M)
- 2: Yellow fiberglass batt insulation (T)

Photo No./ Material ID:

Date:

JCPH - 13

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Powerhouse/ At base of exterior metal walls, at wall/concrete interface

*Description (by layer):

1: Black caulking (M)

Client Name: Klamath River Renewal Corporation Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Residence 1

Photo No./ Material ID:

JCR1 - 01

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Residence 1/ Walls throughout Residence 1

- 1: White spray-applied texture wall coating (S)
- 2: White gypsum wallboard with paper (M

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

JCR1 - 02

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Ceilings throughout

*Description (by layer):

1: White troweled-on surface ceiling coat (S)

Photo No./ Material ID:

JCR1 - 03

Date: 8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ At base of french doors in dining room

- 1: White caulking (M)
- 2: Gray vinyl floor sheeting with marble and cobblestone pattern (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

Date:

JCR1 - 04

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Associated with generator piping, pumphouse lower level

*Description (by layer):

- 1: 4" black rubber cove base (M)
- 2: Yellow mastic (M)
- 3: White spray-applied texture wall coating (S)

Photo No./ Material ID:

Date:

JCR1 - 05

08/20/18 to 08/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Flooring in dining room and kitchen

- 1: Gray vinyl floor sheeting with marble and cobblestone pattern (M)
- 2: Yellow mastic (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

JCR1 - 06

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

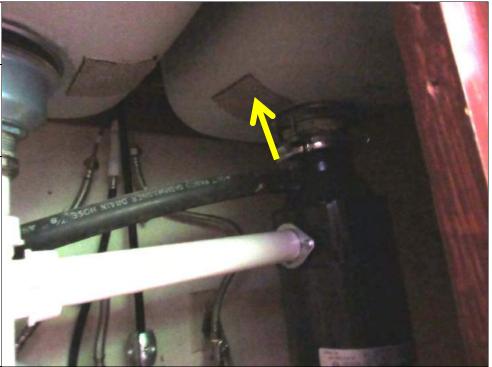
JC Boyle Dam Residence 1/ Kitchen sink

*Description (by layer):

1: White sink undercoating (M)

Photo No./ Material ID:

Date:


JCR1 - 07

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Entry into switchgear room, associated with HVAC system

- 1: White sink undercoating (M)
- 2: Black sink patch (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

Date:

JCR1 - 08

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Above rafters in attic, throughout

*Description (by layer):

1: Black asphaltic paper (M)

Photo No./ Material ID:

Date:

JCR1 - 09

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Concrete pad/roof top side of Residence 1

- 1: Gray vinyl flor sheeting (M)
- 2: Clear adhesive (M)
- 3: Gray leveling compound (M)
- 4: Off-white vinyl floor sheeting (M)
- 5: Gray paper backing with yellow mastic (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

JCR1 - 10

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Residence 1/ Around vent in bathroom

*Description (by layer):

1: Gray leveling compound (M)

Photo No./ Material ID:

JCR1 - 11

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Walls throughout

- 1: White spray-applied texture wall coating (S)
- 2: White joint compund with paper (M)
- 3: White gypsm wallboard with paper (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

JCR1 - 12

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Underneath corrugated metal roof throughout

*Description (by layer):

1: Black roofing paper (M)

Photo No./ Material ID:

Date:

JCR1 - 13

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ Base of wood siding throughout exterior

- 1: Black sealant (M)
- 2: Gray concrete with paint (M)

Client Name: Klamath River Renewal Corporation Site Location: J.C. Boyle Development, Residence 1

Project No. 60537920

Photo No./ Material ID:

Date:

JCR1 - 14

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 1/ At interface between garage and driveway

*Description (by layer):

1: Gray grout (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 2

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Residence 2

Photo No./ Material ID:

JCR2 - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 2/ Shed roofing, throughout

- 1: Black asphaltic roofing shingles with granules (M)
- 2: Black asphaltic fibrous felt (S)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Residence 2

Project No. 60537920

Photo No./ Material ID:

JCR2 - 02

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 2/ Underneath exterior wood siding, throughout

*Description (by layer):

1: White vapor barrier paper (M)

Photo No./ Material ID:

JCR2 - 03

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 2/ Driveway

*Description (by layer):

1: Black asphaltic material (M)

Client Name: Klamath River Renewal Site Location: J.C. Boyle Development, Residence 2

Project No. 60537920

Photo No./ Material ID:

Corporation

Date:

JCR2 - 04

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Residence 2/ Driveway

*Description (by layer):

1: Black asphaltic seam sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Spillway Control Center Building

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Spillway Control Center Building

Photo No./ Material ID:

JCSW - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Spillway Control Center Building/ Support concrete associated with Spillway Control Center Builing

*Description (by layer):

1: Concrete (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Spillway Control Center Building

Project No. 60537920

Photo No./ Material ID:

Date:

JCSW - 02

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Spillway Control Center Building/ Associated with wood shoring on hill in front of Spillway Control Center Building

*Description (by layer):

1: Black creosote (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Timber Bridge

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Timber Bridge

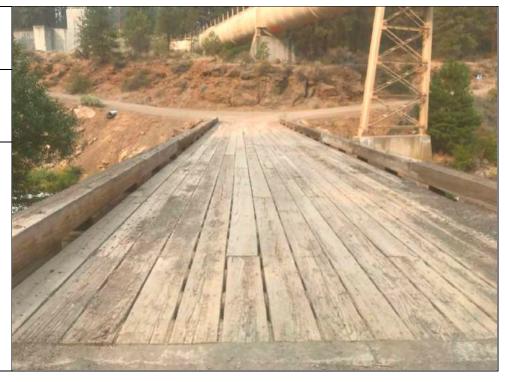


Photo No./ Material ID:

JCWB - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Timber Bridge/ Throughout Timber Bridge

*Description (by layer):

1: Creosote (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Vehicle Storage Shed

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Vehicle Storage Shed

Photo No./ Material ID:

JCVS - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Vehicle Storage Shed/ Insulation throughout

*Description (by layer):

1: Yellow fiberglass batt insulation with mastic (T)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Vehicle Storage Shed

Project No. 60537920

Photo No./ Material ID:

JCVS - 02

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Vehicle Storage Shed/ Expansion joints throughout interior flooring

*Description (by layer):

- 1: Gray residual concrete (M)
- 2: Gray caulking (M)

Photo No./ Material ID:

Date:

JCVS - 03

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Vehicle Storage Shed/ Exterior siding

*Description (by layer):

1: White caulking (M)

Client Name: Klamath River Renewal Corporation **Site Location:** J.C. Boyle Development, Vehicle Storage Shed

Project No. 60537920

Photo No./ Material ID:

Date:

JCVS - 04

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Vehicle Storage Shed/ Roof of entry way

*Description (by layer):

1: Black asphaltic paper under corrugated metal roof (M)

Photo No./ Material ID:

Date:

JCVS - 05

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Vehicle Storage Shed/ Seams around exterior perimeter - at roll-up doors

*Description (by layer):

1: Black brittle sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Vehicle Storage Shed

Project No. 60537920

Photo No./ Material ID:

JCVS - 06

8/20/2018 to 8/23/2018

Date:

Structure/Material Location:

JC Boyle Dam Vehicle Storage Shed/ Penetrations around exterior perimeter

*Description (by layer):

1: Black sealant (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Warehouse

Project No. 60537920

Photo No./ Material ID:

Date:

8/20/2018 to 8/23/2018

Structure:

JC Boyle Dam Warehouse

Photo No./ Material ID:

JCWH - 01

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Warehouse/ Exterior interface between metal siding and concrete foundation

*Description (by layer):

1: Black asphaltic slip sheet with cementitious material (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Warehouse

Project No. 60537920

Photo No./ Material ID:

Date:

JCWH - 02

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Warehouse/ Old insulation throughout interior

*Description (by layer):

- 1: Paper backing with asphaltic mastic (M)
- 2: Yellow fiberglass batt insulation (T)

Photo No./ Material ID:

Date:

JCWH - 03

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Warehouse/ At uneven expansion joints, concrete floor throughout interior

*Description (by layer):

1: Black asphaltic leveling compound (M)

Client Name:

Klamath River Renewal Corporation

Site Location: J.C. Boyle Development, Warehouse

Project No. 60537920

Photo No./ Material ID:

JCWH - 04

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Warehouse/ At uneven expansion joints, concrete floor throughout interior

*Description (by layer):

1: Gray leveling compound (M)

Photo No./ Material ID:

JCWH - 05

Date:

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Warehouse/ At metal seems around interior roll up door (potentially at all seams, but more was not visible during inspection)

*Description (by layer):

1: Tan brittle caulking (M)

Client Name: Klamath River Renewal Site Location: J.C. Boyle Development, Warehouse

Project No. 60537920

Photo No./ Material ID:

Corporation

Date:

JCWH - 06

8/20/2018 to 8/23/2018

Structure/Material Location:

JC Boyle Dam Warehouse/ Penetrations around exterior perimeter

*Description (by layer):

- 1: White fiberglass insulation with paper (T)
- 2: Tan fiberglass insulation with paper (M)
- 3: Black asphaltic mastic (M)

APPENDIX C LABORATORY ANALYTICAL RESULTS

August 31, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816754.00

Client Project: 60537920.2.4a

Location: JC Boyle Canal Head Gate

Dear Ms. Gladu,

Enclosed please find test results for the 5 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547,0100 | f 206.634,1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816754.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 5

Samples Analyzed: 5

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Canal Head Gate

Lab ID: 18086264 Client Sample #: JCCH-1-01

Location: JC Boyle Canal Head Gate

Layer 1 of 1 Description: Black soft material with paint chips

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Paint, Fine particles Cellulose 2% None Detected ND

Lab ID: 18086265 Client Sample #: JCCH-2-01

Location: JC Boyle Canal Head Gate

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Fine particles None Detected ND

Layer 2 of 2 Description: Red rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder, Fine particles Cellulose 2% None Detected ND

Lab ID: 18086266 Client Sample #: JCCH-3-01

Location: JC Boyle Canal Head Gate

Layer 1 of 1 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Fine particles Cellulose 1% None Detected ND

Lab ID: 18086267 Client Sample #: JCCH-3-02

Location: JC Boyle Canal Head Gate

Layer 1 of 1 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Fine particles Cellulose 2% None Detected ND

Lab ID: 18086268 Client Sample #: JCCH-3-03

Location: JC Boyle Canal Head Gate

Sampled by: Client

Analyzed by: Matthew McCallum Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816754.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 5

Samples Analyzed: 5

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Canal Head Gate

Layer 1 of 1 **Description:** Silver paint

Non-Fibrous Materials:

Metallic paint, Fine particles

Other Fibrous Materials:%

Cellulose 1% **Asbestos Type: %**

None Detected ND

Sampled by: Client

Analyzed by: Matthew McCallum Reviewed by: Matt Macfarlane

Date: 08/31/2018 Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

NVL Laboratories, Inc.	ASBESTOS LABORATO	ORY SERVI	CES		1/		
708 Aurora Ave N, Seattle, WA 98103				4.0			7
206.547.0100 f 206.634.1936 www.nvll	abs.com			L	A	В	S
Company AECOM-Seattle	NVL Batch	Number 18167	54.00				

		11 3rd Avenue Ste eattle, WA 98101	. 1600	TAT 5 Days Rush TAT	AH No	
Proiec		s. Nicole Gladu		Due Date 9/4/2018 Time	1:40 PM	
,	_	06) 438-2700		Email nicole.gladu@aecom.com		
	•	06) 240-0644		Fax (866) 495-5288		
Subca	ect Name/Nu ategory PLM n Code ASB-		PA 600/R-93-116 Asbest	tion: JC Boyle Canal Head Gate os by PLM <bul></bul>		
Tot	tal Numbe	of Samples	5		Rush Samples	
	Lab ID	Sample ID	Description			A/R
1	18086264	JCCH-1-01				Α
2	18086265	JCCH-2-01				Α
3	18086266	JCCH-3-01				Α
4	18086267	JCCH-3-02				Α
5	18086268	JCCH-3-03				Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Matthew McCallum		NVL	8/31/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:					

Date: 8/27/2018 Time: 4:29 PM

Entered By: Emily Schubert

INDUSTRIAL HYGIENE

ASBESTOS CHAIN OF CUSTODY

a	-	-81	ellib.		-	
ъ.	8	7	100	7		- 48
и	\mathbf{O}	- 11	10	11	-	Z.I.
-	~	188		111	~	

HIT MICHAEL		
_11 Hera =	-1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
⊒ 2 Hours	⊒ 2 Days	≝ S Chays
J 4 Floors	□ 5 Days	□ 110 Days

SERVI			Figure Commission	all for TAT less than 20 Hours	
	AECOM		Project Manager Nicole (Gladu	
Addines	1111 Third Avenue	Suite 1600	Cell ()	ā	
	Seattle, WA 98101			ladu@aecom.com	
Phon	206.438.2700			495 5288	
Project Name/	Number 60537920.2.4a	Project Location 10	Boyle (ana)	Head = to	
□ PCM Ai □ PLM (Ei □ PLM Gr	r (NIOSH 7400) PA 600/R-93-116) avimetry (600/R-93-116) as Friable/Non-Friable (EPA 60	TEM (NIOSH 7402) EPA 400 Points (600 Asbestos in Vermici	☐ TEM (AHERA) ☐ D/R-93-116) ☐ dite (EPA 600/R-04/004) ☐	TEM (EPA Level II Modifie EPA 1000Points (600/R-9	3-116)
	estructions Please email:				
⊒ Ca9 <u>€</u>	1 = =	⊋ Faz ()	J Email		
Fotal Nur	mber of Samples	S			7:
	ple ID	y Description			, A/R
	CCH- 1-01				71/8
2	1 2-01				
3	3-01				
4	3-02				
5 _	1 3-3				
5					
7					
8					
9					
10					
12					
13					
14					
15					
	Print Martie	Signature	Company	Date	Time
Sampled by	Kim Riche	Mil	AECO	M 8/20/18-8/23/	18 11:00am
elinguish by	Kim Riche	16	AECO		13000
Pffice Use O Received Analyzed Called Faxed/Email	by Camakko	v alo	2 Company Mulicipal Company	S 827/19	FMOR

September 4, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816744.00

Client Project: 60537920.2.4a

Location: JC Boyle Communications Building

Dear Ms. Gladu,

Enclosed please find test results for the 7 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816744.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 7

Samples Analyzed: 7

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Communications Building

Lab ID: 18086177 Client Sample #: JCCB-1-01

Location: JC Boyle Communications Building

Layer 1 of 1 Description: Light gray soft foamy material with paint

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Calcareous particles, Synthetic foam

Asbestos Type: %

None Detected ND

None Detected ND

Paint

Lab ID: 18086178 Client Sample #: JCCB-1-02

Location: JC Boyle Communications Building

Layer 1 of 1 Description: Light gray soft foamy material with debris

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Calcareous particles, Debris

None Detected ND None Detected ND

Insect parts, Synthetic foam

Lab ID: 18086179 Client Sample #: JCCB-2-01

Location: JC Boyle Communications Building

Layer 1 of 1 Description: Black asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder

Cellulose 3% None Detected ND

Lab ID: 18086180 Client Sample #: JCCB-2-02

Location: JC Boyle Communications Building

Layer 1 of 1 **Description:** Black soft asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder

Cellulose 2% None Detected ND

Lab ID: 18086181 Client Sample #: JCCB-3-01

Location: JC Boyle Communications Building

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk Reviewed by: Matt Macfarlane

Date: 09/04/2018

Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816744.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 7

Samples Analyzed: 7

Samples Analyzed.

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Communications Building

Layer 1 of 1 Description: Black asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder

Cellulose

3%

None Detected ND

Location: JC Boyle Communications Building

Layer 1 of 1 Description: Light gray soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Insect parts

Polyethylene fibers 4%

Chrysotile 2%

Location: JC Boyle Communications Building

Layer 1 of 1 Description: Light gray soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Insect parts

Polyethylene fibers 5%

Chrysotile 2%

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk Reviewed by: Matt Macfarlane **Date:** 09/04/2018 **Date:** 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Ba	atch N	lumber 1	816744	.00
Address	1111 3rd Avenue Ste. 1600	TAT 5	5 Days	S		AH No
	Seattle, WA 98101	Rush T	TAT			
Project Manager	Ms. Nicole Gladu	Due Da	ate	9/4/2018	Time	1:40 PM
Phone	(206) 438-2700	Email	nicole	.gladu@ae	ecom.com	
Cell	(206) 240-0644	Fax	(866)	495-5288		

•	Phone (206) 438-2700		Email nicole.gladu@aecom.com	
	Cell (206) 240-0644		Fax (866) 495-5288	
Pro	ject Name/Ni	umber: 6053792	0.2.4a Project Lo	cation: JC Boyle Communications Building	J
Sub	category PLM	1 Bulk			
lte	em Code ASE	3-02	EPA 600/R-93-116 Asb	estos by PLM <bulk></bulk>	
Te	otal Numbe	er of Samples	5 7	Ru	ısh Samples
	Lab ID	Sample ID	Description		A/R
1	18086177	JCCB-1-01			Α
2	18086178	JCCB-1-02			Α
3	18086179	JCCB-2-01			А
4	18086180	JCCB-2-02			А
5	18086181	JCCB-3-01			A
6	18086182	JCCB-4-01			А
7	18086183	ICCB-4-02			Δ

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Alla Prysyazhnyuk		NVL	9/4/18	
Results Called by					
Faxed Emailed					
Special					

Date: 8/27/2018 Time: 4:16 PM

Entered By: Emily Schubert

ASBESTOS LABORATORY SERVICES

A

A

NVL Batch Number 1816744.00 Company AECOM-Seattle Address 1111 3rd Avenue Ste. 1600 TAT 5 Days AH No Seattle, WA 98101 Rush TAT Project Manager Ms. Nicole Gladu Due Date 9/4/2018 Time 1:40 PM Phone (206) 438-2700 Email nicole.gladu@aecom.com Cell (206) 240-0644 Fax (866) 495-5288

Pro	ect Name/Nu	imber: 60537920.2.4	4a Project Location: JC Boyle Communic	ations Building
Subo	ategory PLM	Bulk		
lte	m Code ASB	-02 N	fethod EPA 600/R-93-116 Asbestos by PLM <bul></bul>	
To	tal Numbe	r of Samples		Rush Samples
To	tal Numbe	r of Samples		Rush SamplesA/R
T 0				
1 2	Lab ID	Sample ID		A/R
1	Lab ID 18086177	Sample ID JCCB-1-01		A/R

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	ALIA GUSHAZUNG	OK	NVL	9/04/2018	10:49 B
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:					

Entered By: Emily Schubert

18086181

18086182

18086183

6

JCCB-3-01

JCCB-4-01

JCCB-4-02

Date: 8/27/2018

Time: 4:16 PM

1 of 1

1816744

⊒ 10 Days

ASBESTOS CHAIN OF CUSTODY

J 3 Days □

 $\pm 441 \log_{10.5}$

R Y G I E N S E R V I C E				Plence call f	or TAT loss than 24 Flor	11',		
boratory Management	† fraining			100	A PULL CONTRACTOR	0.00		
Company 1	AECOM		Project Manager	Nicole Gla	adu			
Address 🚅	1111 Third Avenue	Suite 1600	Cell	1				
5	Seattle, WA 98101		nicole.gladu@aecom.com					
Phone 2	206.438.2700		866 · 495 · 5288					
	60537920.2.4a				catius B			
∠ PLM (EPA 6 ∠ PLM Gravin	10SH 7400)	EPA 400 Points (600 Asbestos in Vermicu	/R-93-116) ilite (EPA 600/R-04	J EP	A 1000Points (600/	R-93-116)		
	riable/Non-Friable (EPA 60							
Reporting Instru	rctions Please email:	kimberly.riche@	Daecom.com 8	shannon.	mackay@aecoi	m.com		
⊒ Call (1	JENS ()		Email				
tal Numb	er of Samples	7						
y Sample I		Description				A/R		
No	B-1-01					AV.K		
Val	1-02							
	2-01							
	7-07							
	31							
	401							
	4-02							
	1 4 2							
)								
2								
3								
1								
5								
1 8	rint Name	Signature	Сон	harA	y Oate	Tinte		
mpled by	Kim Riche	11/2	-	AECOM	8/20/18-8/	23/18 11:00am		
rquish by	Kim Riche	160	1	AECOM	8/27/1			
fice Use Only Received by	Atma Con	THE C	Con	AECOINI	Date la -	8 130p		
Analyzed by . Called by	ANA POUSYMIN	WX The	inf.	m lab	3 9/04/	2018 10:49		
axed/Email by								

4708 Aurora Ave N, Seattle, WA 98103 | p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

September 4, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816752.00

Client Project: 60537920.2.4a

Location: JC Boyle Fire Protection & Electrical Transform

Dear Ms. Gladu,

Enclosed please find test results for the 7 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Project Location: JC Boyle Fire Protection & Electrical Transform

Batch #: 1816752.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 7

Samples Analyzed: 7

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

None Detected ND

		& EPA/600/M4-82-020
Lab ID: 18086253 Client Sample #: JCFP-1-01 Location: JC Boyle Fire Protection & Electrical Transform		
Layer 1 of 1 Description: Red brittle material with paint		
Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
Binder/Filler, Calcareous particles, Paint	None Detected ND	None Detected ND
Lab ID: 18086254 Client Sample #: JCFP-1-02 Location: JC Boyle Fire Protection & Electrical Transform Layer 1 of 1 Description: Red brittle material with paint		
Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
Binder/Filler, Calcareous particles, Paint	None Detected ND	None Detected ND
Lab ID: 18086255 Client Sample #: JCFP-1-03 Location: JC Boyle Fire Protection & Electrical Transform		
Layer 1 of 1 Description: Red soft material with paint		
Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
Binder/Filler, Calcareous particles, Paint	None Detected ND	None Detected ND
Lab ID: 18086256 Client Sample #: JCFP-2-01 Location: JC Boyle Fire Protection & Electrical Transform		
Layer 1 of 1 Description: Black rubbery soft material with	th red paint and inter fill-loose fibrous	
Non-Fibrous Materials:	Other Fibrous Materials:%	Asbestos Type: %
Resin/Binder, Paint	Synthetic fibers 10%	None Detected ND

Sampled by: Client

Lab ID: 18086257

Layer 1 of 1

Analyzed by: Alla Prysyazhnyuk

Date: 09/04/2018

Description: Brown fibrous material with rush

Location: JC Boyle Fire Protection & Electrical Transform

Client Sample #: JCFP-3-01

Non-Fibrous Materials:

Binder/Filler, Rust

Other Fibrous Materials:%

Cellulose 65%

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816752.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 7

Samples Analyzed: 7

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Fire Protection & Electrical Transform

Lab ID: 18086258 Client Sample #: JCFP-4-01

Location: JC Boyle Fire Protection & Electrical Transform

Layer 1 of 1 Description: Light gray sandy/brittle material

Non-Fibrous Materials:

Non-i ibious Materiais.

Mastic/Binder, Insect parts

Binder/Filler, Granules, Mica

Other Fibrous Materials:%

Asbestos Type: %

Spider silk <1%

None Detected ND

Insect parts, Sand

Lab ID: 18086259 Client Sample #: JCFP-5-01

Location: JC Boyle Fire Protection & Electrical Transform

Layer 1 of 1 Description: Off-white brittle/soft mastic

Non-Fibrous Materials: Ot

Other Fibrous Materials:%

Asbestos Type: %

Spider silk <1%

None Detected ND

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk Reviewed by: Matt Macfarlane

Date: 09/04/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Α

NVL Laboratories, Inc.	ASBESTOS LABORATORY SERVICES		J	VI
4708 Aurora Ave N, Seattle, WA 98103				W
p 206.547.0100 f 206.634.1936 w	ww.nvllabs.com	Ĺ	Α	В

	Company	AECOM-Seattle			NVL Batch N	Number 1	816752	2.00	
	Address	1111 3rd Avenue	Ste. 160	00	TAT 5 Day	/S		AH No	
		Seattle, WA 9810	1		Rush TAT				
Projec	ct Manager	Ms. Nicole Gladu			Due Date	9/4/2018	Time	1:40 PM	
	Phone	(206) 438-2700			Email nicole	e.gladu@ae	com.com	<u> </u>	
	Cell	(206) 240-0644			Fax (866)	495-5288			
Subca	ect Name/Nategory PL			Project Lo 00/R-93-116 Asb			ection & E	Electrical Transform	
To	tal Numb	er of Samples	7_					Rush Samples	
	Lab ID	Sample ID		Description					A/R
1	18086253	JCFP-1-01							А
2	18086254	JCFP-1-02							А
3	18086255	JCFP-1-03							А
4	18086256	JCFP-2-01							Α
5	18086257	JCFP-3-01							Α
6	18086258	JCFP-4-01							Α .

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Alla Prysyazhnyuk		NVL	9/4/18	
Results Called by					
Faxed Emailed					
Special					

Date: 8/27/2018 Time: 4:25 PM Entered By: Fatima Khan

18086259

JCFP-5-01

INDUSTRIAL H Y G I E N E

ASBESTOS CHAIN OF CUSTODY

1816752

Sure Arrand Tang

J 4 Floring

J I Hour 17

J 2 Hours

⊒£2 Day; ⊒ 3 Days

△ S Days ⊒ 10 Days

SERVIC	CES			Please call for TAF	less than 24 Hashis	
Laboratory Manager	ment Training					
Conspany	AECOM		Project Manag	Nicole Gladu		
Address	1111 Third Avenue	Ce	- I			
	Seattle, WA 98101		Env	nicole.gladu@	aecom.com	
Phone	206.438.2700			(€866) 495		
Project Name/N	tumber 60537920.2.4a	Project Location JC	Bovle {	Tre Protection	i Flectrical	Trans
→ PCM Air → PLM (SPA → PLM Gra	(NIOSH 7400)	TEM (NIOSH 7402) EPA 400 Points (600 Asbestos in Vermica	→ TEM (AHE) /R-93-116) lite (EPA 600/R	RA) LI TEM (EP	A Level II Modified)	16)
Reporting In	structions Please email:	kimberly.riche@)aecom.com	. & shannon.macl	kay@aecom.coi	n
⊐ • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	⊒ Fac ()	-	⊒ 6mail		
otal Num	ber of Samples	7				
Samp	ele ID	Description				A/R
1 JCF	FP-101					
2	1-2					
3	1-03					
4	2-01					
5	3-01					
6	4-01					
7	- 501					
8						
9						
10						
11						
12						
13						
15						-
	Priot Manne	Signature	, i c	empany	Date	Time
ampled by	Kim Riche	16/6		AECOM	8/20/18-8/23/18	11:00am
dinquish by	Kim Riche	100		AECOM	8/27/18	130pm
Ffice Use On Received b Analyzed b	Phy Phy Callar	Other	· ·	on:pany Whole	Date 67/19	I'me Judge
Called b Faxed/Email b						

January 2, 2019

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1900107.00

Client Project: 60537920 2.4 Location: JC Gate Control

Dear Ms. Gladu,

Enclosed please find test results for the 6 sample(s) submitted to our laboratory for analysis on 1/2/2019.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Munaf Khan, Laboratory Director

Enc.: Sample Results

Lab Code: 102063-0

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Attention: Ms. Nicole Gladu

Project Location: JC Gate Control

Batch #: 1900107.00

Client Project #: 60537920 2.4

Date Received: 1/2/2019

Samples Received: 6

Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

Lab ID: 19000015 Client Sample #: JCGCB-1-01

Location: JC Gate Control

Layer 1 of 1 **Description:** Gray brittle material

> **Asbestos Type: %** Other Fibrous Materials:% Non-Fibrous Materials:

None Detected ND Binder/Filler, Fine particles, Calcareous particles Cellulose <1%

Lab ID: 19000016 Client Sample #: JCGCB-1-02

Location: JC Gate Control

Description: Gray brittle material Layer 1 of 1

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

Synthetic fibers <1% None Detected ND Binder/Filler, Calcareous particles, Fine particles

Lab ID: 19000017 Client Sample #: JCGCB-2-01

Location: JC Gate Control

Layer 1 of 1 **Description:** Red soft material

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Binder/Filler, Mica, Fine particles Cellulose

Calcareous particles

Lab ID: 19000018 Client Sample #: JCGCB-2-02

Location: JC Gate Control

Layer 1 of 1 **Description:** Red soft material

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

Cellulose 2% None Detected ND Binder/Filler, Fine particles, Mica

Client Sample #: JCGCB-3-01 Lab ID: 19000019

Location: JC Gate Control

Sampled by: Client

Analyzed by: Tiffany Cummings Date: 01/02/2019 Reviewed by: Munaf Khan Date: 01/02/2019

Munaf Khan, Laboratory Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Attention: Ms. Nicole Gladu Project Location: JC Gate Control Batch #: 1900107.00

Client Project #: 60537920 2.4

Date Received: 1/2/2019

Samples Received: 6 Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Layer 1 of 1 Description: Gray soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine particles, Paint flakes

Cellulose <1%

None Detected ND

Synthetic fibers <1%

Lab ID: 19000020 Client Sample #: JCGCB-3-02

Location: JC Gate Control

Layer 1 of 1 Description: Gray soft material

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Fine particles, Paint flakes Cellulose <1%

Asbestos Type: %

None Detected ND

Sampled by: Client

Analyzed by: Tiffany Cummings
Reviewed by: Munaf Khan

Date: 01/02/2019

Date: 01/02/2019

Munaf Khan, Laboratory Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

ASBESTOS LABORATORY SERVICES

NVL Batch Number

1900107.00

Address 1111 3rd Avenue Ste. 1600 TAT 4 Hrs AH No Seattle, WA 98101 Rush TAT 1/2/2019 12:50 PM **Due Date** Time Project Manager Ms. Nicole Gladu Phone (206) 438-2700 Email nicole.gladu@aecom.com Cell (206) 240-0644 (866) 495-5288 Fax Project Name/Number: 60537920 2.4 Project Location: JC Gate Control Subcategory PLM Bulk Item Code ASB-02 EPA 600/R-93-116 Asbestos by PLM <bulk>

То	tal Numbe	r of Samples 6	R	ush Samples
	Lab ID	Sample ID	Description	A/R
1	19000015	JCGCB-1-01		A
2	19000016	JCGCB-1-02		А
3	19000017	JCGCB-2-01		А
4	19000018	JCGCB-2-02		A
5	19000019	JCGCB-3-01		А
6	19000020	JCGCB-3-02		А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Emily Schubert		NVL	1/2/19	850
Analyzed by	Tiffany Cummings		NVL	1/2/19	
Results Called by					
Faxed Emailed					
Special verba	I confirmation on the	correct sample ID.			

Date: 1/2/2019 Time: 8:47 AM

Entered By: Emily Schubert

Company AECOM-Seattle

CHAIN of CUSTODY SAMPLE LOG

1900107

	AECOM-S	seame		
Street	THE PLANTS OF	Avenue Ste. 1600	NVL Batch Number 60537920 2.4	
	Seattle, W		Total Samples 6	
			Turn Around Time 1 Hr 6 Hrs 3 Days	☐ 10 C
Project Manager	Ms. Nicole	e Gladu	☐2 Hrs ☐1 Day ☐4 Days	
Project Location	<i>-</i>		─────────────────────────────────────	lrs.
	or a	HE CONTROL	Email address nicole.gladu@aecom.com	
Phone:	206) 438-	2700 Fax: (866) 49		
Asbestos Air	PCM	(NIOSH 7400) TEM	(NIOSH 7402) TEM (AHERA) TEM (EPA Level iI) Other	
Asbestos Bu	160		PLM (EPA Point Count) PLM (EPA Gravimetry) TEM BULK	
☐ Mold/Fungus	Mold	Air Mold Bulk	Rotometer Calibration	
METALS Total Metals TCLP Cr 6 Other Types of Analysis	ICP	(ppm] ☐ Air Filter (ppm) ☐ Drinking water A (ppl ☐ Dust/wipe (Are ☐ Soil glass ☐ Nuisance Dust	a) Waste Water Cadmium (Cd) Selenium (Se) Nick Other Chromium (Cr) Silver (Ag)	} per (Cu) el (Ni)
Condition of P	(F) (F) (F)	(spillage) Severe damage (spillage)	
Seq. # Lab ID		Client Sample Number		A/R
1		JCGC13-1-01	Window	
2		1-01	101.100	
3		2-01	FS	
4		2-02	7.0	
5		3-01	Ex Canlk	
			CA CANA	
6		3-1)~		
6 7		3-02		
		3-0×		
7		3-0≪		
7 8		3-0×		
7 8 9		3-0~		
7 8 9 10		3-0×		
7 8 9 10 11		3-0~		
7 8 9 10 11 12		3-00		
7 8 9 10 11 12 13		3-0%		
7 8 9 10 11 12 13	Print Bo		ow Company Date Tim	ie
7 8 9 10 11 12 13 14 15	Print Bo	elow Sign Belo		ie Olm
7 8 9 10 11 12 13 14 15	by S. Ma	elow Sign Belo	AECOM 12/06/18 14	ie Om:
7 8 9 10 11 12 13 14 15	by S. M.	elow Sign Belo	MIN AECOM 12/06/18 1,	ie om : 4 Fan
7 8 9 10 11 12 13 14 15 Sampled Relinquished	by S. Mo by S. Mo by Ex	elow Sign Belo	AECOM 12/06/18 14	ne Om : 4 Fan
7 8 9 10 11 12 13 14 15 Sampled Relinquished Received	by S. Mo by S. Mo by Ew	elow Sign Belo	MIN AECOM 12/06/18 1,	ie om : Y Rus

September 4, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816759.00

Client Project: 60537920.2.4a Location: JC Boyle Hazmat Shed

Dear Ms. Gladu,

Enclosed please find test results for the 12 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Hazmat Shed

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816759.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Asbestos Type: %

None Detected ND

Chrysotile 2%

Lab ID: 18086285 Client Sample #: JCHM-1-01

Location: JC Boyle Hazmat Shed

Layer 1 of 1 Description: Black soft asphaltic material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Granules, Wood flakes Cellulose 2% None Detected ND

Location: JC Boyle Hazmat Shed

Layer 1 of 2 Description: Black soft asphaltic material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder Cellulose 2%

Layer 2 of 2 Description: Black asphaltic material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder Cellulose 2%

Lab ID: 18086287 Client Sample #: JCHM-2-01

Location: JC Boyle Hazmat Shed

Layer 1 of 1 Description: Beige brittle/sandy material with off-white paint

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Granules, Mica Synthetic fibers 2%

Doint Cond

Paint, Sand

Location: JC Boyle Hazmat Shed

Layer 1 of 1 Description: Beige brittle/sandy material with off-white paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Granules, Mica Synthetic fibers 2% None Detected ND

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk Date: 09/04/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Hazmat Shed

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816759.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 12

Samples Analyzed: 12 Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Insect parts, Paint, Sand

Spider silk <1%

Client Sample #: JCHM-2-03 Lab ID: 18086289

Location: JC Boyle Hazmat Shed

Layer 1 of 1 Description: Light graybrittle/sandy material with off-white paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Granules, Mica

Synthetic fibers 2% None Detected ND

Paint, Sand

Client Sample #: JCHM-3-01 Lab ID: 18086290

Location: JC Boyle Hazmat Shed

Layer 1 of 1 **Description:** White soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Calcareous particles

Cellulose <1%

None Detected ND

Lab ID: 18086291 Client Sample #: JCHM-3-02

Location: JC Boyle Hazmat Shed

Layer 1 of 1 Description: Beige soft/brittle material with gray paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Mineral grains, Fine particles

Wollastonite 2% Chrysotile <1%

Cellulose 2% Insect parts, Paint

Client Sample #: JCHM-4-01 Lab ID: 18086292

Location: JC Boyle Hazmat Shed

Layer 1 of 1 **Description:** Gray/silver paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Paint, Fine particles, Metallic paint

None Detected

None Detected ND

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk Reviewed by: Matt Macfarlane

Date: 09/04/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Hazmat Shed

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816759.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Lab ID: 18086293 Client Sample #: JCHM-4-02

Location: JC Boyle Hazmat Shed

Layer 1 of 1 **Description:** Orange/silver paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Paint, Fine particles, Metallic paint

None Detected

None Detected ND

Lab ID: 18086294 Client Sample #: JCHM-4-03

Location: JC Boyle Hazmat Shed

Description: Orange/silver paint Layer 1 of 1

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Paint, Fine particles, Metallic paint

None Detected ND None Detected ND

Client Sample #: JCHM-5-01 Lab ID: 18086295

Location: JC Boyle Hazmat Shed

Description: White soft material Layer 1 of 1

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine particles

None Detected

None Detected ND

Lab ID: 18086296 Client Sample #: JCHM-6-01

Location: JC Boyle Hazmat Shed

Layer 1 of 1 Description: Light gray compressed fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine particles

None Detected ND **Chrysotile 45%**

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk

Reviewed by: Matt Macfarlane

Date: 09/04/2018

Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL B	atch N	lumber 18	316759.	.00
Address	1111 3rd Avenue Ste. 1600	TAT S	5 Days	S		AH No
	Seattle, WA 98101	Rush 1	ГАТ			
Project Manager	Ms. Nicole Gladu	Due Da	ate	9/4/2018	Time	1:40 PM
Phone	(206) 438-2700	Email	nicole	.gladu@ae	com.com	
Call	(206) 240-0644	Fav	(866)	495-5288		

	Phone (2	206) 438-2700			Emai	il nicole.gladu@aecom	1.com	
	Cell (2	206) 240-0644			Fax	(866) 495-5288		
Proj	ect Name/Nu	ı mber: 6053792	20.2.4a	Project Loc	cation: 、	JC Boyle Hazmat Shed	<u>'</u>	
Subc	ategory PLM	l Bulk						
Ite	m Code ASB	-02	EPA 6	00/R-93-116 Asbe	stos by	PLM <bulk></bulk>		
То	tal Numbe	er of Sample	s 12				Rush Samples	
	Lab ID	Sample ID		Description				A/R
1	18086285	JCHM-1-01						А
2	18086286	JCHM-1-02						Α
3	18086287	JCHM-2-01						A
4	18086288	JCHM-2-02						Α
5	18086289	JCHM-2-03						Α
6	18086290	JCHM-3-01						А
7	18086291	JCHM-3-02						А
8	18086292	JCHM-4-01						А
9	18086293	JCHM-4-02						А
10	18086294	JCHM-4-03						А
11	18086295	JCHM-5-01						А
12	18086296	JCHM-6-01						А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Alla Prysyazhnyuk		NVL	9/4/18	
Results Called by					
Faxed Emailed					
Special					

Date: 8/27/2018 Time: 4:41 PM

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

1816759

Total Argum ⊒ 1 Hotis ⇒ 2 Homs. J 2 Days □ 10 Days 4 Hours J 3 Days

TEM (S J EPA 10 J Asbest	@aecom.com - 5288	-116) A 1900 Point
ole.gladu@ 66 495 Lyva4 1 L TEM (8 L EPA 10 D Asbest	@aecom.com - 5288 Shool EPA Level II Modified 000Points (600/R-93- tos in Sectiment (EPA	-116) A 1900 Point
Die.gladu(66) 495 Lynn A J TEM (8 J EPA 10 J Asbest	@aecom.com - 5288 Sheel EPA Level II Modified 000Points (600/R-93- tos in Sectiment (EPA	-116) A 1900 Point
TEM (S J EPA 10 J Asbest	Sheel Sheel II Modified 000Points (600/R-93-tos in Sectiment (EPA	-116) A 1900 Point
TEM (S J EPA 10 J Asbest	Sheel Sheel II Modified 000Points (600/R-93-tos in Sectiment (EPA	-116) A 1900 Point
→ TEM (8 → EPA 1(8) → Asbest	EPA Level II Modified 000Points (600/R-93- tos in Sediment (EPA ckay@aecom.co	-116) A 1900 Point
→ TEM (8 → EPA 1(8) → Asbest	EPA Level II Modified 000Points (600/R-93- tos in Sediment (EPA ckay@aecom.co	-116) A 1900 Point
annon.ma	ckay@aecom.co	
		A/R
		A/R
		A/R
	Date	1 time
ECOM	8/20/18-8/23/1	8 11:00am
LOOIVI	0/2//10	130%
Δ	AECOM AECOM	AECOM 8/20/18-8/23/1 AECOM 8/27/18

September 4, 2018

Nicole Gladu **AECOM-Seattle** 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816741.00

Client Project: 60537920.2.4a

Location: JC Boyle Intake Structure/ Fish Ladder

Dear Ms. Gladu,

Enclosed please find test results for the 30 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both EPA 600/M4-82-020, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1,888.(685.5227) www.nvllabs.com

Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816741.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 30

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Lab ID: 18086125 Client Sample #: JCIS-1-01

Layer 1 of 1 Description: Gray brittle material with debris

Non-Fibrous Materials: Other Fi

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains, Debris

Cellulose

None Detected ND

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 Description: Black sticky material with mineral grains

Non-Fibrous Materials:

Other Fibrous Materials:%

3%

Asbestos Type: %

Asphalt/Binder, Fine grains, Mineral grains

Cellulose 2%

None Detected ND

Lab ID: 18086127 Client Sample #: JCIS-3-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Gray sandy rubbery material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Sand

Cellulose <1%

None Detected ND

Layer 2 of 2 Description: Gray brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asbestos Type: %

None Detected ND

Cement/Binder, Mineral grains

Cellulose 1%

None Detected ND

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Gray sandy rubbery material

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Sand None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 09/01/2018

Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816741.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 30

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Description: Gray brittle material Layer 2 of 2

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains, Insect parts

Cellulose 3% **None Detected ND**

Spider silk 2%

Lab ID: 18086130 Client Sample #: JCIS-3-03

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 **Description:** Gray sandy rubbery material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Sand

Cellulose 1% None Detected ND

Lab ID: 18086131 Client Sample #: JCIS-3-04

Location: JC Boyle Intake Structure/ Fish Ladder

Description: Gray brittle material Layer 1 of 1

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Mineral grains, Organic debris

None Detected

None Detected ND

Lab ID: 18086132 Client Sample #: JCIS-4-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 **Description:** Black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Miscellaneous particles

Cellulose

None Detected ND

Lab ID: 18086133 Client Sample #: JCIS-4-02

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 **Description:** Black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Miscellaneous particles

Cellulose

2%

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 09/01/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920.2.4a

citt i 10ject #. 00001020.2.4a

Date Received: 8/27/2018 Samples Received: 30

Batch #: 1816741.00

Samples Received: 3

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Lab ID: 18086134 Client Sample #: JCIS-5-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND

Layer 2 of 2 Description: Brown woven fibrous material with brittle brown mastic

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Mastic/Binder, Fine particles Cellulose 76% None Detected ND

Lab ID: 18086135 Client Sample #: JCIS-6-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND

None Detected ND

Layer 2 of 2 Description: Green and brown paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint, Miscellaneous particles None Detected ND None Detected ND

Lab ID: 18086136 Client Sample #: JCIS-6-02

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND

None Detected ND

Layer 2 of 2 Description: Green, orange and brown paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint, Miscellaneous particles Cellulose <1% None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 09/01/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547,0100 | f 206.634,1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816741.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 30

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Lab ID: 18086137 Client Sample #: JCIS-6-03

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND

None Detected ND

Layer 2 of 2 Description: Green, orange and brown paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint, Miscellaneous particles None Detected ND None Detected ND

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: White rubbery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Caulking compound, Fine particles, Paint None Detected ND None Detected ND

Layer 2 of 2 Description: Brown rubbery material with paint and wood flakes

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Caulking compound, Fine particles, Paint Cellulose 6% None Detected ND

Lab ID: 18086139 Client Sample #: JCIS-7-02

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: White rubbery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Caulking compound, Fine particles, Paint Cellulose 1% None Detected ND

Layer 2 of 2 Description: Brown rubbery material with paint and wood flakes

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Caulking compound, Fine particles, Paint Cellulose 9% None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 09/01/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

Lab ID: 18086140

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Project Location: JC Boyle Intake Structure/ Fish Ladder

Batch #: 1816741.00

Client Project #: 60537920.2.4a Date Received: 8/27/2018

Samples Received: 30

Samples Received

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Brown paper with black asphaltic mastic

Client Sample #: JCIS-8-01

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Miscellaneous particles Cellulose 86% None Detected ND

Glass fibers 3%

Spider silk 2%

Layer 2 of 2 Description: Pink fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Miscellaneous particles Glass fibers 95% None Detected ND

Lab ID: 18086141 Client Sample #: JCIS-8-02

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 3 Description: Brown paper with black asphaltic mastic

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Miscellaneous particles Cellulose 81% None Detected ND

Glass fibers 5%

Layer 2 of 3 Description: Pink fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Miscellaneous particles Glass fibers 97% None Detected ND

Layer 3 of 3 Description: Off-white paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint, Miscellaneous particles Glass fibers 2% None Detected ND

Location: JC Boyle Intake Structure/ Fish Ladder

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 09/01/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816741.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 30

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Brown paper with black asphaltic mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Miscellaneous particles

Cellulose 82%

None Detected ND

Glass fibers

Layer 2 of 2 **Description:** Pink fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Miscellaneous particles, Insect parts

Glass fibers 94%

Cellulose <1%

None Detected ND

Lab ID: 18086143 Client Sample #: JCIS-9-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 **Description:** Silver paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: % None Detected ND

Metallic paint, Miscellaneous particles

Description: Gray and brown paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Paint, Miscellaneous particles

None Detected ND None Detected ND

Lab ID: 18086144 Client Sample #: JCIS-9-02

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 **Description:** Silver paint

Layer 2 of 2

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND

Cellulose

4%

None Detected ND

Layer 2 of 2 **Description:** Gray and brown paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Paint, Miscellaneous particles

None Detected ND

Lab ID: 18086145 Client Sample #: JCIS-9-03

Location: JC Boyle Intake Structure/ Fish Ladder

Sampled by: Client

Analyzed by: Daniel Charbonneaux Reviewed by: Matt Macfarlane

Date: 09/01/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816741.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 30

Samples Analyzed: 30

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Layer 1 of 2

Project Location: JC Boyle Intake Structure/ Fish Ladder

Description: Silver paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND None Detected ND

Layer 2 of 2 **Description:** Gray and brown paint

Non-Fibrous Materials:

Paint, Miscellaneous particles

Other Fibrous Materials:%

Asbestos Type: %

Cellulose

3%

3%

None Detected ND

Lab ID: 18086146 Client Sample #: JCIS-10-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 **Description:** Gray brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine particles, Mineral grains

Cellulose 2% None Detected ND

Lab ID: 18086147 Client Sample #: JCIS-11-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 Description: Gray rubbery material with sand

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Caulking compound, Fine particles, Sand

Cellulose

None Detected ND

Client Sample #: JCIS-12-01 Lab ID: 18086148

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 **Description:** Off-white brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains, Organic debris

Cellulose 4% None Detected ND

Lab ID: 18086150 Client Sample #: JCIS-12-02

Location: JC Boyle Intake Structure/ Fish Ladder

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 09/01/2018

Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816741.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 30

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Gray brittle material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Mineral grains, Paint

Cellulose 2% None Detected ND

Layer 2 of 2 **Description:** Off-white brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains

None Detected ND **None Detected ND**

Lab ID: 18086151 Client Sample #: JCIS-13-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 **Description:** Silver paint

Non-Fibrous Materials:

Other Fibrous Materials:% None Detected

Asbestos Type: %

None Detected ND

Metallic paint, Miscellaneous particles

Description: Metal oxide with paint

Other Fibrous Materials:%

Asbestos Type: %

Metal oxide, Paint

Non-Fibrous Materials:

None Detected

ND

ND

None Detected ND

Client Sample #: JCIS-13-02 Lab ID: 18086152

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 **Description:** Silver paint

Non-Fibrous Materials:

Other Fibrous Materials:% None Detected ND Asbestos Type: % None Detected ND

Layer 2 of 2 **Description:** Metal oxide

Non-Fibrous Materials:

Other Fibrous Materials:% None Detected

Asbestos Type: % None Detected ND

Metal oxide, Miscellaneous particles

Metallic paint, Miscellaneous particles

Lab ID: 18086153

Client Sample #: JCIS-13-03

Comments:

Layer 2 of 2

Location: JC Boyle Intake Structure/ Fish Ladder

Insufficient silver paint for thorough analysis.

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 09/01/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816741.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 30

Samples Analyzed: 30

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 Description: Silver paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND

None Detected ND

Lab ID: 18086154 Client Sample #: JCIS-14-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 Description: Gray brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Ceramic/Binder, Fine grains

None Detected ND

None Detected ND

Lab ID: 18086155 Client Sample #: JCIS-15-01

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Silver paint

Layer 2 of 2

Non-Fibrous Materials:

Non-Fibrous Materials:

Other Fibrous Materials:%

Spider silk

1%

Asbestos Type: %
None Detected ND

Metallic paint, Miscellaneous particles

Description: Metal oxide with paint

Other Fibrous Materials:%

Asbestos Type: %

Metal oxide, Miscellaneous particles, Paint

None Detected ND

None Detected ND

Lab ID: 18086156 Client Sample #: JCIS-15-02

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Metallic paint, Miscellaneous particles

None Detected ND

None Detected ND

Layer 2 of 2 Description: Metal oxide with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Metal oxide, Miscellaneous particles, Paint

None Detected ND

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Reviewed by: Matt Macfarlane **Date:** 09/01/2018 **Date:** 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.	547.0100 f 2	06.634.1936	www.nvllabs.com							Ľ	Α	В
	Company	AECON	/I-Seattle			NVL Batch	Number	1816741	.00			
Address 1111 3rd Avenue St								AH No				
	Seattle, WA 98101				Rush TAT							
Projec	ct Manager	Ms. Nic	ole Gladu			Due Date	9/4/201	8 Time	1:40 PM			
	Phone	(206) 43	38-2700			Email nico	le.gladu@	aecom.com				
	Cell	(206) 24	40-0644			Fax (866	3) 495-528	88				
Proje	ect Name/	Number	: 60537920.2.4	a	Project Loc	cation: JC Bo	yle Intake	Structure/ F	ish Ladder			
Subca	ategory PL	M Bulk										
			EP/	4 600/	R-93-116 Ashe	stos by PI M <	:hulk>					
1101	ii oodo Zk	02		1 000/	(00 110 7.000	Otoo by 1 Livi	Court					
To	tal Numb	per of S	Samples:	30					Rush Samp	oles		
	Lab ID	San	mple ID	D	escription							A/F
1	18086125	JCIS	S-1-01									А
2	18086126	JCIS	S-2-01									Α
3	18086127	JCIS	S-3-01									Α
4	18086129	JCIS	S-3-02									Α
5	18086130	JCIS	S-3-03									Α
6	18086131	JCIS	S-3-04									Α
7	18086132	JCIS	S-4-01									Α
8	18086133	JCIS	S-4-02									Α
9	18086134	JCIS	S-5-01									Α
10	18086135	JCIS	S-6-01									Α
11	18086136	JCIS	S-6-02									Α
12	18086137	JCIS	S-6-03									Α
13	18086138	JCIS	S-7-01									Α
14	18086139	JCIS	S-7-02									Α
15	18086140	JCIS	S-8-01									Α
16	18086141	JCIS	S-8-02									Α
17	18086142	JCIS	S-8-03									A
18	18086143	JCIS	S-9-01									Α
			Print Name		Signature		Company	,	Date	Tiı	me	
	Sample	d by	Client									
	Relinquish	ed by	Client									
Of	fice Use O	nly	Print Name		Signature		Company	,	Date	Tir	me	
	Receiv		Fatima Khan		_		NVL		8/27/18	1340		
	Analyz		Daniel	_			NVL		9/1/18	1		\exists
	Results Ca			_								\neg
		Emailed										\exists

Date: 8/27/2018 Time: 4:09 PM

Entered By: Emily Schubert

Special Instructions:

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch	816741	741.00		
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days				
	Seattle, WA 98101	Rush TAT_				
Project Manager	Ms. Nicole Gladu	Due Date	9/4/2018	Time	1:40 PM	
Phone	(206) 438-2700	Email nicole.gladu@aecom.com				
Cell	(206) 240-0644	Fax (866)	495-5288			

	Phone (206) 438-2700	Email nicole.gladu@aecom.com						
	Cell (206) 240-0644			Fax	(866) 495-5288				
Proj	Project Name/Number: 60537920.2.4a Project Location: JC Boyle Intake Structure/ Fish Ladder								
Subc	ategory PLM	1 Bulk							
Ite	m Code ASE	3-02	EPA 600/R-93	3-116 Asbestos by	PLM <bulk></bulk>				
Τo	tal Numbe	er of Sample	es30			Rush Samples			
. •	Lab ID	Sample ID	Descr	intion		radii daiipidd	A/R		
19	18086144	JCIS-9-02	Descr	ipuori			A		
20	18086145	JCIS-9-03					A		
21	18086146	JCIS-10-01					А		
22	18086147	JCIS-11-01					А		
23	18086148	JCIS-12-01					А		
24	18086150	JCIS-12-02					Α		
25	18086151	JCIS-13-01					Α		
26	18086152	JCIS-13-02					Α		
27	18086153	JCIS-13-03					Α		
28	18086154	JCIS-14-01					Α		
29	18086155	JCIS-15-01					Α		
30	18086156	JCIS-15-02					Α		

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Daniel		NVL	9/1/18	
Results Called by					
Faxed Emailed					
Special Instructions:		'			

Date: 8/27/2018 Time: 4:09 PM

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

1816741

□ 2 Days
□ 2 Hours □ 2 Days
□ 4 Albers □ 3 Days □ 10 Days

H Y G I E S E R V I			Please call for TAT less than 21 Hours						
oratory Manage	ement Training		-41 -17	AGE CO					
- Compan	AECOM		Project Manager Nicole Gladu						
Addres	1111 Third Avenue	Suite 1600	Cell (C						
	Seattle, WA 98101		nicole.gladu@aecom.com						
Disease	206.438.2700		Fax (866)						
FILDI.	200.100.2100		Fax - COO -	+30 020 0					
oject Name/	Number 60537920.2.4a	a Project Location JC	Boyle Intake S	tructure Fisi	n ladd				
∠ PLM! (EI ∠ PLM Gr	PA 600/R-93-116)	EPA 400 Points (600 Asbestos in Vermicu	☐ TEM (AHERA) ☐ TI 0/R-93-116) ☐ EI ulite (EPA 600/R-04/004) ☐ A	PA 1000Points (600/R-93-	-116)				
			Daecom.com & shannon	.mackay@aecom.co	om				
u Call 🖳		⊒ Fax	⊒ Email						
	mber of Samples								
	ple ID	Description							
	15-1-01	Description			A/R				
) [2-01								
	3-01								
	3-02								
	3-03				_				
	3-54								
	4-01								
	4-02								
	5-01								
)	6-01								
	6-02								
2	6-03								
3	701								
1	7-02								
5	8-01								
	Print Name	Signature	Сетралу	Date	Tune				
mpled by	Kim Riche	1/a	AECOM	8/20/18-8/23/1	8 11:00am				
rquish by	Kim Riche	16	AECOM	8/27/18	130pm				
fice Use O	nlv				1				
Received	by Atmatian	alle	2 Company Mulla	bs 8b7/12	Lagra				
Analyzed Called									

INDUSTRIAL HYGIENE

ASBESTOS CHAIN OF CUSTODY

1816741

Torry Armoret Time

⊒ 1 Hour

at de mara a ⊒ 2 Ноль ⊒ 2 Days

△ 5 Crays

⊒ 1 Horas ⊒ 3 Days ■ 16 Days

Please call for TAT less than 24 Hours

SERVIO				West State of the second					
Contract	AECOM		Project Manager Nicole (Sladu					
	1111 Third Avenue	Suite 1600	Cell Call						
	Seattle, WA 98101			ladu@aecom.co	m				
Phone	206.438.2700		nicole.gladu@aecom.com						
Englect Name/N	Humber 60537920.2.4a	Project Location JC	Boyle Intake	Structure	F.Ch lad				
⊴ PLM (EP □ PLM Gra		TEM (NIOSH 7492) EPA 400 Points (600/ Asbestos in Vermiculi	☐ TEM (AHERA) ☐ R-93-116) ☐ ite (EPA 600/R-04/00-I) ☐	TEM (EPA Level II Mo- EPA 1000Points (600/	dified) (R-93-116)				
	structions Please email:								
		0							
Samp	ele ID	Description			ı A/R				
1 50	15-8-02								
	15-8-63								
3	9-01								
4	9-02								
5	9-63								
6	10-01								
7	11-07								
8	1201								
9	12-02								
10	13-01								
11	13-02								
12	13-03								
13	14-01								
14	15-01								
15	15-02								
	Print Name	5 grature	Company	Date	Time				
Sampled by	Kim Riche	la	AECO	M 8/20/18-8/	/23/18 11:00am				
Refinquish by	Kim Riche	160	AECO	M 8/27/1	18 130rm				
Office Use Or Received Analyzed Called Faxed/Email	by Ethnallom	dis	Company	Date 8 127					

August 31, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816740.00

Client Project: 60537920.2.4a

Location: JC Boyle Intake Structure/ Fish Ladder

Dear Ms. Gladu,

Enclosed please find test results for the 3 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com

Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816740.00

Client Project #: 60537920.2.4a Date Received: 8/27/2018

Samples Received: 3

Samples Analyzed: 3

Samples Analyzeu

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish Ladder

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 Description: Soft flaky material with metallic paint

naity material man motalie paint

Non-Fibrous Materials: Other Fibrous Materials:%

Metallic paint, Caulking compound, Fine particles Cellulose

Asbestos Type: %
None Detected ND

Asbestos Type: %

None Detected ND

1%

Cellulose 12%

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 Description: Black asphaltic fibrous material with paint

Non-Fibrous Materials: Other Fibrous Materials:%

Asphalt/Binder, Fine particles, Paint

Lab ID: 18086120 Client Sample #: JCIS-16-02

Location: JC Boyle Intake Structure/ Fish Ladder

Layer 1 of 1 Description: Black asphaltic fibrous material with paint

Non-Fibrous Materials: Other Fibrous Materials:%

Asphalt/Binder, Fine particles, Paint Cellulose 13%

Asbestos Type: %

None Detected ND

Sampled by: Client

Analyzed by: Matthew McCallum
Reviewed by: Matt Macfarlane

Date: 08/31/2018 Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

Project Location: JC Boyle Intake Structure/ Fish Ladder

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Project Name/Number: 60537920.2.4a

5 Days		AH No		
		ALL INC		
TAT				
ate 9/4/20	18 Time	1:40 PM		
nicole.gladu@	aecom.com	1		
Fax (866) 495-5288				
1	nicole.gladu@	nicole.gladu@aecom.com		

_			•	
Subc	ategory PL	M Bulk		
lte	m Code AS	B-02	EPA 600/R-93-116 Asbestos by PLM <bul></bul>	>
			·	
To	tal Numb	er of Samples	3	Rush Samples
	Lab ID	Sample ID	Description	A/R
1	18086118	JCIS-15-03		A
2	18086119	JCIS-16-01		A
3	18086120	ICIS-16-02		Δ

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Matthew McCallum		NVL	8/31/18	
Results Called by					
Faxed Emailed					
Special Instructions:					

Date: 8/27/2018 Time: 4:06 PM

Entered By: Emily Schubert

1816740

ASBESTOS CHAIN OF CUSTODY

Rain Argon I Tions

⊒ 1 Hour

चा देवे शिक्षापुर ।

⊒ 2 Hodrs ⊒ 2 Days □ 4 田原原 3 ⊒3 Days

⊿ S Days ⊒ 10 Days

SERVICES		Please call for TAT less than 24 Houry						
aboratory Management Training		and Down	V					
Company AECOM		Project Manager Nicole C	Bladu					
Address 1111 Third Aven	ue Suite 1600	Cell						
Seattle, WA 9810	01	nicole.gladu@aecom.com						
Phone 206.438.2700		_{Fat} (866) 495 - 5288						
Froject Planse (Number 60537920.2.	4a Project Location JC	C Boyle Joseph	Structure	Fish la				
 □ PCM Air (NIOSH 7400) □ PLM (EPA 600/R-93-116) □ PLM Gravimetry (600/R-93-116) □ Asbestos Friable/Non-Friable (EP 	☐ TEM (NIOSH 7402) ☐ EPA 400 Points (600 ☐ Asbestos in Vermice	☐ TEM (AHERA) ☐ 0/R-93-116) ☐ ☐ Ulite (EPA 600/R-04/004) ☐	TEM (EPA Level II Modified EPA 1000Points (600/R-93	d) -116)				
Reporting Instructions Please em	ail: kimberly.riche@	@aecom.com & shanno	n.mackay@aecom.c	om				
Total Number of Samples	_							
· ·								
Sample ID	Description			A/R				
1 July 15-03								
3 16-01								
4								
5								
5								
7								
8								
9								
10								
11								
12								
14				_				
15								
Print Name	Signabue	Company	y Date	Time				
Sampled by Kim Riche	1/1	AECOI	M 8/20/18-8/23/1	18 11:00am				
elinguish by Kim Riche	16	AECO!						
	10	/IEGO!	0/2//10	Bopn				
Received by Analyzed by	n Signalina	Campany abo	8/59/8	1:40pp				
Called by								
Faxed/Email by								

August 31, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816738.00

Client Project: 60537920.2.4a

Location: JC Boyle Office Warehouse

Dear Ms. Gladu,

Enclosed please find test results for the 36 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Client Sample #: JCOW-1-01 Lab ID: 18086081

Location: JC Boyle Office Warehouse

Layer 1 of 2 **Description:** Gray sheet vinyl

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

> > Vinyl/Binder None Detected ND

Layer 2 of 2 **Description:** Gray fibrous backing with mastic (on wood)

> **Asbestos Type: %** Other Fibrous Materials:% Non-Fibrous Materials:

None Detected ND Binder/Filler, Mastic/Binder Cellulose 47%

Glass fibers 21%

Lab ID: 18086082 Client Sample #: JCOW-1-02

Location: JC Boyle Office Warehouse

Layer 1 of 3 **Description:** Gray sheet vinyl

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

> > None Detected ND Vinyl/Binder None Detected ND

Description: Tan fibrous backing with mastic (on wood) Layer 2 of 3

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

> > None Detected ND Binder/Filler Cellulose 40%

> > > Glass fibers 21%

Layer 3 of 3 Description: Black asphaltic fibrous material

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder, Binder/Filler Cellulose 74%

Lab ID: 18086083 Client Sample #: JCOW-1-03

Location: JC Boyle Office Warehouse

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Layer 1 of 2 **Description:** Gray sheet vinyl

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Vinyl/Binder

None Detected ND **None Detected ND**

Layer 2 of 2 **Description:** Gray fibrous backing with mastic (on wood)

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Binder/Filler

Cellulose 48%

None Detected ND

Glass fibers 16%

Lab ID: 18086084 Client Sample #: JCOW-2-01

Location: JC Boyle Office Warehouse

Description: Gray fibrous material with paint Layer 1 of 1

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine particles, Perlite

Cellulose 68%

None Detected ND

Paint Glass fibers 4%

Lab ID: 18086085 Client Sample #: JCOW-2-02

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Gray fibrous material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine particles, Perlite

Cellulose 65%

Cellulose 67%

3%

None Detected ND

Glass fibers Paint, Wood flakes

Lab ID: 18086086 Client Sample #: JCOW-2-03

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Gray fibrous material with paint

> Non-Fibrous Materials: Other Fibrous Materials:%

> > Date: 08/31/2018

Binder/Filler, Fine particles, Perlite

Asbestos Type: %

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

Camples Analyze

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Paint Glass fibers 6%

Lab ID: 18086087 Client Sample #: JCOW-3-01

Location: JC Boyle Office Warehouse

Layer 1 of 3 Description: Gray rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder None Detected ND None Detected ND

Layer 2 of 3 Description: White soft mastic

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Mastic/Binder None Detected ND None Detected ND

Layer 3 of 3 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Paint None Detected ND None Detected ND

Location: JC Boyle Office Warehouse

Layer 1 of 3 Description: Gray rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder None Detected ND None Detected ND

Layer 2 of 3 Description: White soft mastic

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Mastic/Binder, Insect parts Cellulose <1% None Detected ND

Spider silk 2%

Layer 3 of 3 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Paint None Detected ND None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Location: JC Boyle Office Warehouse

Lab ID: 18086089

Layer 1 of 2 **Description:** White compacted powdery material with paint

Client Sample #: JCOW-4-01

Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Calcareous binder, Paint Cellulose <1%

Layer 2 of 2 **Description:** White chalky material with paper

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Gypsum/Binder, Binder/Filler Cellulose 21%

> Glass fibers 4%

Lab ID: 18086090 Client Sample #: JCOW-4-02

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: White textured powdery material with paint

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:% None Detected ND

Calcareous binder, Paint Cellulose 2%

Description: White chalky material with paper Layer 2 of 2

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Gypsum/Binder, Binder/Filler Cellulose 26%

Client Sample #: JCOW-4-03 Lab ID: 18086091

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: White compacted powdery material with paint

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

> None Detected ND Calcareous binder, Paint None Detected ND

Description: White chalky material with paper Layer 2 of 2

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Gypsum/Binder, Binder/Filler Cellulose 23%

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00 Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Glass fibers 5%

Client Sample #: JCOW-4-04 Lab ID: 18086092

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: White compacted powdery material with paint

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

Calcareous binder, Paint None Detected ND

Description: White chalky material with paper Layer 2 of 2

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Gypsum/Binder, Binder/Filler Cellulose 21%

> Glass fibers 3%

Lab ID: 18086093 Client Sample #: JCOW-4-05

Location: JC Boyle Office Warehouse

Layer 1 of 2 **Description:** White compacted powdery material with paint

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:% None Detected ND

None Detected Calcareous binder, Paint ND

Layer 2 of 2 Description: White chalky material with paper

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

Gypsum/Binder, Binder/Filler Cellulose 25% None Detected ND

> Glass fibers 2%

Client Sample #: JCOW-4-06 Lab ID: 18086094

Location: JC Boyle Office Warehouse

Layer 1 of 2 **Description:** White compacted powdery material with paint

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Calcareous binder, Paint Cellulose <1%

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Laver 2 of 2 Description: White chalky material with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Gypsum/Binder, Binder/Filler

Cellulose 22%

None Detected ND

Glass fibers

5%

Lab ID: 18086095 Client Sample #: JCOW-6-01

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: White soft elastic material

Other Fibrous Materials:%

Asbestos Type: %

Caulking compound

Non-Fibrous Materials:

None Detected ND None Detected ND

Layer 2 of 2 Description: White compacted powdery material with paint and paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Binder/Filler, Paint

Cellulose 30%

None Detected ND

Client Sample #: JCOW-7-01 Lab ID: 18086096

Location: JC Boyle Office Warehouse

Layer 1 of 2 **Description:** Black plastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Plastic

None Detected ND **None Detected ND**

Layer 2 of 2 **Description:** Yellow soft adhesive

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Adhesive/Binder

None Detected ND

None Detected ND

Lab ID: 18086097 Client Sample #: JCOW-10-01

Location: JC Boyle Office Warehouse

Description: Tan fibrous material with mastic and metal foil Layer 1 of 2

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Metal foil, Mastic/Binder

Cellulose 52%

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

Samples Receiv

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Layer 2 of 2 Description: Off-white foamy material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Styrofoam

None Detected

None Detected ND

Lab ID: 18086098 Client Sample #: JCOW-10-02

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: Tan fibrous material with mastic and metal foil

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Mastic/Binder, Metal foil

Cellulose 54%

ND

None Detected ND

Layer 2 of 2 Description: Off-white foamy material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Styrofoam

None Detected ND

None Detected ND

Lab ID: 18086099 Client Sample #: JCOW-10-03

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: Tan fibrous material with mastic and metal foil

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Mastic/Binder, Metal foil

Cellulose 51%

None Detected ND

Layer 2 of 2 Description: Off-white foamy material

Non-Fibrous Materials:

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Styrofoam

None Detected N

None Detected ND

Lab ID: 18086100 Client Sample #: JCOW-11-01

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: Black asphaltic mastic with paper

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Mastic/Binder, Binder/Filler

Cellulose 36%

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Laver 2 of 2 **Description:** Pink fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Glass fibers 90%

None Detected ND

Lab ID: 18086101 Client Sample #: JCOW-11-02

Location: JC Boyle Office Warehouse

Layer 1 of 2

Description: Black asphaltic mastic with paper Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler

Cellulose 31%

None Detected ND

Description: Pink fibrous material Laver 2 of 2

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Glass fibers 92%

None Detected ND

Client Sample #: JCOW-11-03 Lab ID: 18086102

Location: JC Boyle Office Warehouse

Layer 1 of 2 **Description:** Black asphaltic mastic with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler

Cellulose 32%

None Detected ND

Description: Pink fibrous material Laver 2 of 2

Non-Fibrous Materials:

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Glass fibers 94%

None Detected ND

Client Sample #: JCOW-11-04 Lab ID: 18086103

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: Black asphaltic mastic with paper and paint

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler, Paint

Cellulose 30%

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018 Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Description: Pink fibrous material Laver 2 of 2

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Glass fibers 90%

None Detected ND

Lab ID: 18086104 Client Sample #: JCOW-12-01

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: Black asphaltic mastic with paper and paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler, Paint

Cellulose 35%

None Detected ND

Laver 2 of 2 **Description:** Yellow fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Glass fibers 92%

None Detected ND

Client Sample #: JCOW-12-02 Lab ID: 18086105

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: Black asphaltic mastic with paper and paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler, Paint

Cellulose 34%

None Detected ND

Description: Yellow fibrous material Laver 2 of 2

Non-Fibrous Materials:

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Glass fibers 87%

None Detected ND

Client Sample #: JCOW-12-03 Lab ID: 18086106

Location: JC Boyle Office Warehouse

Layer 1 of 2 Description: Black asphaltic mastic with paper and paint

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler, Paint

Cellulose 36%

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

O a sala a A sala a

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Layer 2 of 2 Description: Yellow fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Glass fibers 93%

None Detected ND

Lab ID: 18086107 Client Sample #: JCOW-13-01

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine particles

Cellulose <1%

None Detected ND

Lab ID: 18086108 Client Sample #: JCOW-13-02

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine particles

Cellulose 2%

None Detected ND

Lab ID: 18086109 Client Sample #: JCOW-14-01

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Off-white putty material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Putty Compound, Calcareous particles, Paint

Cellulose <1%

None Detected ND

Lab ID: 18086110 Client Sample #: JCOW-14-02

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Off-white p

Description: Off-white putty material with paint Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Putty Compound, Calcareous particles, Paint

None Detected ND

None Detected ND

Lab ID: 18086111 Client Sample #: JCOW-15-01

Location: JC Boyle Office Warehouse

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 36

Samples Received

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic fibrous felt

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler, Insect parts

Cellulose 63%

None Detected ND

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic fibrous felt with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler, Paint

Cellulose 68%

None Detected ND

Lab ID: 18086113 Client Sample #: JCOW-16-01

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic fibrous felt

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler

Cellulose 62%

None Detected ND

Lab ID: 18086114 Client Sample #: JCOW-16-02

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic fibrous felt

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler

Cellulose 65%

None Detected ND

Lab ID: 18086115 Client Sample #: JCOW-17-01

Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler

Cellulose 74%

None Detected ND

Lab ID: 18086116 Client Sample #: JCOW-17-02

Location: JC Boyle Office Warehouse

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816738.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 36

Samples Analyzed: 36

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Layer 1 of 1 Description: Black asphaltic fibrous material

Non-Fibrous Materials:

Asphalt/Binder, Binder/Filler

Other Fibrous Materials:%

Cellulose 78%

Asbestos Type: %

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.	547.0100 †2	06.634.1936	www.nvllabs.com							LA	D
	Company	AECON	Л-Seattle			NVL Bate	ch Number	1816738	.00		
			rd Avenue Ste. 1								
	Seattle		, WA 98101								
Projec	ct Manager	Ms. Nic	cole Gladu			Due Date	9/4/201	8 Time	1:40 PM		
•	_						cole.gladu@	aecom.com			
		,					66) 495-528				
		,				`	,				
Proj	ect Name/l	Number	: 60537920.2.4a	1	Project Lo	cation: JC E	Boyle Office	Warehouse			
Subca	ategory PL	M Bulk									
Iter	n Code AS	SB-02	EPA	600/	R-93-116 Asbe	estos bv PLM	1 <bulk></bulk>				
То	tal Numb	per of S	Samples 3	6	-				Rush Samı	ples	
	Lab ID	Sar	mple ID		Description						A/R
1	18086081	JCC)W-1-01								Α
2	18086082	JCC)W-1-02								Α
3	18086083	JCC)W-1-03								Α
4	18086084	JCC)W-2-01								Α
5	18086085	JCC)W-2-02								Α
6	18086086	JCC)W-2-03								Α
7	18086087	JCC)W-3-01								Α
8	18086088	JCC)W-3-02								Α
9	18086089	JCC)W-4-01								A
10	18086090	JCC)W-4-02								Α
11	18086091	JCC)W-4-03								A
12	18086092	JCC)W-4-04								A
13	18086093	JCC)W-4-05								Α
14	18086094	JCC)W-4-06								A
15	18086095	JCC)W-6-01								Α
16	18086096	JCC)W-7-01								A
17	18086097	JCC)W-10-01								A
18	18086098	JCC)W-10-02								Α
			Print Name		Signature		Compan	у	Date	Time	
	Sample		Client	_							
	Relinquish	ed by	Client								
Of	fice Use O	nly	Print Name		Signature		Compan	у	Date	Time	
	Receiv	ed by	Fatima Khan				NVL		8/27/18	1340	
	Analyz		Welly Hsieh				NVL		8/31/18		
	Results Ca										
	Faved	Emailed	i I		1				1		

Date: 8/27/2018 Time: 3:56 PM

Entered By: Emily Schubert

Special Instructions:

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company AECOM-Seattle		NVL Batch Number 1816738.00			
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days AH No			
	Seattle, WA 98101	Rush TAT			
oject Manager	Ms. Nicole Gladu	Due Date 9/4/2018 Time 1:40 PM			
Phone	(206) 438-2700	Email nicole.gladu@aecom.com			
Cell	(206) 240-0644	Fax (866) 495-5288			

Project Name/Number: 60537920.2.4a Project Location: JC Boyle Office Warehouse						
Subca	ategory PLM	Bulk				
Iter	m Code ASB	-02	EPA 60	00/R-93-116 Asbestos by PLM <bulk></bulk>		
To	tal Numbe	er of Samples	36		Rush Samples	
	Lab ID	Sample ID		Description	A/R	
19	18086099	JCOW-10-03			A	
20	18086100	JCOW-11-01			A	
21	18086101	JCOW-11-02			А	
22	18086102	JCOW-11-03			А	
23	18086103	JCOW-11-04			A	
24	18086104	JCOW-12-01			A	
25	18086105	JCOW-12-02			А	
26	18086106	JCOW-12-03			А	
27	18086107	JCOW-13-01			А	
28	18086108	JCOW-13-02			A	
29	18086109	JCOW-14-01			A	
30	18086110	JCOW-14-02			А	
31	18086111	JCOW-15-01			A	
32	18086112	JCOW-15-02			А	
33	18086113	JCOW-16-01			А	
34	18086114	JCOW-16-02	-		A	
35	18086115	JCOW-17-01			A	

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Welly Hsieh		NVL	8/31/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special		·			

Date: 8/27/2018 Time: 3:56 PM

36 18086116

JCOW-17-02

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

1816738

Turn Around Time.

⊒ 4 Flours

41 Hour

J 2 Hoars J 2 Days

⊒ B Days

≰1.5 Days

⊒ 10 Days

H Y G I E S E R V I C			Please call for TAT I	loss than 24 Hours			
aboratory (Managerr	nent Training			A STATE OF THE STA	and and		
Company AECOM			Project Manager Nicole Gladu				
Address 1111 Third Avenue Suite 1600 Seattle, WA 98101			Cell (
			Emarl nicole.gladu@				
Discus	206.438.2700		Fax 866 3 495				
FIRCALE	200.100.2100		Far	5200			
Project Name/N	iumber 60537920.2.4a	roject Execution JC	Boyle Office WARE	? HOUSE			
→ PCM Air → PLM (EPA → PLM Gra	(NIOSH 7400) TE A 600/R-93-116) EF	M (NIOSH 7402) A 400 Points (600 Sbestos in Vermicu	→ TEM (AHERA) → TEM (EP. /R-93-116) → EPA 100 lite (EPA 600/R-04/004) → Asbestos	A Level II Modified) 0Points (600/R-93-1	16) .900 Points		
			aecom.com & shannon.mack				
	nber of Samples 36						
Samp	•						
	W-1-01	Description			A/R		
2 300	1-02				_		
3	103						
4	2-01						
5	2-02						
6	2-03						
7	3-01						
8	3-02						
9	4-51						
10	4-62						
11	4-03						
12	404						
13	4-05						
14	4-06						
15	6-0				4		
T.	Print Name	Signature	Company	Date	Time		
Sampled by	Kim Riche	KIL	AECOM	8/20/18-8/23/18	11:00am		
elinquish by	Kim Riche	1/10	AECOM	8/27/18			
A.		10	AECOW	0/2//18	1200		
Received by Analyzed by Called by Faxed/Email by	Latination	de	2 Mulebs	8/27/8	1:4op		

ASBESTOS CHAIN OF CUSTODY

Front Ario and These

all Hom

al company

J 2 Horas J 4 Flora 5

⊒ 2 Days ⊒ 3 Days

₫ 5 Days □ 10 Days

SERVICES				Please call	for TAT les	s than 24 Hains	
aboratory Management Training				-1175-151			Harris (mar)
Сотрыну АЕСОМ			Project Max	Nicole G	ladu		
Address 1111 Third Avenue Suite 1600		te 1600		Cell 1	-		
Seattle, WA 98101			nicole.gladu@aecom.com				
Pricine 206,438,27				Fax = 866			
Project Name/Number 605379	320.2.4a Proj	ant bor thos: JC	Boyle	OFFICE 1	WARE	tous E	
 → PCM Air (NIOSH 7400) → PLM (EPA 600/R-93-116) → PLM Gravimetry (600/R-9 → Asbestos Friable/Non-Fria 	EPA : -3-116) ∟ Asba -able (EPA 600/R	400 Points (600, estos in Vermicu 93/116)	/R-93-116) lite (EPA 600 → Other	과 E /R-04/004) 그 /	EPA 1000§ Asbestos i	Points (500/R-93-) n Sediment (EPA	.16) 1900 Points)
Reporting Instructions Pleas	ie email: kim □	berly.riche@)aecom.co	m & shannon کے Email	.macka	y@aecom.co	m
otal Number of Samp							
Sample ID	מכ באות						
1 Jcow-7-01		Description					A/R
3 10-07	1						
4 10-03							-
5 11-01							
6 11-02							
7 11-03							
8 11-04							
9 12-01							
10 12-02	,						
11 12-63							
13 13 13 13 13 13 13 13 13 13 13 13 13 1							
13-03							
15 140)							
Print Name	Si	gnature		Сотрану		Date	Time
Sampled by Kim Ric	he	Kit		AECOM		8/20/18-8/23/18	11:00am
elinguish by Kim Ric	he	ih	2	AECOM		8/27/18	13000
Received by Analyzed by	3 than	Signal	2	company Willo	be	Data 8/27/18	1.gop
Called by Faxed/Email by							

ASBESTOS CHAIN OF CUSTODY

1816738

Euro Archino E ⊒ 1 Hasir ■ 有集中20万人 14043 J 2 Holes ⊒ 2 Day1 ⊿ S Days all 4 history ⊒ 3 Cays ⊒ 10 Days

Address	AECOM 1111 Third Avenue					The second second	
Address							
	1111 Third Avenue		Project/Manager	Nicole GI	adu		
Piscus		Suite 1600	Cel	5	2		
Discuss	Seattle, WA 98101		Emai	nicole.gla	du@aecom.c	om	
raone	206.438.2700		Fan	€ 866 / - 4	495 - 5288		
Project filame (fil	itimber 60537920.2.4a	Project Lorotion JC	C Boyle	OFFICE	WAREHOU	SE.	
☐ PCM Air ☐ PLM (EPA ☐ PLM Gra	(NIOSH 7400) — — A 500/R-93-116) — — wimetry (600/R-93-116) — s Friable/Non-Friable (EPA 6	TEM (NIOSH 7402) EPA 400 Points (600 Asbestos in Vermici	☐ TEM (AHER D/R-93-116) ulite (EPA 600/R-)	A) → T → El 04/004) → A	EM (EPA Level II M PA 1000Points (60	lodified) 0/R-93-11	.6) 900 Points
Reporting Ins	Structions Please email:	kimberly.riche@)aecom.com	& shannon	.mackay@aec	om.con	n
	nber of Samples 3			i calan			
Sampl		Description					ı A/R
	N- 1501						A/K
2	15-02						+
3	1601						+
4	16-02						
5	17-01						
6 _	17-02						
7	'						
8							
9							
10							
11 12							4
13							
14							
15							
ì	Print Planne	Signature	C	omp my	Date		Time
Sampled by	Kim Riche	Kak	_	AECOM	8/20/18-	8/23/18	11:00am
elinquish by	Kim Riche	1600	-	AECOM	8/27		130pm
ffice Use On Received b Analyzed b Called b Faxed/Email b	Hetimostrom	ALC.	2 6	MLLdbs	s & ba		Time 1:40p

August 30, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816753.00

Client Project: 60537920.2.4a Location: JC Boyle Boneyard

Dear Ms. Gladu,

Enclosed please find test results for the 4 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results

Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816753.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 4

Samples Analyzed: 4

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Boneyard

Lab ID: 18086260 Client Sample #: JCBY-1-01

Location: JC Boyle Boneyard

Layer 1 of 2 Description: Red soft rubbery material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Rubber/Binder, Fine particles None Detected ND

Layer 2 of 2 Description: Yellow soft mastic

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Mastic/Binder, Fine particles Cellulose 1% None Detected ND

Lab ID: 18086261 Client Sample #: JCBY-2-01

Location: JC Boyle Boneyard

Layer 1 of 1 Description: Black brittle asphaltic material with granules

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Fine particles, Granules Cellulose 3% None Detected ND

Lab ID: 18086262 Client Sample #: JCBY-2-02

Location: JC Boyle Boneyard

Layer 1 of 1 Description: Black brittle asphaltic material with granules

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Fine particles, Granules Cellulose 4% None Detected ND

Lab ID: 18086263 Client Sample #: JCBY-3-01

Location: JC Boyle Boneyard

Layer 1 of 2 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Metallic paint, Fine particles Cellulose 1% None Detected ND

Sampled by: Client

Analyzed by: Matthew McCallum

Reviewed by: Nick Ly

Date: 08/30/2018

Date: 08/30/2018

Reviewed by: Nick Ly Date: 08/30/2018 Nick Ly, Technical Director

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816753.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 4

Samples Analyzed: 4

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Boneyard

Layer 2 of 2 Description: Yellow brittle material

Non-Fibrous Materials:

Binder/Filler, Fine particles

Other Fibrous Materials:%

Cellulose 2%

Asbestos Type: %

None Detected ND

Sampled by: Client

Analyzed by: Matthew McCallum

Reviewed by: Nick Ly

Date: 08/30/2018

Date: 08/30/2018

THE STATE OF THE S

Nick Ly, Technical Director

ASBESTOS LABORATORY SERVICES

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch N	umber 1	816753.	00
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days			AH No
	Seattle, WA 98101	Rush TAT			
Project Manager	Ms. Nicole Gladu	Due Date	9/4/2018	Time	1:40 PM
Phone	(206) 438-2700	Email nicole.	.gladu@ae	ecom.com	

	Phone (2	206) 438-2700			Emai	i nicole.gladu@aecom.c	JIII	
	Cell (2	206) 240-0644			Fax	(866) 495-5288		
Proj	ect Name/Nu	ı mber: 605379	920.2.4a	Project Lo	ocation:	JC Boyle Boneyard		
Subc	ategory PLM	Bulk						
lte	m Code ASB	-02	EPA 6	00/R-93-116 Asb	estos by	PLM <bulk></bulk>		
To	tal Numbe	r of Sample	es4_				Rush Samples	
	Lab ID	Sample ID		Description				A/R
1	18086260	JCBY-1-01						Α
2	18086261	JCBY-2-01						Α
3	18086262	JCBY-2-02						Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Matthew McCallum		NVL	8/30/18	
Results Called by					
Faxed Emailed					
Special		<u> </u>			

Date: 8/27/2018 Time: 4:27 PM

4 18086263

JCBY-3-01

Entered By: Emily Schubert

ASBESTOS CHAIN OF CUSTODY

1816753

Total Arbord C

— □ 1 Hour — □ 19 Hours — □ 2 Days

— □ 2 Hours — □ 2 Days — □ 5 Days

— □ 3 Hours — □ 3 Days — □ 10 Days

SERVIC			Please call for TAT less than 24 Hours				
coratory Manageme	nt Training		- North Walter	No.	SLIGA .		
Compliny .	AECOM		Project Manager Nicole Gladu				
Acldross	1111 Third Avenue	Suite 1600	C÷II (
	Seattle, WA 98101		nicole.gladu@	aecom.com			
Phone	206.438.2700		866 495				
cject Name/Nu	^{mber} 60537920.2.4a	Project Location JC	Boyle Boneyand				
□ PCM Air (I ☑ PLM (EPA □ PLM Grav	NIOSH 7400) ☐ 600/R-93-116) ☐ ☐	TEM (NIOSH 7402) EPA 400 Points (600 Asbestos in Vermicu	☐ TEM (AHERA) ☐ TEM (EP. /R 93-116) ☐ EPA 100 ☐ Asbesto:	0Points (600/R-93-1)	16) 1900 Point		
eporting Inst ادا الد	ructions Please email:	kimberly.riche@)aecom.com & shannon.mack	ay@aecom.cor	n		
	per of Samples <u>4</u>						
Sample	,	y Description			A /D		
	BY-1-01				A/R		
50	2-01				-		
y I	2-02						
	3-01						
					-		
)							
!							
					+		
	Pont Name	Signature	Cempany	Date	Time		
mpled by	Kim Riche	M	AECOM	8/20/18-8/23/18	11:00am		
iquish by	Kim Riche	1600	AECOM	8/27/18	130pm		
ice Use Only Received by Analyzed by Called by axed/Email by	Ethnallar	gho	Containy	8 (23/18)	Time		

August 30, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816739.00

Client Project: 60537920.2.4a Location: JC Boyle Penstock

Dear Ms. Gladu,

Enclosed please find test results for the 1 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results

Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816739.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 1

Samples Analyzed: 1

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Penstock

Lab ID: 18086117 Client Sample #: JCPS-01-01

Location: JC Boyle Penstock

Layer 1 of 1 **Description:** Gray brittle cementitious material

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Cement/Binder, Fine particles, Mineral grains Cellulose 1%

Sampled by: Client

Analyzed by: Matthew McCallum Date: 08/30/2018 Reviewed by: Nick Ly

Date: 08/30/2018

Nick Ly, Technical Director

ASBESTOS LABORATORY SERVICES

Α

4708 Aurora Ave N, Seattle, WA 98103

18086117

JCPS-01-01

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	AECOM-Seattle 1111 3rd Avenue Ste. 160	0 TAT	5 Days	6739.00 AH No.	
Phone	Seattle, WA 98101 Ms. Nicole Gladu (206) 438-2700 (206) 240-0644	Due	ail nicole.gladu@aecor	ime 1:40 PM n.com	
Project Name/	Number: 60537920.2.4a	Project Location:	JC Boyle Penstock		_
Subcategory PL	_M Bulk				
Item Code AS	SB-02 EPA 60	00/R-93-116 Asbestos by	PLM <bulk></bulk>		
	per of Samples1_	Description		Rush Samples	
Lab ID	Sample ID	Description		A/	Γ

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Matthew McCallum		NVL	8/30/18	
Results Called by					
Faxed Emailed					
Special		<u>'</u>			

Date: 8/27/2018 Time: 4:04 PM

Entered By: Emily Schubert

1816739

ASBESTOS CHAIN OF CUSTODY

Turn Arc

⊒1 Hour **⊒** 2

⊒ 24 Hours

□ 9 Days
☑ 5 Days

□ 2 Hours
 □ 4 Hours

□ 2 Days □ 3 Days

☐ 10 Days

SE	RVICES			Please call for TAT	less than 24 Hours	
	Management Ti	-				1000
C	ompany AE	СОМ		Project Manager Nicole Gladu		
	Address 11	11 Third Avenue	Suite 1600	Cell ()		
	Se	eattle, WA 98101		Email nicole.gladu@	gaecom.com	
	Phone 20	6.438.2700		Fax (866) 495		
Project	Name/Numbe	60537920.2.4a	Project Location JC	Boyle Penstock		
☑ P □ P □ A	LM (EPA 600 LM Gravime Asbestos Friab	l/R-93-116) ⊔ try (600/R-93-116) IJ ple/Non-Fríable (EPA 60	EPA 400 Points (600 Asbestos in Vermicu 10/R-93/116)	☐ TEM (AHERA) ☐ TEM (E /R-93-116) ☐ EPA 10 lite (EPA 600/R-04/004) ☐ Asbeste ☐ Other ☐ ②aecom.com & shannon.mac	00Points (600/R-93-1: os in Sediment (EPA 1	1900 Points)
				□ Email		
		of Samples				
1	Sample ID		Description			A/R
1	JCPS-	101				
2						
3						
4						
5						
6						
7						
9						-
10						
11						
12						
13						
14						
15						
	Prin	it Name	Signature	Company	Date	Time
Sample	ed by	Kim Riche	16/1	AECOM	8/20/18-8/23/18	11:00am
elinqui		Kim Riche	/h	AECOM	8/27/18	130 pm
Re An	Use Only ceived by halyzed by Called by d/Email by	Himatian	Signature	Company	8127118	Malop

August 31, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816746.00

Client Project: 60537920.2.4a Location: JC Boyle Powerhouse

Dear Ms. Gladu,

Enclosed please find test results for the 21 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Powerhouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816746.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 21

Samples Analyzed: 21

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

Asbestos Type: %

None Detected ND

Lab ID: 18086184 Client Sample #: JCPH-1-01

Layer 1 of 1 **Description:** Gray brittle material

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Cement/Binder, Mineral grains, Foamed glass None Detected ND

Lab ID: 18086185 Client Sample #: JCPH-1-02

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Gray brittle material with paint

Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Cellulose 3% Binder/Filler, Fine grains, Insect parts

Lab ID: 18086186 Client Sample #: JCPH-2-01

Location: JC Boyle Powerhouse

Layer 1 of 1 **Description:** Off-white crumbly material with debris

> Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Fine particles, Debris Cellulose 3%

> Spider silk Insect parts 1%

Lab ID: 18086187 Client Sample #: JCPH-2-02

Location: JC Boyle Powerhouse

Description: Tan crumbly material with paint Layer 1 of 1

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Binder/Filler, Fine particles, Paint Cellulose 2%

Lab ID: 18086188 Client Sample #: JCPH-3-01

Location: JC Boyle Powerhouse

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 08/30/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Powerhouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 21

Batch #: 1816746.00

Samples Analyzed: 21

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Description: Black rubbery material Layer 1 of 2

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Vinyl/Binder, Fine particles

None Detected ND None Detected ND

Layer 2 of 2 **Description:** Yellow soft mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Fine particles Cellulose

2%

None Detected ND

Spider silk 2%

Lab ID: 18086189 Client Sample #: JCPH-4-01

Location: JC Boyle Powerhouse

Layer 1 of 2 Description: Red rubbery material with paint

Non-Fibrous Materials:

Asbestos Type: % Other Fibrous Materials:%

Caulking compound, Fine particles, Paint

Cellulose 1% None Detected ND

Layer 2 of 2 **Description:** Black sticky mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Miscellaneous particles

None Detected ND Cellulose 4%

Lab ID: 18086190 Client Sample #: JCPH-6-01

Location: JC Boyle Powerhouse

Layer 1 of 2 **Description:** White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Paint

None Detected ND None Detected ND

Layer 2 of 2 **Description:** White chalky material with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Gypsum/Binder, Fine particles

Cellulose 16%

None Detected ND

Glass fibers 3%

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane Date: 08/31/2018

Date: 08/30/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Powerhouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816746.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 21

Samples Analyzed: 21

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Asbestos Type: %

None Detected ND

Lab ID: 18086191 Client Sample #: JCPH-6-02

Location: JC Boyle Powerhouse

Layer 1 of 2 **Description:** White compacted powdery material with paint

> Non-Fibrous Materials: Other Fibrous Materials:%

Calcareous binder, Fine particles, Paint Cellulose <1%

Layer 2 of 2 **Description:** White chalky material with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

None Detected ND Cellulose 17%

Glass fibers 4%

Lab ID: 18086192 Client Sample #: JCPH-6-03

Location: JC Boyle Powerhouse

Layer 1 of 2 Description: White compacted powdery material with paint

Gypsum/Binder, Fine particles

Non-Fibrous Materials: Other Fibrous Materials:%

Calcareous binder, Fine particles, Paint Cellulose 2%

> Spider silk 1%

Layer 2 of 2 **Description:** White chalky material with paper

Non-Fibrous Materials:

Gypsum/Binder, Fine particles

Other Fibrous Materials:%

Cellulose 15%

Asbestos Type: % None Detected ND

Asbestos Type: %

None Detected ND

Glass fibers 4%

Client Sample #: JCPH-7-01 Lab ID: 18086193

Location: JC Boyle Powerhouse

Layer 1 of 1 **Description:** Off white rubbery material with paint

> Non-Fibrous Materials: Other Fibrous Materials:%

Caulking compound, Fine particles, Paint

Asbestos Type: %

None Detected ND None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 08/30/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816746.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 21

Samples Analyzed: 21

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Chrysotile 3%

Chrysotile 6%

Chrysotile 3%

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Powerhouse

Lab ID: 18086194 Client Sample #: JCPH-8-01

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Brown sticky material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Fine grains, Paint Cellulose 3%

Lab ID: 18086195 Client Sample #: JCPH-8-02

Location: JC Boyle Powerhouse

Layer 1 of 2 Description: White crumbly material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Fine particles, Paint Cellulose 4%

Layer 2 of 2 Description: Brown sticky material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Fine grains Cellulose 4%

Lab ID: 18086196 Client Sample #: JCPH-9-01

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Off-white brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Cement/Binder, Mineral grains Cellulose 2% None Detected ND

Lab ID: 18086197 Client Sample #: JCPH-10-01

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Gray sticky material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Fine particles, Debris Cellulose 3% None Detected ND

Lab ID: 18086198 Client Sample #: JCPH-11-01

Location: JC Boyle Powerhouse

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 08/30/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Powerhouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816746.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 21

Samples Analyzed: 21

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Layer 1 of 1 Description: Gray rubbery material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles

Cellulose 2%

None Detected ND

Lab ID: 18086199 Client Sample #: JCPH-12-01

Location: JC Boyle Powerhouse

Layer 1 of 2 Description: G

Laver 2 of 2

Description: Gray brittle material

Non-Fibrous Materials: Other Fibrous Materials:%

Asbestos Type: %

None Detected ND

Cement/Binder, Mineral grains

Description: Tan brittle material

Other Fibrous Materials:%

None Detected

Asbestos Type: %

Cement/Binder, Mineral grains

Non-Fibrous Materials:

Cellulose 1%

ND

None Detected ND

Lab ID: 18086200 Client Sample #: JCPH-12-02

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Gray brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains

None Detected ND

None Detected ND

Lab ID: 18086201 Client Sample #: JCPH-12-03

Location: JC Boyle Powerhouse

Layer 1 of 2 Description: Gr

Description: Gray brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains

None Detected ND

None Detected ND

Layer 2 of 2 Description: Tan brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains, Organic debris

None Detected ND

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Date: 08/30/2018

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816746.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 21

Samples Analyzed: 21

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Powerhouse

Lab ID: 18086202 Client Sample #: JCPH-13-01

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint/Binder, Metal, Miscellaneous particles Cellulose 1% None Detected ND

Lab ID: 18086203 Client Sample #: JCPH-13-02

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint/Binder, Metal, Miscellaneous particles Cellulose <1% None Detected ND

Lab ID: 18086204 Client Sample #: JCPH-13-03

Location: JC Boyle Powerhouse

Layer 1 of 1 Description: Silver paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Paint/Binder, Metal, Miscellaneous particles

Cellulose 2%

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 08/30/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

Due Date

Fax

9/4/2018 **Time**

Email nicole.gladu@aecom.com

(866) 495-5288

1:40 PM

4708 Aurora Ave N, Seattle, WA 98103

p 206

Project Manager Ms. Nicole Gladu

Phone (206) 438-2700

Cell (206) 240-0644

5.547.0100 f 206.634.1936	www.nvllabs.com				L	A
Company AECON	1-Seattle	NVL Batch Number	1816746.00			
Address 1111 3r	d Avenue Ste. 1600	TAT 5 Days		AH No		
Seattle,	WA 98101	Rush TAT				

Project Nan	ne/Number: 60537920	0.2.4a Project Location: JC Boyle Powerhouse
Subcategory	PLM Bulk	
Item Code	ASB-02	EPA 600/R-93-116 Asbestos by PLM <bulk></bulk>

To	tal Number	of Samples 21	Rush Samples	
	Lab ID	Sample ID	Description	A/R
1	18086184	JCPH-1-01		Α
2	18086185	JCPH-1-02		Α
3	18086186	JCPH-2-01		Α
4	18086187	JCPH-2-02		Α
5	18086188	JCPH-3-01		Α
6	18086189	JCPH-4-01		Α
7	18086190	JCPH-6-01		Α
8	18086191	JCPH-6-02		Α
9	18086192	JCPH-6-03		Α
10	18086193	JCPH-7-01		Α
11	18086194	JCPH-8-01		Α
12	18086195	JCPH-8-02		Α
13	18086196	JCPH-9-01		Α
14	18086197	JCPH-10-01		Α
15	18086198	JCPH-11-01		Α
16	18086199	JCPH-12-01		Α
17	18086200	JCPH-12-02		Α
18	18086201	JCPH-12-03		Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Daniel		NVL	8/30/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:					

Date: 8/27/2018 Time: 4:19 PM

Entered By: Emily Schubert

ASBESTOS LABORATORY SERVICES

Project Location: JC Boyle Powerhouse

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Project Name/Number: 60537920.2.4a

Company	Company AECOM-Seattle			NVL Batch Number 1816746.00			
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days			AH No		
	Seattle, WA 98101	Rush	TAT_				
Project Manager	Ms. Nicole Gladu	Due Da	ate	9/4/2018	Time	1:40 PM	
Phone	(206) 438-2700	Email	nicole	.gladu@a	ecom.com		
Cell	(206) 240-0644	Fax	(866)	495-5288	}		

Subca	ategory	PLM Bulk				
Item Code ASB-02			EPA 600/R-93-116 Asbestos by PLM <bulk></bulk>			
То	tal Nu	mber of Samples	21	Rush Samples		
	Lab ID	Sample ID	Description	A/R		
19	180862	202 JCPH-13-01		A		
20	180862	203 JCPH-13-02		A		
21	180862	204 JCPH-13-03		A		

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Daniel		NVL	8/30/18	
Results Called by					
Faxed Emailed					
Special Instructions:		<u>'</u>	·		

Date: 8/27/2018 Time: 4:19 PM

Entered By: Emily Schubert

INVIL L A B S INDUSTRIAL

ASBESTOS CHAIN OF CUSTODY

1816746

Tean Actional

□ 1 Hotel □ 10 Hotel

□ 2 Hotels □ 2 Days

□ 4 Hotels □ 3 Days □ 10 Days

	S .		Please	call for BAT loss	than 24 Novus			
boratory Management	t Training		5000		V	-		
Company 1	AECOM		Project Manager Nicole Gladu					
Address _	1111 Third Avenue S	Cell	19-1					
3	Seattle, WA 98101		gmail_nicole.	gladu@ae	com.com			
Phone 4	206.438.2700		-a. (866 →					
Poject Name Myr	nber 60537920.2.4a	Project Location (J	C Boyle Power	house				
□ PLM Gravin □ Asbestos F	500/R-93-116)	PA 400 Points (600 subestos in Vermico D/R-93/116)	D/R-93-116) ulite (EPA 600/R-04/004) □ Other	J EPA 1000Po J Asbestos in		1900 Points		
			Daecom.com & shann			n		
	er of Samples Z							
Sample	<u> </u>							
		Description				A/R		
2 15/4	12-01							
3	12-03					-		
ন	13.01					+		
5	1302							
ő	13~3							
7								
8								
9								
10		-						
11								
13		-						
14						+		
15								
ÿ.	Print Name	Signature	Company		Date	Time		
	Kim Riche							
		102/	AECC AECC		/20/18-8/23/18 8/27/18	11:00am		
Sampled by	Kim Riche							

INDUSTRIAL H Y G I E N E

ASBESTOS CHAIN OF CUSTODY

1816746

from Armond For-⊒ 1 Hoer **⊴** 5 Dayis ⊒ 2 Hours ⊒ 2 Oays ⊒ 4 Hours ⊒ 3 Days □ 10 Days

SERVICES			Please call for TAT less than 21 Hours				
oratory Manage	ment Training					The state of the s	
Address AECOM Address 1111 Third Avenue Suite 1600 Seattle, WA 98101 Phone 206.438.2700		Project Manager Nicole Gladu					
			1 1 -				
			nicole.gladu@	aecom com			
			€ 866 ± 495 -				
110.150.12.50			Fax	· 000 · 493	3200		
nject Name i	.umber 60537920.2.4a	Project Location JC	Boyle				
⊉ PLM (EP J PLM Gr	r (NIOSH 7400)	EPA 400 Points (600 Asbestos in Vermici	0/R-93-116) ulite (EPA 600/R-04	☐ EPA 100	00Points (600/R-93-1	16)	
eporting la	structions Please email:	kimberly.riche@)aecom.com 8	shannon.macl	kay@aecom.coi	m	
그 Call		⊒ Fax ()		Email			
tal Nun	nber of Samples	21					
	ole ID	i Description					
	PH-101	W 2001 1971 0.1				A/R	
100	1-02						
	701						
	2-2						
	3-01					+	
1	4-01					-	
	621						
	6-02					_	
	6-03					-	
	7-01						
	8-01					-	
	8-02						
	9-01					+	
	10-01						
10	11-01						
1	Print Name	Signature	4 Con	pany	Date	Time	
mpled by	Kim Riche	Mille		AECOM	8/20/18-8/23/18	11:00am	
equish by	Kim Riche	161	-	AECOM	8/27/18	130Pm	
ice Use O	nly	6				1-011	
Received Analyzed	oy Stantago	sign A	Com	zdallu N	8/27/18	Time	
Called I axed/Email I							
1 400 10 1	716						

September 4, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816751.00

Client Project: 60537920.2.4a Location: JC Boyle Pumphouse

Dear Ms. Gladu,

Enclosed please find test results for the 6 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816751.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 6

Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Pumphouse

Lab ID: 18086247 Client Sample #: JCPH-1-01

Location: JC Boyle Pumphouse

Layer 1 of 2 Description: Tan paper with asphalt

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Binder/Filler Cellulose 50% None Detected ND

Layer 2 of 2 Description: Pink fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Adhesive/Binder, Binder/Filler, Fine particles Glass fibers 69% None Detected ND

Lab ID: 18086248 Client Sample #: JCPH-1-02

Location: JC Boyle Pumphouse

Layer 1 of 2 Description: Tan paper with asphalt

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Binder/Filler, Paint Cellulose 53% None Detected ND

Layer 2 of 2 Description: Pink fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Adhesive/Binder, Binder/Filler Glass fibers 70% None Detected ND

Lab ID: 18086249 Client Sample #: JCPH-1-03

Location: JC Boyle Pumphouse

Layer 1 of 2 Description: Tan paper with asphalt

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Binder/Filler, Paint Cellulose 49% None Detected ND

Layer 2 of 2 Description: Pink fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Adhesive/Binder, Binder/Filler Glass fibers 68% None Detected ND

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk Date: 09/04/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816751.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 6

Samples Analyzed: 6

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Pumphouse

Lab ID: 18086250 Client Sample #: JCPH-2-01

Location: JC Boyle Pumphouse

Layer 1 of 1 Description: Black asphaltic fibrous material

Non-Fibrous Materials: Other Fibrous Materials:%

Asphalt/Binder Cellulose 80%

Asbestos Type: %
None Detected ND

Location: JC Boyle Pumphouse

Layer 1 of 1 Description: Black asphaltic fibrous material

Non-Fibrous Materials: Other Fibrous Materials:%

Asphalt/Binder Cellulose 78%

Asbestos Type: %

None Detected ND

Asbestos Type: %

Location: JC Boyle Pumphouse

Layer 1 of 1 Description: Black asphaltic fibrous material with brown paint

Non-Fibrous Materials: Other Fibrous Materials:%

Asphalt/Binder, Paint Cellulose 77% None Detected ND

Sampled by: Client

Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane

Date: 09/04/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816751.00				
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days	AH No			
	Seattle, WA 98101	Rush TAT				
Project Manager	Ms. Nicole Gladu	Due Date 9/4/2018 Time	1:40 PM			
Phone	(206) 438-2700	Email nicole.gladu@aecom.com				
Cell	(206) 240-0644	Fax (866) 495-5288				
	` '	<u> </u>				

Project Name/Number: 60537920.2.4a Project Location: JC Boyle Pumphouse							
Subc	ategory PLM	l Bulk					
Item Code ASB-02 EPA 600/R-93-116 Asbestos by PLM <bul></bul>							
To	tal Numbe	er of Sample	es <u>6</u>		Rush Samples		
	Lab ID	Sample ID		Description	A	4/R	
1	18086247	JCPH-1-01				Α	
2	18086248	JCPH-1-02				Α	
3	18086249	JCPH-1-03				Α	
4	18086250	JCPH-2-01				Α	
5	18086251	JCPH-2-02		_		Α	
6	18086252	JCPH-2-03				Α	

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Alla Prysyazhnyuk		NVL	9/4/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 8/27/2018 Time: 4:24 PM

Entered By: Emily Schubert

INDUSTRIAL H Y G I E N E

ASBESTOS CHAIN OF CUSTODY

Since Wound ⊒ 1 Hom 그 (장원하다) ⊒ 2 Hours ⊒ 2 Cay: ⊴ 5 Days ⊒ 3 Оауу → 4 Hotas ⊒ 10 Days

SERVICE			Vers		245 (Gail 2 & Frijon	
ooratory Managemen						
	AECOM	Project Manager Nicole Gladu				
Address _	Address 1111 Third Avenue Suite 1600		Cell 1	1 -		
	Seattle, WA 98101		Email nicol	e.gladu@a	aecom.com	
Phone 206.438.2700			_{Fax} <u>866</u>	3 495	5288	
koject Name/Nur	noer 60537920.2.4a	Project Location 30	Boyle Pump	house		
☐ PCM Air (N☐ PLM (EPA (☐ PLM Gravi	NIOSH 7400)	TEM (NIOSH 7402) EPA 400 Points (600 Asbestos in Vermicu	→ TEM (AHERA) J/R-93-116) Ilite (EPA 600/R-04/004)	☐ TEM (EPA☐ EPA 1000	0Points (600/R-93-1)	l6) 900 Point
	uctions Please email:					
⊒ Call 💹	1 3	J fac				
otal Numb	er of Samples	2				
Sample	Ð	Description				, A/R
1 JCP	H-101					1
2	1-02					
3	1-03					
4	2-01					
5	2-68-					
6	d-03					
7						
9						
10						-
11						-
12						+
13						+
14						
15						
1	Print Marine	j Signature	у Сотралу		i Date	Time
Samuel day	Kim Riche	1/1/		0011		
Sampled by elinquish by	Kim Riche	11	وسر الرب	COM	8/20/18-8/23/18	11:00am
anddrize by	Mill Niche	1	AE	СОМ	8/27/18	13000
ffice Use Only Received by Analyzed by Called by Faxed/Email by	Atmallar.	allower) Calmpany	edalle	8/27/18	Micpu

September 4, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816750.00

Client Project: 60537920.2.4a Location: JC Boyle Residence 1

Dear Ms. Gladu,

Enclosed please find test results for the 29 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 29

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 1

Lab ID: 18086215 Client Sample #: JCR1-1-01

Location: JC Boyle Residence 1

Layer 1 of 2 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Fine particles, Paint Cellulose 2% None Detected ND

Layer 2 of 2 Description: White chalky material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Gypsum/Binder, Fine particles Cellulose 18% None Detected ND

Lab ID: 18086216 Client Sample #: JCR1-1-02

Location: JC Boyle Residence 1

Layer 1 of 2 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Fine particles, Paint Cellulose 1% None Detected ND

Layer 2 of 2 Description: White chalky material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Gypsum/Binder, Fine particles Cellulose 16% None Detected ND

Lab ID: 18086217 Client Sample #: JCR1-1-03

Location: JC Boyle Residence 1

Layer 1 of 2 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Fine particles, Paint Cellulose 3% None Detected ND

Layer 2 of 2 Description: White chalky material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Gypsum/Binder, Fine particles Cellulose 17% None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 09/01/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 29

Samples Neceived

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 1

Location: JC Boyle Residence 1

Layer 1 of 2 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Fine particles, Paint Cellulose 1% None Detected ND

Layer 2 of 2 Description: White chalky material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Gypsum/Binder, Fine particles Cellulose 15% None Detected ND

Lab ID: 18086219 Client Sample #: JCR1-1-05

Location: JC Boyle Residence 1

Layer 1 of 2 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Fine particles, Paint Cellulose 3% None Detected ND

Layer 2 of 2 Description: White chalky material with paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Gypsum/Binder, Fine particles Cellulose 17% None Detected ND

Lab ID: 18086220 Client Sample #: JCR1-2-01

Location: JC Boyle Residence 1

Layer 1 of 1 Description: White compacted powdery material with paint

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Calcareous binder, Fine particles, Paint Cellulose 2% None Detected ND

Lab ID: 18086221 Client Sample #: JCR1-2-02

Location: JC Boyle Residence 1

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 09/01/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 29

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Project Location: JC Boyle Residence 1

Attention: Ms. Nicole Gladu

Description: White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Paint

Cellulose 1% None Detected ND

Lab ID: 18086222 Client Sample #: JCR1-2-03

Location: JC Boyle Residence 1

Layer 1 of 1

Layer 1 of 1

Description: White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Paint

Cellulose 1% **Chrysotile 2%**

Lab ID: 18086223 Client Sample #: JCR1-2-04

Location: JC Boyle Residence 1

Layer 1 of 1 **Description:** White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Paint

Cellulose 1% **Chrysotile 3%**

Lab ID: 18086224 Client Sample #: JCR1-2-05

Location: JC Boyle Residence 1

Description: White compacted powdery material with paint Layer 1 of 1

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Paint

Cellulose 2% **Chrysotile 2%**

Lab ID: 18086225 Client Sample #: JCR1-3-01

Location: JC Boyle Residence 1

Description: White rubbery material with debris Layer 1 of 2

> Non-Fibrous Materials: Other Fibrous Materials:%

Asbestos Type: %

Caulking compound, Miscellaneous particles, Debris

Cellulose

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 09/01/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 1

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 29

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Description: Off-white sheet vinyl Laver 2 of 2

Non-Fibrous Materials:

Vinyl/Binder, Synthetic foam

Other Fibrous Materials:%

Asbestos Type: %

None Detected ND None Detected ND

Lab ID: 18086226 Client Sample #: JCR1-4-01

Location: JC Boyle Residence 1

Description: Black rubbery material Layer 1 of 3

Non-Fibrous Materials: Other Fibrous Materials:% Asbestos Type: % **None Detected ND**

Vinyl/Binder, Fine grains None Detected ND

Laver 2 of 3 **Description:** Yellow firm mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

3%

1%

ND

Asbestos Type: %

None Detected ND

Mastic/Binder, Fine particles Cellulose

Description: White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Cellulose

Asbestos Type: % None Detected ND

Calcareous binder, Fine particles, Paint Lab ID: 18086227

Client Sample #: JCR1-4-02

Location: JC Boyle Residence 1

Layer 3 of 3

Description: Black rubbery material Layer 1 of 2

> Non-Fibrous Materials: Vinyl/Binder, Fine grains

Other Fibrous Materials:% None Detected

Asbestos Type: % None Detected ND

Layer 2 of 2 **Description:** Yellow firm mastic with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Fine particles

Cellulose 2% **None Detected ND**

Lab ID: 18086228 Client Sample #: JCR1-5-01

Location: JC Boyle Residence 1

Sampled by: Client

Analyzed by: Daniel Charbonneaux Reviewed by: Matt Macfarlane

Date: 09/01/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 29

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Proi	ect I	ocation.	IC	Royle	Residenc
1 10	COLL	_ocalion.	JU	DOVIE	Vesidelic

Attention: Ms. Nicole Gladu

e 1

Description: Tan sheet vinyl Layer 1 of 2

Non-Fibrous Materials:

Non-Fibrous Materials:

Other Fibrous Materials:% Glass fibers

Asbestos Type: %

None Detected ND

Vinyl/Binder, Synthetic foam

Description: Yellow sticky mastic

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Miscellaneous particles

Cellulose 3% **None Detected ND**

Hair 1%

Lab ID: 18086229 Client Sample #: JCR1-5-02

Location: JC Boyle Residence 1

Layer 2 of 2

Layer 1 of 2 **Description:** Tan sheet vinyl

Non-Fibrous Materials:

Vinyl/Binder, Synthetic foam

Asbestos Type: % Other Fibrous Materials:% 8%

5%

2%

8%

None Detected ND

Layer 2 of 2 **Description:** Yellow sticky mastic

Non-Fibrous Materials:

Other Fibrous Materials:%

Cellulose

Glass fibers

Asbestos Type: % None Detected ND

Mastic/Binder, Miscellaneous particles

Client Sample #: JCR1-6-01

Location: JC Boyle Residence 1

Lab ID: 18086230

Lab ID: 18086231

Layer 1 of 1 **Description:** Gray crumbly material

Non-Fibrous Materials:

Other Fibrous Materials:%

Cellulose

Asbestos Type: % None Detected ND

Binder/Filler, Fine grains

Client Sample #: JCR1-7-01

Location: JC Boyle Residence 1

Description: Off-white crumbly material Layer 1 of 2

Other Fibrous Materials:%

Asbestos Type: %

Non-Fibrous Materials: Binder/Filler, Fine grains

Cellulose 1% None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Date: 09/04/2018

Reviewed by: Matt Macfarlane

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Date: 09/01/2018

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 1

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 29

Batch #: 1816750.00

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Description: Black sticky material Laver 2 of 2

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine grains

Cellulose 2%

Cellulose 94%

None Detected ND

Lab ID: 18086232 Client Sample #: JCR1-8-01

Location: JC Boyle Residence 1

Layer 1 of 1 **Description:** Black fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

None Detected ND

Asphalt/Binder, Miscellaneous particles

Client Sample #: JCR1-9-01

Location: JC Boyle Residence 1

Lab ID: 18086233

Laver 3 of 5

Layer 1 of 5 **Description:** Tan sheet vinyl

Non-Fibrous Materials:

Vinyl/Binder, Synthetic foam

Other Fibrous Materials:%

Asbestos Type: % None Detected ND

Glass fibers 7%

Layer 2 of 5 **Description:** Clear sticky adhesive

Non-Fibrous Materials:

Other Fibrous Materials:% Cellulose

4%

3%

Asbestos Type: % **None Detected ND**

Description: Gray crumbly material

Adhesive/Binder, Miscellaneous particles

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine grains

Cellulose

None Detected ND

Description: Off-white sheet vinyl Layer 4 of 5

Non-Fibrous Materials:

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: % None Detected ND

Vinyl/Binder, Synthetic foam None Detected ND

Layer 5 of 5 Description: Gray fibrous material with hard yellow mastic

Other Fibrous Materials:%

Asbestos Type: %

Mastic/Binder, Fine particles

Cellulose 63%

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux Reviewed by: Matt Macfarlane

Date: 09/01/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 29

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu Project Location: JC Boyle Residence 1

> Glass fibers 9%

Client Sample #: JCR1-10-01 Lab ID: 18086234

Location: JC Boyle Residence 1

Layer 1 of 1 **Description:** Gray crumbly material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Fine grains

Cellulose 5% None Detected ND

Lab ID: 18086235 Client Sample #: JCR1-11-01

Location: JC Boyle Residence 1

Layer 1 of 2 Description: White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Paint

Cellulose 2% None Detected ND

Layer 2 of 2 Description: White chalky material with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Gypsum/Binder, Fine particles

Cellulose 17%

None Detected ND

Glass fibers 4%

Lab ID: 18086236 Client Sample #: JCR1-11-02

Location: JC Boyle Residence 1

Layer 1 of 2 **Description:** White compacted powdery material with paint

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Paint

Cellulose 1% None Detected ND

Layer 2 of 2 **Description:** White chalky material with paper

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Gypsum/Binder, Fine particles

Cellulose 16%

None Detected ND

Glass fibers 4%

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 09/01/2018 Date: 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 1

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 29

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Lab ID: 18086237 Client Sample #: JCR1-11-03

Location: JC Boyle Residence 1

Layer 1 of 3 **Description:** White compacted powdery material with paint

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Calcareous binder, Fine particles, Paint Cellulose 2%

Description: White compacted powdery material with paper Layer 2 of 3

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

Calcareous binder, Fine particles Cellulose 27%

Layer 3 of 3 Description: White chalky material with paper

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Gypsum/Binder, Fine particles Cellulose 18%

Glass fibers

Lab ID: 18086238 Client Sample #: JCR1-12-01

Location: JC Boyle Residence 1

Description: Black fibrous material Layer 1 of 1

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder, Miscellaneous particles Cellulose 95%

Lab ID: 18086239 Client Sample #: JCR1-12-02

Location: JC Boyle Residence 1

Layer 1 of 1 **Description:** Black fibrous material

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder, Miscellaneous particles Cellulose 93%

Lab ID: 18086240 Client Sample #: JCR1-13-01

Location: JC Boyle Residence 1

Sampled by: Client

Analyzed by: Daniel Charbonneaux Date: 09/01/2018

Reviewed by: Matt Macfarlane Date: 09/04/2018 Matt Macfarlane, Asbestos Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

Layer 1 of 2

Layer 2 of 2

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 1

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816750.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 29

Samples Analyzed: 29

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Description: Black sticky material

Non-Fibrous Materials:

Other Fibrous Materials:%

Cellulose

6%

Asbestos Type: %

None Detected ND

Asphalt/Binder, Fine grains

Description: Gray brittle material with paint Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Mineral grains, Paint

None Detected ND

None Detected ND

Lab ID: 18086241 Client Sample #: JCR1-13-02

Location: JC Boyle Residence 1

Layer 1 of 1 Description: Black sticky material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine grains

Cellulose 2%

None Detected ND

Lab ID: 18086242 Client Sample #: JCR1-14-01

Location: JC Boyle Residence 1

Layer 1 of 1 Description: Off-white sandy brittle material

Non-Fibrous Materials: Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Sand

Cellulose 2%

None Detected ND

Lab ID: 18086243 Client Sample #: JCR1-14-02

Location: JC Boyle Residence 1

Layer 1 of 1 Description: Off-white sandy brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Calcareous binder, Fine particles, Sand

Cellulose 1%

None Detected ND

Sampled by: Client

Analyzed by: Daniel Charbonneaux

Reviewed by: Matt Macfarlane

Date: 09/01/2018 **Date:** 09/04/2018

Matt Macfarlane, Asbestos Lab Supervisor

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

IK.		//11	1
	1//	/	Ų,
		_	_

	Company	AECON	/I-Seattle		NVL Batch	Number	1816750.	00		
				00	TAT 5 Day	ys		AH No		
		Seattle,	WA 98101							
Projec	ct Manager	Ms. Nic	ole Gladu		Due Date					
•										
						_				
		()			(,				
Proje	ect Name/l	Number	: 60537920.2.4a	Project Loca	ation: JC Boy	/le Reside	nce 1			
Subca	ategory PL	.M Bulk								
Iter	n Code AS	SB-02	EPA 6	600/R-93-116 Asbes	tos by PLM <	bulk>				
_										
To	tal Numb	per of S	Samples <u>29</u>	<u> </u>				Rush Sam	ples	
	Lab ID	San	nple ID	Description						A/R
1	18086215	JCR	1-1-01							Α
2	18086216	JCR	1-1-02							Α
3	18086217	JCR	1-1-03							Α
4	18086218	JCR	1-1-04							Α
5	18086219	JCR	1-1-05							А
6	18086220	JCR	1-2-01							А
7	18086221	JCR	1-2-02							Α
8	18086222	JCR	1-2-03							А
9	18086223	JCR	1-2-04							Α
10	18086224	JCR	1-2-05							А
11	18086225	JCR	1-3-01							А
12	18086226	JCR	1-4-01							А
13	18086227	JCR	1-4-02							А
14	18086228	JCR	1-5-01							А
15	18086229	JCR	1-5-02							А
16	18086230	JCR	1-6-01							А
17	18086231	JCR	1-7-01							Α
18	18086232	JCR	1-8-01							Α
			Print Name	Signature		Company	•	Date	Time	
	Sample	d by	Client							
	Relinquish	ed by	Client							
Of	fice Use O	nly	Print Name	Signature		Company	i	Date	Time	
	Receiv		Fatima Khan			NVL		8/27/18	1340	
	Analyz		Daniel			NVL		9/1/18	1	
	Results Ca									\neg
		Emailed							1	\neg
	Specia		1			1				=
In	structions									

Date: 8/27/2018 Time: 4:22 PM Entered By: Fatima Khan

N

Α

470

p 20

JCR1-14-02

VL Laboratories, Inc.	ASBESTOS LABORATORY SERVICES		11		
8 Aurora Ave N, Seattle, WA 98103			,		TH
06.547.0100 f 206.634.1936 v	www.nvllabs.com	L	A	В	S

	Company AECOM-Seattle			NVL Batch Number 18167	50.00	
	Address	1111 3rd Avenue Ste	e. 1600	TAT 5 Days	AH No	
		Seattle, WA 98101		Rush TAT		
Proje	Project Manager Ms. Nicole Gladu			Due Date 9/4/2018 Time	1:40 PM	
Phone (206) 438-2700				Email nicole.gladu@aecom.co	om	
	Cell	(206) 240-0644		Fax (866) 495-5288		
Proje	ect Name/I	Number: 60537920.2.	.4a Project Lo	ocation: JC Boyle Residence 1		
Subca	ategory PL	.M Bulk				
	n Code AS		PA 600/R-93-116 Asb			
To	tal Numb	er of Samples _	29		Rush Samples	
	Lab ID	Sample ID	Description			A/R
19	18086233	JCR1-9-01				А
20	18086234	JCR1-10-01				А
21	18086235	JCR1-11-01				А
22	18086236	JCR1-11-02				А
23	18086237	JCR1-11-03				А
24	18086238	JCR1-12-01				А
25	18086239	JCR1-12-02				А
26	18086240	JCR1-13-01				А
27	18086241	JCR1-13-02				А
28	18086242	ICR1-14-01				Δ

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Daniel		NVL	9/1/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 8/27/2018 Time: 4:22 PM Entered By: Fatima Khan

29 | 18086243

INDUSTRIAL H Y G I E N E S E R V I C E S

ASBESTOS CHAIN OF CUSTODY

1816750

Jury Argumy Turks

41 Hosa

⊒ 2 Hoges ⊒ 2 Day;

JI 10 Days

⊒ 4 Hears ⊒ 2 Days

H Y G I E S E R V I			Pionse call for TAT loss than 24 Hour;
aboratory (Manage			
Company	AECOM		Project Manager Nicole Gladu
Addies	1111 Third Avenue	Suite 1600	Cell (
	Seattle, WA 98101		email_nicole.gladu@aecom.com
Phone	206.438.2700		Fax (866) 495 - 5288
Frojisa Nameri	Number 60537920 2 4a	Project Lecation	Boyle Pesidonce 1
□ PCM Ai □ PLM (EP □ PLM Gr □ Asbesto	r (NIOSH 7400)	TEM (MIOSH 7402) EPA 400 Points (600) Asbestos in Vermicu 00/R-93/116)	→ TEM (AHERA) → TEM (EPA Level II Modified) √R-93-116) → EPA 1000Points (600/R-93-116) dilte (EPA 600/R-04/004) → Asbestos in Sediment (EPA 1900 Point Other
→ Calf (:	Lifar (Daecom.com & shannon.mackay@aecom.com
	nber of Samples Z		
	ole ID	Description	y A/R
1 50	R1-1-01		
2 [1-02		
3	1-03		
4	1-64		
5	1-05		
6	201		
7	2-02		
8	7-03		
9	2-04		
10	2-05		
11	3-61		
12	4-01		
13	4-02		
14	501		
15	5-2		
	Poot Name	Signature	Company Date Time
Sampled by	Kim Riche	16.10	AECOM 8/20/18-8/23/18 11:00an
elinquish by	Kim Riche	10	AECOM 8/27/18 \ 300
Office Use O Received Analyzed Called	by Ethnotto	Signalu	Sempany Neullah Dale 122/6 Time
Faxed/Email			

ASBESTOS CHAIN OF CUSTODY

1816750

Turn Around

J I House ⊒ 2 Hours

⊒ 2 Oays

₫ 5 Days

⊒ 4 Horas ⊒ 3.0 ays □ 10 Days

Project Manager Nicole Gladu Cell Inicole.gladu@ Fair (866) 495 - Boyle Residence 1 TEM (AHERA) J TEM (ES	aecom.com 5288	
Email nicole.gladu@ Har 866 + 495 - Boyle Residence 1 TEM (AHERA) TEM (ES	aecom.com 5288	
Boyle Residence 1	aecom.com 5288	
Boyle Residence 1	5288	
Boyle Residence 1		
TEM (AHERA) 1 TEM (53	_	
TEM (AHERA) 1 TEM (53		
	PA Laval II Modificad	
93-116) J EPA 100	00Points (600/R-93-1	16)
(EPA 600/R-04/004)	is in Sedimient (EPA 1	1900 Points
ecom.com & shannon.mac	kay@aecom.cor	n
		A/R
		+
		-
Company	Date	Tane
AECOM	8/20/18-8/23/18	11:00am
AECOM	8/27/18	13000
	Other	Other

August 31, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816743.00

Client Project: 60537920.2.4a Location: JC Boyle Residence 2

Dear Ms. Gladu,

Enclosed please find test results for the 7 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 2

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816743.00

Client Project #: 60537920.2.4a

Samples Received: 7

Samples Analyzed: 7

Date Received: 8/27/2018

Samples Analyz

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

None Detected ND

Location: JC Boyle Residence 2

Lab ID: 18086158

Layer 1 of 2 Description: Black asphaltic fibrous material with granules

Client Sample #: JCR2-1-01

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Granules Glass fibers 31% None Detected ND

Layer 2 of 2 Description: Black asphaltic fibrous felt

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder Cellulose 67% None Detected ND

Lab ID: 18086159 Client Sample #: JCR2-1-02

Location: JC Boyle Residence 2

Layer 1 of 2 Description: Black asphaltic fibrous material with granules

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Granules Glass fibers 29%

Layer 2 of 2 Description: Black asphaltic fibrous felt

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder Cellulose 64% None Detected ND

Lab ID: 18086160 Client Sample #: JCR2-2-01

Location: JC Boyle Residence 2

Layer 1 of 1 Description: White fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler Polyethylene fibers 85% None Detected ND

Lab ID: 18086161 Client Sample #: JCR2-2-02

Location: JC Boyle Residence 2

Sampled by: Client

Analyzed by: Lauren Wetzel Date: 08/31/2018

Reviewed by: Matt Macfarlane **Date:** 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816743.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 7

Samples Analyzed: 7

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 2

Layer 1 of 1 Description: White fibrous material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler

Polyethylene fibers 88%

None Detected ND

Location: JC Boyle Residence 2

Layer 1 of 1 Description: B

Description: Black brittle asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder None Dete

None Detected ND

, lobooloo i ypoi ,

None Detected ND

Lab ID: 18086163 Client Sample #: JCR2-4-01

Location: JC Boyle Residence 2

Layer 1 of 1 Description: Black soft asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder

None Detected ND

None Detected ND

Lab ID: 18086164 Client Sample #: JCR2-4-02

Location: JC Boyle Residence 2

Layer 1 of 1 Description: Black soft asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder

None Detected ND

None Detected ND

Sampled by: Client

Analyzed by: Lauren Wetzel

Reviewed by: Matt Macfarlane Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Date: 08/31/2018

ASBESTOS LABORATORY SERVICES

Α

Α

Α

4708 Aurora Ave N, Seattle, WA 98103

5

6

18086162

18086163

18086164

JCR2-3-01

JCR2-4-01

JCR2-4-02

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816743.00					
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days					
	Seattle, WA 98101	Rush TAT_					
Project Manager	Ms. Nicole Gladu	Due Date	9/4/201	18	Time	1:40 PM	
Phone	(206) 438-2700	Email nicole.gladu@aecom.com					
Cell	(206) 240-0644	Fax (866) 495-5288					

	Cell ((206) 240-0644			Fax	(866) 495-5288		
Pro	oject Name/N	umber: 605379	20.2.4a	Project Lo	ocation:	JC Boyle Residence 2		
Sub	ocategory PLN	/I Bulk						
lt	em Code ASE	3-02	EPA 6	00/R-93-116 Asbe	estos by	PLM <bulk></bulk>		
Т	otal Numbe	er of Sample	es				Rush Samples	
	Lab ID	Sample ID		Description				A/R
1	1 18086158	JCR2-1-01						А
2	18086159	JCR2-1-02						А
3	18086160	JCR2-2-01						А
	1 18086161	JCR2-2-02						А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Lauren Wetzel		NVL	8/31/18	1
Results Called by					
Faxed Emailed					
Special		•			•

Date: 8/27/2018 Time: 4:14 PM Entered By: Fatima Khan

ASBESTOS CHAIN OF CUSTODY

frank Argund Ferre

⊒ l Hotal ⊒ 24 Hours

⊒ 2 Hours Li 2 Days 1 100,0

J 4 Hours

⊿ 5 Days □ 10 Days

J 3 Days

SERVIC	ES			Please call for TAT	mas man 24 mours	
taboratory Managerr	nent Training		(107)			100
Company	AECOM		Project Manage	Nicole Gladu		
Address	1111 Third Avenue	Suite 1600		11 (
	Seattle, WA 98101			nicole.gladu@	aecom com	
Pliane	206.438.2700			866 495		
			F-9	100	0200	-
Project Name (N	lumper 60537920.2.4a	Project Location JC	Boyle	Residence	2	
PLM (EPA	(NIOSH 7400)	TEM (NIOSH 7402) EPA 400 Points (600	→ TEM (AHEF /R-93-116)	RA) LI TEM (EF LI EPA 100	PA Level II Modified) 90Points (600/R-93-1	16)
→ Asbestos	vimetry (600/R-93-116) 🛄 s Friable/Non-Friable (EPA 60	00/R-93/116)	J Other			
Reporting los	structions Please email:	kimberly.riche@	aecom.com	& shannon.mac	kay@aecom.coi	m
→ (411 <u>(</u>	1	⊒ Fax 1		⊒ Email		
Total Num	ber of Samples	7				
Sampl	•	Description				A/R
1 500	22-1-01					1411
2 1	1-02					
3	201					
4	2-02					
5	3-01					
6	4-61					
7	- 4-02					
8						
9						
10						
11						
12						
13						
15						
1.5						
1	Prior Name	Signature	, , , ,	ompany	Date	Time
Sampled by	Kim Riche	Late		AECOM	8/20/18-8/23/18	11:00am
Relinquish by	Kim Riche	16	1	AECOM		130pm
Section 11 of			15		0,2,7710	1000
Office Use On	ly Moderne -	AA.	`		5	
Received by		alle	h	Malallo Mr	18/27/18	1. 600
Analyzed to		1-0		1000001	7/2 / 1-0	1.190
Called by Faxed/Email by						
raved/email D	У 1					

August 30, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816748.00

Client Project: 60537920.2.4a Location: JC Boyle Spillway House

Dear Ms. Gladu,

Enclosed please find test results for the 3 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com Lab Code: 102063-0

NVIL LABS

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816748.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 3

Samples Analyzed: 3

Campics Analyzed

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Spillway House

Lab ID: 18086244 Client Sample #: JCSW-1-01

Layer 1 of 1 Description: Gray brittle cementitious material

Non-Fibrous Materials: Other Fibrous Materials:%

Asbestos Type: %

Cement/Binder, Fine particles, Mineral grains

Cellulose 1%

None Detected ND

Lab ID: 18086245 Client Sample #: JCSW-2-01

Location: JC Boyle Spillway House

Layer 1 of 1 Description: Black brittle asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine particles

Cellulose 2%

None Detected ND

Lab ID: 18086246 Client Sample #: JCSW-2-02

Location: JC Boyle Spillway House

Layer 1 of 1 Description: Black brittle asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine particles

Cellulose 1%

None Detected ND

Sampled by: Client

Analyzed by: Matthew McCallum

Reviewed by: Nick Ly

Date: 08/30/2018 Date: 08/30/2018

Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

2

18086245

18086246

JCSW-2-01

JCSW-2-02

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Α

Α

	Company	AECOM-Seattle			NVL Batch	Number 1	816748	.00	
	Address	s 1111 3rd Avenue Ste. 1600		00	TAT 5 Days		AH No		
		Seattle, WA 9810)1		Rush TAT				
Proj	ject Manager	r Ms. Nicole Gladu			Due Date	9/4/2018	Time	1:40 PM	
Phone (206) 438-2700		Email nico	le.gladu@ae	com.com					
	Cell	(206) 240-0644			Fax (866	6) 495-5288			
Sub	oject Name/locategory PL			Project Lo 00/R-93-116 Asbe	cation: JC Bo		House		
Т	otal Numk	per of Samples	s 3_	Description				Rush Samples	A/R
1	18086244	ICS\W_1_01							Ι Λ Ι

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Matthew McCallum		NVL	8/30/18	
Results Called by					
Faxed Emailed					
Special		'			

Date: 8/27/2018 Time: 4:21 PM

Entered By: Emily Schubert

1816748

ASBESTOS CHAIN OF CUSTODY

Turn Accione

□ 1 How □ 31 H

J 34 Hours

u FD ws

J 2 Hours J 4 Hours ⊒ 2 Oays ⊒ 3 Days ₫ 5 Daysቯ 10 Days

SERVI			Plea	isa cell for TAI	Fless that 21 Halur	
aboratory Manage	ment Training		4 (0)(0)	14 10 2		
Company	AECOM		Project Manager Nicol	le Gladu		
Address	1111 Third Avenue	Suite 1600	Cell ^t	1: -		
	Seattle, WA 98101				gaecom.com	
Phone	206.438.2700		Fax 4 866			
Project Name/Y	itumber 60537920.2.4a	Project Lacotton (JC	Boyle Spill	way .	House	
☐ PLM (EP☐ PLM Gra ☐ Asbesto	A 600/R-93-116)	EPA 400 Points (600 Asbestos in Vermici 0/R-93/116)	ulite (EPA 600/R-04/004)	□ EPA 10 □ Asbest	00Points (600/R-93-1 os in Sediment (EPA	1900 Points)
Heporang In ⊒ Call (structions Please email:	kimberly.riche@	D)aecom.com & shar	nnon.mac	ckay@aecom.co	m
otal Nun	nber of Samples	ζ				
4 Sami		Description				
	SW - 1-01	escription.				A/R
2	201					
3	2-02					
4						
5						
6						
7						
9						
10						
11						
12						
13						
14 15						
1,						
1	Print Manse	Signature	Company		Date	Time
iampled by	Kim Riche	Miles	AEG	COM	8/20/18-8/23/18	11:00am
linguish by	Kim Riche	1/00	AEC	COM	8/27/18	130pm
ffice Use Or Recaived I Analyzed I Called b Faxed/Email b	Pethnethon	SAL	Company	labs	81/FC18	THE YOP

August 30, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816757.00

Client Project: 60537920.2.4a Location: JC Boyle Woodbridge

Dear Ms. Gladu,

Enclosed please find test results for the 2 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results

Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Woodbridge

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816757.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 2

Samples Analyzed: 2

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Client Sample #: JCWB-1-01

Location: JC Boyle Woodbridge

Lab ID: 18086271

Layer 1 of 1 Description: Brittle orange material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Fine particles Cellulose 2% None Detected ND

Location: JC Boyle Woodbridge

Layer 1 of 2 Description: Brittle orange material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler, Fine particles Cellulose 1%

Layer 2 of 2 Description: Brown woody material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Organic debris, Wood flakes Wood fibers 87% None Detected ND

Sampled by: Client

Analyzed by: Matthew McCallum

Date: 08/30/2018

Reviewed by: Nick Ly

Date: 08/30/2018

Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

ASBESTOS LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

Subcategory PLM Bulk

Item Code ASB-02

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816757.00
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days AH No
	Seattle, WA 98101	Rush TAT
Project Manager	Ms. Nicole Gladu	Due Date 9/4/2018 Time 1:40 PM
Phone	(206) 438-2700	Email nicole.gladu@aecom.com
Cell	(206) 240-0644	Fax (866) 495-5288
Project Name/	Number: 60537920.2.4a	Project Location: JC Boyle Woodbridge

EPA 600/R-93-116 Asbestos by PLM <bulk>

	To	tal Number	of Samples 2	Rush Samples	
		Lab ID	Sample ID	Description	A/R
	1	18086271	JCWB-1-01		Α
Ī	2	18086272	JCWB-1-02		A

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Matthew McCallum		NVL	8/30/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:					

Date: 8/27/2018 Time: 4:37 PM Entered By: Fatima Khan

1	8	1	6	7	5	7

4--17-

INDUSTRIAL H Y G I E N E S E R V I C E S cotony Management Teaming	CHAIN OF CU	131001	⊒ É atrica Rigiga cellifor	Lilan Tar (estima Lina	# 10 Ears
AECOM		Estate single	Nicole Glad	du	
1111 Thir	d Avenue Suite 1600	-=I			
Seattle, W	VA 98101		nicole glad	u@aecom.co	nm
206.438.2		41-	000 40		7111
200.100.2	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-1-	000 40	70 0200	
6053	7920.2.4a	C Boyle	Nood bry	dee	
J PLM Gravimetry 600/R J Asbestos Friable/Non-F	5: EPA 400 Points (60 8 93-116) Asbestos in Vermic Frable EPA 600 (9-93 116)	Unte EPA 608 R-04 J Other	(104) J. Asb	estown Sedimer	11 (ÉPA 1900 Po
	aco amail: kimbarky richa/	Antonio de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición	channon m	nackay@aacc	om com
47 W L	ase email. Kimberry.riche(
45 W					, 4,8
tal Number of San	mples Z				
tal Number of San Sample ID JCWB - 1- JCWB - 1-	mples Z				
Sample ID JCWB - 1-	mples Z				
Sample ID JCWB - 1- JCWB - 1-	mples Z				
Sample 107 JCWB - 1-	mples Z				
Sample ID JCWB - 1- JCWB - 1-	mples Z				
Sample 107 JCWB - 1-	mples Z				
Sample 107 JCWB - 1-	mples Z				
Sample ID JCWB - 1- JCWB - 1-	mples Z				
Sample ID Sample ID JCWB - 1-	mples Z				
Sample ID JCWB - 1- JCWB - 1-	mples Z				
Sample ID JCWB - 1- JCWB - 1-	mples Z				
Sample ID JCWB - 1-	mples Z				

Kim Riche Sampled o, **AECOM** 8/20/18-8/23/18 11:00am Palifique by Kim Riche **AECOM** 8/27/18

Office Use Only

Received by Analyzed by Called by Faxed Email by

Etimatia	do	Mules	11F08
Matt Metallin	-	NUL	8/30/19

August 31, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101 L A B S

INDUSTRIAL
H Y G I E N E
S E R V I C E S

Laboratory | Management | Training

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816745.00

Client Project: 60537920.2.4a Location: JC Boyle Vehicle Storage

Dear Ms. Gladu,

Enclosed please find test results for the 12 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com NVLAQ Lab Code: 102063-0

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816745.00 Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Vehicle Storage

Lab ID: 18086165 Client Sample #: JCVS-1-01

Location: JC Boyle Vehicle Storage

Layer 1 of 1 Description: Yellow fibrous material with mastic and vinyl surface

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Vinyl/Binder, Mastic/Binder

Glass fibers 72%

Asbestos Type: %

None Detected ND

Insect parts Cellulose 3%

Lab ID: 18086166 Client Sample #: JCVS-1-02

Location: JC Boyle Vehicle Storage

Layer 1 of 1 Description: Yellow fibrous material with mastic and vinyl surface

Non-Fibrous Materials:

Binder/Filler, Mastic/Binder, Vinyl/Binder

Other Fibrous Materials:% Asbestos Type: %

> None Detected ND Glass fibers 78%

Lab ID: 18086167 Client Sample #: JCVS-1-03

Location: JC Boyle Vehicle Storage

Layer 1 of 1 Description: Yellow fibrous material with mastic and vinyl surface

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Binder/Filler, Mastic/Binder, Vinyl/Binder

Glass fibers 65%

None Detected ND

Insect parts

Client Sample #: JCVS-2-01 Lab ID: 18086168

Location: JC Boyle Vehicle Storage

Layer 1 of 3 **Description:** Gray crumbly material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Fine particles

None Detected ND None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816745.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 12

Samples Analyzed: 12 Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Vehicle Storage

Description: Gray soft elastic material Laver 2 of 3

> Non-Fibrous Materials: Caulking compound

Other Fibrous Materials:% None Detected

Asbestos Type: % None Detected ND

Layer 3 of 3 **Description:** Dark gray brittle material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Mineral grains, Fine particles None Detected ND **None Detected ND**

Lab ID: 18086169 Client Sample #: JCVS-2-02

Location: JC Boyle Vehicle Storage

Description: Gray soft elastic material Layer 1 of 3

Non-Fibrous Materials:

Asbestos Type: % Other Fibrous Materials:%

ND

ND

None Detected ND None Detected ND

Layer 2 of 3 **Description:** Gray brittle material

Non-Fibrous Materials:

Mineral/Binder

Caulking compound

Other Fibrous Materials:% None Detected

Asbestos Type: % None Detected ND

Layer 3 of 3 **Description:** Brown brittle material

Non-Fibrous Materials:

Mineral grains, Fine particles

Other Fibrous Materials:% None Detected

Asbestos Type: % None Detected ND

Client Sample #: JCVS-3-01 Lab ID: 18086170

Location: JC Boyle Vehicle Storage

Layer 1 of 1 **Description:** White soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Spider silk

Asbestos Type: %

None Detected ND

Caulking compound, Fine particles, Insect parts

Lab ID: 18086171

Client Sample #: JCVS-4-01

Location: JC Boyle Vehicle Storage

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

Layer 1 of 1

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Vehicle Storage

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816745.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 12

0

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Description: Black asphaltic fibrous felt

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler

Cellulose 64%

None Detected ND

Location: JC Boyle Vehicle Storage

Layer 1 of 1 Description: Black asphaltic fibrous felt

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Binder/Filler

Cellulose 67%

None Detected ND

Lab ID: 18086173 Client Sample #: JCVS-5-01

Location: JC Boyle Vehicle Storage

Layer 1 of 1 Description: Black asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine particles

Cellulose <1%

None Detected ND

Lab ID: 18086174 Client Sample #: JCVS-5-02

Location: JC Boyle Vehicle Storage

Layer 1 of 1 Description: Black asphaltic material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Fine particles

None Detected ND

None Detected ND

Lab ID: 18086175 Client Sample #: JCVS-6-01

Location: JC Boyle Vehicle Storage

200dilotti 00 20jio voimolo otorago

Description: Black asphaltic soft material

Non-Fibrous Materials:

Other Fibrous Materials:%

Asbestos Type: %

Asphalt/Binder, Mineral grains

None Detected ND

None Detected ND

Lab ID: 18086176 Client Sample #: JCVS-6-02

Location: JC Boyle Vehicle Storage

Sampled by: Client

Layer 1 of 1

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816745.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Vehicle Storage

Layer 1 of 1 Description: Black asphaltic soft material

Non-Fibrous Materials:

Asphalt/Binder, Fine particles, Wood flakes

Other Fibrous Materials:%

Cellulose <1%

Asbestos Type: %

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Matt Macfarlane

Date: 08/31/2018

Date: 08/31/2018

Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

NVL Laboratories, Inc.	ASBESTOS LA	ABORATORY S	SERVICES		1//		
708 Aurora Ave N, Seattle, WA 98103					"		
206.547.0100 f 206.634.1936 www.nv	llabs.com			L	Α	В	S
Company AFCOM-Seattle	2	NVI Batch Number	1816745.00				

	Company E	AECOM-Seattle		NVL Batch Number 1010/4	J.UU	
	Address 1	111 3rd Avenue Ste.	1600	TAT 5 Days	AH No	
	5	Seattle, WA 98101		Rush TAT		
Proje	ct Manager 1	/ls. Nicole Gladu		Due Date 9/4/2018 Time	1:40 PM	
	Phone (206) 438-2700		Email nicole.gladu@aecom.con	n	
	Cell (206) 240-0644		Fax (866) 495-5288		
Proje	ect Name/Nu	u mber: 60537920.2.4a	aProject Lo	ocation: JC Boyle Vehicle Storage		
Subca	ategory PLM	1 Bulk				
Iter	n Code ASE	8-02 EPA	A 600/R-93-116 Asb	estos by PLM <bulk></bulk>		
_	4 - 1 - 1 - 1 - 1		10			
10	tai Numbe	er of Samples1	12		Rush Samples	
	Lab ID	Sample ID	Description			A/R
1	18086165	JCVS-1-01				Α
2	18086166	JCVS-1-02				Α
3	18086167	JCVS-1-03				Α
4	18086168	JCVS-2-01				Α
5	18086169	JCVS-2-02				Α
6	18086170	JCVS-3-01				Α
7	18086171	JCVS-4-01				Α
8	18086172	JCVS-4-02				Α
9	18086173	JCVS-5-01				А
10	18086174	JCVS-5-02				Α
11	18086175	JCVS-6-01				Α
12	18086176	JCVS-6-02				Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Welly Hsieh		NVL	8/31/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 8/27/2018 Time: 4:17 PM Entered By: Fatima Khan

ASBESTOS CHAIN OF CUSTODY

1816745

 $\delta_1 x u z_1^2$ _1 1

⊒ 2 Hores ⊒ 2 Days 그 4 원하다 3 ⊒ 3 Pays

4.5 Days ⊒ 10 Days

SERVIC	ES		Please ca	ll for TAT less than 2	(1 Nours	
ooratory Manager						
	AECOM		Project Manager Nicole G	adu		
Address	1111 Third Avenue S	Suite 1600	८इम 🚣 💆			
	Seattle, WA 98101		micole.gl	adu@aecon	i.com	
Phote	206.438.2700		Fax = 866 ;			
ejeut Name/N	himber 60537920.2.4a	Project Locateda (JC	Boyle Vehicle	Storac	20	
⊒ PCM Air ☑ PLM (EP ☑ PLM Gra	(NIOSH 7400) → 1 4 600/R-93-116) → E	TEM (NIOSH 7402) PA 400 Points (600) Asbestos in Vermicu	→ TEM (AHERA) → (R-93-116) → (EPA 600/R-04/004) →	TEM (SPA Level I. EPA 1000Points (1 Modified; (600/R-93-1)	16) .900 Point
teporting In	Rructions Please email: I	kimberly.riche@	aecom.com & shanno	n.mackay@a	ecom.cor	n
	4		a Emph			
	iber of Samples					
Samj		Description				A/R
	CUS-1-01					
	1-62					
	1-03					
-	2-01					
	2-02					
	3-01					
	4-01					
	4-02					
	5-01					
	5-02					
	10-01					
-	6-02					
5						
1	Print Manse	Signature	Company	Date		Time
mpled by	Kim Riche	16	AECON	A 8/20/1	18-8/23/18	11:00am
iquish by	Kim Riche	16	AECON		/27/18	(Japa
ha		1	,	- Or	_,,,,	1 100
fice Use Or Received t Analyzed t Called t axed/Email t	thraine all mathan	All De	company Mulle	B Z	DILEC	huge

August 31, 2018

Nicole Gladu AECOM-Seattle 1111 3rd Avenue Ste. 1600 Seattle, WA 98101

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1816758.00

Client Project: 60537920.2.4a Location: JC Boyle Warehouse

Dear Ms. Gladu,

Enclosed please find test results for the 12 sample(s) submitted to our laboratory for analysis on 8/27/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both **EPA 600/M4-82-020**, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and **EPA 600/R-93/116** Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results

1.888.NVL.LABS 1.888.(685.5227) www.nvllabs.com

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Warehouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Batch #: 1816758.00

Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Lab ID: 18086273 Client Sample #: JCWH-1-01

Location: JC Boyle Warehouse

Description: Black asphaltic material with gray surface Layer 1 of 1

Asphalt/Binder, Fine particles

Other Fibrous Materials:% Non-Fibrous Materials:

Asbestos Type: %

Spider silk 2% **Chrysotile 10%**

Asbestos Type: %

Asbestos Type: %

None Detected ND

Asbestos Type: %

Chrysotile 14%

Lab ID: 18086274 Client Sample #: JCWH-1-02

Location: JC Boyle Warehouse

Description: Black asphaltic material with gray surface Layer 1 of 1

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected Asphalt/Binder, Fine particles ND

Client Sample #: JCWH-2-01 Lab ID: 18086275

Location: JC Boyle Warehouse

Layer 1 of 2 Description: Black asphaltic mastic with mesh and paper

> Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder, Binder/Filler, Mastic/Binder Glass fibers 10%

Cellulose 36%

Layer 2 of 2 **Description:** Yellow fibrous material

> Non-Fibrous Materials: Other Fibrous Materials:% Asbestos Type: %

> > Binder/Filler Glass fibers 91%

Lab ID: 18086276 Client Sample #: JCWH-2-02

Location: JC Boyle Warehouse

Layer 1 of 2 **Description:** Black asphaltic mastic with mesh and paper

> Non-Fibrous Materials: Other Fibrous Materials:%

Glass fibers 12% None Detected ND Asphalt/Binder, Binder/Filler, Mastic/Binder

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Warehouse

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816758.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 12

Oampies received

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

Cellulose 30%

Layer 2 of 2 Description: Yellow fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler Glass fibers 95% None Detected ND

Lab ID: 18086277 Client Sample #: JCWH-2-03

Location: JC Boyle Warehouse

Layer 1 of 2 Description: Black asphaltic mastic with mesh and paper

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Mastic/Binder, Binder/Filler Glass fibers 15% None Detected ND

Cellulose 32%

Layer 2 of 2 Description: Yellow fibrous material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Binder/Filler Glass fibers 90%

None Detected ND

Lab ID: 18086278 Client Sample #: JCWH-3-01

Location: JC Boyle Warehouse

Layer 1 of 1 Description: Black asphaltic material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Fine particles, Mineral grains Cellulose 5% **None Detected ND**

Wood flakes

Lab ID: 18086279 Client Sample #: JCWH-3-02

Location: JC Boyle Warehouse

Layer 1 of 1 Description: Black asphaltic material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Asphalt/Binder, Fine particles, Insect parts

Cellulose 7%

None Detected ND

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816758.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 12

Samples Analyzed: 12

Method: EPA/600/R-93/116

& EPA/600/M4-82-020

None Detected ND

Chrysotile 4%

Asbestos Type: %

Asbestos Type: %

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Warehouse

Spider silk 2%

Location: JC Boyle Warehouse

Layer 1 of 1 Description: Gray brittle material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Mineral grains None Detected ND

Location: JC Boyle Warehouse

Layer 1 of 1 Description: Off-white putty material

Non-Fibrous Materials: Other Fibrous Materials: Asbestos Type: %

Putty Compound, Calcareous particles None Detected ND

Lab ID: 18086282 Client Sample #: JCWH-6-01

Location: JC Boyle Warehouse

Layer 1 of 1 Description: Tan fibrous material with paper

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Fine particles Glass fibers 56% None Detected ND

Cellulose 30%

Lab ID: 18086283 Client Sample #: JCWH-6-02

Location: JC Boyle Warehouse

Layer 1 of 1 Description: Tan fibrous material with paper

Non-Fibrous Materials: Other Fibrous Materials:%

Binder/Filler, Fine particles, Insect parts

Glass fibers 60%

None Detected ND

Cellulose 28%

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816758.00

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 12

Samples Analyzed: 12

Attention: Ms. Nicole Gladu Project Location: JC Boyle Warehouse

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Lab ID: 18086284 Client Sample #: JCWH-6-03

Location: JC Boyle Warehouse

Layer 1 of 3 **Description:** White fibrous material

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

> > None Detected ND Binder/Filler Cellulose 42%

> > > Synthetic fibers 30%

Layer 2 of 3 **Description:** Tan fibrous material

> Asbestos Type: % Non-Fibrous Materials: Other Fibrous Materials:%

> > None Detected ND Binder/Filler Cellulose 89%

Layer 3 of 3 **Description:** Black asphaltic material

> **Asbestos Type: %** Non-Fibrous Materials: Other Fibrous Materials:%

None Detected ND Asphalt/Binder Cellulose 5%

Sampled by: Client

Analyzed by: Welly Hsieh Date: 08/31/2018

Reviewed by: Matt Macfarlane Date: 08/31/2018 Matt Macfarlane, Asbestos Lab Supervisor

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government

Company AECOM-Seattle

IVL Laboratories, Inc. ASBE	ESTOS LABORATORY SERVICES		1//		
708 Aurora Ave N, Seattle, WA 98103			"	V	TH
206.547.0100 f 206.634.1936 www.nvllabs.com		Ĺ	Α	В	S
Company AECOM-Seattle	NVL Batch Number 1816758.00				

	Address		e. 1600	•	AH No	
Proje	ct Manager	Ms. Nicole Gladu		Due Date 9/4/2018 Tim	ne 1:40 PM	
	Phone	(206) 438-2700		Email nicole.gladu@aecom.	com	
	Cell	(206) 240-0644		Fax (866) 495-5288		
Proj	ect Name/I	Number: 60537920.2	.4a Project L	ocation: JC Boyle Warehouse		
Subc	ategory PL	M Bulk				
Ite	m Code AS	SB-02 E	PA 600/R-93-116 Ask	pestos by PLM <bulk></bulk>		
				•		
т.	4 a.l. Nivera la	or of Commiss	40			
10	tai Numr	er of Samples _	_12		Rush Samples	
	Lab ID	Sample ID	Description			A/R
1	18086273	JCWH-1-01				Α
2	18086274	JCWH-1-02				А
3	18086275	JCWH-2-01				Α
4	18086276	JCWH-2-02				Α
5	18086277	JCWH-2-03				Α
6	18086278	JCWH-3-01				А
7	18086279	JCWH-3-02				А
8	18086280	JCWH-4-01				А
9	18086281	JCWH-5-01				А
10	18086282	JCWH-6-01				А
11	18086283	JCWH-6-02				А
12	18086284	JCWH-6-03				А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Welly Hsieh		NVL	8/31/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 8/27/2018 Time: 4:39 PM Entered By: Fatima Khan

ASBESTOS CHAIN OF CUSTODY

Sino Around Tours

⊒ 1 H.aar

コフ4 866.43

J 2 Hours ⊒ 4 Hours

J 2 Days ⊒ 3 Days

£ S Days ⊒ 10 Days

SERVI	C E S			Please de	ill for TAT la.	as than 2 kHours	
Laboratory Manag	ement Training			11/2	10 Oct. 8 4	Editor De	To the second
Соперан	AECOM		Project Manager	Nicole (∃ladu		
Addres	1111 Third Avenue S	Suite 1600	C±II	()	1.44		
	Seattle, WA 98101					ecom.com	
Paga	206.438,2700			866			
	100						
Project Name	Number 60537920.2.4a	Project Location JC	Boyle \	vareho	use_		
☐ PLM (EI ☐ PLM GI ☐ Asbesto	ir (NIOSH 7400)	EM (NIOSH 7402) PA 400 Points (600/ sbestos in Vermicul VR-93/116)	☐ TEM (AHERA R-93-116) ite (EPA 500/R-0 ☐ Other	L (4/004)	TEM (EPA EPA 1000 Asbestos	Points (600/R-93-1 in Sediment (EPA 1	.900 Point
Reporting t	nstructions Please email: k	imberly.riche@	aecom.com	& shanno	n.macka	ay@aecom.cor	n
	nber of Samples 17						
	ple ID						
_		Description					A/R
2 00	WH-1-01						-
3	2-01						-
4	2-62						-
5 *	2-63						
6	3-01						
7	3.02						
8	4-01						
9	501						
10	6-01						
11	6-02						
12	1 6-03						
14							
15							
	Pont Name	Signature	Eor	прану		Date	Time
Sampled by	Kim Riche	1109		AECO	И	8/20/18-8/23/18	11:00am
Relinquish by	Kim Riche	14	7	AECO	M	8/27/18	130pm
Office Use O	nly \	1. 16					
Received Analyzed Called	by by	A Planette	2 1	npany lle	S	हार्य है	Nuce
Faxed/Email	IJУ						

August 29, 2018

Nicole Gladu **AECOM-Seattle**1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816778.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Metals/Organics Labs Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816778.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 1 Samples Analyzed: 1

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Canal Headgate

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18086364	JCCH-Pb1-01	0.2090	48	350000	35	

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-1

LEAD LABORATORY SERVICES

A/R

Α

4708 Aurora Ave N, Seattle, WA 98103

Lab ID

18086364

Sample ID

JCCH-Pb1-01

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816778.00	0
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days	AH No
	Seattle, WA 98101	Rush TAT	_
Project Manager	Ms. Nicole Gladu	Due Date 9/4/2018 Time 1	:40 PM
Phone	(206) 438-2700	Email nicole.gladu@aecom.com	
Cell	(206) 240-0644	Fax (866) 495-5288	
Project Name/	•	tion: JC Boyle Canal Headgate	
Item Code EA	AA-02 EPA 7000B Lead by FAA	<pre><paint></paint></pre>	
Total Numl	ber of Samples1_		Rush Samples

Description

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		,			

Date: 8/27/2018 Time: 5:32 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

1816778 Turn Around Time

⊒ 2 Носи 14

⊒ 2 Days

□30.... □4 Days

DUS 01/5 ⊒ 6-10 Days Please call for TAT less than 24 Hours

Company	AECOM		fluid on the	Nicole	Gladu			
Address 1111 Third Avenue Suite 1600			Project Manager NICOIS GIAGU					
Address	Seattle, WA 98101			Cell nicole.gladu@aecom.com				
Phone	206 420 2700			Fax 1	giadd@aet	SOITI.COITI		
rojact Name/N	umber 60537920.2.4a	Project Location . I C	Boyle		Heads	1		
	AA (opn: JAn Filter	JiPaint Chipston		RCRA 8	mag			
TCLP	V	form Li Dust Wipes	a 50·1		romann — J Silva	RCRA 11		
	J GFAA /ppoin J Danking Wa				icury Alean			
	JCVA4 (ppl8) J Other			⊒ Salencon		□ 2m. □ Othe:		
Reporting Ins	structions Please email: kimber	ly.riche@aecom.com &	& shannon.ma	ickay@aecom.com				
⊒ Call (1 -	⊒ Fax ()		⊒ Email				
tal Num	ber of Samples							
Sampl	le ID	Description					A/R	
50	CH-P61-01							
2								
		_						
1							-	
2								
3								
1								
5								
1	Print Name	Signature		Company	1 0	Date	Time	
mpled by	Kim Riche	Mil		AECO	0M 8/	20/18-8/23/18	11:00am	
nquish by	Kim Riche	per		AECC	M	8/27/18	13010	
ice Use On	1111	00						
Received b	Name HOLL	CHALLIE .	2	Much	W 10	HIER X PE	Time	
Analyzed b	y	SING	1	1 mond	201	312711	Linkton	
Called b								
axed/Email b	у							

August 29, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816774.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Metals/Organics Labs Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816774.00

Matrix: Paint Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 3

Samples Analyzed: 3

Attention:	Me	Nicole	Gladu
ALLEHLIOH.	IVI 5.	INICOLE	Giauu

Project Location: JC Boyle Communications Building

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18086354	JCCB-Pb1-01	0.2264	44	< 44	<0.0044
18086355	JCCB-Pb2-01	0.1424	70	140	0.014
18086356	JCCB-Pb3-01	0.0510	200	< 200	<0.020

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0828-18

Lab ID

18086354

18086355

18086356

3

Sample ID

JCCB-Pb1-01

JCCB-Pb2-01

JCCB-Pb3-01

LEAD LABORATORY SERVICES

A/R

Α

Α

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816774.0	0	
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days	AH No	
	Seattle, WA 98101	Rush TAT		
Project Manager	Ms. Nicole Gladu	Due Date 9/4/2018 Time	1:40 PM	
Phone	(206) 438-2700	Email nicole.gladu@aecom.com		
Cell	(206) 240-0644	Fax (866) 495-5288		
Project Name/l	•	tion: JC Boyle Communications Bui	ding	
Item Code FA	,	<pre><paint></paint></pre>		
	per of Samples 3		Rush Samples	

Description

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
Faxed Emailed					
Special		†			•

Date: 8/27/2018 Time: 5:22 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

Turn Around Time 1816774

12 Hour 1

12 Days 13 Days 14 Days

25 Days 15-10 Days

			700		The same of the sa	100
Company			Project Manager	Nicole Gladu		
Address		Suite 1600	Cell			
	Seattle, WA 98101		Email	nicole.gladu@	@aecom.com	
Pinone	206.438.2700		Fax	()	1	
Project Name/N	dumiser 60537920.2.4a	Project Location JC	Boyle (ommun icates	s Bit Buildi	^5
Total Metors TCLP	→ FAARDON — JAR Filter □ ICE (PPM — JPA or Chins □ OFAA (pon) — JD inking We □ EVAA (ppm) — JOHNS		⊒Soil RCRA ⊒Bon.	8 im Domanium nic Differency S	RCRA 11 USDay USDay	
	structions Please email: kimber					
□ Call {	<u> </u>	⊒ Fax ()		Ensail		
otal Nun	nber of Samples	3				
Samp	ole ID	Description				A/R
1 7	CCB- P51-01					
2	1 P62-01					
3	P163-101					
4	.,					
5						
6						1
7						
8						
9						
.0						
.1						
.2						
.3						
14						
ro						
1	Print Name	Signature	Cor	npany	Date	Time
ampled by	Kim Riche	Mel	- ,	AECOM	8/20/18-8/23/18	11:00am
linquish by	Kim Riche	14		AECOM	8/27/18	130pm
fice Use Or Received I Analyzed I	by Ethinallar	Share	Cor	Mullahe) ate 27/18	Time 149
Called t						
Faxed/Email I	ру [-

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816773.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846 -3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

18086353

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Project Location: JC Boyle Fire Protection & Electrical Transform

JCFP-Pb3-01

Batch #: 1816773.00

Matrix: Paint Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

< 0.0063

Samples Received: 3

Samples Analyzed: 3

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18086351	JCFP-Pb1-01	0.2067	48	56	0.0056	
18086352	JCFP-Pb2-01	0.2034	49	< 49	<0.0049	

0.1591

63

< 63

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0828-18

18086351

18086353

2 | 18086352

3

JCFP-Pb1-01

JCFP-Pb2-01

JCFP-Pb3-01

LEAD LABORATORY SERVICES

NVD

Α

Α

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL I	Batch Number 18	316773.00)	
Address	1111 3rd Avenue Ste. 1600	TAT	5 Days		AH No	
	Seattle, WA 98101	Rush	TAT		_	
Project Manager	Ms. Nicole Gladu	Due [Date 9/4/2018	Time 1:	40 PM	
Phone	(206) 438-2700	Email	I nicole.gladu@aed	com.com		
Cell	(206) 240-0644	Fax	(866) 495-5288			
Project Name/I	Number: 60537920.2.4a ame AA (FAA)	Project Location: J	IC Boyle Fire Prote	ction & Elec	trical Transform	
Item Code FA		00B Lead by FAA <paint></paint>			D 10 1	
i otai numi	per of Samples 3				Rush Samples	
Lab ID	Sample ID	Description				A/R

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
Faxed Emailed					
Special		'			

Date: 8/27/2018 Time: 5:18 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

Turn Around Time	18	81	67	7
⊒ 2 Hour	J4	_	-	-
⊒ 2 Days	1301/2	_ 4 4	ways	
5 Days	⊒ 6-10 Days			

Сотрану	AECOM		Project Manager Nicole Glad	u	
Address	1111 Third Avenue	Suite 1600	Cell (_	
	Seattle, WA 98101			ı@aecom.com	
Pinone	206.438.2700			-	
roject Name/Ne	umber 60537920.2.4a	Project Location . IC.			
	AFAA (jimo JAo Filton		JSON RCRAS	iction ? Flee	Transf
CIP		genel Libust Wipes	January January	RCRA 11	ranst
- 1	A GFAA (ppp) J Drinking W	aten - UV/aste Mater	⊒ 4/senic □ tiles tany		
	JC/A4 (ppt) JOhie			□ Other	
, _			shannon.mackay@aecom.com		
⊒ Call	<u> </u>	⊒ Fax ()	→ J Email		
otal Num	ber of Samples	3			
Sample	e ID	Description			A/R
I JC	FP- P61-01				
5	CFP- P52-01				
Ju	FP- P63-01				
1					
5					
5					
7					
0					
1					
2					-
3					
4					
5					
1	Print Name	Signatura	Company	Date	y Time
impled by	Kim Riche	1/1	AECOM	8/20/18-8/23/18	11:00am
nquish by	Kim Riche	14	2 AECOM	8/27/18	120pm
ice Use Onl	h.	1			200
Received by Analyzed by	Etheraga	alle	Ledlella 5	s 8bally	Luga
- Analuzad Ni					- 4

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816787.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816787.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 1 Samples Analyzed: 1

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Gated Control Center

	Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
•	18086405	JCCG-Pb1-01	0.1883	53	3300	0.33	

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0828-18

18086405

JCCG-Pb1-01

LEAD LABORATORY SERVICES

NVD

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816787.00		
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days	AH No	
	Seattle, WA 98101	Rush TAT		
Project Manager	Ms. Nicole Gladu	Due Date 9/4/2018	Time 1:40 PM	
Phone	(206) 438-2700	Email nicole.gladu@ae	com.com	
Cell	(206) 240-0644	Fax (866) 495-5288		
Subcategory Fla		roject Location: JC Boyle Gated Co		
Item Code FA	A-02 EPA 7000B Le	ad by FAA <paint></paint>		
Total Numb	per of Samples1		Rush Samples	
Lab ID	Sample ID Descrir	otion	A/R	

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Emily Schubert		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
Faxed Emailed					
Special RCVD Instructions:	amanded COC via	email 8/28 at 8:00			

Date: 8/28/2018 Time: 9:12 AM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Tim	e	
J 2 Hour	4 Hours	24 Hours
J 2 Days	🖺 3 Days	■4 Days
5 Days	☐ 6-10 Days	
Manager and for	TAT have them DA ide	

Сопралу	AECOM		Project Manager Ni	cole Gladu		
Address	1111 Third Avenue	Suite 1600	Cell ()		-
Address	Seattle, WA 98101			cole.gladu@	@aecom.com	-
Phone	206.438.2700		Fax (1		
Project Name/N	umber 60537920.2, 4	a Project Location JC	Boyle ()	1 0		
		-		ed lo-	Ho) Cente	
a rcup	GFAA (ppm	Water 🗀 Waste Water	Soil RCRA 8 Barium D'Arsenic U'Selenium	☐ Mercury > Cadmium	RCRA 11 USilver UCopper UZinc UOther	
Reporting Ins	tructions Please email: kimi	berly.riche@aecom.com 8	shannon.mackay@aeco	m.com		
□ Call 📜)	□ Fax ()		ait	alamaian.	
Total Num	ber of Samples	1_				
Samp		Description				A/R
	6-161-01		10.00			
2						ulaii la
3						
5					***************************************	
6						
7						-
8						-
9	1-					+
10			100000-000			
11						
12						
13						
14						
15						
L	Print Name	Signature	Compan	У	Date	Time
Sampled by	Kim Riche	100		AECOM	8/20/18-8/23/18	11:00am
Relinquish by	Kim Riche	Kar	_	AECOM	8/27/18	\$ 130pm
Office Use On Received b Analyzed b Called b Faxed/Email b	Print Name	Signature	Compan		Date 8/27/18	1340

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816776.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816776.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 5

Samples Analyzed: 5

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Hazmat Shed

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18086358	JCHM-Pb1-01	0.1766	57	65	0.0065
18086359	JCHM-Pb2-01	0.1911	52	290000	29
18086360	JCHM-Pb3-01	0.1702	59	< 59	<0.0059
18086361	JCHM-Pb4-01	0.1476	68	220000	22
18086362	JCHM-Pb5-01	0.2090	48	560	0.056

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-1

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103 p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	Company	AECOM-Seattle		NVL Batch Number 1	816776.	.00	
	Address	1111 3rd Avenue Ste. 16	00	TAT 5 Days		AH No	
		Seattle, WA 98101		Rush TAT			
Projec	t Manager	Ms. Nicole Gladu		Due Date 9/4/2018	Time	1:40 PM	
	Phone	(206) 438-2700		Email nicole.gladu@ae	ecom.com		
	Cell	(206) 240-0644		Fax (866) 495-5288			
Subca		lumber: 60537920.2.4a me AA (FAA) A-02 EPA 7	Project Lo	cation: JC Boyle Hazmat A <paint></paint>	Shed		
Tot	tal Numb	er of Samples5				Rush Samples	
	Lab ID	Sample ID	Description				A/R
1	18086358	JCHM-Pb1-01					А
2	18086359	JCHM-Pb2-01					А
3	18086360	JCHM-Pb3-01					А
4	18086361	JCHM-Pb4-01					А
5	18086362	JCHM-Pb5-01					А

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 8/27/2018 Time: 5:28 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

Tura Around Tines ⊒ 2 Hour 14 □ 2 Days □ 3 Days → 5 Days □ 6.40 Days ⊒ 4 Days Please call for TAT lass than 24 Hours

	AECOM		750050	Ni	cole Glad			CHEST
Company Address	1111 Third Avenue	Suite 1600	Project M		cole Glad	u		
Acdress	Seattle, WA 98101	Builto 1000		Cell	ole.gladu	ത്രാം	com com	
	200 400 0700						JOHI.COM	
Phone	200.430.2700			Fa.k	1			
Project Name/N	Jumber 60537920.2.4a	Project Location JC	Boyle	4	2mot	She	ed	
⊒ Total Metals	✓FAA (pare — J Ale Filter	4 Paint Chips (%)	3 550	RCRA 8			RCRA LI	
LITQUP	△ ICP 19851 A Palou Chous	amid 2 Dust Wipes		Affirming	⊒ Chromitus	⊒ S.85 ±	- ACCOUNT	
		atter - U Waste Water		1 dragnia	⊒lWeldery	X	_1Zinc	
	JCVAA jejisti Jühnis		-	⊒ Salembra	4 Chamium		JONE	
	Structions Please email: kimbe							
☐ Call (= = =	_1 Fax ()			ji			
Total Nun	nber of Samples 🥏	>						
Samp	ole ID	Description						A/R
	HM-P61-01							
2	P62-01							
3	P53 -01							
4	P64-01							
5	1 P5501							
G								
7								
8								
9								
10								
11								
12								
13								
14								
15								
	Print Name	Signature		Compan	/		Date	Time
Sampled by	Kim Riche	10/10		1	AECOM	8	/20/18-8/23/18	11:00am
Relinquish by	Kim Riche	Mari		1	AECOM		8/27/18	130pm
Office Use Oo Received I Analyzed I Called I	by Ethmation	The state of the s	2	Сотран	addw	C	\$67/11) Up
Faxed/Email l	by							

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816766.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816766.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a Date Received: 8/27/2018

Samples Received: 11

Samples Analyzed: 11

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Intake Structure/ Fish ladder

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18086314	JCIS-Pb1-01	0.1125	89	< 89	<0.0089
18086315	JCIS-Pb2-01	0.2085	48	740	0.074
18086316	JCIS-Pb3-01	0.0811	120	< 120	<0.012
18086317	JCIS-Pb4-01	0.1945	51	12000	1.2
18086318	JCIS-Pb5-01	0.2015	50	68	0.0068
18086319	JCIS-Pb6-01	0.2023	49	57000	5.7
18086320	JCIS-Pb7-01	0.0556	180	< 180	<0.018
18086321	JCIS-Pb8-01	0.1945	51	< 51	<0.0051
18086322	JCIS-Pb9-01	0.1238	81	74000	7.4
18086323	JCIS-Pb10-01	0.2052	49	19000	1.9
18086324	JCIS-Pb11-01	0.0708	140	490	0.049

Sampled by: Client

Date Analyzed: 08/29/2018 Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel

Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-7

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816766.	.00	
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days	AH No	
	Seattle, WA 98101	Rush TAT		
Project Manager	Ms. Nicole Gladu	Due Date 9/4/2018 Time	1:40 PM	
Phone	(206) 438-2700	Email nicole.gladu@aecom.com		
Cell	(206) 240-0644	Fax (866) 495-5288		

Proj	ect Name/N	lumber: 6053792	20.2.4a	Project Location: JC Boyle Intak	ce Structure/ Fish ladder	_
Subc	ategory Fla	me AA (FAA)				
Ite	m Code FA	A-02	EPA 7	000B Lead by FAA <paint></paint>		_
To	otal Numb	er of Samples	s11_		Rush Samples	
	Lab ID	Sample ID		Description	A/F	?
1	18086314	JCIS-Pb1-01			A	
2	18086315	JCIS-Pb2-01			A	
3	18086316	JCIS-Pb3-01			A	
4	18086317	JCIS-Pb4-01			A	
5	18086318	JCIS-Pb5-01			A	
6	18086319	JCIS-Pb6-01			A	
7	18086320	JCIS-Pb7-01			A	
8	18086321	JCIS-Pb8-01			A	
9	18086322	JCIS-Pb9-01			A	
10	18086323	JCIS-Pb10-01	-		A	
11	18086324	JCIS-Pb11-01			A	

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		'			

Date: 8/27/2018 Time: 4:54 PM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Time

1816766

12 Hour

13 Days
14 Days
16-16 Days

F48087496A + MANYZEME	NT + TILAURING			Piease c	all for TAT less	han 24 Hours	
Сотрапу	AECOM		Project 1	Nicole (Gladu	Will File And	Party Control
Address	1111 Third Avenue S	Suite 1600		Cell 10			
	Seattle, WA 98101			nicole.g	ladu@aed	com.com	
Phone	206.438.2700			Fax 1			
Project Name/N	Jumber 60537920.2.4a	Project Location JC	Boyle	Intake	Structo	re Fis	ام / ما ما
⊒ Toto: fdetala	₩PAA (ppm JAir Filter	□ Paint Chips (Fe)	3 555 €	RCRA 8	311001	RCRA 11	1 (2010)
Li fote	LIEP (PPM LPaint Chips)	cm = Dust Wiges		⊒8amm ⊃Cha	orthon 1 Sabo		
	JGFAM (pool — J Drinking We	tgir. → Waste Water		JArsenic John			
	J CVAA (opt) J Other			⊒ Selenum ⊒ Can		JOthe	
Reporting In	structions Please email: kimber	ly.riche@aecom.com &	& shannon.m	ackay@aecom.com			
⊒ Call (1	JFax ()		⊒ Entail			
		84					
	nber of Samples	\					
Samp		Description					A/R
1 10	15- Pb1-01						
2	P52-01						
3	P63-01						
4	P64-01						
5	P65-01						
6	P106-01						
7	P67-01						
8	P68-0)						
9	P69-01						
10	P610-0)						
11 .	T 6P11-01						
12							
1.3							
14							
15							
	Print Name	Signatura		Company	10)ate	Time
Sampled by	Kim Riche	186		AECO	M 8/	20/18-8/23/18	11:00am
Relinquish by	Kim Riche	Ihr		AECO	М	8/27/18	13000
Office Use On Received b Analyzed b Called b	by Stimathom Sty	de la	2	Company	De co	W FEEL &	Time 1:40pm
Faxed/Email b	ру						

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816761.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Office Warehouse

Batch #: 1816761.00

Matrix: Paint

Method: EPA 3051/7000B Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 7

Samples Analyzed: 7

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18086301	JCOW-Pb1-01	0.2176	46	< 46	<0.0046
18086302	JCOW-Pb2-01	0.1685	59	< 59	<0.0059
18086303	JCOW-Pb3-01	0.1682	59	< 59	<0.0059
18086304	JCOW-Pb4-01	0.1825	55	< 55	<0.0055
18086305	JCOW-Pb5-01	0.1777	56	< 56	<0.0056
18086306	JCOW-Pb6-01	0.1930	52	< 52	<0.0052
18086307	JCOW-Pb7-01	0.1045	96	< 96	<0.0096

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018

Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0828-18

LEAD LABORATORY SERVICES

NVD

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch Number 1816761				.00	
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days				AH No	
	Seattle, WA 98101	Rush TAT					
Project Manager	Ms. Nicole Gladu	Due Da	te	9/4/2018	Time	1:40 PM	
Phone	(206) 438-2700	Email r	nicole.	gladu@a	ecom.com		
Cell	(206) 240-0644	Fax (866) 495-5288					

Pro	ject Name/N	umber: 6053792	0.2.4a	Project Location: JC Boyle	Office Warehouse	
		(=)				
Sub	category Flar	me AA (FAA)				
lte	em Code FAA	\-02	EPA 7000	B Lead by FAA <paint></paint>		
T	otal Numbe	or of Samples	7		Duck Counts	
10	otal Numbe	er of Samples			Rush Samples	
	Lab ID	Sample ID	D	escription		A/R
1	18086301	JCOW-Pb1-01				Α

Lab ID	Sample ID	Description	A/R
18086301	JCOW-Pb1-01		Α
18086302	JCOW-Pb2-01		Α
18086303	JCOW-Pb3-01		Α
18086304	JCOW-Pb4-01		Α
18086305	JCOW-Pb5-01		Α
18086306	JCOW-Pb6-01		Α
18086307	JCOW-Pb7-01		Α
	18086301 18086302 18086303 18086304 18086305 18086306	18086301 JCOW-Pb1-01 18086302 JCOW-Pb2-01 18086303 JCOW-Pb3-01 18086304 JCOW-Pb4-01 18086305 JCOW-Pb5-01 18086306 JCOW-Pb6-01	18086301 JCOW-Pb1-01 18086302 JCOW-Pb2-01 18086303 JCOW-Pb3-01 18086304 JCOW-Pb4-01 18086305 JCOW-Pb5-01 18086306 JCOW-Pb6-01

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
Faxed Emailed					
Special		'		-	

Date: 8/27/2018 Time: 4:43 PM Entered By: Fatima Khan

METALS CHAIN OF CUSTODY

ism Around Time 12 Hour J Z Days M5 Emys Please call for

1816761

Company	AECOM			Project M	nagge Ni	cole Glad	и		
Address	4444 This	d Avenue S	uite 1600	· rojecera					
	Seattle, W	/A 98101				cole.gladu		om.com	
Phone	206.438.2	700				1			
Project Name/N	Jumber 60537	920.2.4a	Project Location JC	Bovle	DEC	CE W	1005	14.066	
Total Metais	A (ppin	I → An Filter	Journ Chins (%)		RCRA 8	V.	HILE	I RERAIT	
J TCLP	JICE FRM	Li Paret Chros R	⊒ Dayt Wide)			⊒ Caremani	⊒ Sriver	4 Conver	
	J GFAA (data	JiDrinking Wate	J Ware Water		⊒ Alisenic	⊒ Male cury	Lead	Jime	
	J CVAA (ppb)	J Other		_	⊒ Selenium:	LI Cadinimin		J'Otne:	
Reporting In:	structions Pleas	se email: kimberly	.riche@aecom.com &	shannon.ma	ckay@aeco	m.com			1
⊒ Call ()		J Fas (_l Em	nël			
	nber of San	npies							
Samp			Description						A/R
	DW- P61-								
2	P62								
3	P63.								
5	P64.								-
6									
7	P66-								-
8	101	0							
9									
10									
11									
12									
13									
14									
15									
T.	Print Name		Signature		Compar	y	Da	te	Time
Sampled by	Kim F	Riche	tothe			AECOM	8/2	0/18-8/23/18	11:00am
elinguish by	Kim F		1/2	_		AECOM	Orz	8/27/18	
						ALCON		0/2//10	130pm
Affice Use Or Received to Analyzed to Called to	by Heat	imakina	Jest Signalus Comments		Compar	adelli	Da	श्रीरवी	Time 1: Yea
Faxed/Email b									-

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816775.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816775.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 1

Samples Analyzed: 1

Attention: Ms. Nicole Gladu
Project Location: JC Boyle Boneyard

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18086357	JCBY-Pb1-01	0.1430	70	15000	1.5	

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-1

LEAD LABORATORY SERVICES

NVL

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	Company	AECOM-Seattle		NVL Batch Number 1	816775.00
	Address	1111 3rd Avenue S	te. 1600	TAT 5 Days	AH No
		Seattle, WA 98101		Rush TAT	
Pr	Project Manager Ms. Nicole Gladu			Due Date 9/4/2018	Time 1:40 PM
Phone (206) 438-2700				Email nicole.gladu@ae	com.com
	Cell	(206) 240-0644		Fax (866) 495-5288	
		Number: 60537920.	2.4a Projec	et Location: JC Boyle Boneyard	I
Su	bcategory Ela	ame AA (FAA)			
	Item Code FA	AA-02	EPA 7000B Lead by	/ FAA <paint></paint>	
	Total Numb	per of Samples_ Sample ID	1		Rush SamplesA/R
	1 18086357	JCBY-Pb1-01			A

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		,			

Date: 8/27/2018 Time: 5:26 PM

Entered By: Soumeya Benzina

INDUSTRIAL HYGIENE SERVICES LABORATORY - MANAGEMENT - TRAINING

METALS CHAIN OF CUSTODY

1816775

Turn Around Time J 2 Hour J 4 J 2 Days

⊒ 3 Days

⊒ 4 Days

Days J 6-10 Days Please call for TAT less than 24 Hours

Company	AECOM		Project W	lanager Ni	cole Gladu			
Address	1111 Third Avenue	Suite 1600			1	-		
	Seattle, WA 98101			_{Email} nic	cole.gladu@	gaecom	.com	
Phone	206.438.2700			Fax (1			
Project Name/N	Number 60537920.2.4a	Project Location JC	Boyle	Bone	yard			
Total Metals	₩AA @piv JAir Fine:	⊒ Par it Chips (° s)	⊒ Soil	RCRA 8		1	RCRA 11	
TČLP	□ □ Paint Chros	icini — 1 Diist Wices		⊒ 63 (cm)	d Chrom um	⊒S liver	⊒ Course	
	□ Denking W	ata) — 🛮 Waste Water		⊒ Ackenic	Alter Day	Medd	⊒Z.19,	
	JEVAN Ipply Johne		_	⊒ Sefenia n	⊒ Capetorn		JOths:	
	Structions Please email: kimber							
□ Call ()	⊒ Fax. ()			ail			
otal Num	nber of Samples							
Samp	ote ID	Description						A/R
1 Jc	BY- Pb1-01							
2	21							
3								
4								
5								
6								
7								
9								
10								
1								
2								
.3								-
4								
.5								
1	Print Name	Signature		Compan	У	Date		Time
ampled by	Kim Riche	Mole		1	AECOM	8/20/1	8-8/23/18	11:00am
inquish by	Kim Riche	160	C	1	AECOM		27/18	130pr
fice Use On Received b	Mot Name)_	Campan	zdolni	Date /	77 l.n	Time
Analyzed b	ру	300		100	WI MAN DA	0.1.	er icy	hypp
Called b	ру							

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816763.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816763.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 1

Samples Analyzed: 1

Attention:	Ms. Nicole Gladu
Project Location:	JC Boyle Pen Stock

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18086310	JCPS-Pb1-01	0.1390	72	97000	9.7	

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0828-18

18086310

JCPS-Pb1-01

LEAD LABORATORY SERVICES

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Ba	atch Number 1	816763	.00	
Address	1111 3rd Avenue Ste. 1600	TAT 5	5 Days		AH No	
	Seattle, WA 98101	Rush T	AT			
Project Manager	Ms. Nicole Gladu	Due Da	te 9/4/2018	Time	1:40 PM	
Phone	(206) 438-2700	Email 1	nicole.gladu@ae	com.com		
Cell	(206) 240-0644	Fax ((866) 495-5288			
Subcategory Fla	Number: 60537920.2.4a ame AA (FAA)	Project Location: JC	Doyle i cii Gloo			
Item Code FA	A-02 EPA 700	0B Lead by FAA <paint></paint>				
Total Numb	per of Samples1_	_			Rush Samples	
Lab ID	Sample ID	Description				A/R

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		,			

Date: 8/27/2018 Time: 4:49 PM

Entered By: Emily Schubert

1816763

METALS CHAIN OF CUSTODY

		- In Hou
J 2 Days	⊒ 6 Days	14 Chays
Days	⊒ 6-10 Days	
Please call for	IAT less than 24 Hours	

					100		1000		
Согорану				Project N	Janager Ni	cole Glad	u		
Address		Avenue Sui	te 1600).			
	Seattle, W				_{Email} nic	cole.gladu	@aeco	m.com	
Phone	206.438.27	700			Fax 1).	*		
Project Name/N	umber 6053 7 9	920.2.4a Pro	eject Location JC	Boyle	Pen	stock			
⊒ Fotal Matals ⊒ TCLP	AAA (pair AICP (PPM AIGRAA (ppb)	JAN Filter J Pares Gross (cm) J Drinking Water J Other	LPWaste Water	Jšoli	RCRA 8 J Barrum J Arxenic	J Chromican J Markety J Cadolinoi		RCRAVII D'Opper D'Zinc D'Other	
Reporting Ins	tructions Please	e email: kimberly.ric	he@aecom.com	& shannon,m	ackay@aeco	m.com		<i>x</i> ′ =====	
⊒ ¢all ()		FACE [÷	⊒ Em.	ail			
	ber of Sam								
_{II} Samp		pies 1							v A/R
1 1/1	25-Pb1-	01							- 2/15
2		- 1							
3									
4									
5									
6									
7									
8									
9									
11									
12									
13									_
14									
15									
Î	Priot Nante	F 15	Signature		Compan	у) Date	<u>a</u>	Tune
Sampled by	Kim Ri	che	15/6	-		AECOM	8/20)/18-8/23/18	11:00am
elinquish by	Kim Ri	che	14	2		AECOM			
Office Use On Received b Analyzed b Called by Faxed/Email b	Atin	athon	Signature	2	Compan	zdoluš	Dah		Thug

4708 Aurora Ave N, Seattle, WA 98103 | p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816767.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a Date Received: 8/27/2018

Batch #: 1816767.00

Samples Received: 7 Samples Analyzed: 7

Matrix: Paint

Attention: Ms. Nicole Gladu Project Location: JC Boyle Powerhouse

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18086325	JCPH-Pb1-01	0.1983	50	680	0.068
18086326	JCPH-Pb2-01	0.1803	55	180	0.018
18086327	JCPH-Pb3-01	0.1446	69	360	0.036
18086328	JCPH-Pb4-01	0.1550	65	100000	10
18086329	JCPH-Pb5-01	0.1472	68	< 68	<0.0068
18086330	JCPH-Pb6-01	0.0704	140	< 140	<0.014
18086331	JCPH-Pb7-01	0.2099	48	21000	2.1

Sampled by: Client

Date Analyzed: 08/29/2018 Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

RL = Reporting Limit '<' = Below the reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-7

LEAD LABORATORY SERVICES

Α

Α

Α

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Batch N	lumber 18	16767.	00
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days	s		AH No
	Seattle, WA 98101	Rush TAT			
Project Manager	Ms. Nicole Gladu	Due Date	9/4/2018	Time	1:40 PM
Phone	(206) 438-2700	Email nicole	gladu@aec	om.com	
Cell	(206) 240-0644	Fax (866)	495-5288		
	· · · ·	, ,			

	Cen (200) 240-0044		1 ax (000) 433-3200		
Pr	oject Name/N	umber: 6053792	20.2.4a	Project Location: JC Boyle Powerhouse		
Sul	bcategory Flan	ne AA (FAA)				
I	tem Code FAA	A-02	EPA 7	000B Lead by FAA <paint></paint>		
7	Total Numbe	er of Samples	s7_		Rush Samples	
	Lab ID	Sample ID		Description		A/R
	1 18086325	JCPH-Pb1-01				Α
	2 18086326	JCPH-Pb2-01				Α
	3 18086327	JCPH-Pb3-01				Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
Faxed Emailed					
Special Instructions:		ı			

Date: 8/27/2018 Time: 4:56 PM

4 18086328

18086329

18086330

18086331

5

6

JCPH-Pb4-01

JCPH-Pb5-01

JCPH-Pb6-01

JCPH-Pb7-01

Entered By: Emily Schubert

1816767

METALS CHAIN OF CUSTODY

Torin Azouri **2** Ho√ ⊒ 24 Hours J 2 Days ■ 3 Days ⊒ 4 Days ✓5 Days ⊒ 6-15 Days Please call for TAT less than 24 Hours

	AECOM		ALL STREET, ST				
Company			Project Ma	nagen N	icole Gladu		
Address	1111 Third Avenue S	Suite 1600		Call (Ť -		
	Seattle, WA 98101			_{Email} ni	cole.gladu@	aecom.com	
Pirone	206.438.2700			Fax (<u> </u>		
Project Name/Ni	umber 60537920.2.4a	Project Location JC	Boyle	Por	mer house		
Total Metals		4 Paint Chips the, thy 4 Dust Wiges 4 Waste Water		RCRA 8 Li Barroni Li Arsenio	U Cinomium — U U Mestury — ✓ U Cagnestre	RCRA 11	
	tructions. Please email: kimberly						
Д СаП [] =	□ Fax ()	34	_ J €m	ail		
otal Num	ber of Samples	7					
Sampl		Description					A/R
	PH-P61-01						
2	P62-01						
3	P63-01						
4	P64-01						
5	P65-01						
6	P66-01						
7	- P67-01						
3							
9							
.0							
1							
2							
4							
5							
	Print Name	Signature		Сотрап	у	Date	Time
ampled by	Kim Riche	166		1	AECOM	8/20/18-8/23/18	11:00am
inquish by	Kim Riche	1/1/2	_		AECOM	8/27/18	1200-
fice Use Only Received by Analyzed by Called by Faxed/Email by	Amellan	The		Compair		Date 807109	Time

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816772.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Pumphouse

18086350

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

JCPH-Pb1-01

Batch #: 1816772.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

< 0.0060

Samples Received: 1

Samples Analyzed: 1

		Sample	RL in	Results	Results in
Lab ID	Client Sample #	Weight (g)	mg/Kg	in mg/Kg	percent

0.1656

60

< 60

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-1

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL Ba	atch N	umber 1	816772.	00	
Address	1111 3rd Avenue Ste. 1600	TAT 5 Days				AH No	
	Seattle, WA 98101	Rush T	TAT				
Project Manager	Ms. Nicole Gladu	Due Da	ate	9/4/2018	Time	1:40 PM	
Phone	(206) 438-2700	Email 1	nicole	.gladu@a	ecom.com		
Cell	(206) 240-0644	Fax	(866)	495-5288			

Project Name/Number: 60537920.2.4a Project Location: JC Boyle Pumphouse							
Subca	ategory Fla	me AA (FAA)					
lter	m Code FA	A-02	EPA 7000B Lead by FAA <paint></paint>				
_							
To	tal Numb	er of Samples	<u> </u>	Rush Samples			
	Lab ID	Sample ID	Description	A/R			
1	18086350	JCPH-Pb1-01		А			

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
Faxed Emailed					
Special		'			

Date: 8/27/2018 Time: 5:10 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

Jurn Acoung Frank ⊒ 2 Hou/ → 4 Hours J2 Days J3 Days

AS Days J6-19 Days J 4 Days Please call for TAT less than 24 Hours

				O Man Bullion			
Company	AECOM		t Manager Nicole Gladu				
Address	1111 Third Avenue	======================================					
14001 233	Seattle, WA 98101		nicole.gladu@aecom.com				
Phone	206.438.2700		Fax ()				
	umber 60537920.2.4a	Project Location IC Royal					
		<u>-</u>	10.10000				
TCLP	AA (pan) J An Filter J ICP (PRM J Paner Chies)	LiPaint Chips (% LiPao) Em) LiDust Wiges	RCRA 8 J Bahum J Chromium J	RCRA LI			
	J GFAA (pob) J Dunking Wa						
	J CVAA (ppb) J Other		January January	Lead JZinc			
Reporting Ins	tructions Please email: kimber	ly.riche@aecom.com & shannon		1.128/46			
			2 Email				
	ber of Samples	Ì					
Sampl	e ID	Description			A/R		
1 JC1	P4-Pb1-01						
2							
3							
4							
5							
7							
8							
9							
.0							
1					-		
2							
3					-		
4					-		
5							
	Print Name	Signature	Сотрапу	Date	Time		
ampled by	Kim Riche	MIL	AECOM	8/20/18-8/23/18	11:00am		
linquish by	Kim Riche	161	AECOM	8/27/18	130pm		
fice Use Onl Received by Analyzed by Called by Faxed/Email by	Ethmallon	- Otto	Company	Data Daly	Time		

August 29, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816771.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Metals/Organics Labs Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816771.00

Matrix: Paint

Method: EPA 3051/7000B Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 5

Samples Analyzed: 5

Attention:	Ms. Nicole Gladu
Project Location:	JC Boyle Residence 1

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18086345	JCRI-Pb1-01	0.1328	75	< 75	< 0.0075
18086346	JCRI-Pb2-01	0.1677	60	< 60	<0.0060
18086347	JCRI-Pb7-01	0.1887	53	< 53	<0.0053
18086348	JCRI-Pb8-01	0.2166	46	< 46	<0.0046
18086349	JCRI-Pb9-01	0.1934	52	< 52	<0.0052

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0828-17

18086347

4 18086348

5 18086349

JCRI-Pb7-01

JCRI-Pb8-01

JCRI-Pb9-01

3

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103 p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Α

Α

Α

1816771.00 Company AECOM-Seattle **NVL Batch Number** Address 1111 3rd Avenue Ste. 1600 TAT 5 Days AH No Seattle, WA 98101 Rush TAT 9/4/2018 1:40 PM **Due Date** Time Project Manager Ms. Nicole Gladu Phone (206) 438-2700 Email nicole.gladu@aecom.com Cell (206) 240-0644 (866) 495-5288 Fax Project Name/Number: 60537920.2.4a Project Location: JC Boyle Residence 1 Subcategory Flame AA (FAA) Item Code FAA-02 EPA 7000B Lead by FAA <paint> Total Number of Samples ____5_ Rush Samples ___ Lab ID Sample ID Description A/R 18086345 JCRI-Pb1-01 Α 2 18086346 JCRI-Pb2-01 Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		ı			

Date: 8/27/2018 Time: 5:07 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

Turn Around Time.

⊒ а овус

□ 2 Hour □ 4 □ 2 Days □ 3 Days □ 5 Days □ 6-10 Days Please call for TAT less than 24 Hours

	AECOM	d Λ., α		Project N	lanagei	Nicole Glad	u		
Address					()				
	Seattle, WA 98101			Emai	Emai	nicole.gladu	ı@aeco	m.com	
Phone	206.438.2	700			Fax	()			
roject Name/N	lumber 60537	920.2.4a	Project Location JC	Boyle	Pe	Sidence	1		
otal Merals	FAA ppm		⊒ Parit Chips (%)	lie2 L	RCRA 8			RCRA 11	
1P	16P (88)		mil ⊿ Dost Wroes		⊒ Barran	r Dersamm	⊒S.F.ar	⊒ Copper	
	JISSAA (pop)		□ Waste Wate		⊿ Arsen	c Marciny	De legal	⊒ Zinc	
1	JCVAA mobi	J Galley		_	⊒ Selem	one distance		⊒ Othe:	
			riche@aecom.com 8						
⊒ Call			□ Fax ()			Email			
	ber of San	iples	2						
Sampl			Description						A/R
	R1-P51.								
	P52.	201							
	P67-								
	P58-								
	_ P69.	0							
+									
									-
									-
Í	Pinot Name	1	Signature		/ Com	рапу	y Date	5	Time
mpled by	Kim R	iche	Kok			AECOM	8/20)/18-8/23/18	11:00am
nquish by	Kim R	iche	14	2		AECOM		8/27/18	130p
Received by Analyzed by Called by	ETT	nation	Sulp.	2	Com	Mullehs	Date	3/27/18	Trug

August 29, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816765.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Metals/Organics Labs Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816765.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 2 Samples Analyzed: 2

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Residence 2

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18086311	JCR2-Pb1-01	0.1712	58	< 58	<0.0058	
18086312	JCR2-Pb2-01	0.1016	98	< 98	<0.0098	

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-7

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103 p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

	Company	AECOM-Seattle		NVL Batch Num	nber <u>18</u>	316765	.00	
	Address	1111 3rd Avenue Ste. 10	600	TAT 5 Days			AH No	
		Seattle, WA 98101		Rush TAT				
Proj	ect Manager	Ms. Nicole Gladu		Due Date 9/	4/2018	Time	1:40 PM	
	Phone	(206) 438-2700		Email nicole.gl	adu@aec	com.com		
	Cell	(206) 240-0644		Fax (866) 49	5-5288			
Pro	oiect Name/	Number: 60537920.2.4a	Project Loc	cation: JC Boyle F	Residence	e 2		
			,					
Sub	category Fla	ame AA (FAA)						
lt	em Code FA	AA-02 EPA	7000B Lead by FAA	\ <paint></paint>				
			•	•				
T	otal Numb	per of Samples2	<u> </u>				Rush Samples	
	Lab ID	Sample ID	Description					A/R
1	18086311	JCR2-Pb1-01						Α
2	18086312	JCR2-Pb2-01						А

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		,			

Date: 8/27/2018 Time: 4:52 PM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

1816765 Rum Arg

12H

⊒ 2 Days ⊒ 5 Days

⊒ 3 Days ⊒ 6-10 Days

J 4 Days

Please call for IAF less than 24 Hours

Addr Pho	Seattle, V 206.438.2	2700			Cell <u> </u> Email ni (cole Gladu oole.gladu@)aecom.com	
Project Name	:/Number 60537	7920.2.4a Pro	eject Location ${\sf JC}$	Boyle	Res.	dence	 Z_	
U Total filetora UTCLP	шіўр (врід шіўрал (рыя) шіўла (рря)	JAIr Filter Jeannt Chipa (cm) J Dranking Water J Other se email: kimberly,ric	Li Weste Water		RCRA 8 2 8 5 Form 2 4 rsenic 2 Selensum	Denomina , Differency 5 Denomina	RCRA 11 15 Iver	
		=						
			av		J Ema	il		
	nple ID	nples _ Z	Daggierie					
	CR2 -PB		Description					A/R
2		-01						
3	1.02							
4								
5								
6								
7								
9								
10								
.1								
2								
.3								
.4								
.5								
	Print Name	Si	gnature		Company		Date	r Time
ampled by	Kim R	iche	ME		Α	ECOM	8/20/18-8/23/1	-
inquish by	Kim Ri	che	16c	1		ECOM	8/27/18	
fice Use O Received Analyzed	by Hint Name	mallo	QHQ.	_	11	ulebs	Date 8 2 7 1	170 P.

August 31, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816769.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Lab Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816769.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 1

Samples Analyzed: 1

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Spillway House

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18086337	JCSW-Pb1-01	0.2039	49	2200	0.22	

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/31/2018 Date Issued: 08/31/2018

Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0831-1

18086337

JCSW-Pb1-01

LEAD LABORATORY SERVICES

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL B	atch Number 1	816769.	00	
Address	s 1111 3rd Avenue Ste. 1600		5 Days		AH No	
	Seattle, WA 98101	Rush	TAT			
Project Manager	Project Manager Ms. Nicole Gladu Phone (206) 438-2700		ate 9/4/2018	1:40 PM		
Phone			Email nicole.gladu@aecom.com			
Cell	(206) 240-0644	Fax	(866) 495-5288			
Project Name/	Number: 60537920.2.4a ame AA (FAA)	Project Location: Je	C Boyle Spillway	House		
Item Code EA	AA-02 EPA 70	00B Lead by FAA <paint></paint>			Rush Samples	
i otai Nuiiii	bei di danipies	_			Rusii Samples	
Lab ID	Sample ID	Description				A/R

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/31/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		ı			

Date: 8/27/2018 Time: 4:58 PM

Entered By: Emily Schubert

METALS CHAIN OF CUSTODY

Turn Around Time 1816769

12 Hour

12 Days 13 Days 14 Days

25 Days 16-10 Days

Please call for TAT less than 24 Hours

			11 - 11 - 1984	L CONTROL	ALC: T				
Company	AECOM			Project M	nhader Ni e	cole Gladu			
Address	1111 Third	d Avenue Sui	te 1600		Cell	-)			
	Seattle, W	/A 98101	4			ole.gladu@	aecom.co	m	
Phone	206.438.2	700			Fax ()			
Project Name/N	umoe: 60537	920.2.4a Pro	elect location IC	Royle					
⊒ Totar Metars	AA (opin	,	⊒ Parat Chips (%)			way Ho			
JTCLP	THEP RIPPIN	⊒ Parat Chips (cm)		720!!	RCRA 8 LIBarrom	⊒ Ciramento =	RCRA ISOVer J.Co.		
	JIGHAA 1999	⊒ Dranking Water					Left JZn		
	JCV4A (opt)	JOthe <u>i</u>			⊒ Selenium			167	
Reporting Ins	structions Pleas	se email: kimberly.ric	he@aecom.com &	shannon.ma	ckay@aeco	m.com	.,,		
⊒ Call .⊆)		Fax ()	-	J Ema	nit			
Total Num	ber of San	nples							
Samp	le ID		Description						A/R
1 30	SW- PL	10-1							
2									
3									
4									
5									
7									
8									
9									-
10									
11									+
12									+
13									
14									
15									
	Print Name	1	Signature	1	Compan	У	Date		Time
Sampled by	Kim F	Riche	1114	-	,	AECOM	8/20/18-8/	23/18	11:00am
lelinquish by	Kim F	Riche	16	_	,	AECOM	8/27/1	18	13000
Office Use On Received b Analyzed b Called b	P P Name	inallar	Diff.)n	Compan	sold pri	Sate \$127	diz	Time 1,24q

August 29, 2018

Nicole Gladu

AECOM-Seattle

1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816768.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Metals/Organics Labs Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816768.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018

Samples Received: 5

Samples Analyzed: 5

Attention:	Ms. Nicole Gladu
Project Location:	JC Boyle Vehicle Storage

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent
18086332	JCVS-Pb1-01	0.0850	120	< 120	<0.012
18086333	JCVS-Pb2-01	0.1956	51	< 51	<0.0051
18086334	JCVS-Pb3-01	0.1739	58	< 58	<0.0058
18086335	JCVS-Pb4-01	0.2095	48	150	0.015
18086336	JCVS-Pb5-01	0.1765	57	< 57	<0.0057

Sampled by: Client

Analyzed by: Yasuyuki Hida Reviewed by: Shalini Patel Date Analyzed: 08/29/2018 Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2018-0829-1

LEAD LABORATORY SERVICES

Α

Α

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Project Name/Number: 60537920.2.4a

JCVS-Pb4-01

JCVS-Pb5-01

18086335

18086336

Company	AECOM-Seattle	NVL Batch Number 1816768.00				
Address	1111 3rd Avenue Ste. 1600	TAT 5 Da		AH No		
	Seattle, WA 98101	Rush TAT				
Project Manager	Ms. Nicole Gladu	Due Date	9/	4/2018	Time	1:40 PM
Phone	(206) 438-2700	Email nico	le.gla	adu@ae	ecom.com	
Cell	(206) 240-0644	Fax (866	6) 49	5-5288		

Project Location: JC Boyle Vehicle Storage

Su	ubca	tegory	Flame AA (FAA)		
Item Code FAA-02			FAA-02	EPA 7000B Lead by FAA <paint:< th=""><th>></th></paint:<>	>
	Tot	al Nu	mber of Samples	s 5	Rush Samples
		Lab ID	Sample ID	Description	A/R
	1	180863	332 JCVS-Pb1-01		A
	2	180863	333 JCVS-Pb2-01		A
Γ	3	180863	334 JCVS-Pb3-01		А

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		,			

Date: 8/27/2018 Time: 4:56 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

Turn Around Time

1816768

13 Hour

141

12 Days

13 Days

14 Days

Company	AECOM	Project	Manager Nicole Gladu		
Adoress	1111 Third Avenue	Suite 1600	Call 💆 💮 💮		
	Seattle, WA 98101		_{Email} nicole.gladu@	aecom.com	
Phone	206.438.2700		Fax (
Project Name/N	umber 60537920.2.4a	Project Location JC Boyle			
	-1-	⊒ Paint Chips (S) ⊒ Soli [RCRA 8	RCRA 11	
TOLP	LICP (PPN) LiParit Chas	chs) - II Dust Wipes	18 year 1 Chromium		
	⊒ GFAA (egs) □ Danking We	ter - Li Wasta Water		A ever □Zerc	
9	JCVAA (aph) JOther		⊒ Selentin = ⊒ Cadabian	⊒Other	
Reporting Ins	tructions Please email: kimber	y.riche@aecom.com & shannon.n	nackay@aecom.com		
⊒ Çalt (1	⊒ Fax () =	⊒ Emaîi		
otal Num	ber of Samples	-			
Sampl	~	Description			λ /Γ
1 1	CVS- P61-01				A/F
2	1 Pb2-01				_
3	P63-01				
4	P54-01				
5	P 15-01				
б					
7					
8					
9					-
10					
11					
12					-
13					
14					
15					
- 1	Print Name	Signature	, Company	Date	Time
ampled by	Kim Riche	161	AECOM	8/20/18-8/23/18	
linguish by	Kim Riche	1/m	AECOM		
		100	AECOIVI	8/27/18	1201

4708 Aurora Ave N, Seattle, WA 98103 | p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

August 29, 2018

Nicole Gladu **AECOM-Seattle**1111 3rd Avenue Ste. 1600

Seattle, WA 98101

RE: Metals Analysis; NVL Batch # 1816777.00

Dear Ms. Gladu,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Metals/Organics Labs Supervisor

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Analysis Report

Total Lead (Pb)

Client: AECOM-Seattle

Address: 1111 3rd Avenue Ste. 1600

Seattle, WA 98101

Batch #: 1816777.00

Matrix: Paint

Method: EPA 3051/7000B

Client Project #: 60537920.2.4a

Date Received: 8/27/2018 Samples Received: 1

Samples Analyzed: 1

Attention: Ms. Nicole Gladu

Project Location: JC Boyle Warehouse

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
18086363	JCWH-Pb1-01	0.1450	69	15000	1.5	

Sampled by: Client

Analyzed by: Yasuyuki Hida

Reviewed by: Shalini Patel Date Issued: 08/29/2018

Shalini Patel, Metals/Organics Labs

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000

'<' = Below the reporting Limit

RL = Reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Date Analyzed: 08/29/2018

Bench Run No: 2018-0828-18

LEAD LABORATORY SERVICES

4708 Aurora Ave N, Seattle, WA 98103

p 206.547.0100 | f 206.634.1936 | www.nvllabs.com

Company	AECOM-Seattle	NVL B	atch N	umber 1	816777	.00
Address	1111 3rd Avenue Ste. 1600	TAT	5 Days	S		AH No
	Seattle, WA 98101	Rush	TAT			
Project Manager	Ms. Nicole Gladu	Due D	ate	9/4/2018	Time	1:40 PM
Phone	(206) 438-2700	Email	nicole	.gladu@ae	com.com	
Cell	(206) 240-0644	Fax	(866)	495-5288		

Pro	ject Name/Ni	u mber: 6053792	0.2.4a	Project Location: JC Boyle Wareho	use
Subc	ategory Flan	ne AA (FAA)			
lte	m Code FAA	·-02	EPA 7000B	Lead by FAA <paint></paint>	
To	otal Numbe	er of Samples	s <u> </u>		Rush Samples
	Lab ID	Sample ID	Des	scription	A/R
1	18086363	JCWH-Pb1-01			Α

	Print Name	Signature	Company	Date	Time
Sampled by	Client	_			
Relinquished by	Client				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Fatima Khan		NVL	8/27/18	1340
Analyzed by	Yasuyuki Hida		NVL	8/29/18	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		ı			

Date: 8/27/2018 Time: 5:30 PM

Entered By: Soumeya Benzina

METALS CHAIN OF CUSTODY

ura Around Time		1	8	1	6	7	7	7
1.2 Hour	1.45		-		-	44		

J 2 Days

13 Eng. 24 0075

⊒ 5 Days **J** 5-10 Days Please call for TAT less than 24 Hours

		450011					No.			SEA STORE	يلمح إلا
	рапу	AECOM			Project M	lanager .	Nic	cole Gladu	l		
Ado	dress		ird Avenue S	Suite 1600		Ceil	Ţ.)	2		
			WA 98101			Email	nic	ole.gladu	@aec	om.com	
Pir	none	206.438.	.2700			Fax	(ŷ.	41		
Project Nar	ne/Ni	imber 605 3	7920.2.4a	Project Location JC	Bovle			rc house			
		FAA (pgm		⊒ Faint Chips (%)	JS500 11	RCRA 8		re house		W = 40 · · ·	
⊒TCLP		J (CP (PPN)		chi) - Li Bust Wiges	350"			J Chromium	15 de ma	RCRA 11	
		J GFAA (ppb)	1	tor - UWasto Water				2 Mentary			
		JCVAA (pph)	JOthe					⊒ Cadroom	7	□ Other	
Reportin	ig Inst	ructions Ple	ase email: kimberl	y.riche@aecom.com &	shannon.ma	ackay@a	aecor	n.com			
J Call	_)		⊒ Fax ()		_, _	Ema	il			
Total N	um	ber of Sa	mples								
	ample			Description							
		WH- 1	?[-1-0]	S C S C I P C S C I							A/R
2	<u> </u>	1	51701								
3											
4							_				
5											
6											
7											
8											
9											
11											
12											
1.3											
14											
15											
		Print Name		Signature	1	r Com	pany		ji Da	ate	Time
Sampled b	у	Kim	Riche	11/1	-		А	ECOM	8/2	20/18-8/23/18	11:00am
elinquish b	у	Kim	Riche	ile			_	ECOM	0/2	8/27/18	130pm
Office Use	Only	v "IN								3/2//10	12012
Receive		Alberta Maria		Afficia		Com	pany	01.1	Đ.	ite f	,Time
Analyz			INCULACIA	1900		+ 4	W	MONZ	- 1 - 9	8193111	Maga
Calle	ed by										
Faxed/Em	ail by										
			-								

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

AECOM

Nicole Gladu 1111 3rd Avenue Suite 1600 Seattle, WA 98101

RE: JC Boyle

Work Order Number: 1808336

September 04, 2018

Attention Nicole Gladu:

Fremont Analytical, Inc. received 1 sample(s) on 8/27/2018 for the analyses presented in the following report.

Polychlorinated Biphenyls (PCB) by EPA 8270 (GCMS)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway Laboratory Director CC:

Kimberly Riche Shannon Mackay

Date: 09/04/2018

CLIENT: AECOM Work Order Sample Summary

Project: JC Boyle **Work Order:** 1808336

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

1808336-001 JCPH-PCB-01 08/23/2018 8:08 AM 08/27/2018 2:33 PM

Case Narrative

WO#: **1808336**Date: **9/4/2018**

CLIENT: AECOM
Project: JC Boyle

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1808336**

Date Reported: 9/4/2018

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

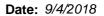
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **1808336**Date Reported: **9/4/2018**


Client: AECOM Collection Date: 8/23/2018 8:08:00 AM

Project: JC Boyle

Lab ID: 1808336-001 **Matrix:** Solid

Client Sample ID: JCPH-PCB-01

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (Polychlorinated Biphe	CB) by EPA 8270	O (GCMS)		Batcl	h ID: 21	764 Analyst: IH
Aroclor 1016	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1221	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1232	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1242	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1248	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1254	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1260	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1262	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Aroclor 1268	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Total PCBs	ND	0.820		mg/Kg	1	8/29/2018 6:12:43 PM
Surr: Decachlorobiphenyl	87.2	20 - 191		%Rec	1	8/29/2018 6:12:43 PM
Surr: Tetrachloro-m-xylene	95.1	20 - 173		%Rec	1	8/29/2018 6:12:43 PM

Work Order: 1808336

QC SUMMARY REPORT

CLIENT: AECOM

Polychlorinated Biphenyls (PCB) by EPA 8270 (GCMS)

Sample ID MB-21764	SampType: MBLK			Units: mg/Kg		Prep Date			RunNo: 458		
Client ID: MBLKS Analyte	Batch ID: 21764 Result	RL	SPK value	SPK Ref Val	%REC	Analysis Date LowLimit I		אנע RPD Ref Val	SeqNo: 888 %RPD	RPDLimit	Qual
Aroclor 1016	ND	0.100									
Aroclor 1221	ND	0.100									
Aroclor 1232	ND	0.100									
Aroclor 1242	ND	0.100									
Aroclor 1248	ND	0.100									
Aroclor 1254	ND	0.100									
Aroclor 1260	ND	0.100									
Aroclor 1262	ND	0.100									
Aroclor 1268	ND	0.100									
Total PCBs	ND	0.100									
Surr: Decachlorobiphenyl	0.0469		0.05000		93.8	20	191				
Surr: Tetrachloro-m-xylene	0.0507		0.05000		101	20	173				
Sample ID LCS1-21764	SampType: LCS			Units: mg/Kg		Prep Date	: 8/29/20)18	RunNo: 458	384	
Client ID: LCSS	Batch ID: 21764					Analysis Date	8/29/20	018	SeqNo: 888	3326	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	0.930	0.100	1.000	0	93.0	38.4	155				
Aroclor 1260	0.760	0.100	1.000	0	76.0	42.8	168				
Surr: Decachlorobiphenyl	0.0501		0.05000		100	20	191				
Surr: Tetrachloro-m-xylene	0.0543		0.05000		109	20	173				
Sample ID LCS1D-21764	SampType: LCSD			Units: mg/Kg		Prep Date	: 8/29/20)18	RunNo: 458	384	
Client ID: LCSS02	Batch ID: 21764					Analysis Date	8/29/20)18	SeqNo: 888	3327	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	0.909	0.100	1.000	0	90.9	38.4	155	0.9302	2.32	30	
	0.733	0.100	1.000	0	73.3	42.8	168	0.7600	3.61	30	
Aroclor 1260											
Aroclor 1260 Surr: Decachlorobiphenyl	0.0469		0.05000		93.7	20	191		0		

Original Page 6 of 9

Date: 9/4/2018

Batch ID: 21764

1808336 Work Order:

QC SUMMARY REPORT

AECOM CLIENT: JC Boyle

Project:

Polychlorinated Biphenyls (PCB) by EPA 8270 (GCMS)

Sample ID LCS1D-21764 SampType: LCSD Units: mg/Kg Prep Date: 8/29/2018 RunNo: 45884 Client ID: LCSS02

Analysis Date: 8/29/2018 SeqNo: 888327

%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit SPK value SPK Ref Val Qual Analyte Result RL

Sample ID LCS2-21764	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/29/2 0)18	RunNo: 458	384	
Client ID: LCSS	Batch ID: 21764					Analysis Da	te: 8/29/20)18	SeqNo: 888	3331	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1254	0.816	0.100	1.000	0	81.6	40.9	164				
Surr: Decachlorobiphenyl	0.0490		0.05000		97.9	20	191				
Surr: Tetrachloro-m-xylene	0.0489		0.05000		97.7	20	173				

Page 7 of 9 Original

Sample Log-In Check List

С	lient Name:	URS		Work Order Numl	ber: 1808336		
Lo	ogged by:	Clare Griggs		Date Received:	8/27/2018	2:33:00 PM	
Cha	ain of Custo	ody					
1.	Is Chain of C	ustody complete?		Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?		<u>Courier</u>			
	. In						
Log				,,	🗖		
3.	Coolers are p	resent?		Yes	No 🗸	NA 🗆	
1	Shinning con	tainer/cooler in good condition	n?	No cooler preser Yes ✓	<u>nt.</u> No □		
4. -		s present on shipping contain		Yes	No \square	Not Required ✓	
Э.		ments for Custody Seals not		165	NO L	Not Nequired 💌	
6.	Was an atten	npt made to cool the samples	?	Yes	No 🗸	NA \square	
				Unknown prior to re	eceipt.		
7.	Were all item	s received at a temperature of	of >0°C to 10.0°C	Yes	No 🗸	NA \square	
				Refer to item inform	nation.		
8.	Sample(s) in	proper container(s)?		Yes 🗹	No 🗌		
9.	Sufficient sar	nple volume for indicated test	(s)?	Yes 🗹	No 🗌		
10.	Are samples	properly preserved?		Yes 🗸	No 🗌		
11.	Was preserva	ative added to bottles?		Yes	No 🗸	NA 🗌	
12.	Is there head	space in the VOA vials?		Yes	No 🗌	NA 🗹	
13.	Did all sample	es containers arrive in good o	ondition(unbroken)? Yes ✔	No \square		
14.	Does paperw	ork match bottle labels?		Yes 🗸	No 🗌		
15	Are matrices	correctly identified on Chain	of Custody?	Yes	No 🗸		
_		at analyses were requested?	or Guotody.	Yes ✓	No \square		
		ing times able to be met?		Yes ✓	No \square		
		ŭ					
<u>Spe</u>	ecial Handl	ing (if applicable)					
18.	Was client no	otified of all discrepancies with	n this order?	Yes	No 🗌	NA 🗹	
	Person	Notified:		Date			
	By Who	m:	\	/ia: eMail Ph	none Fax	In Person	
	Regardi	ng:					
	Client Ir	structions:					
19.	Additional rer	marks:					
ltem	<u>Information</u>						
		Item #	Temp °C				
	Sample		23.1				

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Relinquished

Relinquished

each of the terms on the front and backside of this Agreement.

SI27/18

Date/Time

Received

***Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite

Individual:

I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to

*Matrix: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water, SW = Storm Water, WW = Waste Water

**Metals (Circle):

-
5
>
<
×.
2
-
-
~
(D
_
-
=
0
=
_
_
01
_
3
~
<u>_</u>
흣
~
-
0
2:
ш
_
-
C
ň
ä
3
_

	3600 Fremont Ave N.	Chain of Custody Record & Laboratory Services Agreement
- remonu	Seattle, WA 98103 Tel: 206-352-3790	Date: 8 271/8 Page: 1 of: 1 Laboratory Project No (internal): 1808787800
Analytica	Fax: 206-352-7178	t Name: JC Boyle
client: AECOM		Project No: 60537920.2.4a
Address: 1111 Third Avenue		collected by: Kim Riche
City, State, Zip: Seattle, Wa 98101		Location:
Telephone: 253-720-3980		Report To (PM): Nicole Gladu Sample Disposal: Return to client Disposal by lab (after 30 days)
Fax:		PM Email: kimberly.riche@aecom.com & shannon.mackay@aecom.com
Sample Name	Sample Sample Type Date Time (Matrix)*	
3-01	19	

Same Day

Next Day

Standard

J 3 Day

Turn-around Time:

APPENDIX D PERSONNEL AND LABORATORY CERTIFICATIONS

This is to certify that

Kimberly D. Riche

has satisfactorily completed 4 hours of refresher training as an

AHERA Building Inspector

to comply with the training requirements of TSCA Title II, 40 CFR 763 (AHERA)

EPA Provider # 1085

168531 Certificate Number

Jul 11, 2018

Date(s) of Training

Expires in 1 year.

Exam Score: N/A If appropriate:

Instructor

ARGUS PACIFIC, INC / 1900 WEST NICKERSON ST, SUITE 315 / SEATTLE, WASHINGTON 98119 / 206.285.3373 / ARGUSPACIFIC. COM

Certificate Of Completion

Asbestos Building Inspector Refresher Course

DOSH #:CA-015-06

Shannon MacKay

ABIR0115190004N18965

David Wallach

Principal Instructor

1/15/2019

Course Start Date

1/15/2019

Course End Date

Michael W. Home

Michael W. Horner

Training Director

1/15/2019

Exam Date

1/15/2020

Expiration Date

This course satisfies the education requirements for Asbestos accreditation under the Toxic Substances Control Act, Title II. This course has been approved by the Department of Industrial Relations, Division of Occupational Safety and Health of the State of California

NATEC International, Inc.

National Association of Training and Environmental Consulting

1100 Technology Circle-Suite A, Anaheim, CA 92805 • www.natecintl.com • 800-969-3228

Important Industry Contacts

CAL -OSHA:

Ph# (916) 574-2993 (916) 483-0572 Fax Notification Web: www.dir.ca.gov or calosha.com

CDPH/CLPPB:Ph# (510) 620-5600

Web: www.cdph.ca.gov/programs/CLPPB

Ph# (909) 396-3739 SCAQMD:

Fax#(909) 396-3342

Ph# (415) 749-4762 BAAQMD:

NATEC International, Inc.

National Association of Training and Environmental Consulting

Anaheim, CA . Dakland, CA . Fresno, CA . Sacramento, CA

Asbestos • Lead • Mold • HAZWOPER

P.O. Box 25205 Anaheim, CA 92825-5205 (714) 678-2750, (800) 969-3228, Fax (714) 678-2757

www.natecintl.com

NATEC International, Inc.

National Association of Training and Environmental Consulting

This Card Acknowledges That Shannon MacKay

Holds Training Certification For Asbestos Building Inspector Refresher Course

Expiration: 01/15/2020

Certificate No. ABIR0115190004N18965

Michael W. Horner Training Director

This is to certify that

Shannon R. MacKay

has satisfactorily completed 4 hours of refresher training as an

AHERA Building Inspector

to comply with the training requirements of TSCA Title II, 40 CFR 763 (AHERA)

EPA Provider # 1085

167196 Certificate Number

May 2, 2018

Expires in 1 year,

Date(s) of Training

Exam Score: If appropriate:

Instructor

ARGUS PACIFIC, INC / 1900 WEST NICKERSON ST, SUITE 315 / SEATTLE, WASHINGTON 98119 / 206.285.3373 / ARGUSPACIFIC, COM

ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

CERTIFICATE OF ENVIRONMENTAL ACCREDITATION

Is hereby granted to

NVL Laboratory

4708 Aurora Avenue North Seattle, WA 98103

Scope of the certificate is limited to the "Fields of Testing" which accompany this Certificate.

Continued accredited status depends on successful completion of on-site inspection, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No.: 2757

Expiration Date: 9/30/2019

Effective Date: 10/1/2018

Sacramento, California subject to forfeiture or revocation

Christine Sotelo, Chief

Environmental Laboratory Accreditation Program

CALIFORNIA STATE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Accredited Fields of Testing

NVL Laboratories, Inc.

PLM Dept.

4708 Aurora Avenue North

Seattle, WA 98103

Phone: (206) 547-0100

Certificate No.

2757

Expiration Date 9/30/2019

Field of Testing: 121 - Bulk Asbestos Analysis of Hazardous Waste

121.010 001

Bulk Asbestos

EPA 600/M4-82-020

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 102063-0

NVL Laboratories, Inc.

Seattle, WA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Asbestos Fiber Analysis

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-10-01 through 2019-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

AIHA Laboratory Accreditation Programs, LLC

acknowledges that

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: 101861

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2005 international standard, *General Requirements for the Competence of Testing and Calibration Laboratories* in the following:

LABORATORY ACCREDITATION PROGRAMS

- ✓ INDUSTRIAL HYGIENE
- ✓ ENVIRONMENTAL LEAD
- ✓ ENVIRONMENTAL MICROBIOLOGY
- □ FOOD
- ✓ UNIQUE SCOPES

Accreditation Expires: June 01, 2019

Accreditation Expires: June 01, 2019

Accreditation Expires: June 01, 2019

Accreditation Expires:

Accreditation Expires: June 01, 2019

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached **Scope of Accreditation**. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2005 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached **Scope of Accreditation**. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Un mull

William Walsh, CIH

Chairperson, Analytical Accreditation Board

Cheryl O. Morton

Managing Director, AIHA Laboratory Accreditation Programs, LLC

Revision 15: 03/30/2016

Date Issued: 05/31/2017

Laboratory ID: **101861**

Issue Date: 05/31/2017

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Industrial Hygiene Laboratory Accreditation Program (IHLAP)

Initial Accreditation Date: 04/01/1997

IHLAP Scope Category	Field of Testing (FoT) (FoTs cover all relevant IH matrices)	Technology sub-type/ Detector	Published Reference Method/Title of In- house Method	Method Description or Analyte (for internal methods only)
	Inductively-Coupled	ICP/AES	EPA 3051	
Spectrometry Core	Plasma	ICI/ALS	NIOSH 7300 Modified	
	X-ray Diffraction (XRD)		NIOSH 7500	
Asbestos/Fiber Microscopy Core	Phase Contrast Microscopy (PCM)		NIOSH 7400	
Miscellaneous Core	Gravimetric		NIOSH 0500 Modified	
Wiscenaneous Core	Gravimetric		NIOSH 0600 Modified	

A complete listing of currently accredited Industrial Hygiene laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 04/10/2015

101861_Scope_IHLAP_2017_05_31

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: **101861**Issue Date: 05/31/2017

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazard Reduction Act of 1992 and includes paint, soil and dust wipe analysis. Air and composited wipes analyses are not included as part of the NLLAP.

Environmental Lead Laboratory Accreditation Program (ELLAP)

Initial Accreditation Date: 02/07/1997

Field of Testing (FoT) Technology sub-type/ Detector		Method	Method Description (for internal methods only)
Paint		EPA SW-846 3051	
Fami		EPA SW-846 7000B	
Soil		EPA SW-846 3051	
Son		EPA SW-846 7000B	
Sottled Dust by Wine		EPA SW-846 3051	
Settled Dust by Wipe		EPA SW-846 7000B	
Airborne Dust		EPA SW-846 3051	_
All borne Dust		NIOSH 7082	

A complete listing of currently accredited Environmental Lead laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 10/14/2016 Scope_ELLAP_R7

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: **101861**Issue Date: 05/31/2017

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Environmental Microbiology Laboratory Accreditation Program (EMLAP)

Initial Accreditation Date: 02/01/1997

EMLAP Category	Field of Testing (FoT)	Method	Method Description (for internal methods only)
	Air - Direct Examination	SOP 12.133	In-House: Analysis of Spore Trap
Fungal	Bulk - Direct Examination	SOP 12.133	In-House: Bulk Analysis
	Surface - Direct Examination	SOP 12.133	In-House: Surface Analysis

A complete listing of currently accredited Environmental Microbiology laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 03/12/2013

101861_Scope_EMLAP_2017_05_31

NVL Laboratories, Inc.

4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: **101861**Issue Date: 05/31/2017

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Unique Scopes Laboratory Accreditation Program (Unique Scopes)

Initial Accreditation Date: 04/01/2013

Unique Scope Category	Field of Testing (FoT)	Method	Method Description (for internal methods only)
	Lead in Paint and Other Similar Surface Coatings	CPSC-CH-E1003-09.1	
Consumer Product Testing	Total Lead in Metal Children's Products	CPSC-CH-E1001-08.2	
	Total Lead in Non-Metal Children's Products	CPSC-CH-E1002-08.1	

A complete listing of currently accredited Unique Scope laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Effective: 08/29/2014 Scope_UniqueScopes_R1

BYATE WATER RESOURCES CONTROL BOARD REGIONAL WATER QUALITY CONTROL BOARDS

CALIFORNIA STATE

ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

CERTIFICATE OF ENVIRONMENTAL LABORATORY ACCREDITATION

Is hereby granted to

EMSL Analytical Inc.

200 Route 130 North

Cinnaminson, NJ 08077

Scope of the certificate is limited to the "Fields of Testing" which accompany this Certificate.

Continued accredited status depends on successful completion of on-site inspection, proficiency testing studies, and payment of applicable fees.

This Certificate is granted in accordance with provisions of Section 100825, et seq. of the Health and Safety Code.

Certificate No.: 1877

Expiration Date: 3/31/2017

Effective Date: 4/1/2015

Sacramento, California subject to forfeiture or revocation

Christine Sotelo, Chief

Environmental Laboratory Accreditation Program

CALIFORNIA STATE ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM Accredited Fields of Testing

EMSL Analytical Inc.

200 Route 130 North Cinnaminson, NJ 08077 Phone: (800) 220-3675 Certificate No. Expiration Date

1877 3/31/2017

Field of	Testin	g: 102 - Inorganic Chemistry of Dri	nking Water
102.030		Bromide	EPA 300.0
102.030		Chloride	EPA 300.0
102.030		Fluoride	
102.030		Nitrate	EPA 300.0
102.030		Nitrite	EPA 300.0
102.030			EPA 300.0
		Phosphate, Ortho	EPA 300.0
102.030		Sulfate	EPA 300.0
102.100		Alkalinity	SM2320B
102.130		Conductivity	SM2510B
102.140		Total Dissolved Solids	SM2540C
102.175	001	Chlorine, Free and Total	SM4500-Cl G
102.190		Cyanide, Total	SM4500-CN E
102.192		Cyanide, amenable	SM4500-CN G
102.262	001	Total Organic Carbon TOC	SM5310C
102.270	001	Surfactants	SM5540C
102.520	001	Calcium	EPA 200.7
102.520	002	Magneslum	EPA 200.7
102.520	003	Potassium	EPA 200.7
102.520	004	Silica	EPA 200.7
102.520	005	Sodium	EPA 200.7
102.520	006	Hardness (calculation)	EPA 200.7
Field of	Testing	g: 103 - Toxic Chemical Elements o	of Drinking Water
103.030	001	Mercury	SM3112B
103.060	001	Aluminum	SM3120B
103.060	003	Barlum	SM3120E
03.060	007	Chromium	SM3120B
03.060	009	Iron	SM3120B
03.060	011	Manganese	SM3120B
03.060	015	Silver	SM3120B
103.060	017	Zinc	SM3120B
03.130	007	Chromium	EPA 200.7
03.130		Copper	EPA 200.7
03.130		Iron	
03.130		Manganese	EPA 200.7
03.130		Silver	EPA 200.7
03.130		Zinc	EPA 200.7
03.140			EPA 200.7
	001	Aluminum	EPA 200.0
03.140	UU2	Antimony	EPA 200.8

Certificate No 1877 Expiration Date 3/31/2017

				Expirati	on Date 3/31/2017
	103.140	003	Arsenic	EPA 200.8	
	103.140	004	Barium	EPA 200.8	
	103.140	005	Beryllium	EPA 200.8	
	103.140	006	Cadmium	EPA 200.8	
	103.140	007	Chromium	EPA 200.8	11 11
	103.140	008	Copper	EPA 200.8	
	103,140	009	Lead	EPA 200.8	
	103.140	010	Manganese	EPA 200.8	
	103.140		Nickel	EPA 200.8	
	103.140	013	Selenium	EPA 200.8	
	103.140	014	Silver	EPA 200.8	
	103.140	015	Thallium	EPA 200.8	
	103.140	016	Zinc	EPA 200.8	
	103.150	009	Lead	EPA 200.9	<u> </u>
	103.160	001	Mercury	EPA 245.1	<u> </u>
	103.300 103.301	001	Asbestos	EPA 100.1	
		001	Asbestos	EPA 100.2	<u> </u>
-		· .	g: 104 - Volatile Organic Chemistry of Drinking V		
	104.040	000	Volatile Organic Compounds	EPA 524.2	
	104.040	001	Benzene	EPA 524.2	
	104.040	007	n-Butylbenzene	EPA 524,2	<u> 18 - 18 19 19 19 19 19 19 19 19 19 19 19 19 19 </u>
	104.040	800	sec-Butylbenzene	EPA 524.2	<u> </u>
	1 <u>04.040</u> 1 <u>04.040</u>	009	tert-Butylbenzene	EPA 524.2	
	104.040	010	Carbon Tetrachloride Chlorobenzene	EPA 524.2	
	104.040	015	2-Chlorotoluene	EPA 524.2	<u> </u>
٠.	104.040	016	4-Chlorotoluene	EPA 524.2	<u> </u>
	104.040	019	1,3-Dichlorobenzene	EPA 524.2 EPA 524.2	· · · · · · · · · · · · · · · · · · ·
		020	1,2-Dichlorobenzene	EPA 524.2	
	104.040	021	1,4-Dichlorobenzene	EPA 524.2	
	104.040	022	Dichlorodifluoromethane	EPA 524.2	
		023	1,1-Dichloroethane	EPA 524.2	
	104.040	024	1,2-Dichloroethane	EPA 524.2	
	104.040	025	1,1-Dichloroethene	EPA 524.2	
	104.040	026	cis-1,2-Dichloroethene	EPA 524.2	
	104.040	027	trans-1,2-Dichloroethene	EPA 524.2	
	104.040	028	Dichloromethane	EPA 524.2	<u> </u>
٠.	104.040	029	1,2-Dichloropropane	EPA 524.2	
	104.040	033	cis-1,3-Dichloropropene	EPA 524.2	
	104.040	034	trans-1,3-Dichloropropene	EPA 524.2	
	104.040	035	Ethylbenzene	EPA 524.2	
	104.040	037	Isopropylbenzene	EPA 524.2	-
		039	Naphthalene	EPA 524.2	
	104.040	041	N-propylbenzene	EPA 524.2	
		042	Styrene	EPA 524.2	
	-	044	1,1,2,2-Tetrachloroethane	EPA 524.2	
	104.040	045	Tetrachloroethene	EPA 524.2	
_			<u> </u>		· ·

As of 9/16/2015 , this list supersedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with the State.

Certificate No 1877 Expiration Date 3/31/2017

			•	
104.040	046	Toluene	EPA 524.2	
104.040	048	1,2,4-Trichlorobenzene	EPA 524.2	
104.040	049	1,1,1-Trichloroethane	EPA 524.2	
104.040	050	1,1,2-Trichloroethane	EPA 524.2	
104.040	051	Trichlomethene	EPA 524.2	
104.040	052	Trichlorofluoromethane	EPA 524.2	
104.040	054	1,2,4-Trimethylbenzene	EPA 524.2	
104.040	055	1,3,5-Trimethylbenzene	EPA 524.2	
104.040	056	Vinyl Chloride	EPA 524.2	
104.040	057	Xylenes, Total	EPA 524.2	
104.045	001	Bromodichloromethane	EPA 524.2	
104.045	002	Bromoform	EPA 524.2	
104.045	003	Chloroform	EPA 524.2	
104.045	004	Dibromochloromethane	EPA 524.2	
104.050	002	Methyl tert-butyl Ether (MTBE)	EPA 524.2	
104.050	006	tert-Butyl Alcohol (TBA)	EPA 524.2	
104.050	800	Carbon Disulfide	EPA 524.2	
104.050	009	Methyl Isobutyl Ketone	EPA 524,2	
Field of	Testing	g: 109 - Toxic Chemical Elements of Wastewat	er	
109.010	001	Aluminum	EPA 200.7	
109.010	002	Antimony	EPA 200.7	
109.010	003	Arsenic	EPA 200.7	
109.010	004	Barium	EPA 200.7	
109.010	0 05	Beryllium	EPA 200.7	
109.010	007	Cadmium	EPA 200.7	
109.010	009	Chromium	EPA 200.7	
109.010	010	Cobalt	EPA 200.7	
109.010	011	Соррег	EPA 200.7	
109.010	012	lron	EPA 200,7	
109.010	013	Lead	EPA 200.7	
109.010	015	Manganese	EPA 200,7	
109.010	016	Molybdenum	EPA 200.7	
109.010	017	Nickel	EPA 200.7	
	019	Selenium	EPA 200.7	
	021	Silver	EPA 200.7	
109.010		Thallium	EPA 200.7	
	024	Tin	EPA 200.7	
	026	Vanadium	EPA 200.7	<u> </u>
109.010		Zinc	EPA 200.7	
	001	Aluminum	EPA 200.8	
	002	Antimony	EPA 200.8	
	003	Arsenic	EPA 200.8	
	004	Barium	EPA 200.8	
	005	Beryllium	EPA 200.8	
	006	Cadmium	EPA 200.8	
	007	Chromium	EPA 200.8	
109.020	800	Cobalt	EPA 200.8	

109.020 009 Copper	
109-020	
109.020	
109.020 013 Nickel EPA 200.8 109.020 014 Selentum EPA 200.8 109.020 015 Silver EPA 200.8 109.020 016 Thatilum EPA 200.8 109.020 017 Venadium EPA 200.8 109.020 018 Zinc EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Tri EPA 200.8 109.020 023 Teantum EPA 200.8 109.020 023 Teantum EPA 200.8 109.020 020 To Lead EPA 200.9 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 015 Plaintum SM3111B 109.370 015 Plaintum SM3111B 109.370 016 Plaintum SM3111B 109.370 017 Plaintum SM3112B 109.380 001 Auminum SM312B 109.430 001 Auminum SM312B 109.430 001 Auminum SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 014 Copper SM3120B 109.430 015 Manganese SM3120B 109.430 016 Manganese SM3120B 109.430 017 Nickel SM3120B 109.430 018 Selerium SM3120B	
109.020	
109.020 015 Silver EPA 200.8 109.020 017 Vanadlum EPA 200.8 109.020 018 Zine EPA 200.8 109.020 018 Zine EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Irin EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Titanlum EPA 200.8 109.020 023 Titanlum EPA 200.8 109.020 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 017 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Pladium SM3111B 109.370 016 Marcury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antimory SM3120B 109.430 005 Esperitum SM3120B 109.430 006 Chromium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B 109.430 017 Nickel SM3120B	
109.020 016 Thallium EPA 200.8 109.020 017 Venadlum EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Irin EPA 200.8 109.020 022 Trin EPA 200.8 109.020 023 Titanium EPA 200.8 109.020 020 Trin EPA 200.8 109.020 021 Iron EPA 200.8 109.020 020 Trin EPA 200.8 109.020 021 Trin EPA 200.8 109.020 021 Trin EPA 200.8 109.020 010 Lead EPA 200.9 109.020 010 Lead EPA 200.9 109.020 010 Marcury EPA 245.1 109.370 07 Gold SM3111B 109.370 011 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Anfmony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmilum SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B	· · · · · · · · · · · · · · · · · · ·
109.020 017 Vanadlum EPA 200.8 109.020 018 Zinc EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Tizenlum EPA 200.8 109.020 023 Tizenlum EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 240.9 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.370 016 Mercury SM3112B 109.430 001 Mercury SM3120B 109.430 002 Antimory SM3120B 109.430 005 Beryllum SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B	· · · · · · · · · · · · · · · · · · ·
109.020 018 Zinc EPA 200.8 109.020 021 Iron EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Titanium EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 010 Lead SM3111B 109.370 011 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Marcury SM312B 109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 007 Cadmilum SM3120B 109.430 007 Cadmilum SM3120B 109.430 000 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 014 Copper SM3120B 109.430 015 Manganese SM3120B 109.430 016 Moybdenum SM3120B 109.430 017 Mickel SM3120B 109.430 018 Manganese SM3120B 109.430 019 Selenium SM3120B	
109.020 021 Iron EPA 200.8 109.020 022 Tin EPA 200.8 109.020 023 Titanjum EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platirum SM3111B 109.400 001 Mercury SM312B 109.430 001 Aluminum SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 007 Cadmium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Manganese SM3120B 109.430 017 Iced SM3120B 109.430 018 Manganese SM3120B 109.430 019 Setenium SM3120B	
109.020 022 Tin EPA 200.8 109.020 023 Titanium EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Mercury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM312B 109.430 001 Aluminum SM3120B 109.430 002 Antimorry SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chronium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B 109.430 017 Nickel SM3120B	
109.020 023 Titanium EPA 200.8 109.025 010 Lead EPA 200.9 109.190 001 Marcury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 O01 Mercury SM3112B 109.430 O01 Aluminum SM3120B 109.430 O01 Aluminum SM3120B 109.430 O02 Antimorry SM3120B 109.430 O05 Beryllium SM3120B 109.430 O05 Chromium SM3120B 109.430 O10 Cobalt SM3120B 109.430 O11 Copper SM3120B 109.430 O12 Iron SM3120B 109.430 O15 Manganese SM3120B 109.430 O16 Molybderum	
109.025 010 Lead EPA 200.9 109.190 001 Mercury EPA 245.1 109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Paladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antimory SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selerium	
109.370 007 Gold SM3111B 109.370 010 Lead SM3111B 109.370 014 Paladium SM3111B 109.370 015 Platinum SM3111B 109.430 001 Mercury SM312B 109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromitum SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 019 Selenium	 :
109.370 010 Lead SM3111B 109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromitum SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 019 Selenium SM3120B	
109.370 014 Palladium SM3111B 109.370 015 Platinum SM3111B 109.400 001 Mercury SM3112B 109.430 001 Aluminum SM3120B 109.430 002 Antímony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderium SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	 `
109.370 015 Platinum \$M3111B 109.400 001 Mercury \$M3120B 109.430 001 Aluminum \$M3120B 109.430 002 Antimony \$M3120B 109.430 005 Beryllium \$M3120B 109.430 007 Cadmium \$M3120B 109.430 009 Chromium \$M3120B 109.430 010 Cobalt \$M3120B 109.430 011 Copper \$M3120B 109.430 012 Iron \$M3120B 109.430 015 Manganese \$M3120B 109.430 016 Molybderum \$M3120B 109.430 017 Nickel \$M3120B 109.430 019 \$Selenium \$M3120B 109.430 021 Silver \$M3120B	.
109.430 001 Mercury SM3112B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmlum SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	 .
109.430 001 Aluminum SM3120B 109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	 .
109.430 002 Antimony SM3120B 109.430 005 Beryllium SM3120B 109.430 007 Cadmlum SM3120B 109.430 010 Chromium SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109,430 005 Beryllium SM3120B 109,430 007 Cadmium SM3120B 109,430 009 Chromium SM3120B 109,430 010 Cobalt SM3120B 109,430 011 Copper SM3120B 109,430 012 Iron SM3120B 109,430 013 Lead SM3120B 109,430 015 Manganese SM3120B 109,430 016 Molybdenum SM3120B 109,430 017 Nickel SM3120B 109,430 019 Selenium SM3120B 109,430 021 Silver SM3120B	
109.430 007 Cadmium SM3120B 109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 009 Chromium SM3120B 109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybderium SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 010 Cobalt SM3120B 109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 011 Copper SM3120B 109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 012 Iron SM3120B 109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 013 Lead SM3120B 109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 015 Manganese SM3120B 109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	· :
109.430 016 Molybdenum SM3120B 109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 017 Nickel SM3120B 109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 019 Selenium SM3120B 109.430 021 Silver SM3120B	
109.430 021 Silver SM3120B	
	<u> </u>
109.430 024 Vanadium SM3120B	
109.430 025 Zinc SM3120B	
109.811 001 Chromium (VI) SM3500-Cr D (18th/19th)	_
Field of Testing: 114 - Inorganic Chemistry of Hazardous Waste	
114.010 001 Antimony EPA 6010B	
114.010 002 Arsenic EPA 6010B	
114.010 003 Barium EPA 6010B	· · · · · · · · · · · · · · · · · · ·
114.010 004 Beryllium EPA 6010B	
114.010 005 Cadmium EPA 6010B	
114.010 006 Chromium EPA 6010B	
114.010 007 Cobalt EPA 6010B	· · · · · · · · · · · · · · · · · · ·
114.010 008 Copper EPA 6010B	
114.010 009 Lead EPA 6010B	

· . · .			Expiration bate 3/31/2017
114.010	010	Molybdenum	EPA 6010B
114.010	011	Nickel	EPA 6010B
114.010	012	Selenium	EPA 6010B
114.010	013	Silver	EPA 6010B
1 <u>14</u> .010	014	Thallium	EPA 6010B
114.010	015	Vanadium	EPA 6010B
114.010	016	Zinc	EPA 6010B
114.020	001	Antimony	EPA 6020
114.020	002	Arsenic	EPA 6020
114.020	003	Banum	EPA 6020
114.020	004	Beryllium	EPA 6020
114.020		Cadmium	EPA 6020
114.020		Chromium	EPA 6020
114.020	007	Cobalt	EPA 6020
114.020	800	Соррег	EPA 6020
114.020	009	Lead	EPA 6020
114.020	010.	Malybdenum	EPA 6020
114.020		Nickel	EPA 6020
114.020	012	Selenium	EPA 6020
114.020		Silver	EPA 6020
: 114,020		Thallium	EPA 6020
114.020	015	Vanadium	EPA 6020
114.020	016	Zinc	EPA 6020
114.103	001	Chromium (VI)	EPA 7196A
114.130		Lead	EPA 7420
114.131	001	Lead	EPA 7421
114.140	001	Mercury	EPA 7470A
114.141	_	Mercury	EPA 7471A
		g: 115 - Extraction Test of Hazardous Waste	
115.020		Toxicity Characteristic Leaching Procedure (TCLP)	EPA 1311
115.030	001	Waste Extraction Test (WET)	CCR Chapter11, Article 5, Appendix II
Field of	Testing	; 116 - Volatile Organic Chemistry of Hazardou	s Waste
116.010	000	EDB and DBCP	EPA 8011
116.020	030	Nonhalogenated Volatiles	EPA 8015B
116.020	031	Ethanol and Methanol	EPA 8015B
116.030	001	Gasoline-range Organics	EPA 8015B
116.080	000	Volatile Organic Compounds	EPA 8260B
116.080	120	Охуделатая	EPA 8260B
Fleid of	esting	: 117 - Semi-volatile Organic Chemistry of Haz	ardous Waste
1.17.010	001	Diesel-range Total Petroteum Hydrocarbons	EPA 8015B
117.110	000	Extractable Organics	EPA 8270C
117.210	000	Pesticides & PCBs	EPA 8081A
117.220	000	PCBs	EPA 8082
117.250	000	Chlorinated Herbicides	EPA 8151A
Field of 1	esting	; 121 - Bulk Asbestos Analysis of Hazardous W	· · · · · · · · · · · · · · · · · · ·
121.010		Bulk Asbestos	EPA 600/M4-82-020
			ELITOSSINIA VETVEU

EMSL Analytical Inc.

Certificate No 1877 Expiration Date 3/31/2017

Field of Testing: 129 - Cryptosporidium & Glardia				 	 -
129.020 001 Cryptosporidium and Giardia	· · · · · · · · · · · ·	EPA 1623		 	
129.030 001 Cryptosporidium and Glardia	·	EPA 1623.1		 : · · · · · · · · · · · · · · · · · · ·	 :

Fremont Analytical, Inc.

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

EPA CODE: WA01224

3600 Fremont Ave. N Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

As of 5/10/2018 this list supersedes all previous lists for this certificate number.

Solids	EPA 8270D	5562	Azobenzene
		5595	Benzidine
		5575	Benzo(a)anthracene
		5580	Benzo(a)pyrene
		5590	Benzo(g,h,i)perylene
		9309	Benzo(j)fluoranthene
		5600	Benzo(k)fluoranthene
		5585	Benzo[b]fluoranthene
	/47 3	5610	Benzoic acid
	/ J N	5630	Benzyl alcohol
		5760	bis(2-Chloroe <mark>th</mark> oxy)meth <mark>an</mark> e
		5765	bis(2-Chloroethyl) ether
		5780	bis(2-Chloroisopropyl) ether
		6062	bis(2-Ethylhexyl)adipate
		5670	Butyl benzyl phthalate
		5680	Carbazole

6065	Di(2-ethylhexyl) phthalate	(bis(2-
	Ethylhexyl)phthalate, DEH	P)
9354	Dibenz(a, h) acridine	
5900	Dibenz(a, j) acridine	

5895 Dibenz(a,h) anthracene 9348 Dibenzo(a, h) pyrene 5890 Dibenzo(a,e) pyrene 5905 Dibenzofuran

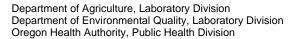
Chrysene

5855

6070 Diethyl phthalate
6135 Dimethyl phthalate
5925 Di-n-butyl phthalate
6200 Di-n-octyl phthalate

6205 Diphenylamine6265 Fluoranthene

6270 Fluorene6275 Hexachlorobenzene


4835 Hexachlorobutadiene6285 Hexachlorocyclopentadiene

4840 Hexachloroethane

6315 Indeno(1,2,3-cd) pyrene 6320 Isophorone

5005 Naphthalene5015 Nitrobenzene

n-Nitrosodiethylamine
n-Nitrosodimethylamine
n-Nitrosodi-n-propylamine
n-Nitrosodiphenylamine

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

JRELAP ID. WATOOOG

Fremont Analytical, Inc.

EPA CODE: WA01224

3600 Fremont Ave. N

Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

As of 5/10/2018 this list supersedes all previous lists for this certificate number.

Solids	EPA 8270D	6605	Pentachlorophenol		
		6608	Perylene		
		6615	Phenanthrene		
		6625	Phenol		
		6665	Pyrene		
		5095	Pyridine	100	
	EPA 8270D SIM	.1	17.	10242509	Semivolatile Organic compounds by GC/MS Selective Ion Monitoring
		6380	1-Methylnaphthalene		
	/3/ 6	6385	2-Methylnaphthalene		16/
		5500	Acenaphthen <mark>e</mark>		
		5505	Acenaphthylene		
		5555	Anthracene		
		5575	Benzo(a)anthracene		
		5580	Benzo(a)pyrene		
		5590	Benzo(g,h,i)perylene		
		5600	Benzo(k)fluoranthene		
		5585	Benzo[b]fluoranthene		
		5670	Butyl benzyl phthalate		
		5855	Chrysene		
		6065 5895	Di(2-ethylhexyl) phthalate (bis(2- Ethylhexyl)phthalate, DEHP)		
			Dibenz(a,h) anthracene		
		5905	Dibenzofuran		
		6070	Diethyl phthalate		
		6135	Dimethyl phthalate		1/2/
		5925	Di-n-butyl phthalate		A 1/2/
		6200	Di-n-octyl phthalate		
		6265	Fluoranthene		
		6270	Fluorene	- 400	
		6315	Indeno(1,2,3-cd) pyrene		
		5005	Naphthalene		
		6605	Pentachlorophenol		
		6615	Phenanthrene		
		6665	Pyrene		
	EPA 8270E			988	Semivolatile Organic compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
		5155	1,2,4-Trichlorobenzene		,, ()
	EPA 8270E			10242543	Semivolatile Organic compounds by GC/MS
		5155	1,2,4-Trichlorobenzene		
		4610	1,2-Dichlorobenzene		
		6155	1,2-Dinitrobenzene		
		4615	1,3-Dichlorobenzene		

Fremont Analytical, Inc.

3600 Fremont Ave. N

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

EPA CODE: WA01224

Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

Solids	EPA 8270E	upersedes all previous lists for this certificate number. 6160 1,3-Dinitrobenzene (1,3-DNB)
Jonas		4620 1,4-Dichlorobenzene
		6165 1,4-Dinitrobenzene
		6380 1-Methylnaphthalene
		4659 2,2-Oxybis(1-chloropropane)
		6735 2,3,4,6-Tetrachlorophenol
		6740 2,3,5,6-Tetrachlorophenol
		6835 2,4,5-Trichlorophenol
	/47 .	6840 2,4,6-Trichlorophenol
	/1/	6000 2,4-Dichlorophenol
		6130 2,4-Dimethylphenol
		6175 2,4-Dinitrophenol
		6185 2,4-Dinitrotoluene (2,4-DNT)
		6190 2,6-Dinitrotoluene (2,6-DNT)
		5 <mark>795 2-Chloronaphthalene</mark>
		5800 2-Chlorophenol
		6360 2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2 -methylphenol)
		5145 2-Methylaniline (o-Toluidine)
		6385 2-Methylnaphthalene
		6400 2-Methylphenol (o-Cresol)
		6460 2-Nitroaniline
		6490 2-Nitrophenol
		6412 3 & 4 Methylphenol
		5945 3,3'-Dichlorobenzidine
		6355 3-Methylcholanthrene
		6465 3-Nitroaniline
		5660 4-Bromophenyl phenyl ether (BDE-3)
		5700 4-Chloro-3-methylphenol
		5745 4-Chloroaniline
		5825 4-Chlorophenyl phenylether
		6470 4-Nitroaniline
		6500 4-Nitrophenol
		5500 Acenaphthene
		5505 Acenaphthylene
		5510 Acetophenone
		5545 Aniline
		5555 Anthracene
		5562 Azobenzene
		5570 Benzaldehyde
		5595 Benzidine
		5575 Benzo(a)anthracene
		5580 Benzo(a)pyrene

5590

Benzo(g,h,i)perylene

Fremont Analytical, Inc.

3600 Fremont Ave. N

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

EPA CODE: WA01224

Certificate: WA100009 - 012

Seattle, WA 98103 Issue Date: 5/10/2018 Expiration Date: 5/9/2019

Solids	EPA 8270E	9309	Benzo(j)fluoranthene
0011010		5600	Benzo(k)fluoranthene
		5585	Benzo[b]fluoranthene
		5610	Benzoic acid
		5630	Benzyl alcohol
		5635	Benzyl chloride
		5760	bis(2-Chloroethoxy)methane
		5765	bis(2-Chloroethyl) ether
	/8/ .	5780	bis(2-Chloroisopropyl) ether
	/4/	6062	bis(2-Ethylhexyl)adipate
		5670	Butyl benzyl phthalate
		5680	Carbazole
		5855	Chrysene
		6065	Di(2-ethylhexyl) phthalate (bis(2- Ethylhexyl)phthalate, DEHP)
		9354	Dibenz(a, h) acridine
		5900	Dibenz(a, j) ac <mark>ridine</mark>
		5895	Dibenz(a,h) anthracene
		9348	Dibenzo(a, h) pyrene
		9351	Dibenzo(a, i) pyrene
		5890	Dibenzo(a,e) pyrene
		5905	Dibenzofuran
		6070	Diethyl phthalate
		6135	Dimethyl phthalate
		5925	Di-n-butyl phthalate
		6200	Di-n-octyl phthalate
	1000	6205	Diphenylamine
		6265	Fluoranthene
		6270	Fluorene
		6275	Hexachlorobenzene
		4835	Hexachlorobutadiene
		6285	Hexachlorocyclopentadiene
		4840	Hexachloroethane
		6315	Indeno(1,2,3-cd) pyrene
		5005	Naphthalene
		5015	Nitrobenzene
		6530	n-Nitrosodimethylamine
		6545	n-Nitrosodi-n-propylamine
		6535	n-Nitrosodiphenylamine
		6605	Pentachlorophenol
		6608	Perylene
		6615	Phenanthrene
		6625	Phenol

7985

Phorate

Seattle, WA 98103

OREGON

Environmental Laboratory Accreditation Program

ORELAP Fields of Accreditation

ORELAP ID: WA100009

Issue Date: 5/10/2018 Expiration Date: 5/9/2019

Fremont Analytical, Inc. EPA CODE: WA01224

3600 Fremont Ave. N **Certificate:** WA100009 - 012

As of 5/10/2018 this list supersedes all previous lists for this certificate number.

Solids	EPA 8270E	6665	Pyrene		
		5095	Pyridine		
	EPA 8270E SIM		DECO	989	Semivolatile Organic compounds by Gas Chromatography/Mass Spectrometry (GC/MS) SIM Mode
		6380	1-Methylnaphthalene	10	Spectrometry (GC/MG) Shiri Mode
		5795	2-Chloronaphthalene	UZA.	
		6385	2-Methylnaphthalene	7/1/	4 10
		5500	Acenaphthene		
	/37	5505	Acenaphthylene		
		5555	Anthracene		
		5575	Benzo(a)anthracene		
	/ 9	5580	Benzo(a)pyrene		
		5590	Benzo(g,h,i)perylene		
		5600	Benzo(k)fluoranthene		
		5585	Benzo[b]fluoranthene		
		5670	Butyl benzyl phthalate		
		5680	Carbazole		
		5855	Chrysene		
		6065	Di(2-ethylhexyl) phthalate (bis(2- Ethylhexyl)phthalate, DEHP)		
		5895	Dibenz(a,h) anthracene		
		5905	Dibenzofuran		
		6070	Diethyl phthalate		
		6135	Dimethyl phthalate		
		5925	Di-n-butyl phthalate		1/2/
	100	6200	Di-n-octyl phthalate		C /9/
		6265	Fluoranthene		
		6270	Fluorene		1 19/
		6315	Indeno(1,2,3-cd) pyrene	- A	
		5005	Naphthalene		
		6605	Pentachlorophenol		
		6615	Phenanthrene		
		6665	Pyrene		
	NWTPH-Dx			90018409	Oregon DEQ TPH Diesel Range
		9369	Diesel range organics (DRO)		
		9499	Motor Oil		
		2050	Total Petroleum Hydrocarbons (TPH)		
	NWTPH-Gx			90018603	Oregon DEQ TPH Gasoline Range Organics by GC/FID-PID Purge & Tra

Lower Klamath Project – FERC No.	. 14803		

J.C. Boyle Hazardous Waste Inventory

Table C-1. Universal Waste Inventory

Material Description	Approximate Quantity
Mercury-Containing fluorescent light tubes (4' length)	68
Mercury-Containing fluorescent light tubes (6' length)	10
Mercury-Containing fluorescent light tubes (8' length)	8
Magnetic light ballasts	50
HID Lamps	39
Mercury-containing switches, controls, and recorders	None Observed

Table C-2. Non-RCRA Hazardous Waste Inventory

J.C. Boyle Development Asbestos and/or Lead-Based Materials				
Facility	Asbestos	Lead		
Canal Headgate		✓		
Communications Building	✓	✓		
Fire Protection Building		✓		
HazMat Shed	✓	✓		
Intake Structure		✓		
Outdoor Storage Area		✓		
Penstock		✓		
Powerhouse	✓	✓		
Spillway		✓		
Vehicle Storage Shed		✓		
Warehouse	✓	✓		
Office Wearhouse	✓			
Residence 1	✓			
Residence 2	✓			
Assumed to be present underground throughout the J.C. Boyle Development	✓			

Table C-3. Characteristic Hazardous Waste Inventory

Hazardous Class	Common Name	Quantity	Container
Flammable and Combustible Liquids	Gasoline	500 Gallons	AST
Flammable and Combustible Liquids	Diesel Fuel No. 2	300 Gallons	AST
Flammable Gas	Acetylene	200 Cubic Feet	Cylinder
Non-Flammable Gases	Argon, Liquid	200 Cubic Feet	Cylinder
Flammable and Combustible Liquids	Gear Oil	20 Gallons	Plastic Drum
Flammable and Combustible Liquids	Hydraulic Oil	30 Gallons	Plastic Drum
Corrosives (Liquids and Solids)	lead Acid Batteries	10,840 Pounds	Glass Bottle or Jug
Flammable and Combustible Liquids	Used Oil	20 Gallons	Steel Drum
Flammable and Combustible Liquids	Paint	15 Gallons	Cans
Nonflammable Gases	Nitrogen	1,200 Cubic Feet	Cylinder
Flammable Gas	Propane	300 Gallons	AST

Lower Klamath Project – FERC No. 14803
Appendix D
Oregon Spill Prevention, Control, and Countermeasure Plan

Lower Klamath Project FERC Project No. 14803

Oregon Spill Prevention, Control, and Countermeasure Plan

Klamath River Renewal Corporation 2001 Addison Street, Suite 317 Berkeley, CA 94704

Prepared by:
Knight Piésold
KRRP Project Office
4650 Business Center Drive
Fairfield, CA 94534

December 2021

This page intentionally left blank.

Table of Contents

1.0	Introd	Introduction				
	1.1	Purpose of the Oregon Spill Prevention, Control, and Countermeasure Plan	. 1			
	1.2	Relationship to Other Management Plans	. 1			
2.0	Spill I	Prevention, Control, and Countermeasure Plan Compliance	. 1			
	2.1	Designated Person	. 1			
	2.2	Management Approval and Resource Dedication	. 1			
	2.3	Professional Engineer Certification	. 1			
	2.4	Plan Location and Availability	2			
	2.5	Review, Certification, and Amendment	2			
	2.6	Facilities, Procedures, Methods, or Equipment Not Fully Operational	2			
	2.7	Cross-Reference with Regulations	2			
	2.8	Compliance with State and Local Applicable Requirements	2			
	2.9	Substantial Harm Facility	3			
3.0	Existi	ng Spill History	3			
4.0	Facili	ty Map	4			
5.0	Oil Co	ontainer Inventory	4			
	5.1	Existing Operational Equipment Oil Containers	4			
	5.2	Mobile or Portable Containers	5			
	5.3	Oil-Filled Manufacturing Equipment	5			
	5.4	Mobile Refuelers and Motive Power Containers	6			
	5.5	Bulk Storage Containers	6			
	5.6	Secondary Containment	8			
6.0	Spill I	Notification and Reporting	9			
	6.1	Spill Notification1	0			
	6.2	Spill Reporting1	3			
7.0	Spill (Control and Procedures1	4			
	7.1	Spill Control Measures1	4			
		7.1.1 Containment Structures and Equipment to Prevent Discharges for Existing Oil-Filled Equipment	6			

			ontainment Structures and Equipment to Prevent Discharges for Constructions of Containers				
	7.2	Routine H	landling of Products	26			
	7.3	Unloading	g Procedures	26			
	7.4	Facility Tr	ransfer Operations	26			
		7.4.1 O	il Transfer to Container	27			
		7.4.2 O	il Transfer to Equipment	27			
		7.4.3 O	il Drip Collection	28			
		7.4.4 D	etailed Oil Transfer Procedures (Containers with >5000 Gallon Capacity)	28			
8.0	Proce	dures for	Spill Containment, Cleanup, and Reporting	29			
	8.1	Spill Cont	ainment and Cleanup Equipment	29			
	8.2	Spill Cont	ainment	29			
	8.3	Spill Cont	rol Equipment	30			
	8.4	Spill Clea	n-Up	31			
	8.5	Response to Discharge in Water32					
	8.6	Spill Response during Off-Shifts, Weekends or Holidays					
	8.7	Recovered Spill Material Containment and Disposal					
	8.8	Methods	of Disposal	32			
	8.9	Contact Ir	nformation	33			
9.0	Inspe	ctions, Te	sting, and Recordkeeping	34			
	9.1	Inspection	ns and Tests	34			
	9.2	Periodic II	nspections	35			
		9.2.1 R	outine Inspections	35			
		9.2.2 M	Ionthly Visual Inspections	35			
		9.2.3 S	tormwater	36			
	9.3	Certified I	nspection	36			
	9.4	Recordke	eping	37			
10.0	Traini	ng and Av	vareness	38			
	10.1	SPCC Tra	aining	39			
	10.2	Toolbox T	alks	39			
	10.3	Security		39			
		10.3.1 M	lain Facility	39			

	10.3.2	Spencer Creek	40
11.0	References		4(

List of Tables

Table 3-1. J.C. Boyle Development Spill History					
Table 5-1. Existing Oil-filled Operational Equipment					
Table 5-2. Exi	sting Bulk Storage Oil Containers	6			
Table 5-3. Co	nstruction Bulk Storage Oil Containers	7			
Table 6-1. Sp	ill Verbal Notification and Reporting Requirements	12			
Table 7-1. Ge	neral Rule Requirements for Onshore Facilities	14			
	ntainment Structures and Equipment to Prevent Discharges for Existing Oil-filled nal Equipment	17			
	ntainment Structures and Equipment to Prevent Discharges for Construction Bulk Oil Containers	25			
Table 8-1. Co	ntact Information for the J.C. Boyle Development	33			
Appendic	ees				
Appendix A	Quick Reference Information				
Appendix B	Certification of the Applicability of the Substantial Harm Criteria				
Appendix C	J.C. Boyle Facility Maps				
Appendix D	Internal Spill Report Form and CEPC Form				
Appendix E	Bulk Oil Container Inspection Checklist and Secondary Containment Retained Precipitation Discharge Log				
Appendix F	Oil Spill Response Guide				
Appendix G	Tank Truck Unloading Procedures				
Appendix H	Oil Transfer Procedure Checklist				
Appendix I	Monthly Inspection Checklist				
Appendix J	Supplied Tank Information				

Definition of Terms

Oil - Oil of any kind or in any form, including, but not limited to fats, oils, or greases of animal, fish, or marine mammal origin; vegetable oils, including oil from seeds, nuts, fruits, or kernels; and other oils and greases, including petroleum, fuel oil, sludge, synthetic oils, mineral oils, oil refuse or oil mixed with wastes other than dredged spoil.

Discharge - Includes but is not limited to, any spilling, leaking, pumping, pouring, emitting, emptying or dumping of oil, but excludes discharges in compliance with a permit under Section 402 of the Clean Water Act (CWA). Includes discharges of oil in such quantities that the Administrator has determined may be harmful to the public health or welfare or the environment of the United States, including discharges of oil that: (a) violate applicable water quality standards; or (b) cause a film, sheen, or discoloration of the surface of the water or adjoining shorelines or cause a sludge or emulsion to be deposited beneath the surface of the water or adjoining shorelines.

Owner or Operator - Any person owning or operating an onshore facility.

Bulk Storage Container – Any container used to store oil. These containers are used for purposes including, but not limited to, the storage of oil prior to use, while being used, or prior to further distribution in commerce.

Storage Capacity – Of a container means the shell capacity of the container.

Reportable Spill – Federal – The discharge of any amount of oil, as defined above, (including an amount sufficient to cause a sheen on the water) to navigable waterway or to a location where the spilled oil may enter into a navigable waterway.

Reportable Spill – State –

- Discharges or threatened discharges of oil in marine waters
- Any spill or other release of one barrel (42 gallons) or more of petroleum products
- Discharges of any hazardous substances or sewage, into or on any waters of the state (wetlands, waterways, vernal pools, etc.)
- Discharges that may threaten or impact water quality
- Discharges of oil or petroleum products, into or on any waters of the State
- Hazardous liquid pipeline releases and every rupture, explosion, or fire involving a pipeline
- Any release causing off-site damage to public or private property
- An uncontrolled or unpermitted release that has escaped secondary containment, or extended into any sewers, stormwater conveyance systems, utility vaults and conduits, wetlands, waterways, or public roads, or was conveyed off-site

Navigable Waterway - Navigable water means the waters of the United States, including the territorial seas. The term includes: a) all waters that are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters that are subject to the ebb and flow of the tide; b) interstate waters, including interstate wetlands; c) all other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sand flats, and wetlands, the degradation, or destruction of which would affect or could affect interstate or foreign commerce including any such waters: 1) that are, or could be, used by interstate or foreign travelers for recreational or other purposes: 2) from which fish or shell fish are, or could be, taken and sold interstate or foreign commerce; 3) that are used or could be used for industrial purposes by industries in interstate commerce.

Waters of the State – Waters of the State has similar meaning to navigable waterways and includes: all navigable waterways and other waters including lakes, rivers, streams (including intermittent streams), ditches, mudflats, vernal pools, sand flats, and wetlands. Fully enclosed private irrigation ponds, sewage treatment ponds, stormwater retention ponds, landscape ponds, and similar private facilities that do not release to or have a physical connection to Water of the State are not considered to be Waters of the State.

1.0 Introduction

The Oregon Spill Prevention, Control, and Countermeasure Plan described herein is a subplan of the Waste Disposal and Hazardous Materials Management Plan that will be implemented as part of the Proposed Action for the Lower Klamath Project.

1.1 Purpose of the Oregon Spill Prevention, Control, and Countermeasure Plan

The purpose of the Oregon Spill Prevention, Control, and Countermeasure Plan is to describe the measures the Renewal Corporation will implement to prevent spills of oil from occurring as part of the Proposed Action. In addition, the Oregon Spill Prevention, Control, and Countermeasure Plan includes measures the Klamath River Renewal Corporation (Renewal Corporation) will implement to mitigate any spill should one occur. This plan was developed in accordance with 40 CFR Part 112.

1.2 Relationship to Other Management Plans

The Oregon Spill Prevention, Control, and Countermeasure Plan is supported by elements of the following management plans for effective implementation: Health and Safety Plan, Emergency Response Plan, and Fire Management Plan. So as to not duplicate information, elements from these other management plans are not repeated herein but are, where appropriate, referred to in this Oregon Spill Prevention, Control, and Countermeasure Plan.

2.0 Spill Prevention, Control, and Countermeasure Plan Compliance

2.1 Designated Person

The Renewal Corporation will designate a person responsible for implementing, maintaining, and complying with the Plan for the J.C. Boyle Development prior to the initiation of the Proposed Action.

2.2 Management Approval and Resource Dedication

The required management approval of this plan and resource dedication for implementing and maintaining this plan is provided in the cover pages herein.

2.3 Professional Engineer Certification

The required professional engineer's certification of this plan will be included upon finalizing the construction camps and prior to mobilization of the Proposed Action.

2.4 Plan Location and Availability

A certified copy of the plan will be maintained at the J.C. Boyle Development. The certified copy of the plan will be made available for all agency representative review at the J.C. Boyle Development during normal business hours (Monday through Friday, 8:00 a.m. to 5:00 p.m., with the exception of holidays).

2.5 Review, Certification, and Amendment

At a minimum, the Renewal Corporation will review this plan annually to update any contact information. Amendments to this plan will be implemented and documented as soon as possible, but no later than 6 months following preparation of the amendment. In addition, a signed statement will be included stating whether the plan will be amended. The Reviews and Amendments Record Log, document the reviews and amendments of this Plan. The log also provides a record of the Professional Engineer Certifications of the plan.

The Renewal Corporation will amend this plan whenever there is a change in facility design, construction, operation, or maintenance that materially affects the facility's potential for the discharge of oil. The plan will be amended within 6 months and amendments will be fully implemented as soon as possible, but within the 6 months following preparation of the amendment. The plan will also be amended when new regulations are promulgated to ensure that the plan and its implementation are current. Professional Engineer's Certification of applicable amendments will be performed as necessary.

The plan will be updated by the Renewal Corporation if requested/notified by the Regional Administrator as the result of a reportable spill event. The Regional Administrator will provide the terms of proposed amendment. The plan will be amended within 30 days of receipt of notice.

2.6 Facilities, Procedures, Methods, or Equipment Not Fully Operational

The J.C. Boyle Development, with the associated procedures, methods, and equipment, are operational Monday through Saturday, 24 hours a day, except for holidays.

2.7 Cross-Reference with Regulations

This plan does not follow the exact order presented in 40 CFR 112. Section headings cite, where appropriate, the relevant section(s) of the plan regulations.

2.8 Compliance with State and Local Applicable Requirements

The Renewal Corporation's implementation of this plan will comply with state and local rules, as applicable.

2.9 Substantial Harm Facility

The Proposed Action is not considered a Substantial Harm Facility (see Appendix B).

3.0 Existing Spill History

Spill history for the J.C. Boyle Development is provided in Table 3-1 below. Since 2015, two documented spills have occurred at the J.C. Boyle Development on 2/2/2016 and 3/29/2017; no oil was discharged or released to the environment or navigable water during each spill. There has not been an oil discharge from this facility > 1000 gallon to navigable waterway and there has not been two or more oil discharges in the past 12 months from this facility.

Table 3-1. J.C. Boyle Development Spill History

OBSERVATION DATE	DATE CLOSED	AGENCY NOTIFICATION REQUIRED (YES/NO)	DESCRIPTION	CORRECTIVE ACTION
2/2/2016	2/2/2016	No	The nitrogen blanket failed on the transformer associated with the J.C. Boyle unit #2 generation plant which released approximately 2 ounces of transformer oil into the vault located below the transformer. One hundred percent of the transformer oil was contained within the transformer vault. No transformer oil was released to the environment or water.	The J.C. Boyle crew began immediate assessment of the incident area to prohibit the migration of transformer oil to the environment or water. The assessment revealed the nitrogen blanket regulator valve may have become frozen during the night or never was calibrated properly, which potentially allowed the nitrogen release. An estimated 2 ounces of transformer oil was released, as a result. This was observed as a sheen in the transformer vault. Oil absorbent pads were used to clean up the spilled material. No oil was discharged or released to the environment or water.
3/29/2017	3/29/2017	No	On March 29, 2017 for the J.C. Boyle Unit 2 turbine guide bearing low level alarm was	The cause of the oil spill was determined to be a ruptured pressure gage attached to the lube oil skid associated with the turbine guide bearing. A discharge of approximately

acknowledged by the Hydro Control Center.	one gallon of hydraulic oil was released into the plant sump. No oil was discharged from the sump into the Klamath River. PacifiCorp staff took corrective actions by applying oil soaks to the sump to absorb the oil and
	replace the oil pressure gage.

4.0 Facility Map

The J.C. Boyle Development is located on the Klamath River in Klamath County, Oregon, approximately 15 miles southwest of Keno. Maps of the facility are provided in Appendix C and show all existing containers on site subject to plan rules.

5.0 Oil Container Inventory

5.1 Existing Operational Equipment Oil Containers

Table 5-1 below includes a complete list of all existing electrical and operating equipment with oil storage capacity of 55 U.S. gallons or more at the J.C. Boyle Development. This table includes only aboveground containers as there are no completely buried tanks at the J.C. Boyle Development.

Table 5-1. Existing Oil-filled Operational Equipment

EQUIPMENT NUMBER	DESCRIPTION	TYPE OF OIL	CAPACITY
01	Penstock Intake Gate Hoist Gear Box	Gear Oil	83
02	Intake Gate Hydraulic System	Food Grade Hydraulic Oil	262
03	Steel Shed Oil Storage Drums (Approx. 2)	Misc. Oil Products	110
04	Convault Fuel Tank Diesel Fuel		500
05	Convault Fuel Tank	Gasoline	1,000
06-01	06-01 Unit 1 Bearing Oil System - Lower Guide Bearing DTE Heavy		118
06-02	Unit 1 Bearing Oil System - Thrust Bearing	DTE Heavy	282
07-01	Unit 2 Bearing Oil System - Lower Guide Bearing	DTE Heavy	118
07-02	Unit 2 Bearing Oil System - Thrust Bearing	DTE Heavy	282
08-01	8-01 Unit 1 Governor Oil Accumulator Tank Hydraulic Oil		390

	Facility Total Oil Storage Capacity		
	Total Existing Storage Capacity		
17	Transformer, Pad mounted Transyl Oil		185
16	Spare Transformer - No. 3083	Transyl Oil	11,530
15-02	Main Transformer - No. 359763	Transyl Oil	9,152
15-01	Main Transformer - No. 3084	Transyl Oil	11,530
14-02	Station Service Transformer #2	Transyl Oil	185
14-01	Station Service Transformer #1	Transyl Oil	185
13	Unit 2 Butterfly Valve HPU	Hydraulic Oil	106
12	Unit 1 Butterfly Valve HPU	Hydraulic Oil	106
11	Unit 2 Inlet Valve	Hydraulic Oil	85
10	Unit 1 Inlet Valve	Hydraulic Oil	85
09-02	Unit 2 Governor Oil Reservoir	Hydraulic Oil	535
09-01	Unit 2 Governor Oil Accumulator Tank	Hydraulic Oil	390
08-02	Unit 1 Governor Oil Reservoir	Hydraulic Oil	535

Notes:

Source: PacifiCorp Spill Prevention, Control, and Countermeasure Plan for the J.C. Boyle Facility (2019)

Aboveground storage containers that must be included when calculating total facility oil storage capacity include: tanks and mobile or portable containers; oil-filled operational equipment (e.g. transformers); other oil-filled equipment, such as flow-through process equipment. Exempt containers that are not included in the capacity calculation include: any container with a storage capacity of less than 55 gallons of oil; containers used exclusively for wastewater treatment; permanently closed containers; motive power containers; hot-mix asphalt containers; heating oil containers used solely at a single-family residence; and pesticide application equipment or related mix containers.

5.2 Mobile or Portable Containers

During the Proposed Action at the J.C. Boyle Development, there will be multiple plastic totes, steel drums, and flood lights and generators with belly tanks. The Renewal Corporation will utilize secondary containment and/or dedicated manpower, equipment, and clean-up materials for this equipment based on necessity determined by an in-field assessment of the spill risk associated with specific equipment location, oil contents/volume, use, and environmental surroundings in keeping with the typical failure mode as required by the general secondary containment provisions in 40 CFR 112. At a minimum, the Renewal Corporation will maintain spill kits in the vicinity of such equipment.

5.3 Oil-Filled Manufacturing Equipment

The J.C. Boyle Development does not have any pieces of oil-filled manufacturing equipment with oil or oil- related fluid capacities of 55-gallons or more.

5.4 Mobile Refuelers and Motive Power Containers

The Renewal Corporation will utilize one mobile fuel/lube truck at the J.C. Boyle Development during the Proposed Action. Secondary containment or the dedication of manpower, equipment, and clean-up materials will be based on necessity determined by an in-field assessment of the spill risk associated with specific equipment location, oil contents/volume, use, and environmental surroundings in keeping with the typical failure mode.

Truck spill kits will be maintained on the mobile refuelers (fuel and lube trucks). The spill kits will include absorbent pads and booms for quick response to spills. The materials are in a strong zipper bag and require minimal storage space on the operating equipment.

5.5 Bulk Storage Containers

Bulk storage containers are defined as any container used to store oil. These containers will be used for purposes including, but not limited to, the storage of oil prior to use, while being used, or prior to further distribution in commerce. Oil-filled electrical, operating, or manufacturing equipment is not a bulk storage container.

The J.C. Boyle Development currently has a 500-gallon diesel fuel tank, a 1,000-gallon gasoline fuel tank and four 55-gallon oil storage drums as shown in Table 5-2 and with locations shown in Appendix C. Secondary containment is provided for all drum and tank storage.

CONTAINER DESCRIPTION	CONTAINER CONTENT	CONTAINER CAPACITY (GALLONS)	SECONDARY CONTAINMENT
Oil Storage Drums (Approx. 4)	Misc. Oil	220	Double Walled; inside Steel Container
Convault Fuel Tank	Gasoline	500	Steel tank isolated from
Convault Fuel Tank	Gasoline	1,000	concrete encasement for corrosion protection

Table 5-2. Existing Bulk Storage Oil Containers

Notes:

Source: PacifiCorp Spill Prevention, Control, and Countermeasure Plan for the J.C. Boyle Facility (2019)

Table 5-3 below includes an estimated list of construction-related bulk storage oil containers with capacity of 55 U.S. gallons or more that are anticipated to be located at vehicle staging areas at the J.C. Boyle Development during construction.

Table 5-3. Construction Bulk Storage Oil Containers

CONTAINER DESCRIPTION	CONTAINER CONTENT	CONTAINER CAPACITY (GALLONS)	SECONDARY CONTAINMENT
Steel AST	Used Oil	650	Double Walled; inside Steel Container
Steel AST	Gasoline	552	Double Walled, 110% containment Tank
Steel AST	CAT 15W-50 Engine Oil	55	Double walled; inside Steel Container
Steel AST	Mobil Hydraulic 10W	55	Double walled; inside Steel Container
Steel AST	50/50 Coolant/Antifreeze	55	Double walled; inside Steel Container
Steel AST	Mineral Spirits Material: 122374	55	Double walled; inside Steel Container
Steel AST	Lubricant 85-140	55	Double walled; inside Steel Container
Steel AST	Synthetic SAE 5W-40	55	Double walled; inside Steel Container
Steel AST	SAE 5W-30 Motor Oil	Double walled; inside Steel Container	
Steel AST	EAL 224H AW	55 Double walled; inside Steel Container	
Steel AST	Mobil DTE 10 Excel 46	55 Double walled; inside Steel Container	
Steel AST	Mobil Grease XHP 322 MINE	55	Double walled; inside Steel Container
Steel AST	Misc. Oil	55	Double walled; inside Steel Container
Steel AST	Used Oil	55	Double walled; inside Steel Container
Steel AST	Mobil Delvac 1300 Super SAE 15W-40	280	Double Walled; inside Steel Container
Steel AST	Mobil Hydraulic SAE 10W	280	Double Walled; inside Steel Container

CONTAINER DESCRIPTION	CONTAINER CONTENT	CONTAINER CAPACITY (GALLONS)	SECONDARY CONTAINMENT
Steel AST	Mobil Delvac 1300 Super SAE 15W-40	280	Double Walled; inside Steel Container
Steel AST	Mobil Delvac Extended Life 50/50 Coolant/Antifreeze	280	Double Walled; inside Steel Container
Steel AST	Gear Lubricant SAE	280	Double Walled; inside Steel Container
Steel AST	Mobile Trans HD SAE 50W	280	Double Walled; inside Steel Container
Steel AST	Drive Train Oil SAE	280	Double Walled; inside Steel Container
Steel AST	Oil Storage Drum	220	Double Walled; inside Steel Container
Generator (DCA125SSIU4F)	Diesel Fuel	169	128% spill containment of on- board engine fluids
Light Plant (ALLMAND-ML II 8V)	Diesel Fuel	100	110% spill containment of on- board engine fluids
Tandem Axle	DT-30W Drive Train Oil	100	Spill Kit
Tandem Axle	Coolant/Antifreeze	100	Spill Kit
Generator (DCA125SSIU4F)	Diesel Fuel	79	119% spill containment of on- board engine fluids
Lube Truck	Mobil 85W/140	60	Spill Kit

Notes:

AST = Aboveground Storage Tank

Monthly inspections are required for all tanks identified above.

Spill Kits, where indicated as Secondary Containment, are comprised of absorbent pads and booms and are located on and/or nearby the listed tank.

5.6 Secondary Containment

Bulk storage container installations will be constructed so that a secondary means of containment is provided for the entire capacity of the largest single container plus sufficient freeboard to contain precipitation (no less than 110% of the largest container), in order to prevent a discharge of oil from reaching navigable waterway/waters of the state. For the purposes of this plan, a 24-hour duration, 25-year recurrence frequency storm event is

considered for the allowance of precipitation volume in addition to secondary containment volume, when the oil storage location is outside without a roofed cover or are otherwise exposed to rainfall. For the J.C. Boyle Development, an average 24-hour duration, 25-year storm event of approximately 3.2 inches or 0.26 feet of accumulated precipitation (as per the National Oceanic and Atmospheric Administration) is utilized.

The remaining ASTs, steel drums, and plastic and steel totes at the Site will be stored in steel shipping containers (conexes), or are double-walled, or both. All the light towers and generators have built-in secondary containment and have spill kits nearby. In addition, the mobile refuelers all carry spill kits, which are comprised of absorbent pads and booms.

6.0 Spill Notification and Reporting

Depending upon the magnitude of a spill, the material spilled, and whether or not the spill is contained, spill reporting will require different courses of action. Whenever a spill occurs, the Renewal Corporation representative discovering the spill will, as soon as it is safely possible, notify their supervisor who will in turn notify the Spill Team Leader (or in his/her absence a designated alternate) as soon as possible (see below for Spill Team Leader contact information). If adequately trained and the conditions allow for safe access, the person who noticed the spill will then implement control and containment measures to try and minimize the extent of the spill.

The name and telephone number of the Spill Team Leader to be contacted in the event of a spill will be updated and identified prior to mobilization.

ROLE	TELEPHONE	CONTACTED
Primary Spill Team Leader	TBD	prior to initiation of construction activities
Secondary Spill Team Leader	TBD	
Security Team (available 24 hours/seven days a week)	TBD	prior to initiation of construction activities

The Spill Team Leader or his/her alternate will gather the necessary information and notify the appropriate agencies as described below. The spill response procedures are described in detail in Section 7.0. The remainder of this section presents the external notification and reporting procedures that should be followed in the event of a spill or release.

Notification and reporting procedures are often dictated by whether or not a Reportable Quantity of a substance has been released into the environment. A Reportable Quantity is a preestablished quantity of a specific chemical or material that, if released into the environment above the specified limit, will require reporting to the proper agencies. An owner or operator is

required to report a release or discharge anytime there is an uncontained release or spill of a regulated chemical that exceeds its assigned Reportable Quantity. The Reportable Quantity for oil (defined in 40 CFR 112.2) is presented below:

The Reportable Quantity for the discharge of oil including crude oil into or upon navigable waters is any amount that causes a visible film or sheen upon the surface of the water.

6.1 Spill Notification

In the event of a material release or spill above its Reportable Quantity into the environment, the Renewal Corporation will give verbal notification as soon as knowledgeable to the National Response Center (NRC) at 800-424-8802; the Oregon's Office of Emergency Management (OEM) at 503-378-2911, Oregon Emergency Response System (OERS) at 800-452-0311 or 503-378-6377, ODEQ at 503-229-5696, and the Klamath County OEM at 541-851-3741.

Spill notification is also required for oil or oil-related product releases as follows:

- Discharges or threatened discharges of oil in marine waters.
- Any spill or other release of one barrel (42 gallons) or more of petroleum products at a tank facility.
- Discharges of any hazardous substances or sewage, into or on any waters of the state (wetlands, waterways, vernal pools, etc.).
- Discharges that may threaten or impact water quality.
- Discharges of oil or petroleum products, into or on any waters (wetlands, waterways, vernal pools, etc.) of the State.
- Hazardous liquid pipeline releases and every rupture, explosion, or fire involving a pipeline.
- The release caused off-site damage to public or private property.
- An uncontrolled or unpermitted release escaped secondary containment, or extended into any sewers, stormwater conveyance systems, utility vaults and conduits, wetlands, waterways, public roads, or was conveyed off-site.

If the release of oil is on land and is not discharged or threatening to discharge into State Waters; and (a) does not cause harm or threaten to cause harm to the public health and safety, the environment, or property; property; (b) is under 42 gallons; and (c) does not enter a public stormwater or sanitary sewer conveyance system, then no notification to the Emergency Response Agency (911), ODEQ or Oregon OEM is required.

Federal

Contact NRC (800-424-8802), if:

- 1. Oil is spilled into or upon surface water or an adjoining shoreline.
- 2. Oil has potential of reaching navigable waterways.
- 3. If the release poses a significant threat to persons outside the Site.

4. If there is a release of a hazardous substance exceeding the Reportable Quantity.

State

Notification to the State Emergency Response Commission (SERC) can be made by calling the Oregon Emergency Response System (OERS) at 800-452-0311 or 503-378-6377. Initial notification can be made by telephone, radio, or in person. Spills must also be reported to the NRC at 800-424-8802. In addition, notify all Local Emergency Planning Committees (LEPCs) whose planning district could be impacted by the release. Contact information for Klamath County LEPC is 541-851-3741.

The following will be included in the initial notification:

- For OERS, advise them that you are making a 304 release notification.
- The substance name.
- Substance type.
- An estimate of the quantity released into the environment.
- The time and duration of the release.
- Whether the release occurred into air, water and/or land.
- Any known or anticipated acute or chronic health risks associated with the emergency, and where necessary, advice regarding medical attention for exposed individuals.
- Proper precautions, such as evacuation or sheltering in place.
- The name and telephone number of the contact person.

At a minimum, personnel will provide all required information as listed above. If the release occurs in an area bordering more than one state, notification may be required for the SERC and any LEPCs in the adjacent state. The Oregon Highway Patrol (911) must be notified for spills occurring on highways in the State of Oregon.

<u>Local</u>

The local Klamath County LEPC will be contacted at 541-851-3741, between 8:00 AM and 5:00 PM, Monday through Friday; 911 (all other hours) must also be notified.

In addition, the verbal notification to the NRC and Oregon OES will be made as soon as possible. Personnel will be prepared to relay as much of the information listed below that is known or can be estimated at the time of notification. The following items will be included in the initial verbal notification (Please remember this is an initial report and estimates can be corrected in the follow-up written report.):

- Date and time of release or discharge.
- Exact address or location of spill or release.
- Name and phone number of the person reporting the release or discharge.
- Chemical name or identity of any substance(s) involved in the release or discharge.

- Estimate of the quantity (gallons or pounds) discharged into the environment.
- Description of what happened.
- Any injuries caused by the release or discharge.
- Measures taken or plans to abate, contain, and clean up the spill.
- Name of organizations that have also been contacted and their respective representative's name.
- Name of organizations that are on the site of the spill and respective representative's name.
- Source of release or discharge.
- Cause or release or discharge.
- Corrective measures taken.
- Corrective measures to be taken.

When a spill is reported to the appropriate agencies, the agencies will quickly determine from the information provided what additional measures need to be taken to control the spill. They will also identify and contact other parties that should be notified of the spill, such as local fire, police/sheriff, other applicable emergency services.

Table 6-1. Spill Verbal Notification and Reporting Requirements

TYPE OF SPILL	NOTIFICATION	REPORTING
Contained spill, does not impact environment, less than 42 gallons, does not go off-site, does not enter a storm drain or sanitary sewer collection or conveyance component, and does not reach a water of the State	Verbal notification not required	Reporting not required
Contained spill, does not impact environmental media, equal to or more than 42 gallons , does not go off-site, does not enter a storm drain or sanitary sewer collection or conveyance component, and does not reach a water of the State	Verbal notification to 911, ODEQ, Oregon OEM, and RA	Follow-up emergency report (Section 6.2)
Uncontained spill, does not impact the environment, below the Reportable Quantity and less than 42 gallons, does not go off-site, does not enter a storm drain or sanitary sewer collection or conveyance component, and does not reach a water of the State	Verbal notification not required	Reporting not required
Uncontained spill, does not impact the environment, below the Reportable Quantity but equal to or more than 42 gallons, does not go off-site, does not enter a storm drain or sanitary sewer collection or conveyance component, and does not reach a water of the State	Verbal notification to 911, ODEQ, Oregon OEM, and RA	Follow-up emergency report (Section 6.2)

Uncontained spill, does not impact the environment, below the Reportable Quantity, and does enter a storm drain or sanitary sewer collection or conveyance component

Verbal notification to 911, ODEQ, Oregon OEM, and RA Reporting dependent on impacts and agency requirements

Note: "Spill" includes any spill, "release", or "discharge".

A more detailed description of spill notification procedures is provided in the Oil Spill Response Guide provided in Appendix F.

6.2 Spill Reporting

After a spill requiring agency notification (which also includes any "release" or "discharge"), the written follow-up emergency reporting will be completed as soon as practicable, but must be submitted within 30 days of the spill to the Oregon OEM and SERC (also known as the Chemical Emergency Preparedness Commission [CEPC]). This follow-up emergency report is the Renewal Corporation's opportunity to explain in its own words the circumstances and actions relating to the release of pollutants to the environment. The written emergency report will follow CEPC's "304 Emergency Release Notification Written Follow-up Report" (https://www.oregon.gov/osp/Docs/304FollowUpForm.pdf)". If any of the questions are not applicable to the incident, personnel will indicate N/A (not applicable) for that item. A copy of the Emergency 304 Emergency Release Notification Written Follow-up Report is presented in Appendix D. This information is required Per 40 CFR 355 (42USC Ch. 116 §11004 et seq.).

If the spill is a second oil spill exceeding 42 gallons at the facility location within a 12- month period, or a spill of over 1,000 gallons that has reached a water of the State, a spill report and a copy of the J.C. Boyle Development's Oregon Spill Prevention, Control, and Countermeasure Plan will be submitted to the U.S. EPA Regional Administrator and to CEPC/SERC within 60 days from the time of the discharge. The following response actions will be reported, should the above occur:

- Name of Site/Facility
- Name and title of person reporting
- Location of Site/Facility
- Maximum storage or handling capacity of the Site/Facility and normal daily throughput
- Corrective action and countermeasures undertaken, including a description of equipment repairs and replacement
- An adequate description of the Site/Facility and the surroundings, including maps, flow diagrams, and topographical maps, as necessary
- The cause of such discharge, including a failure analysis of the system or subsystem in which the failure occurred
- Additional preventative measures taken, or contemplated, to minimize the possibility of recurrence

 Other information as the U.S. EPA may reasonably require, pertinent to the Oregon Spill Prevention, Control, and Countermeasure Plan or discharge

Spill reports shall be submitted to the following:

<u>Federal</u> <u>State</u>

US EPA – Region 10, M/S OCE-201 1200 6th Avenue, Suite 155 Seattle, WA 98101 Oregon State Emergency Response Commission (SERC) 3565 Trelstad Ave SE Salem, Oregon 97317-9614

A more detailed description of spill reporting procedures is provided in the Oil Spill Response Guide provided in Appendix F.

7.0 Spill Control and Procedures

7.1 Spill Control Measures

The J.C. Boyle Development is an onshore facility, and the Renewal Corporation will comply with general rule requirements as shown in Table 7-1.

Table 7-1. General Rule Requirements for Onshore Facilities

REQUIREMENTS	N/A
Drainage from diked storage areas is restrained by valves to prevent a discharge into the drainage system or facility effluent treatment system, except where facility systems are designed to control such discharge. Diked areas will be emptied by pumps or ejectors that must be manually activated after inspecting the condition of the accumulation to ensure no oil will be discharged. [§§112.8(b)(1) and 112.12(b)(1)]	
Valves of manual, open-and-closed design will be used for the drainage of diked areas. $[\S\S112.8(b)(2) \text{ and } 112.12(b)(2)]$	
The containers at the facility are compatible with materials stored and conditions of storage such as pressure and temperature. $[\S\S112.8(c)(1)]$ and $112.12(c)(1)]$	
Secondary containment for the bulk storage containers (including mobile/portable oil storage containers) will have the capacity of the largest container plus additional capacity to contain precipitation. Mobile or portable oil storage containers are positioned to prevent a discharge as described in §112.1(b). [§112.6(a)(3)(ii)]	
If uncontaminated rainwater from diked areas drains into a storm drain or open watercourse the following procedures will be implemented at the facility: $[\S\S112.8(c)(3)]$ and $112.12(c)(3)]$	

REQUIREMENTS	N/A
Bypass valve will be normally sealed closed	
Retained rainwater will be inspected to ensure that its presence will not cause a discharge to navigable waters or adjoining shorelines	
Bypass valve will be opened and resealed under responsible supervision	
Adequate records of drainage will be kept	
For completely buried metallic tanks installed on or after January 10, 1974 at this facility $[\S\S112.8(c)(4) \text{ and } 112.12(c)(4)]$:	
Tanks will have corrosion protection with coatings or cathodic protection compatible with local soil conditions.	
Regular leak testing will be conducted.	
For partially buried or bunkered metallic tanks [§112.8(c)(5) and §112.12(c)(5)]:	
Tanks will have corrosion protection with coatings or cathodic protection compatible with local soil conditions.	
Each aboveground bulk container will be tested or inspected for integrity on a regular schedule and whenever material repairs are made. Scope and frequency of the inspections and inspector qualifications will be in accordance with industry standards. Container supports and foundations will be regularly inspected. [See Inspection Log and Schedule and Bulk Storage Container Inspection Schedule in Appendix E] [§112.8(c)(6) and §112.12(c)(6)(i)]	
Outsides of bulk storage containers will be frequently inspected for signs of deterioration, discharges, or accumulation of oil inside diked areas. [See Inspection Log and Schedule in Appendix E] [§§112.8(c)(6) and 112.12(c)(6)]	
For bulk storage containers that are subject to 21 CFR part 110 which are shop-fabricated, constructed of austenitic stainless steel, elevated and have no external insulation, formal visual inspection will be conducted on a regular schedule. Appropriate qualifications for personnel performing tests and inspections will be documented. [See Inspection Log and Schedule and Bulk Storage Container Inspection Schedule in Appendix E] [§112.12(c)(6)(ii)]	
Each container will be provided with a system or documented procedure to prevent overfills for the container. Describe: All personnel handling oil will be trained in securing master flow and drain valves as well as securing out-of-service and loading/unloading connection of oil pipelines. Container volume will always be measured physically with a stick and confirmed with visual inspection before filling. Only qualified oil-handling personnel will monitor level gauges during the filling of containers at the J.C. Boyle Development. Liquid level gauges are regularly tested and maintained to ensure proper operation. Container overfill prevention will be provided by engineering control and fuels pumps inside the fenced in compound will be instrumented	

REQUIREMENTS	N/A
Liquid level sensing devices will be regularly tested to ensure proper operation [See Inspection Log and Schedule in Appendix E]. [§112.6(a)(3)(iii)]	
Visible discharges which result in a loss of oil from the container, including but not limited to seams, gaskets, piping, pumps, valves, rivets, and bolts will be promptly corrected and oil in diked areas is promptly removed. [§§112.8(c)(10) and 112.12(c)(10)]	
Aboveground valves, piping, and appurtenances such as flange joints, expansion joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces will be inspected regularly. [See Inspection Log and Schedule in Appendix E] [§§112.8(d)(4) and 112.12(d)(4)]	
Integrity and leak testing will be conducted on buried piping at the time of installation, modification, construction, relocation, or replacement. [See Inspection Log and Schedule in Appendix E] [§§112.8(d)(4) and 112.12(d)(4)]	

In addition, the following requirements will be followed at the J.C. Boyle Development.

- Vehicle staging, cleaning, maintenance, refueling, and fuel storage will be performed at least 150 feet from waters of the state.
- All vehicles will be inspected daily for fluid leaks before leaving the vehicle staging area.
 Any leaks detected in the vehicle staging will be repaired before the vehicle resumes operation.
- Before operations begin and as often as necessary during operation, equipment will be steam cleaned (or undergo an approved equivalent cleaning) until all visible external oil, grease, mud, and other visible contaminants are removed if the equipment will be used below the bank of a waterbody,
- All stationary power equipment (e.g., generators, cranes, stationary drilling equipment) operated within 150 feet of any waters of the state will have adequate suitable containment provided to prevent potential spills from entering any waters of the state,
- An adequate supply of materials (such as straw matting/bales, geotextiles, booms, diapers, and other absorbent materials) needed to contain spills will be maintained at the project construction site and deployed as necessary, and
- All equipment operated in state waters will use biodegradable hydraulic fluid. A
 maintenance log documenting equipment maintenance inspections and actions must be
 kept on-site and available upon request.

7.1.1 Containment Structures and Equipment to Prevent Discharges for Existing Oil-Filled Equipment

Table 7-2 below identifies the electrical, operating, or manufacturing equipment currently at the facility with the potential for an oil discharge; the potential mode of failure; the flow direction; and the secondary containment method and containment capacity that is provided.

Table 7-2. Containment Structures and Equipment to Prevent Discharges for Existing Oil-filled Operational Equipment

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
01 Penstock Intake Gate Hoist Gear Box	83	Secondary Containment is provided by a constructed barrier. Containment capacity = 101 gallons.	Could discharge to the containment provided by the constructed barrier.	Pump free oil from containment to drums. Use sorbent from the spill response inventory to remove residual oil.
02 Intake Gate Hydraulic System	262	Secondary containment is provided by the containment pan on the skid and by the concrete block building that houses the skid. Food grade oil is used in the system to mitigate the effects of a spill from the hydraulic lines. Containment pan capacity = 34 gallons.	Could discharge into the containment pan of the skid, then onto the building floor and potentially onto the gravel outside the building.	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they block and absorb the flow of oil.
03 Steel Shed Oil Storage Drums (Approximately 2)	110	Secondary containment is provided by the spill pallets on which the drums sit. Containment capacity = 66 gallons.	Could discharge into the containment reservoir of the spill pallets.	Pump free oil from containment to drums. Use sorbent from the spill response inventory to remove residual oil.
04 Convault Fuel Tank	500	The container is double walled, which provides sufficient secondary containment.	Spills from the inner tank will be contained within the outer containment tank.	If the inner tank is breached, place sorbent booms and pads from the spill response inventory around the base of the tank until all product has been removed from both the main and containment tanks.

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
05 Convault Fuel Tank	1000	The container is double walled, which provides sufficient secondary containment.	Spills from the inner tank will be contained within the outer containment tank. Oil could discharge into the yard gravel only if the outer containment tank were also breached.	If the Inner tank is breached, place sorbent booms and pads from the spill response inventory around the base of the tank until all product has been removed from both the main and containment tanks.
06-01 Unit 1 Bearing Oil System - Lower Guide Bearing	118	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
06-02 Unit 1 Bearing Oil System - Thrust Bearing	282	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
07-01 Unit 2 Bearing Oil System - Lower Guide Bearing	118	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
07-02 Unit 2 Bearing Oil System - Thrust Bearing	282	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
08-01 Unit 1 Governor Oil Accumulator Tank	390	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
		Containment capacity = 3,830 gallons.		
08-02 Unit 1 Governor Oil Reservoir	535	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
09-01 Unit 2 Governor Oil Accumulator Tank	390	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
09-02 Unit 2 Governor Oil Reservoir	535	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
		sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.		as possible and prevent it from flowing into the sump.
10 Unit 1 Inlet Valve	85	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
11 Unit 2 Inlet Valve	85	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
12 Unit 1 Butterfly Valve HPU	106	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area.	Could discharge onto the powerhouse floor, through floor plates or	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
		The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	drains, and into the powerhouse sump.	manner as to absorb as much oil as possible and prevent it from flowing into the sump.
13 Unit 2 Butterfly Valve HPU	106	Secondary containment is provided by the concrete powerhouse sump located near the southwest corner of the plant and construction area. The sump is equipped with level controls and a programmable oil sensor that function to prevent oil discharges from the sump. Containment capacity = 3,830 gallons.	Could discharge onto the powerhouse floor, through floor plates or drains, and into the powerhouse sump.	Deploy sorbent booms and pads from the spill response inventory between the spill source and the powerhouse sump in such a manner as to absorb as much oil as possible and prevent it from flowing into the sump.
14-01 Station Service Transformer #1	185	No secondary containment is provided for the Station Service Transformers.	Could discharge onto the ground surrounding the service transformer, which is covered with gravel.	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they block and absorb the flow of oil.
14-02 Station Service Transformer #2	185	No secondary containment is provided for the Station Service Transformers.	Could discharge onto the ground surrounding the service transformer, which is covered with gravel.	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
				places and manners that they block and absorb the flow of oil.
15-01 Main Transformer - No. 3084	11,530	Secondary containment for the two main transformers is provided by the two curbed transformer pads that are connected by buried piping. The pads drain to a sump equipped with an oil sensor that shuts off the pump when oil is detected. Containment capacity = 17,851 gallons.	Could discharge onto the transformer pad and be contained by the concrete curb surrounding the transformer pad.	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they block and absorb the flow of oil.
15-02 Main Transformer - No. 359763	9,152	Secondary containment for the two main transformers is provided by the two curbed transformer pads that are connected by buried piping. The pads drain to a sump equipped with an oil sensor that shuts off the pump when oil is detected. Containment capacity = 17,851 gallons.	Could discharge onto the transformer pad and be contained by the concrete curb surrounding the transformer pad.	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they block and absorb the flow of oil.
16 Spare Transformer - No. 3083	11,530	Secondary containment is provided by the curbed transformer pad and an oil collection vault. The vault is equipped with an oil sensor that shuts down the pump when oil is detected. Containment capacity = 12,321 gallons.	Could discharge onto the transformer pad, through a drain line, and into the oil collection vault.	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they block and absorb the flow of oil.

EQUIPMENT NUMBER/ DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
17 Transformer – Pad Mounted 3 Phase Transformer	185	No secondary containment is provided for the Station Service Transformers.	Could discharge onto the transformer pad, and surrounding gravel surface between the transformer and the fire/irrigation water pump house.	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they black and absorb the flow of oil.
18 Construction Diesel Storage Tank 1	1000	Double-walled tank on concrete pad	Could discharge from the fill nozzle downhill from the tank	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they black and absorb the flow of oil.
19 Construction Diesel Storage Tank 2	1000	Double-walled tank on concrete pad	TBDCould discharge from the fill nozzle downhill from the tank	Place sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they black and absorb the flow of oil.

Notes:

Source: PacifiCorp Spill Prevention, Control, and Countermeasure Plan for the J.C. Boyle Development (2019)

7.1.2 Containment Structures and Equipment to Prevent Discharges for Construction Bulk Storage Oil Containers

Table 7-3 identifies construction-related bulk storage oil containers at the facility with the potential for an oil discharge; the potential mode of failure; the flow direction; and the secondary containment method and containment capacity that is provided.

Table 7-3. Containment Structures and Equipment to Prevent Discharges for Construction Bulk Storage Oil Containers

CONTAINER DESCRIPTION	MAXIMUM VOLUME (GALLONS)	SECONDARY CONTAINMENT AND CAPACITY	DISCHARGE POTENTIAL/DIRECTION OF FLOW	SPILL RESPONSE EQUIPMENT PLACEMENT
Mobile Maintenance / Refueler Tank	60 to 100	Manpower and spill kits containing absorbent pads	Tank failure (collapse or puncture below product level). Direction of flow: ground surface	Manpower and spill kits containing absorbent pads and booms.
Generator Tank	79	Double walled tank, 119% spill containment system for on- board engine fluids	Tank failure (collapse or puncture below product level). Direction of flow: ground surface	Manpower and spill kits containing absorbent pads and booms.
Light Plant Tank	100	Double walled tank, 110% spill containment system for on- board engine fluids	Tank failure (collapse or puncture below product level). Direction of flow: ground surface	Manpower and spill kits containing absorbent pads and booms.
Generator Tank	169	Double walled tank, 128% spill containment system for on- board engine fluids	Tank failure (collapse or puncture below product level). Direction of flow: ground surface	Manpower and spill kits containing absorbent pads and booms.
AST	280 to 650	Double walled steel tank, inside steel container	Tank failure (collapse or puncture below product level). Direction of flow: ground surface	Manpower and spill kits containing absorbent pads and booms.
AST	5000	Double walled steel tank, attached steel containment pan	Tank failure (collapse or puncture below product level). Direction of flow: ground surface	Manpower and spill kits containing absorbent pads and booms.

Note:

AST = Aboveground Storage Tank Transfer Operations

7.2 Routine Handling of Products

Good housekeeping practices will be implemented at the J.C. Boyle Development to maintain a clear and orderly facility, which will reduce the potential for chemicals or oil to come in contact with soils, stormwater, or groundwater. Site personnel will be instructed that all oil material storage and delivery areas must remain neat and orderly and be free of any spills or debris, as per Kiewit standard operating procedures.

When equipment is in operation, employees will routinely inspect the equipment at least once per shift. Whenever an employee utilizes a fueling facility, obtains other oil products from a bulk oil container, or places waste oil in a bulk oil container, the employee will check for leaks and minor spills.

7.3 Unloading Procedures

Unloading procedures for tank trucks are detailed in the Tank Truck Unloading Procedures, a copy of which is provided in Appendix G. These procedures will be followed exactly or used as a guide for training purposes with the intent that site-specific conditions will dictate the exact methodology for:

- Control and clean-up of minor spills.
- Use of drip pans and absorbent pads and booms.
- Procedures for chocking and signing trucks.
- Ensuring closure, capping, and locking of fill valves after filling to prevent drips or leakage.
- The various steel drums, the lubricating oils and hydraulic fluid do not have any type of visual, mechanical, or electrical tank level indicators.
- All ASTs that are refilled have gauges that are used to ensure they are not overfilled.
 The fuel vendor's tank truck driver and a facility employee provide continuous
 observations during unloading of inbound oil or oil-related products; or outgoing spent or
 waste oil or oil-related products.
- All valves, pump controls, loading connections, and any other equipment, which may cause spillage of oil-related materials are secured, locked, and capped when in nonoperating mode or in standby status.

7.4 Facility Transfer Operations

Oil transfer operations will mainly involve minor volumes within the J.C. Boyle Development from bulk-storage containers to the various pieces of equipment and vehicles including fueling vehicles.

There is no known buried oil transfer, distribution, or conveyance piping within the J.C. Boyle Development. All oil transfer, distribution, or conveyance piping is above ground.

All fuel or oil transfer points will be properly labeled, and all pipe supports will be properly designed to minimize abrasion and corrosion. All secondary containment drain valves that could discharge oil will be locked closed when the valves are in non-operating position. All unloading connections for oil transfers will be securely capped or blank-flanged when not in service, or when in standby service for any extended time. Aboveground piping is designed to ensure minimal hazards with vehicular traffic. No piping exists in areas with vehicular traffic.

All aboveground piping, valves, fittings, hoses, and appurtenances are regularly inspected for signs of leaks, corrosion, stress, or other signs indicative of a pending release point.

7.4.1 Oil Transfer to Container

General oil transfer procedures are provided in a checklist in Appendix H. This checklist will be used as a guide for training purposes for all new drivers with the intent that site-specific conditions will dictate the exact methodology to be used to ensure safe oil transfer.

When transferring oil from a storage container to a working container for placement in a service operation, the following spill procedures will be followed:

- Active drums used for oil distribution shall be supported on a spill basin, within an oil barrier, or atop oil-absorbing pads. The pads will not be completely spent, and only one active barrel of each chemical type will be opened at a time.
- When pouring oil from a distribution barrel, vessel, or container, oil-absorbing pads will be located below the container to catch any fluid spilled during the process.
- The container being used for the transfer of oil to field equipment will have self-closing lid, sealed lid, or valve which prevents oil being spilled in transit.
- An oil-absorbing pad will be placed below the inlet where oil is poured into the equipment or system. Pads will be replaced when three-quarters of the surface area is spent.
- Oil will not be transported in open pails and will not be allowed to fill greater than threequarters or the capacity of the container; oil will also not be transported by hand in containers greater than five gallons.

7.4.2 Oil Transfer to Equipment

When transferring oil from an oil distributor to a plant and/or construction area by pump transfer, bulk container, or commercial drum, the following spill prevention procedures will be followed:

- When transferring petroleum products in bulk by pump, hose ends will be drained in an
 available drum both before and after transfer. When couplings are connected, oilabsorbing pads will be placed below couplings connections and couplings checked to
 ensure tight and proper connection.
- If there are leaking or dripping connections, joints will be repaired before transferring oil.
- When pouring oil form a distribution barrel, vessel, or container, oil-absorbing pads will be located below the container to catch any fluid spilled during the process.

7.4.3 Oil Drip Collection

When collecting oil drip vessels or container staged about a plant and/or construction area, the following preventative spill procedures will be followed:

- Oil will be collected before three-quarters of the container becomes full.
- Upon placing pads, cans, or containers, an oil pad will be staged below the container to absorb any oil that may condense on the container or inadvertently drip on the ground.
- Upon retrieving the container, only one container will be collected at a time and covered with an oil-absorbing pad during transport to the waste drum area.
- Upon pouring the used oil into collection drums, oil will be transferred to the drum using an appropriate funnel.
- Residual oil found on the outside of the drip container and atop the collection drum will be wiped clean before returning collection container back in service.

7.4.4 Detailed Oil Transfer Procedures (Containers with >5000 Gallon Capacity)

The 15-01 Main Transformer – No. 3084 has a 11,530-gallon capacity and the 15-02 Main Transformer – No. 359763 has a 9,152-gallon capacity (Table 7-2) and both are currently at the J.C. Boyle Development. Both transformers have secondary containment using two curbed transformer pads that are connected by buried piping. The pads drain to a sump equipped with an oil sensor that shuts off the pump when oil is detected. The secondary containment capacity is 17,851 gallons. In the event of a spill, spill response will involve placing sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they block and absorb the flow of oil.

The 16 Spare Transformer - No. 3083 has a 11,530-gallon capacity (Table 7-2) and is currently at the J.C. Boyle Development. Similar to containment measures for the two main transformers (section 7.4.4.1), secondary containment will be provided by the curbed transformer pad and an oil collection vault. The vault is equipped with an oil sensor that shuts down the pump when oil is detected. The secondary containment capacity is 12,321 gallons. In the event of a spill, spill response will involve placing sorbent booms and sorbent pads from the spill response inventory downstream of the equipment and in the flow path in places and manners that they block and absorb the flow of oil.

A certified contractor will transfer the oil from all three transformers into a DOT-approved vessel and dispose of the oil off site. At a minimum, the oil transfer procedure will follow all protocols described in Section 7.4.1.

8.0 Procedures for Spill Containment, Cleanup, and Reporting

8.1 Spill Containment and Cleanup Equipment

The J.C. Boyle Development maintains an adequate supply of spill control equipment to respond to spills. In the event of a release, the J.C. Boyle Development has trained personnel and on-site equipment available to contain and clean-up any minor oil spills. The following response equipment will be maintained at the various bulk oil storage container areas within the J.C. Boyle Development and staging areas and will be available in the event of a spill of a regulated material:

- Spill kits (absorbent pads, pillows, and booms)
- · Bulk absorbent material
- Shovels and pumps
- Mops and drums

8.2 Spill Containment

The facility employs a variety of countermeasures to contain spills once they occur. The secondary containment features around all bulk oil storage containers will prevent a spill from happening.

NOTE: TYPICAL RESPONSE IS LIMITED TO RECOGNITION, DIVERTING, AND MITIGATING SPREAD OF A SPILL, UNLESS RESPONDING KIEWIT STAFF HAVE COMPLETED AND ARE CURRENT WITH THE REQUIRED HAZWOPER AND SPILL RESPONSE TRAINING, AND ARE UNDER THE DIRECTION AND SUPERVISION OF THE SPILL TEAM LEADER.

If a minor oil product spill occurs in a secondary containment area, safety and protection of human health is first priority. All pumps or valves will be immediately shut-off or closed, and all transfer operations will be stopped if safe to do so. If safe access can be afforded, then the supply and source of the spill will be determined, and the leak will be stopped. If a small release (typically less than 5 gallons) occurrs, the spilled oil material will be removed with absorbent materials (pads, pillows, and bulk material) and thethe spent absorbent materials will be placed in a properly labeled, Department of Transportation (DOT) approved container for transport offsite for disposal purposes. If a larger (typically greater than 5 gallons of oil product) release occurs within the secondary containment area, the spilled oil product will be recovered with pumps or a vacuum truck. The spill cleanup materials will be properly discharged into DOT-approved and properly labeled drums or left in the vacuum truck; and transported and disposed/recycled off-site at a permitted facility. Residual oil product will be collected with absorbent materials (pads, pillows, booms, or bulk material) to the extent practicable. No "wash-down" of spilled oil materials will occur.

Should a spill escape the secondary containment structure, the following general procedures are followed:

- Safety and protection of human health is first priority.
- Immediately shut off all pumps or close appropriate valves and stop all transfer operations if safe to do so.
- Determine the supply and source of the spill and stop the leak, if possible and is safe to do so.
- Contact emergency response personnel.
- Warn people in the area if there is a danger to life or property; warn all facility personnel, guests, and visitors that may be in the area.
- Assist any injured people.
- Provide physical barrier to prevent unauthorized access to spill.
- Control and contain the spilled material, limiting the extent of the spill, especially if there is a danger of it entering an on- or off-site stormwater or sanitary sewer conveyance system, or waterway; or spreading off-site.
- Utilize absorbent pads, blankets, booms, spill dikes, absorbent bulk material berms or soil berms as needed to divert and contain the flow and keep the spilled oil material from going off- site or into a storm drain feature or surface water body, or into a sanitary sewer facility.
- Cover and contain as feasible and divert flow around and away from any storm drain collection features (drop inlets, area drains, curb inlets, catch basins, ditches, etc.), limiting the extent of the spill, especially if there is a danger of it entering an off-site stormwater or sanitary sewer conveyance system, or waterway.
- Recover and remove the spilled material as quickly as possible. For small quantities,
 utilize absorbent materials; for larger quantities, the Kiewit Project Director will make a
 decision whether to use portable pumps and waste containers/tanks to collect the spill;
 or to contract with outside spill response contractor. The recovered material must be
 properly contained (in containers compatible with materials recovered) and stored until
 disposed of by an acceptable method in accordance with all local, state and federal
 requirements.
- Remove residual material by the use of absorbent materials. When saturated, the
 absorbent material must be properly containerized (in containers compatible with
 materials recovered), stored, and disposed of, by an acceptable method in accordance
 with all local, state, and federal requirements.
- These procedures vary depending on the size and location of the spill. Employees who
 have received Spill Prevention, Control, and Countermeasure Plan training are qualified
 and authorized to undertake response and countermeasures to minor oil spills.

8.3 Spill Control Equipment

The J.C. Boyle Development maintains an adequate supply of spill control equipment to respond to spills. In the event of a release, the J.C. Boyle Development has trained personnel and on-site equipment available to contain and clean-up any minor oil spills. On-site equipment and materials include PPE, spill kits, and absorbent materials such as booms, pads, and bulk absorbent material.

The J.C. Boyle Development also has a limited amount of small-scale heavy equipment that, if properly trained employees are available, will be used to assist in spill control and containment, (i.e., the creation of temporary berms, boom/pad layout, temporary plugging, or redirection of stormwater run-off, etc.).

8.4 Spill Clean-Up

The facility employs a variety of countermeasures to handle spills once they occur. These procedures vary depending on the size and location of the spill. The following procedures should be implemented in the case of small spills retained within containment areas, if safe to do so.

- Absorb spilled materials using loose absorbent materials, pads, blankets, or pillows for low volume releases; a contracted vacuum truck will be utilized for larger oil spill or oily water recovery. Non-liquid materials will be picked up with non-sparking shovels or with brooms and dust pans.
- The recovered oil product, oily water, and/or spent absorbent materials will be placed in DOT-approved containers and will be disposed of off-site in accordance with applicable federal and state regulations. Container liners will be used as required.
- The Kiewit Project Director and/or Project Environmental Coordinator will be consulted to ensure proper labeling of drums and disposal techniques and procedures.
- Properly label all drums for temporary on-site storage and off-site disposal.
- Clean spill control equipment and return them to proper storage space.
- Clean and/or restore spill surface as needed.
- As applicable, retain all wash and rinse water and transfer to appropriate on-site location for temporary storage management according to state and federal regulations; or permitted on-site treatment and/or disposal facility.
- Establish and maintain an exclusion zone in the area of the spill to prevent unauthorized contact with spilled material, clean-up materials, and to avoid impacts to the public and to other Kiewit employees and guests during the spill response and clean-up period.
- Determine spill reporting requirements and contact the appropriate agencies.
- File a completed Spill Release Report Form with the ODEQ (e.g., Oregon Emergency Response System) in Appendix D, any forms from the National Response Center (see section 8.3.3) and document the spill internally with the Renewal Corporation.

Large spills or spills that have the potential to enter the environment may require the response of an outside spill response contractor. In addition, per the Clean Water Act Section 401 certification for the KRRC License Surrender and Removal of the Lower Klamath Project, if a release of petroleum products, chemicals, or other materials results in distressed or dying fish, personnel will immediately do the following: cease operations; take appropriate corrective measures to prevent further environmental damage; collect fish specimens and water samples; and notify ODEQ and Oregon Department of Fish and Wildlife.

8.5 Response to Discharge in Water

A discharge to water is defined as a discharge of any amount of oil to any portion of the Klamath River, its tributaries, associated reservoirs, or other regulated bodies of water. In general, cleanup of a discharge to water is beyond facility personnel capability. This is because discharges to water spread quickly over the surface of still water and downstream in fast water, require specialized equipment and training to clean up, and involve actions that pose unacceptable safety risk to untrained facility personnel. In the event of a discharge to water, the following guidelines apply:

- Assess the situation for safety.
- If it is safely possible, attempt to stop the source of the discharge.
- Notify the Kiewit Project Director and Primary Spill Team Leader.
- Notify all local, state, and federal agencies (see Table 8-1).
- Contact spill response contractors as required (see Table 8-1).
- Take actions to contain and lean portions of the spill only is it can be completed safely and in accordance with training received.
- Deploy absorbent booms in still or slow-moving water, as appropriate, to contain absorb, and/or divert oil spilled into water.
- Agency notification is required and will be completed by 24/7 on-call compliance duty person.

8.6 Spill Response during Off-Shifts, Weekends or Holidays

For spills occurring during off-shifts, weekends and holidays, notify the Spill Team Leader immediately.

8.7 Recovered Spill Material Containment and Disposal

The following response equipment will be maintained at the various bulk oil storage container areas within the J.C. Boyle Development and will be available in the event of a spill of a regulated material:

- Spill kits (absorbent pads, pillows, and booms)
- Bulk absorbent material
- Shovels and pumps
- Mops and drums

8.8 Methods of Disposal

Wastes resulting from all discharge response efforts will be containerized in impervious bags, drums, or buckets. The Kiewit Project Director and Primary Spill Team Leader will coordinate with a compliance technician to characterize the waste for proper disposal and ensure that it is removed from the facility and properly disposed. All waste will be disposed of by a licensed waste hauler in accordance with local and state regulations.

8.9 Contact Information

The J.C. Boyle Development is located at:

John C. Boyle Hydroelectric Development 26020 Highway 66 Keno, OR 97627

Table 8-1 below provides some contact information for the J.C. Boyle Development including emergency response reporting organizations, key facility personnel, and local emergency departments. Additional contact information will be updated and identified prior to mobilization.

Table 8-1. Contact Information for the J.C. Boyle Development

CONTACT ORGANIZATION / PERSON	TELEPHONE NUMBER
National Response Center (NRC)	1-800-424-8802
Cleanup Contractor(s) NWFF	1-800-942-4614
KEY FACILITY PERSONNEL	
Designated Person Accountable for Discharge Prevention:	Office: TBD
Kiewit Project Director	Emergency: TBD
Primary Spill Team Leader	Office: TBD
	Emergency: TBD
Secondary Spill Team Leader	Office: TBD
	TBD
Security Team	Office: TBD
	Emergency: TBD
STATE OIL POLLUTION CONTROL AGENCIES	
Oregon Office of Emergency Management (OEM)	503-378-2911
Oregon Emergency Response System (OERS) / State Emergency Response Commission (SERC)	800-452-0311 or 503-378-6377
Oregon Department of Environmental Quality	503-229-5696

OTHER STATE AND FEDERAL AGENCIES			
National Response Center (NRC)	800-424-8802		
US EPA, 24-Hour Environmental Emergencies	1-800-300-2193		
Oregon Highway Patrol	911		
LOCAL AGENCIES			
Klamath County Office of Emergency Management	541-851-3741		
Keno Fire Department	911 or 541-884-5844		
Klamath Falls Police Department	911 or 541-883-5336		
Sky Lakes Medical Center OTHER CONTACT REFERENCES (E.G., DOWNSTE FACILITIES)	541-882-6311 REAM WATER INTAKES OR NEIGHBORING		
TBD	TBD		

9.0 Inspections, Testing, and Recordkeeping

9.1 Inspections and Tests

Uniform inspection procedures have been established and will continue during the implementation of the Proposed Action at the J.C. Boyle Development to help in preventing spills; prevent and address leakage; and to maintain the integrity of the bulk oil containers (ASTs, drums, barrels, etc.); and the associated containment measures.

Oil storage containers are subject to specific inspection procedures. Each aboveground bulk storage container will be visually inspected and tested for integrity monthly, and whenever material repairs are made. The frequency and type of testing will take into account the size and design of the container, (e.g., floating roof, skid-mounted, elevated, or partially buried). The container's supports and foundations will be inspected, and the outside of the container will be inspected frequently for signs of deterioration, discharge, or accumulation of oil on the outside of the container or inside diked areas. Records of inspections and testing will be kept in a secure, dry place for at least three (3) years.

There are single-wall shop-fabricated steel tanks and/or drum type bulk oil storage containers at the J.C. Boyle Development covered under this Oregon Spill Prevention, Control, and Countermeasure Plan. Specific inspection procedures are presented below for these bulk

storage containers. For any oil-filled equipment, the same type of inspections and inspection frequencies will be followed as listed below for the oil-filled containers.

The ASTs will be inspected in accordance with Steel Tank Institute's Standard for the Inspection of Aboveground Storage Tanks, SP001, issued January 2018, 6th edition. This standard applies to aboveground storage tanks (ASTs) storing stable, flammable, and combustible liquids at atmospheric pressure with a specific gravity less than approximately 1.0.

The STI SP001 standard consists of two types of inspections that will be conducted at the facility. The first type of inspection is called a Periodic Inspection that is conducted by qualified personnel. The second type of inspection is a Certified Inspection normally conducted by a certified inspector, but through a provision in STI SP001 for the types and sized of bulk oil storage containers and oil-filled equipment at the J.C. Boyle Development, will be conducted by trained and qualified personnel.

9.2 Periodic Inspections

The periodic inspection program will consist of routine and monthly visual inspections of each oil- containing AST, drum, or equipment. The inspections will be performed by the Spill Team Leader, or his/her designee. Inspections will be documented using an inspection checklist which will be located on Site (Section 9.2.2).

9.2.1 Routine Inspections

ASTs, equipment reservoirs, oil-filled equipment, and drums and any associated above-grade oil product distribution lines, dispensing equipment, valves, or dispensing hoses will be visually inspected during normal business hours by operating personnel during the normal course of business.

Operators will look for signs of equipment deterioration and/or leaks. Leaks from ASTs, equipment reservoirs, oil-filled equipment, drums, associated piping or hoses, valves, or caps will be investigated, and the source problem will be promptly corrected.

All oil or oil-related product valves, flanges, hoses, and piping are aboveground, and will be regularly examined by operating personnel. Documentation of routine inspections will not be required but suggested when issues or problems are found as per the Kiewit Daily Visual Inspection (DVI) program.

9.2.2 Monthly Visual Inspections

Items on the monthly inspection checklist sheet include: ASTs, measurement devices, equipment reservoirs, oil-filled equipment, drums, tank foundations and supports, pipelines, hoses, pumps, valves, roadways, containment, portable equipment, machinery and ladders, fire extinguishers, safety equipment and stations, signs, placards, and storm drainage facilities. All container supports and foundations will be inspected, and the outside of the container will be

inspected for signs of deterioration, discharge, or accumulation of oil on the outside of the container or inside secondary containment areas.

An example monthly oil storage container visual inspection checklist is presented in Appendix I and a more specific checklist, designed to match up with Kiewit's KieTrac program, is provided in Appendix D. A monthly inspection checklist will be completed via KieTrac and signed by the appropriate facility supervisor or manager, and any required remedial action will be implemented by the appropriate facility supervisor or manager to minimize any spill risk and facilitate spill prevention. Copies of the completed monthly oil storage container visual inspection checklists will be stored electronically in Kietrac and accessible at the J.C. Boyle Development for a period of at least three (3) years.

Facility personnel, who are familiar with the facility operations involving oil or oil-related product use at the J.C. Boyle Development, and this Oregon Spill Prevention, Control, and Countermeasure Plan and its related policies, will perform the monthly visual inspections. It is the responsibility of the Spill Team Leader, or his designee, to routinely inspect all facilities which could contribute to a pollution incident, with the express intent of detecting and correcting weaknesses or suspected problems before spills, releases, or potential failure could occur.

9.2.3 Stormwater

Inside the outdoor secondary containment area(s) of the outdoor drum storage areas (palletized secondary containment); rainwater can accumulate in the concrete-walled and in the palletized secondary containment. After a major storm event, qualified personnel will inspect the accumulated rainwater in secondary containment structures for signs of oil impact (sheen, emulsion, film, etc.). If no oil impacts are observed, the accumulated rainwater in the secondary containment structure will be allowed to drain either by gravity drainage; or will be removed by the utilization of a portable submersible sump pump under direct responsible supervision, as applicable. If the accumulated rainwater demonstrates oil impact, then alternative arrangements will be made to remove, contain, and transport off Site the impacted accumulated rainwater following state and federal requirements.

9.3 Certified Inspection

The certified inspection will be conducted on the steel tanks in accordance with the frequency specified in the standard by a qualified tank inspector. A certified inspection will not be performed on the bulk oil storage drums. A qualified tank inspector is a person who is certified by one or more of the following sources:

- American Petroleum Institute (API) Certified AST Inspector; API AST Inspector Certification Program, 1220 L Street NW, Washington, D.C. 20005.
- Steel Tank Institute (STI) trained and certified inspectors who have received their training by STI; STI, 570 Oakwood Road, Lake Zurich, IL 60047.

The STI SP001 standard will be utilized for the "certified" inspection of the ASTs at the J.C. Boyle Development. The STI SP001 standard specifies tank inspection requirements for: 1)

formal external inspection guidelines (horizontal ASTs, vertical or rectangular ASTs, and insulated ASTs), and 2) formal internal inspection guidelines. Inspections will be recorded on a Certified Tank Inspection Report to be provided by the inspector.

In accordance with SP001, ASTs with a capacity of less than or equal to 5,000 gallons will only have periodic external visual inspections. The SP001 standard requires that the owner or his designee perform and document a periodic, visual, non-destructive inspection of each AST at least monthly, in accordance with the provisions and the checklists provided in SP001. This inspection will be performed by a person that is knowledgeable of the storage facility operations, the AST and its associated components, and the characteristics of the liquid stored, and meets the qualifications stipulated in SP001. The routine inspections focus specifically on detecting any change in conditions or signs of product leakage from the AST, piping system, and appurtenances. In accordance with inspection procedures outlined in this Oregon Spill Prevention, Control, and Countermeasure Plan, if signs of leakage or deterioration from the AST are observed by facility personnel, they will be immediately reported to the Spill Team Leader who will then contract to have the AST inspected by a tank inspector (certified by API or STI) to assess its suitability for continued service, according to SP001.

Facility personnel who conduct the monthly inspections of the bulk oil storage containers will be qualified in accordance with SP001. The AST's physical configuration, combined with monthly inspections, ensures that any small leak that could develop in the tank shell will be detected before it can become significant, escape secondary containment, and reach the environment. This approach provides equivalent environmental protection to the non-destructive shell evaluation component of integrity testing required under 40 CFR 112.8(c)(6) since it provides an appropriate and effective means of assessing the condition of the tank and its suitability for continued service.

Thus, in lieu of physical integrity testing, this conformance with SP001 provides an equivalent environmental protection to prevent a discharge, as described in 40 CFR 112.1(b).

9.4 Recordkeeping

Reviewed and signed bulk oil storage container and containment inspection checklists and test records will be kept on file in a dry, weather resistant area at the J.C. Boyle Development for at least three (3) years. The completed inspection checklists will be considered to be a part of this SPCC Plan. As noted in the completed inspection checklist and test records, appropriate remedial or corrective action will be implemented as necessary to facilitate spill prevention and countermeasure.

Documentation of all training pertaining to this SPCC plan will be maintained by the manager for at least three (3) years. Documentation will additionally be stored on the Kiewit Project SharePoint.

10.0 Training and Awareness

Kiewit has an extensive training program for all management and operations personnel at the Site. New employees will receive introductory training on environmental, health, and safety issues, during the new employee orientation. Since all operations at the J.C. Boyle Development are conducted under Kiewit's standard operating procedures (SOP), there will be an extensive training program for the employees understanding and utilization of the SOPs.

In addition to equipment operation and manual tasks, site personnel will receive training in health, safety, and environmental issues at the site including the following topics:

- Site Hazards
- Hazard Communication
- General Safety Rules
- Emergency Action and Fire Prevention Plan
- Hazardous Materials Storage and Handling Plan
- Personal Protective Equipment applicable to their work tasks
- Safety Permits
- Emergency Response
- Environmental Awareness
- Spill Hazard Recognition and Reporting
- Spill Reporting
- Waste Minimization
- Hazardous Waste Handling

Annual refresher training will be provided to all applicable employees to ensure understanding of the Spill Prevention, Control, and Countermeasure Plan for the J.C. Boyle Development. Annual refreshers will also include a discharge briefing section including the following topics: known discharges, failures, and recently developed precautionary, control, and countermeasures. Also, periodic reviews of existing requirements and briefings on new requirements will be provided at monthly safety meetings.

Additional training on SPCC Plan Amendments will be completed as necessary. The items to be covered in these training sessions will include, but not necessarily be limited to, the following:

- Operation and maintenance of equipment to prevent discharges.
- Discharge procedure protocols including notification requirements (internal and external); control and countermeasure implementation; communications and alarm systems; response procedures to various types of spills; and location and use of spill response equipment.
- Applicable pollution control laws, rules, and regulations.
- General facility operations.
- Contents of this SPCC Plan.

- Highlights and descriptions of known discharges or failures, malfunctioning components, and any recently developed precautionary measures.
- Reporting requirements to regulatory authorities.

Documentation of all employee training is kept in the main Kiewit office and on the Kiewit SharePoint website.

10.1 SPCC Training

Personnel responsible for handling oil will be trained in the operation and maintenance of equipment to prevent discharges including discharge procedure protocols, applicable pollution control laws, rules, and regulations, and general facility operations. Discharge prevention briefings will be conducted for oil-handling personnel annually to assure adequate understanding of the SPCC Plan for the J.C. Boyle Development. Such briefings will highlight and describe past reportable discharges or failures, malfunctioning components, and any recently developed precautionary measures.

10.2 Toolbox Talks

Toolbox talks will cover discharge prevention briefings. These talks will be conducted for oil-handling personnel annually to assure adequate understanding of the SPCC Plan for the J.C. Boyle Development. Talks will highlight and describe past reportable discharges or failures, malfunctioning components, and any recently developed precautionary measures.

10.3 Security

10.3.1 Main Facility

Security measures for oil handling, processing, and storage areas will be always implemented at the J.C. Boyle Development. Preventing unauthorized access will be conducted via security lighting, fences, and guard shack and success in security measures will stem from preventative measures and training to prevent unauthorized access to oil handing, processing, and storage areas. The J.C. Boyle Development is protected on all sides by a chain link fence with barbed wire. Road access to the facility will be controlled by manned guard shacks with pipe gates and unmanned pipe gates as shown in Appendix C.

The fuel pump storage area will be securely locked when the facility is closed or in standby status for an extended period of time. All master flow and drain valves in the fuel pump storage area will be locked in the closed position when the facility is closed. The diesel and gasoline fuel dispensing pumps are air-operated and outside of construction hours and during non-standby status, the air power to these pumps will be cut off the prevent unauthorized use. Loading and unloading connections for the diesel and gasoline tanks will be secured with lockable caps on the fill port tank tops. The fill ports on these fuel tanks will be unlocked only for refilling or inspection purposes and will be locked when tanks are not in service or are in standby status for an extended period.

The fuel pump storage area, waste storage area, and all SPCC container and tank storage areas will have adequate lighting to allow personnel to identify spills or leaks and to minimize the risk of discharges occurring though acts of vandalism.

After hours, gates will be closed and locked. Access to the site during non-regular hours will only be gained through contact with the Kiewit Project Director. Private vehicles will not be allowed on the construction site unless approved by the Kiewit Project Director. If approved on site, private vehicles will adhere to all instructions and safety requirements designated by the Kiewit Project Director. If traveling through or to any operational areas, private vehicles will be escorted. Visitors will undergo a visitor's induction and their host will be responsible for all actions and conduct of the visitor. During all times, visitors will be accompanied by personnel who have previously undergone training as described in Section 10.0.

10.3.2 Spencer Creek

Resource Environmental Solutions (RES) will establish a construction staging area at the Spencer Creek restoration area. The staging area will be protected on all sides by a chain link fence with barbed wire. Fueling of construction equipment will take place via a mobile fuel truck during daylight hours. The fuel truck will be stored in a secure offsite facility after hours. The procedures outlined within this SPCC plan for handling, containment, and inspections will be utilized by RES during refueling operations at Spencer Creek.

11.0 References

Federal Energy Regulatory Commission (FERC). 2018 Order Amending License and Deferring Consideration of Transfer Application FERC Project Nos. 2082-062 and 14803-000. 162 FERC ¶ 61,236. Washington, DC, Federal Energy Regulatory Commission, Office of Energy Projects, Division of Hydropower Licensing.

PacifiCorp (PacifiCorp). 2004. Environmental Report. Final License Application, Volume 2, Exhibit E. Klamath Hydroelectric Project (FERC Project No. 2082).

Lawrent Mannath Brainst FFDO No. 44000	
Lower Klamath Project – FERC No. 14803	
	Appendix A
	, ippo::dix / t
	Quick Reference Information

Quick Reference Information

John C. Boyle Hydroelectric Facility

26020 Highway 66

Keno, OR 97627

PHONE

Spill Team Leaders

Primary Spill Team Leader	TBD
Telephone:	TBD
Secondary Spill Team Leader	TBD
Telephone:	TBD
Security Team (available 24 hours/seven days a week)	TBD
Telephone:	TBD

Local/State/Federal Agencies

Federal Energy	Regulatory	Commission ((FERC)) Regional	Office :	503-552-2715
		- ciliiii		,		, , , , , , , , , , , , , , , , , , , ,

National Response Center (NRC)	800-424-8802
Oregon Office of Emergency Management (OEM)	503-378-2911
Oregon Emergency Response System (OERS) / State Emergency Response Commission (SERC)	800-452-0311
Oregon Department of Environmental Quality (ODEQ)	503-229-5696
Klamath County Office of Emergency Management	541-851-3741
Keno Fire Department	911 or 541-884-5844
Klamath Falls Police Department	911 or 541-883-5336
Sky Lakes Medical Center	541-882-6311

Emergency Response Contractors

TBD TBD

Oil Spill Discharge Notice

In the event of an oil spill, employees will take the following actions:

- 1. Immediately notify Spill Team Leader or closest supervisor.
- 2. The Spill Team Leader (primary or alternate) or supervisor in the absence of the Spill Team Leader(s) will assemble the Response Team (properly trained employees) for immediate action.
- 3. The properly trained employees will contain the spill with an absorbent material such as floor dry or absorbent pads or booms.
- 4. The properly trained employees will take steps to safelystop the cause of spill such as shut off pumps, close valves, or stop loading/unloading operations.
- 5. Take additional steps as directed by the Spill Team Leader(s) or supervisor to contain or clean up the spill.
- 6. Make every effort to prevent the spillfrom reaching surrounding or underlying soil, sanitary sewers, storm sewers, ditches, streams, ponds, or otherwise escaping from the Site.

Discharge to Water

A discharge to water is defined as a discharge of any amount of oil to any portion of the Klamath River, its tributaries, associated reservoirs, or other regulated bodies of water. In general, cleanup of a discharge to water is beyond Facility personnel capability. In the event of a discharge to water, immediately notify the Spill Team Leader and follow all reporting and response procedures for discharges in Section 8.5 of this SPCC.

Reportable Quantity

In the event of a spill, estimate the amount of oil or fuel released and report this quantity to the Spill Team Leader(s). The Spill Team Leader(s) will determine if agency verbal notification and/or report(s) is/are needed. The Spill Team Leader(s) is familiar with the reporting procedures (Section 6.0) and has a copy of this SPCC Plan. Below provides a summary of reporting requirements for local, state, and federal agencies.

Release Reporting Requirements

Pertinent federal and state reporting requirements are summarized below. Complete spill reporting procedures are presented in Section 6.0 of this SPCC.

Federal

A report must be made to the National Response Center (800-424-8802) if there is a single discharge of more than 1,000 US gallons; or more than 42 gallons in each of two discharges within any 12-month period. In addition, contact the National Response Center, (800) 424-8802, within an hour of the event if:

- 1. Oil is spilled into or upon surface water or an adjoining shoreline.
- 2. Oil has potential of reaching navigable waterways.
- 3. If there is a release of a hazardous substance exceeding the Reportable Quantity (Section 6.0).

State

Immediate notification must be made to the Local Emergency Response Agency (911); Oregon Office of Emergency Management (OEM) at 503-378-2911, Oregon Emergency Response System (OERS) / State Emergency Response Commission (SERC) at 800-452-0311; and the Oregon Department of Environmental Quality (ODEQ) at 503-229-5696; and the Klamath County Office of Emergency Management at 541-851-3741 for any of the following:

- Discharges or "threatened release" of oil in marine waters
 - A "threatened release" is a condition creating a substantial probability of harm that requires immediate action to prevent, reduce, or mitigate damages to persons, property, or the environment (Health and Safety Code §25501 (v)).
- Any spill or other release of one barrel (42 gallons) or more of petroleum products at a tank Facility
- Discharges of any hazardous substances or sewage, into or on any waters of the state (wetlands, waterways, vernal pools, etc.) that produce a sheen on the water
- Discharges that may threaten or impact water quality
- Any found or lost radioactive materials
- Discharges of oil or petroleum products, into or on any waters (wetlands, waterways, vernal pools, etc.) of the State
- Hazardous liquid pipeline releases and every rupture, explosion, or fire involving a pipeline
- A release causing off-site damage to public or private property
- An uncontrolled or unpermitted release that has escaped secondary containment, orextended into any sewers, stormwater conveyance systems, utility vaults and

conduits, wetlands, waterways, or public roads, or was conveyed off-site.

If the release of oil is on LAND and is not discharged or threatening to discharge into State Waters and (a) does not cause harm or threaten to cause harm to the public health and safety, the environment, or property; (b) is under 42 gallons; **and** (c) does not enter a public stormwater or sanitary sewer conveyance system, then **no notification** to the OEM, OERS/SERC, ODEQ or Klamath County Office of Emergency Management **is required**.

The Oregon Highway Patrol (911) must be notified for spills occurring on highways in the State of Oregon. The nearest highway is I-5.

Local

In the event of either of the above, the local Certified Unified Program Agency (CUPA) must also be notified. Call the Klamath County Office of Emergency Management at 541-851-3741 (between 8:00 AM and 5:00 PM, Monday through Friday) or 911 after office hours.

Lower Klamath Project – FERC No. 14803					

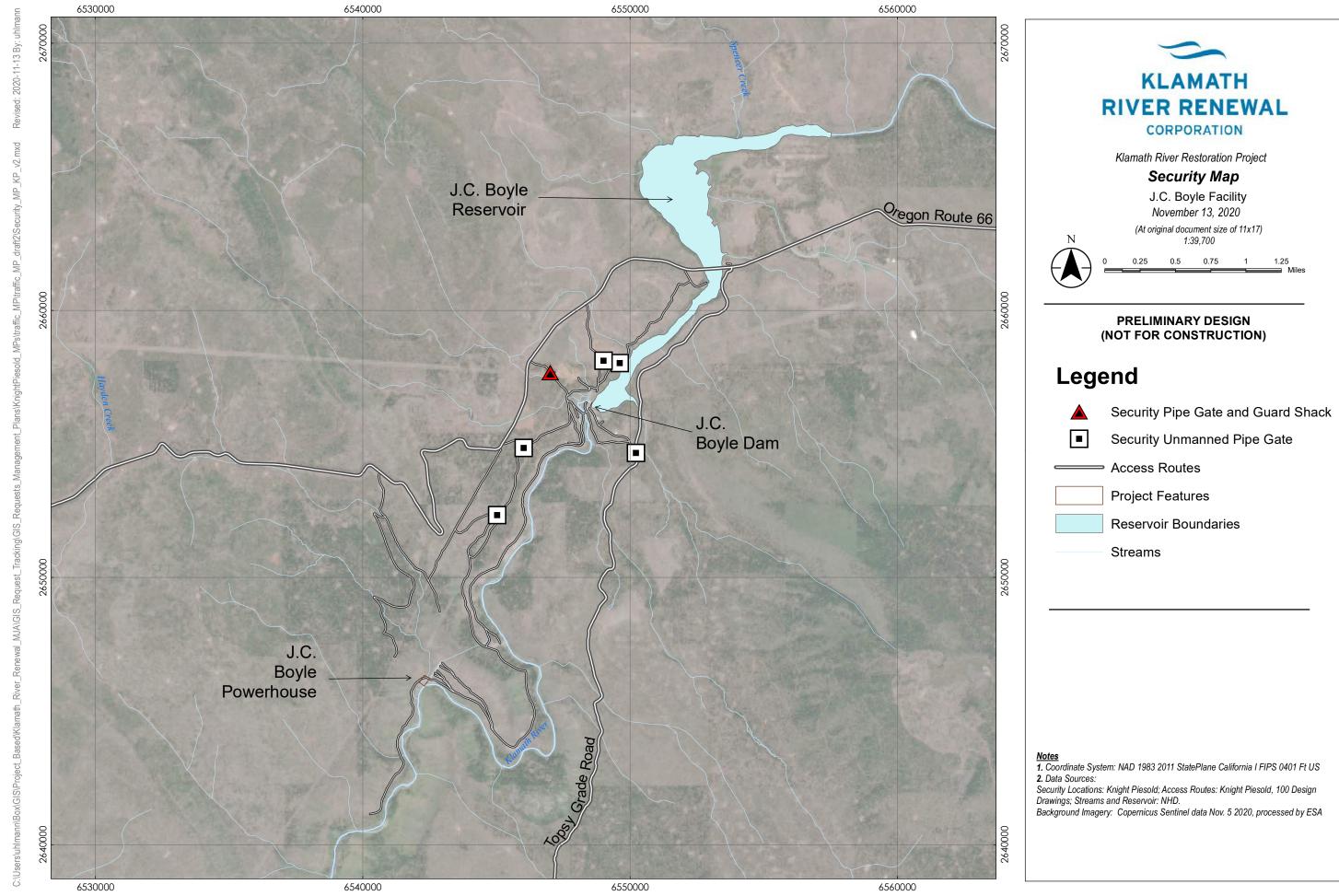
Appendix B

Certification of the Applicability of the Substantial Harm Criteria

Appendix B

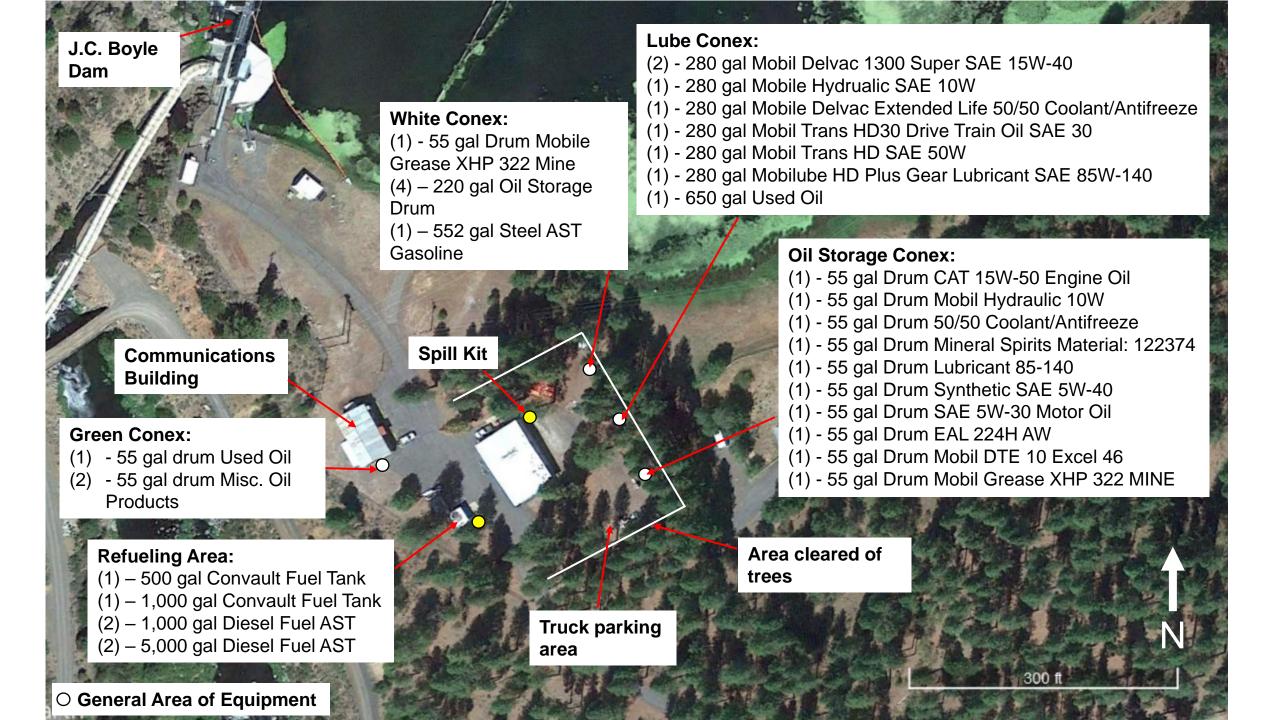
J.C. Boyle Facility Certification of the Applicability of the Substantial Harm Criteria

Facili	ty Name: J.C. Boyle Facility
Facili	ty Address: John C. Boyle Hydroelectric Facility, 26020 Highway 66, Keno, OR 97627
1.	Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?
Yes_	No <u>X</u>
2.	Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?
Yes_	No <u>X</u>
3.	Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to this appendix to a comparable formula) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? For further description of fish and wildlife and sensitive environments, See Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments" (see Appendix E to this part, Section 10, for availability) and the applicable Area Contingency Plan.
Yes_	No X
4.	Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to this appendix or a comparable formula) such that a discharge from the facility would shut down a public drinking water intake?
Yes_	No <u>X</u>
5.	Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced reportable oil spill in an amount greater than or equal to 10,000 gallons within the past five (5) years?
Yes_	No X

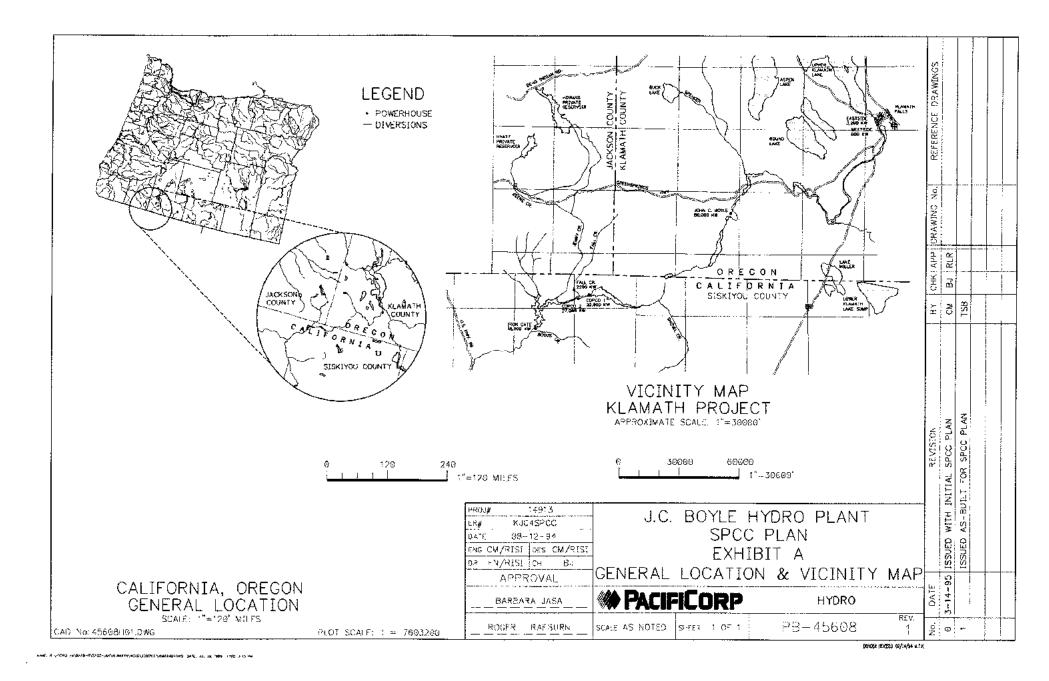

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

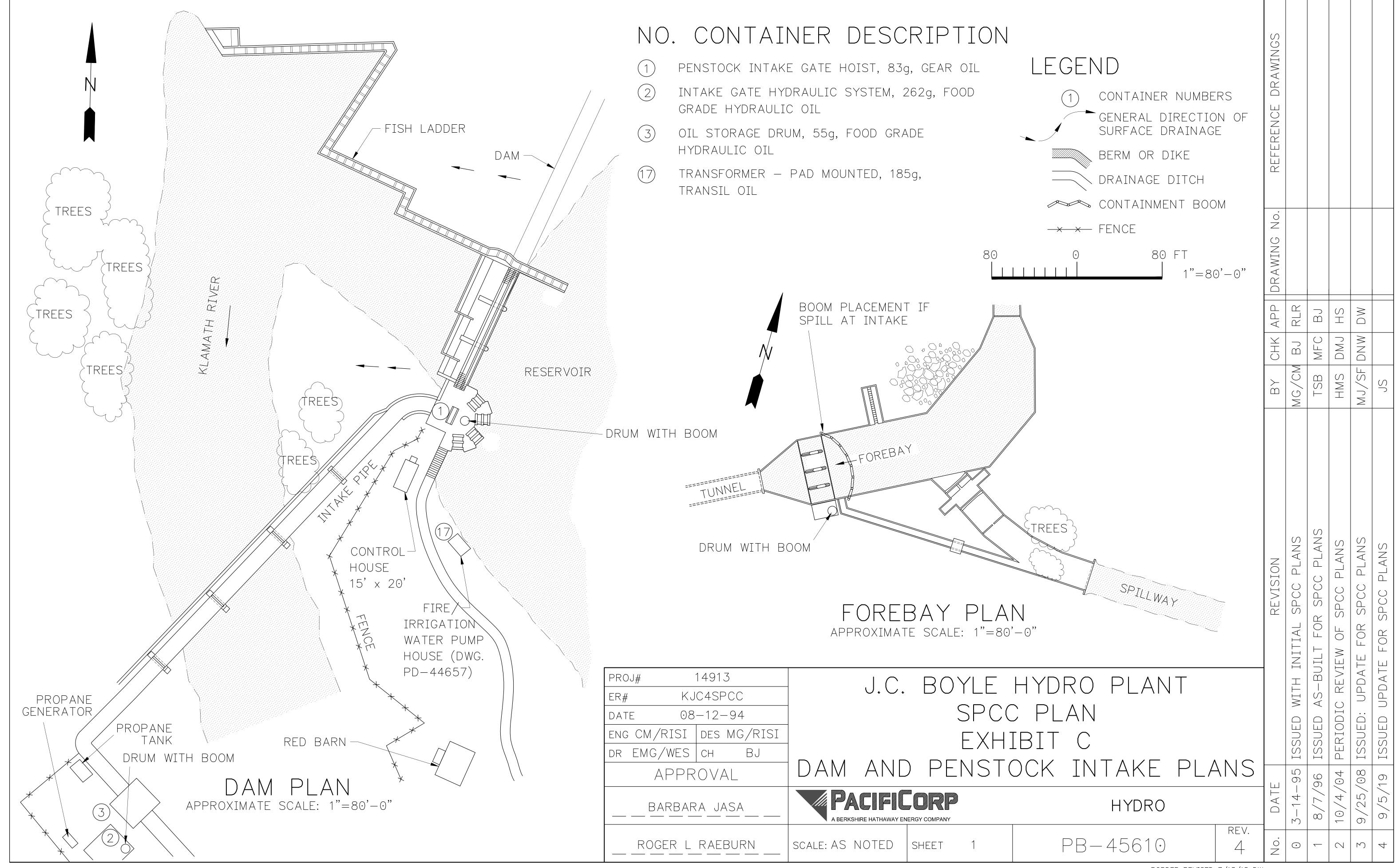
	Signature:
	Name:
	(please print or type)
Title:	Date:

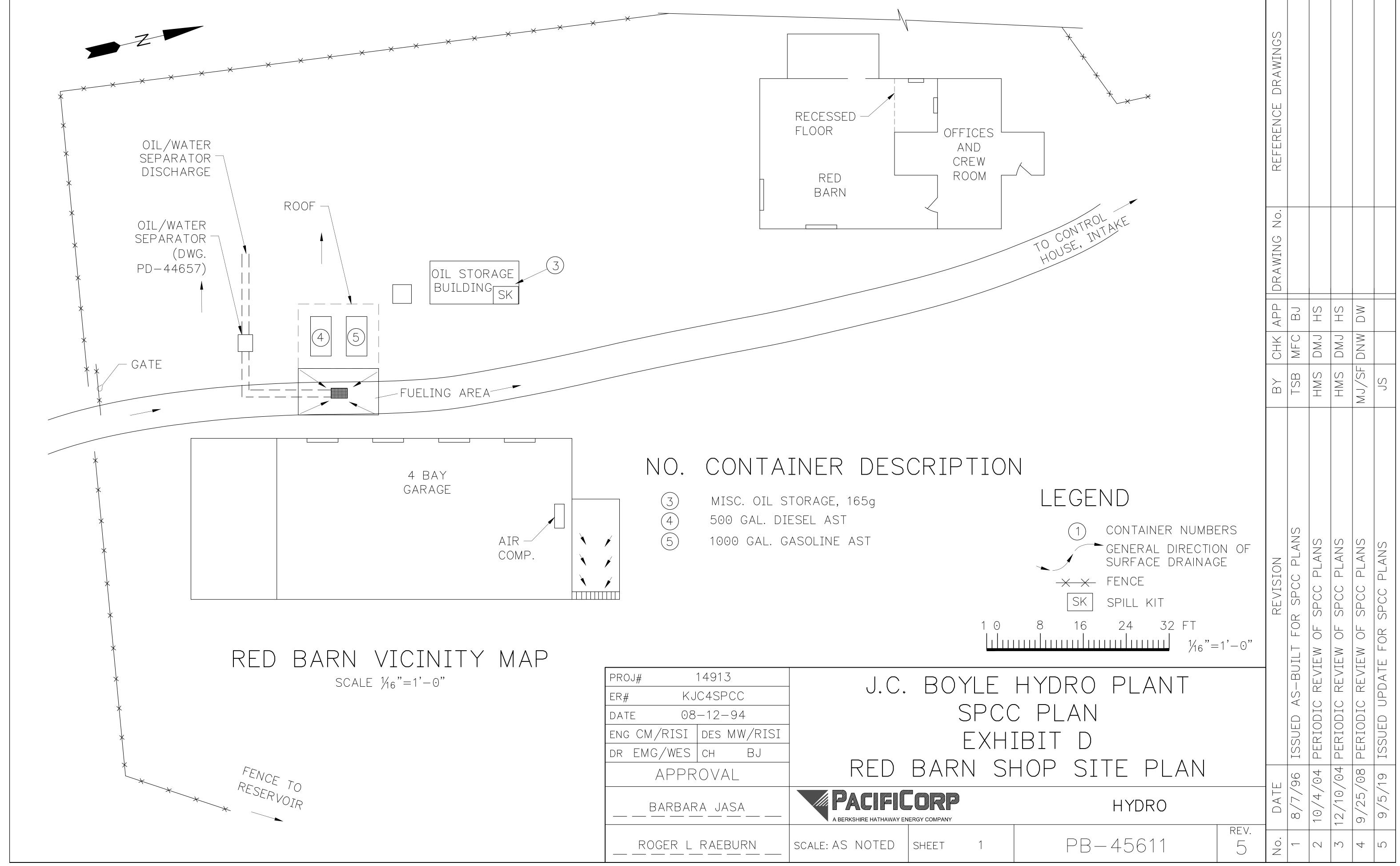

Lower Klamath Project – FERC No. 14803					

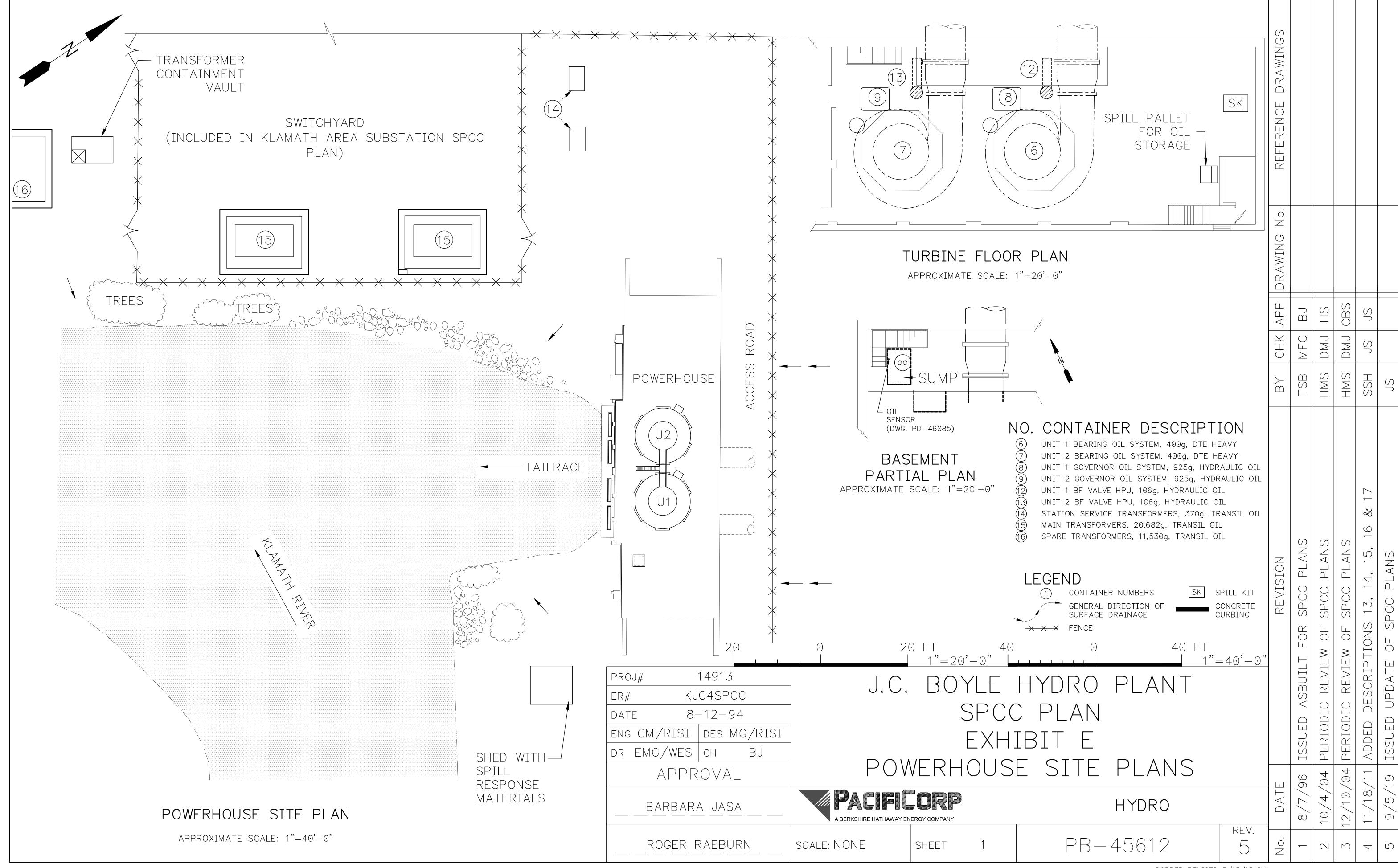
J.C. Boyle Facility Maps


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. McMillen Jacobs Associates has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

McMillen Jacobs Associates assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.







Lower Klamath Project – FERC No. 14803					

Appendix D

Internal Spill Report Form and CEPC Form

Appendix D J.C. Boyle Facility Internal Spill Report Form

NOTE: All spill reports are uploaded to KieTrac.

	oil or hazardous substance spill, the Spill Report Form must be completed to the extent ilable prior to contacting regulatory agencies and/or emergency response organizations.
Date of Spill:	Date of Spill Discovery:
Time of Spill:	Time of Spill Discovery:
Facility Name: J.C. I	Boyle Facility
Facility Location (Ad	ddress/Lat-Long/Section Township Range):
Name and Title of D	iscoverer:
Damage and injuries	S:
National Response	Center (800) 424-8802 called; name of person to whom report was made; and time called:
	nergency Management (OEM) 503-378-2911 called; name of person to who report was made;
and time called:	
	ice of Emergency Management 541-851-3741 called; name of person to whom report was made;
Cleanup contractor	contacted; name of person who was spoken to; and time called:
Other and time:	
Type of material spil	lled and manufacturer's name:
Description of spill lo	ocation:

Directions from nearest community:
Estimated volume of spill:
'
Weather conditions:
Tanagraphy and surface conditions of spill site.
Topography and surface conditions of spill site:
Spill underlying medium (pavement, sandy soil, water, etc.):
Proximity of spill to surface waters:
Did the spill reach a body of waterYesNo
If so, was an oil sheen present on the water body?YesNo
Describe the causes and circumstances resulting in the spill:
Describe the extent of observed contamination, both horizontal and vertical (i.e., spill-stained soil in a 5-foot radius to
a depth of 1 inch):
a deptil of 1 mon).
Describe immediate spill control and/or cleanup methods used and implementation schedule:
Current status of cleanup actions:
Name/Company/Address/Phone Number for the following:
The state of the s
Spill Team Leader:
Person Who Reported the Spill:
- Stock Who Reported the opin.
Environmental Inspector:

Form completed by:	Date:

304 Emergency Release Notification WRITTEN FOLLOW-UP REPORT

Per 40 CFR 355 (42USC Ch. 116 §11004 et seq.)

This form must be submitted within 30 days of the release.

GENERAL INFORMATION
1. COMPANY NAME:
2. LOCATION ADDRESS:
3. COMPANY CONTACT PERSON:
4. CONTACT PHONE NUMBER:
RELEASE INFORMATION
5. CHEMICAL RELEASED:
6. AMOUNT/STATE OF RELEASE:
7. DATE/TIME OF RELEASE:
8. DATE/TIME STOPPED:
9. LOCATION OF SPILL:
10. ACTIONS TAKEN:
11. RELEASE REPORTED TO:
12. PERSON(S) AGENCY
REPORTING RELEASE:
13. KNOWN HEALTH RISKS:

304 Emergency Release Notification WRITTEN FOLLOW-UP REPORT

Per 40 CFR 355 (42USC Ch. 116 §11004 et seq.)

This form must be submitted within 30 days of the release.

14. ADVICE FOR EXPOSED INDIVIDUALS:
15. ADDITIONAL INFORMATION:
16. LIST OF ATTACHED INFORMATION:

MAIL TO BOTH: Oregon State Emergency Response Commission (SERC)

3565 Trelstad Ave SE Salem, Oregon 97317-9614 Erin Williams
US EPA – Region 10, M/S OCE-201
1200 6th Avenue, Suite 155

Seattle, WA 98101

<u>EMAIL TO</u>: <u>or serc@osp.oregon.gov</u> AND <u>sfm.cr2k@osp.oregon.gov</u> AND <u>Williams.Erin@epa.gov</u>

Lower Klamath	Project -	FERC No.	14803
---------------	-----------	----------------------------	-------

Appendix E

Bulk Oil Container Inspection Checklist and Secondary Containment Retained Precipitation Discharge Log

Appendix E J.C. Boyle Facility

Bulk Oil Container Inspection Checklist and Secondary Containment Retained Precipitation Discharge Log

These written inspection and log forms or their KieTrac equivalent, and their associated procedures, are to be completed by qualified and trained J.C. Boyle (Kiewit) facility personnel and signed by the appropriate Kiewit supervisor or manager. They should be made part of the Kiewit facility SPCC Plan or stored electronically and maintained for a period of three (3) years. The qualified and trained inspector must complete this form for each oil-containing container listed in the Kiewit facility SPCC Plan on a monthly basis.

The secondary containment retained precipitation discharge log must be completed at every discharge of accumulated precipitation and other waters within the secondary containment areas.

1.1.1.1 J.C. Boyle Facility

Oil Containing Equipment, ASTs, Reservoirs, or Drums Inspection Checklist

Date:	Inspected By:
Tank N	o./Drummed Area NoTank/Drum Contents:
Genera	al Comments:
Legend	d: "X" = Satisfactory; "RR" = Repair Required; "NA" = Not Applicable
	Container Structure and Corrosion Control
	General tank/drum appearance good: No rusting, corrosion, pitting, cracking, seam failure leaks or drips (circle if present)
	Tank/drum surfaces and underlying areas absent of any oil product or other signs of leakage, overfilling, or spillage.
	General pipes and valves appearance good: No rusting, corrosion, pitting, cracking, leaks or drips (circle if present)
	All insulating/isolating flange washers and sleeves in place and not damaged
	All ground and/or anode straps in place and not damaged
	Bolt, rivets, or seams not damaged
	For Tanks/Equipment Reservoirs: all access manways or ports fastened tight and secured
	For Tanks/Equipment Reservoirs: Supporting structures and seismic/floating restraints competent, in place, and functioning
	For Tanks/Equipment Reservoirs: all vents clear, all fill ports capped and locked
	For Tanks/Equipment Reservoirs: all site gauges, mechanical gauges, overfill prevention devices, and other appurtenances are operable and functioning
	For Drums: all fill ports adequately capped and sealed; drum top adequately secured; drums placed outside of areas of vehicular traffic
	Paint/ coating in place and not damaged
Corre	ctive Action Needed:

	Hoses and Piping
	General pipes and valves appearance good: No rusting, corrosion, abrasion, pitting, cracking, leaks, or drips (circle if present)
	All valves in locked position; all locks/chains in place to prevent valve movement
	All valved connection or fill port ends blind-flanged or capped
	Buried piping is not exposed
	Buried piping's cathodic protection in place
	Secondary containment around piping or hoses outside of secondary containment areas in place with no apparent damage
Corre	ctive Action Needed:
	Rainwater Accumulations/Contamination
	Water in Containment Area: Yes/No (circle); if so free of oil sheen presence: Yes/No (circle); If water present was water removed as part of inspection: Yes/No (circle)
	Containment area drainage valves are closed and locked to prevent valve movement.
	All tank/drum surfaces clean and absent of signs of leakage; spillage, or overfilling
Corre	ctive Action Needed:
Sign	age/Security
	All required placards, signage, and labels are in place and current
	High level alarms functioning properly and tested to verify
	All AST, equipment, or piping barricades, bollards, guards, or fencing is in place to prevent damage from vehicular traffic or equipment movement
Corre	ctive Action Needed:

Inspection Checklist Stormwater

Removal/Dewatering Form

Project Name:	J.C. Boyle Facility	Tank/Equipment ID Number (if applicable):	
Date & Time:		Type of Tank/Equipment in containment (generator, transformer, fuel tank, etc.):	
Tank/Equipment Location:		Your Name:	

This procedure is for draining storm water from secondary containment enclosures for fuel tanks, generator containments, transformer containments and sumps.

1.1.2 This form is used to ensure that oil pollutants are not able to migrate or mix with surfaced waters.

1	Look at the containment. Is there water in the containment with a sheen on it?	No, there is no oil sheen or residue observed – proceed to step # 3 Yes, an oil sheen or residue exists – proceed to step # 2	Yes/No (circle one)	
2	Use oil absorbent white diapers to collect sheen from water, repeat step 1.	If the quantity of oil or fuel is too great to be removed with diapers, contact your supervisor or environmental to get assistance with disposal.	Mark X when complete	
3	Allow clean water to drain from the containment.	To do this insert clean sump pump, open drain valve or fold down flexible containment.	Mark X when complete	
4	Re-stage the containment back to proper working order.	Ensure containment has all sides erected and supported. Pumps and hoses should be removed from containment.	Mark X when complete	
5	Take oily diapers and debris to Green Conex for disposal.	Oil diapers must be bagged and placed into an oily debris black barrel, located at the green conex.	Mark X when complete	
6	Give this COMPLETED form to Kiewit Environmental.	COMPLETED form can be submitted by scan and email, hand delivered or dropped off at building 1 environmental drop•box.	Mark X when complete	
Con	Comments:			

Signature	hv	field	one	eration
Jidi latul C	ω	IICIU	ODG	, auon

This form will be maintained with the project SPCC environmental files.

Lower Klamath Project – FERC No. 14803	
	_
	Appendix F

Oil Spill Response Guide

Appendix F J.C. Boyle Facility Oil Spill Response Guide

These written instructions provide a generalized outline for a spill response. However, the magnitude, type of released materials, weather conditions at time of release, and the associated hazards they present will dictate the actual type of response performed. All responses shall take into account personnel and public health and safety as priority. All spill response must be performed by skilled, qualified, and trained responders and be as approved by or contracted by J.C. Boyle Facility (Kiewit), and the associated Spill Team Leader.

Oil Spill Response Guide

1. Introduction

1.1 Purpose

The purpose of this Spill Response Guide is to provide a generalized guidance document regarding the procedures to be followed by Kiewit staff in the event of a spill at the Kiewit facility.

1.2 Chain-of-Command

A chain-of-command for the responsibility and supervision of the implementation of this Spill Prevention, Control, and Countermeasure Plan (SPCC) has been developed and made known to all applicable Kiewit employees and supervisory personnel. This chain-of-command outlines the emergency notification procedures to be used in the event of an oil spill. Kiewit personnel are instructed to immediately contact the Spill Team Leader in the event of a spill incident. The Spill Team Leader will make an immediate inspection and assessment of the spill; implement initial spill control and countermeasures as applicable; and advise designated management personnel.

The name and telephone number of the Spill Team Leader to be contacted in the event of a spill is:

Primary Spill Team Leader	IRD
Telephone:	TBD
Secondary Spill Team Leader	TBD
Telephone:	TBD
Security Team (available 24 hours/seven days a week)	TBD
Telephone:	TBD

1.3 Incident Occurrence

The following sections detail the response actions of the various personnel involved in responding to an emergency incident.

1.3.1 Observation/Immediate Corrective Action/Containment

When a spill incident occurs, the Kiewit employee who witnesses the spill shall conduct the following actions:

- Notify the employee's supervisor of the spill incident.
- Employee's supervisor notifies the Spill Team Leader of the incident.
- The Spill Team Leader will notify other Site workers, contractors and visitors of the potential hazards
 present and notify appropriate Federal, State, Local and Emergency Agencies, as warranted per the
 details in Section 6.0 of the SPCC Plan.

Any employee who witnesses the spill is trained during initial employment to determine: the type of material spilled and its associated hazards; the extent and need for control or countermeasure for the release; and if the implementation of spill control and countermeasure/clean-up measures can be implemented safely. The employee reporting the spill incident shall remain at a safe location near the incident until spill team responders arrive or is told otherwise by the employee's supervisor or the Spill Team leader.

In the case where verbal notification to regulatory authorities is required (as per Section 6.0 in the SPCC), the Spill Team Leader reporting the spill incident to applicable regulatory agency or emergency services personnel will typically provide the following information:

- Person and job title of person making report (if not the Spill Response Team Leader/Spill Incident Responsible Person), with applicable contact information.
- Exact address and location of the Site, including longitude and latitude if requested.
- Date, duration, and estimated time of initial release.
- Type of material released and indication if material is an extremely hazardous substance.
- Estimates of the quantity released (in pounds [required] / in gallons [optional]).
- Released to what medium (containment structure, building interior, outside paved surface, outside permeable (graveled, landscaped, or bare ground surface, air, water, etc.).
- Whether an evacuation is needed, or has been initiated.
- Source of the release.
- Cause of the release (human error, equipment malfunction, vehicle impact, etc.).
- Description of the location of the release.
- Description of all affected media (surface water, ground water, soils, pavements, facilities, and air).
- Physical damage to or loss of facilities.
- Human injuries or rapid illnesses (including anticipated acute or chronic human-health based risks).
- Actions being used to stop, control, contain, remove, and mitigate the effects of the release, and discharge.
- Did the discharged material enter a sanitary sewer collection and conveyance system on-site and /or off-site, including the Site's septic tank or leachfield.
- Did the discharged material enter a surface/stormwater collection and conveyance system on-site (i.e. the sumps), or was it conveyed off-site.
- Total estimated volume and type of oil products on-site ("approximately 700 pounds/100 gallons of diesel fuel").
- Names of individuals and organizations that have been contacted.
- Emergency personnel and regulatory authorities on scene.
- Emergency personnel and regulatory authorities notified.

Once immediate and further control, countermeasure, and clean-up activities have been implemented and the incident has been controlled and stabilized, the Spill Team Leader will conduct an assessment to determine the appropriate further actions, if any, including the identification of external reporting

obligations. The primary focus of the assessment is to gather factual information regarding the nature, extent, and timeframe of the release as well as to determine potential impacts to on-site and off-site personnel and all environmental media. The assessment includes a review of the spill/release details, the nature and quantity of material involved, and the reportable quantity.

1.4 Agency Notification

Based on the assessment, the Spill Team Leader determines whether immediate notification to agencies, including United States Environmental Protection Agency (U.S. EPA), Oregon's Office of Emergency Management (OEM), Oregon Emergency Response System (OERS), local emergency response personnel, and other local regulatory authorities is required.

Per 40 CFR 112.7(a)(4), the Spill Team Leader, or other personnel designated, will report the following information to all agencies requiring notification:

- Exact address or location and phone number of Site (Refer to Applicable Appendix).
- Date and time of the discharge.
- Type of materials discharged.
- Estimates of the total quantity discharged (pounds/gallons [use 8.3 pounds per gallon]).
- Source of discharge.
- A description of all impacted media (soil, groundwater, surface water, air, etc.).
- The cause of the discharge.
- Any damages or injuries caused by the discharge.
- Actions being used to stop, remove, and mitigate the effects of the discharge.
- Whether an evacuation is needed.
- The names of individuals and/or organizations that have also been contacted.

Primary Contacts:

- National Response Center (NRC)
- Oregon's Office of Emergency Management (OEM)
- Oregon Emergency Response System (OERS)

In the event of an incident that presents a serious hazard to property or public health and safety, the Spill Team Leader or his designee will notify the following municipal agencies:

Fire 911
 Sheriff / Police 911

1.5 Spill Response Procedures

Spill control and cleanup equipment, such as absorbent materials pads, socks, pillows, booms, bulk loose, brooms, shovels, and portable pumps, as well as personal protective equipment, are located in spill kits placed in proximity to the bulk oil container locations.

The following general procedures will be initiated upon the release of oil and/or liquid chemicals:

- 1. Spill and Hazard Recognition
- Recognizes that spill has occurred.
- Identify the type of material release and its potential hazards; review MSDS as warranted.
- Assess the hazards to human health and the environment as represented by the spilled materials.
- Determines best next course of action for response and notification in accordance with the Kiewit SPCC plan.
- 2. Spill Response Procedure for On-Site Personal
- Safety and protection of human health is first priority.
- Immediately shut off all pumps or close appropriate valves and stop all transfer operations if safe to do so.
- Determine the supply and source of the spill and stop the leak, if possible and is safe to do so.
- Contact emergency response personnel, as warranted.
- Warn people in the area if there is a danger to life or property, warn all plant employees, and assist
 any injured people.
- Provide physical barrier to prevent unauthorized access to spill.
- NOTE: TYPICAL SPILL RESPONSE IS LIMITED TO RECOGNITION. DIVERTING. AND
 MITIGATING SPREAD OF SPILL ONLY. UNLESS RESPONDING KIEWIT STAFF HAVE
 COMPLETED AND ARE CURRENT WITH THE REQUIRED HAZWOPER AND SPILL RESPONSE
 TRAINING. AND ARE UNDER THE DIRECTION AND SUPERVISION OF THE SPILL TEAM
 LEADER.
- Control and contain the spilled material, limiting the extent of the spill, especially if there is a danger of
 it entering an on- or off-site stormwater or sanitary sewer conveyance system, or waterway, or
 spreading off-site. Utilize absorbent pads, booms, spill dikes, absorbent bulk material berms or soil
 berms as needed to divert and contain the flow, and keep the spilled oil material from going off-site or
 into a storm drain feature or surface water body, or into a sanitary sewer facility.
- Recover and remove the spilled material as quickly as possible. For small quantities, utilize absorbent
 materials; for larger quantities, Spill Team Leader to make decision whether to use portable pumps
 and waste containers/tanks to collect the spill; or to contract with outside spill response contractor.
 The recovered material must be properly contained (in containers compatible with materials
 recovered) and stored until disposed of by an acceptable method in accordance with all local, state
 and federal requirements.
- Remove residual material by the use of absorbent materials. When saturated, the absorbent material
 must be properly containerized (in containers compatible with materials recovered), stored, and
 disposed of, by an acceptable method in accordance with all local, state, and federal requirements.
- The Spill Team Leader or his alternate will notify appropriate individuals and regulatory authorities as per Section 6.0 in the SPCC of the Kiewit SPCC Plan.

Notify the Spill Team Leader or his alternate and be prepared to provide the following information:

1. Type of materials discharged.

- 2. Estimates of the total quantity discharged (pounds and/or gallons; use 8.3 pounds per gallon for approximate conversion, round up to nearest pound).
- 3. Source of discharge.
- 4. A description of all impacted environmental media (soil, surface water, groundwater, air).
- 5. The cause of the discharge.
- 6. Any damages or injuries caused by the discharge, actions being used to stop, remove, and mitigate the effects of the discharge.
- 7. Actions being used to stop, remove, and mitigate the effects of the discharge.
- 8. Whether an evacuation is needed.
- 9. Emergency or regulatory authority personnel notified.
- 10. Emergency or regulatory authority personnel on scene (including names and who they are representing).
- 11. Name and job title of person making report.

Remain on-site until arrival of emergency response personnel and Spill Team Leader.

- 3. Responsibility of Spill Team Leader
 - a. Evaluate situation and hazards present based on initial information and give instructions as required.
 - b. Proceed immediately to location of incident to direct response efforts.
 - c. If a release of oil or liquid chemicals has occurred which could threaten human health or the environment, immediate notification must be given to emergency response personnel (i.e. fire and sheriff/police). As warranted, and if a reportable quantity has been released, or if the spill has or could have the potential to reach a navigable water way, contact the National Response Center (1-800-424-8802); Local Emergency Response Agency (911); State Emergency Response Commission (SERC) can be made by calling the Oregon Emergency Response System (OERS) at 800-452-0311 or 503-378-6377; the Oregon's Office of Emergency Management (OEM) at 503-378-2911 and the Certified Unified Program Agency (CUPA) / Administering Agency (AA) / Participation Agency (PA) Klamath County Public Health Department at 541-851-3741.; 911 (all other hours)). As warranted, following notification to OERS Warning Center, Kiewit may need to notify the the Klamath County Public Health Department, and/or Oregon Department of Fish and Wildlife, depending on the actual or potential threats or impacts present as a result of the release. Have the following information ready when making the call.
- Person and job title of person making report (if not the Spill Response Team Leader/Spill Incident Responsible Person), with applicable contact information.
- Exact address and location of the Site, including longitude and latitude if requested (see various Appendices for information).
- Date, duration, and estimated time of initial release.
- Type of material released and indication if material is an extremely hazardous substance.

- Estimates of the quantity released (in pounds [required] / in gallons [optional]; use 8.3 pounds per gallon for approximate conversion, round up to nearest pound).
- Released to what medium (containment structure, building interior, outside paved surface, outside permeable (graveled, landscaped, or bare ground surface water, air, groundwater, etc.).
- Whether an evacuation is needed, or has been initiated.
- Source of the release.
- Cause of the release (human error, equipment malfunction, vehicle impact, etc.).
- Description of the location of the release.
- Description of all affected media (surface water, groundwater, soils, pavements, facilities, and air).
- Physical damage to or loss of facilities.
- Human injuries or rapid illnesses (including anticipated acute or chronic human-health based risks).
- Actions being used to stop, control, contain, remove, and mitigate the effects of the release, and any
 off-site discharge.
- Did the released material enter a sanitary sewer collection and conveyance system on-site and/or
 off-site, including any applicable septic tank or leach field.
- Did the discharged material enter a surface/stormwater collection and conveyance system on-site (including ditches), or was it conveyed off-site.
- Total estimated volume and typed of oil products on-site ("approximately 830 pounds/100 gallons of diesel fuel," etc.).
- Names of individuals and organizations that have been contacted.
- Emergency personnel and regulatory authorities on scene.
- Emergency personnel and regulatory authorities notified.
 - d. Complete entering the initial information, complete incident investigation and enter remaining required information in online report.
 - e. Ensure that all corrective and items remedial measures identified in the incident report have been implemented and entered in the online reporting system.

1.6 Spill Containment (40 CFR 112.7[C])

The Kiewit facility employs a variety of countermeasures to contain spills once they occur. The secondary containment features around all bulk oil storage containers should prevent a spill from happening.

NOTE: TYPICAL SPILL RESPONSE IS LIMITED TO RECOGNITION. DIVERTING. AND MITIGATING SPREAD OF SPILL ONLY. UNLESS RESPONDING KIEWIT STAFF HAVE COMPLETED AND ARE CURRENT WITH THE REQUIRED HAZWOPER AND SPILL RESPONSE TRAINING. AND ARE UNDER THE DIRECTION AND SUPERVISION OF THE SPILL TEAM LEADER.

If a minor oil product spill occurs in a secondary containment area, safety and protection of human health is first priority. All pumps or valves are immediate shut-off or closed, and all transfer operations are stopped if safe to do so. If safe access can be afforded, then the supply and source of the spill is determined and the leak is stopped. If a small release (typically less than 5 gallons) has occurred, and if judged safe to do so by the Spill Team Leader the spilled oil material will typically be removed with

absorbent materials (pads, pillows, and bulk material), with the spent absorbent materials being placed in a properly labeled, DOT approved container for transport off-site for disposal purposes. If a larger (typically greater than 5 gallons of oil product) release occurs within the secondary containment area, the type of recovery will be determined by the Spill Team Leader, but generally the spilled oil product will be recovered with pumps or a vacuum truck; properly discharged into DOT approved and properly labeled drums or left in the vacuum truck; and transported and disposed/recycled off-site at a permitted facility. Residual oil product will be collected with absorbent materials (pads or bulk material) to the extent practicable. No "wash-down" of spilled oil materials will occur.

Should a spill escape the secondary containment structure, the following general procedures are followed:

- Safety and protection of human health is first priority.
- Immediately shut off all pumps or close appropriate valves and stop all transfer operations if safe to do so.
- Determine the supply and source of the spill and stop the leak, if possible and is safe to do so, as determined by the Spill Team Leader.
- Contact emergency response personnel, as determined by the Spill Team Leader.
- Warn people in the area if there is a danger to life or property; warn all facility personnel, guests, and visitors that may be in the area.
- Assist any injured people.
- Provide physical barrier to prevent unauthorized access to spill.
- Control and contain the spilled material, limiting the extent of the spill, especially if there is a danger of
 it entering an on- or off-site stormwater or sanitary sewer conveyance system, or waterway; or
 spreading off-site. Utilize absorbent pads, booms, spill dikes, absorbent bulk material berms or soil
 berms as needed to divert and contain the flow, and keep the spilled oil material from going off-site or
 into a storm drain feature or surface water body, or into a sanitary sewer facility.
- Cover and respond as feasible, and divert flow around and away from any storm drain collection
 features (drop inlets, area drains, curb inlets, catch basins, ditches, etc.), sanitary sewer collection
 and conveyance facilities (drains, traps, clean-outs, pipes, etc.), limiting the extent of the spill,
 especially if there is a danger of it entering an off-site stormwater or sanitary sewer conveyance
 system, or waterway.
- Recover and remove the spilled material as quickly as possible. For small quantities, utilize absorbent
 materials; for larger quantities, Spill Team Leader to make decision whether to use portable pumps
 and waste containers/tanks to collect the spill; or to contract with outside spill response contractor.
 The recovered material must be properly contained (in containers compatible with materials
 recovered) and stored until disposed of by an acceptable method in accordance with all local, State,
 and federal requirements.
- Remove residual material by the use of absorbent materials. When saturated, the absorbent material
 must be properly containerized (in containers compatible with materials recovered), stored, and
 disposed of, by an acceptable method in accordance with all local, State, and federal requirements.

These procedures vary depending on the size and location of the spill. Kiewit employees, who have received SPCC training are qualified and authorized to undertake response and countermeasures to minor oil spills.

1.7 Spill Control Equipment (40 CFR 112.7[A])

The Kiewit facility maintains an adequate supply of spill control equipment to respond to spills. This equipment is maintained throughout the facility, placed in relative close proximity to the bulk oil storage containers. Materials maintained for Hazardous Material Cleanup at the Kiewit facility include loose absorbent material, spill pads, socks, booms, PPE, etc.

The facility also has a limited amount of small-scale heavy equipment that if properly trained employees are available, could be utilized to assist in spill control and containment (i.e. the creation of temporary berms, boom/pad layout, temporary plugging or redirection of stormwater run-off, etc.).

1.8 Spill Clean-Up (40 CFR 112.7[A])

The facility employs a variety of countermeasures to handle spills once they occur. These procedures vary depending on the size and location of the spill. The following procedures should be followed in the case of small spills retained within containment areas if safe to do so:

- Absorb spilled materials using loose absorbent materials, pads, blankets, or pillows for low volume releases; a contracted vacuum truck will be utilized for larger oil spill or oily water recovery. Pick up non-liquid materials with non-sparking shovels or with brooms and dustpans.
- The recovered oil product, oily water, and/or spent absorbent materials will be placed in DOT
 approved containers and will be disposed of off-site in accordance with applicable federal and state
 regulations. Use liners as required.
- Consult with the SpillTeam Leader and the Technical Advisor (as listed in the Hazardous Materials Business Plan) to ensure proper labeling of drums and disposal techniques and procedures.
- Properly label all drums for temporary on-site storage and off-site disposal.
- Clean spill control equipment and return them to proper storage space.
- Clean and/or restore spill surface as needed.
- As applicable, retain all wash and rinse water and transfer to appropriate on-site location for temporary storage for off-site disposal; or permitted on-site treatment and/or disposal facility.
- Establish and maintain an exclusion zone in the area of the spill to prevent unauthorized contact with spilled material, clean-up materials, and to avoid impacts to the public and to other Kiewit employees and guests during the spill response and clean-up period.

Large spills or spills that have the potential to enter the environment may require the response of an outside spill response contractor. If the Kiewit spill response team cannot adequately respond to a spill, the Spill Team Leader will contact the Management Team and jointly decide whether or not outside spill response contractor (or potentially others) needs to be engaged.

1.9 Spill Response during Off Shifts, Weekends or Holidays

For spills occurring during off-shifts, weekends and holidays, notify the area Supervisor, Security, and the Spill Team Leader immediately. If unable to make contact, the alternate Spill Team Leader shall be contacted immediately. If unable to make contact with the Spill Team Leader, the alternate Spill Team Leader shall be contacted immediately. Signage with contact numbers is posted.

1.10 Recovered Spill Material Containment and Disposal

The following response equipment is maintained at the various bulk oil storage container areas with the Kiewit facility and is available in the event of a spill of a regulated material.

- Spill kits (absorbent pads, pillows, and booms; bulk absorbent material)
- Shovels and pumps
- Mops and drums

The spill kits are placed in proximity to the location of the bulk oil storage containers.

1.11 Methods of Disposal

Recovered material will be properly containerized in suitable containers compatible with material to be stored or removed with the use of a contracted vacuum truck. All containers will be properly sealed and labeled. Recovered material will be properly disposed of at an appropriate approved disposal facility per local, state, and federal requirements.

Lower Klamath Project – FERC No. 14803	

Tank Truck Unloading Procedures

Appendix H J.C. Boyle Facility Oil Transfer Procedure Checklist

Driver Name:	Date:	_	
Driver Company:	Vehicle License:		
		YES	NO
 Equipped with personal protective equipment (PPE). Che hat, and safety goggles used during bulk transfer. PPE in chemical residues prior to use. Gloves tested for leaks. R equipment, if necessary. 	spected for defeats or		
2.) No eating, drinking, smoking or open flame within 50 feet product is being transferred.	of the area where the		
3.) Wheels of all oil containing vehicles adequately chocked vehicle during oil transfer procedures.	to prevent movement of the		
4.) Placed drip pans of absorbent pads under valves and ho any leaks or drips that may occur during the transfer ope			
5.) All adjacent or in proximity area drains, catch basins, curb inlets, floor drains, etc. plugged or otherwise capped to prevent inadvertent spillage into these collection facilities in the event of a release.			
All hoses, pipelines, and connections to be used for rece product visually inspected for damage or neglect prior to			
7.) Inspected receiving vessel or vehicle prior to loading or uexternal damage or leakage.	inloading for evidence of		
Continued on next page			

8.) Ensured all hose and pipe connections are securely and appropriately fastened and secured.	
9.) Closed and chained or locked all valves not in use to prevent drippage or leakage.	
10.) Verified the available storage capacity of the receiving tank prior to filling. All ASTs and drums dipped prior to fuel or oil transfer to determine the ASTs or drum's remaining capacity.	
11.) Ensured availability of absorbent pads and booms and BDG employee training in emergency shut-down system procedures is current.	
12.) Provided constant surveillance of loading/unloading operations.	
13.) Only filled ASTs or drums to 95% of rated nominal capacity to avoid overfilling.	
14.) Ensured all valves and transfer facilities are adequately plugged, capped, flanged, etc. on both the container being filled and on the delivery truck, after completion of oil transfer procedures.	
15.) Wiped up any drip or minor spills with absorbent pads as needed and properly disposed of scent pads. Employee training in emergency shutdown system procedure is current.	

Lower Klamath Project – FERC No. 14803	
Lower Maintain 10jour 1 LNO No. 14000	
	Appendix H
	Appendix II
0	il Transfer Procedure Checklist

J.C. Boyle Facility (Klamath County, OR) Monthly Inspection - Coversheet

The Coversheet, Tank Inspection Checklist, and Notes & Remarks sheets form the body of the Monthly Inspection Form (MIF) as required per Section 7.1 *Inspections and Tests* (40 CFR 112.7[E] and 112.8[C]) of the SPCC. Note: All SPCC inspections are uploaded to KieTrac.

PROCEDURE

- 1. Read through the entire SPCC Plan to ensure understanding of the intent of the Plan.
- 2. Read through all of the MIF (Coversheet, Tank Inspection Checklist, and Notes & Remarks) to understand how to complete the inspection process. Kiewit's electronic KieTrac program can be used in lieu of manually filling out this form.
- 3. Review the Contacts Update section below to ensure all contact information is current and accurate. Revise as needed.
- 4. Complete the Tank Update section to ensure all added, removed, modified, or relocated tanks are identified and described.
- 5. Complete the Tank Inspection Checklist (or the equivalent on KieTrac) for all tanks on site.
- 6. When finished, summarize all findings in the Notes & Remarks section. All issues identified during the inspection should be listed in Notes & Remarks.

inspection should be tisted in Notes & Remarks	•						
CONTACTS UPDATE							
ROLE	Y *	N	New Name or Comment				
1. Have the Spill Team Leaders changed?			Primary Spill Team Leader: TBD, (PHONE TBD) Secondary Spill Team Leader: TBD, (PHONE TBD)				
2. Has the Spill Team Alternate changed?			TBD, TITLE TBD, (PHONE TBD)				
3. Has the Project Construction Manager changed?							
4. Are there any other pertinent changes to the SPCC Plan that warrant an amendment?							
*Any item that receives "yes" as an answ	wer shall be	updated i	n the "New Name or Comment" Section.				
Т	TANK UF	PDATE					
	Y *	N	Tank ID, Site Location				
1. Have any NEW tanks been added?							
2. Have any tanks been taken out of service? (tank must be labeled "OUT OF SERVICE" with the date taken out of service)							
3. Have any tanks been REMOVED?							

NOTES:

AST = Above-ground Storage Tank

on the site? Indicate new location:

Monthly and 5-year inspections are required for all tanks identified.

Refer to Figures 2 through 8 for tank locations.

4. Have any tanks been relocated elsewhere

Tank "Type": G = Generator/Belly Tank, A = Above-ground Storage Tank, M = Mobile Refueler, ST = Steel Tote, P = Plastic Tote, D = Steel Drum

Tank Inspection Checklist adapted from the Steel Tank Institute Standard SP001, Fourth Edition July 2006

J.C. Boyle Facility (Klamath County, OR)

Monthly Inspection - Tank Inspection Checklist

This inspection record must be completed *each month* for *each tank* and maintained for three years. Any discrepancies shall be noted in the Description & Comments Section on each checklist. A summary of all discrepancies should be added to the Notes and Remarks sheet.

Tank ID:	Date:	Time: Weather Conditions:		ather Conditions:	
*Any item that receive	es "yes" as an answer shall be de	scribed in the	ne "Notes o	& Remarks	s" sheet and addressed immediately. DESCRIPTION & COMMENTS
1. Tank Containment		*	11	11//14	DESCRIPTION & COMMENTS
1.1 Is there water in p containment, interstic	orimary tank, secondary e, or spill container?				
1.2 Is there product in interstice, or spill con	n the secondary containment, tainer?				
1.3 Debris or fire haze	ard in containment?				
1.4 Drain valves oper	able and in closed position?				
1.5 Drainage pipes/va	ulves fit for continued service?				
1.6 Tank containment clear?	manways and egress pathways				
1.7 Tank containment	gates/doors operable?				
1.8 Containment struc	cture in satisfactory condition?				
2. Tank Foundation,	Supports and Coating				
2.1 Evidence of tank s washout?	ettlement or foundation				
2.2 Cracking or spalli	ing of concrete pad or ringwall?				
2.3 Tank supports in s	satisfactory condition?				
2.4 Is water able to dr	rain away from the tank?				
2.5 Evidence of the tan peeling, or blistering?	nk coating cracking, crazing,				
3. Cathodic Protection	n				
3.1 CP system function	nal?				
3.2 Rectifier reading:	(if applicable)				
4. Tank Shell/Heads					
4.1 Noticeable shell/h denting, or bulging?	ead distortions, buckling,				
4.2 Evidence of shall/	head corresion or cracking?				

	Y*	N	N/A	DESCRIPTION & COMMENTS
5. Tank Roof Satisfactory?				
5.1 Standing water on roof?				
5.1 Standing water on roog:				
5.2 Holes in roof?				
5.3 Evidence of the roof coating cracking, crazing, peeling, or blistering?				
6. Tank Venting Satisfactory?				
6.1 Vents free of obstructions?				
6.2 Emergency vent operable? Lift as required?				
7. Insulated Tanks				
7.1 Tank insulation missing?				
7.2 Are there noticeable areas of moisture on the insulation?				
7.3 Mold on insulation?				
7.4 Insulation exhibiting damage?				
7.5 Is the insulation sufficiently protected from water intrusion?				
8. Leak Detection				
8.1 Visible signs of leakage around the tank, concrete, pad, containment, ringwall, or ground?				
9. Tank Attachments and Appurtenances				
9.1 Ladder and platform structure secure with no sign of severe corrosion or damage?				
9.2 Check all tank openings are properly sealed				
9.3 Piping connections, piping, and valves in good condition?				
9.4 Flanged connection bolts tight and fully engaged with no sign of wear or corrosion?				
10. Tank Level & Overfill Protection				
10.1 Tank liquid level gauge readable and in good				
condition?				
10.2 Tank overflow protection satisfactory?				
10.3 Has the tank liquid level sensing device been tested to ensure proper operation?				
10.4 Are overfill protection devices in proper working condition?				

	Y*	N	N/A	DESCRIPTION & COMMENTS
11. Tank Electrical Equipment				
11.1 Grounding strap secured to the tank and the ground and in good condition?				
11.2 Is electrical wiring for control boxes/lights in good condition?				
12. Other Conditions				
12.1 Are there other conditions that should be addressed for continued safe operation or that may affect the SPCC?				
12.2 Identification labels and tags secure, intact, and readable?				
LOADING/UNLOA	DING AN	D TRANS	SFER EQU	UIPMENT
Loading/unloading rack is damaged or deteriorated				
Connections are not capped or blank-flanged				
Rollover berm is damaged or stained				
Berm drainage valve is open or is not locked				
Drip pans have accumulated oil or are leaking				
	SECU	RITY		
Fencing, gates, or lighting are non-functional				
Alarm system is not available and/or operational				
Pumps and valves are not locked (not in use)				
SPILL 1	RESPONS	SE EQUIP	PMENT	
Spill kit inventory is incomplete				
NOTE: See the Inspection Coversheet for explanation of	of how to c	complete th	nis checklis	it.
Inspector Printed Name:	Inspector	Signature	::	

J.C. Boyle Facility (Klamath County, OR)
Monthly Inspection - Notes and Remarks (pageof)
This page is intended as a place to summarize all discrepancies found for all of the tanks inspected, as well as additional
room to elaborate on Description & Comments from the Monthly Inspection Form (or equivalent KieTrac form). For each
tank with at least one discrepancy: Add the Tank ID number, tank type, location, and Responsible Person and a description
of the findings. Note: All SPCC inspections are uploaded to KieTrac.
Tank ID, Type, Location, Responsible Person, Findings

Lower Klamath Project – FERC No. 14803	
	Appendix I
	Monthly Inspection Checklist

226

1 OGA CONTATNMENT PAN 38" HIGH

18" GRIP STRUT WALKWAY — SEE SHEET 2

1 OGA STEPS W/ TRACTION TREAD 8" RISE PER TREAD TOP SHARP EDGES W/ 3/8" CF ROUND

DRIP TRAY W/ WIGGINS NOZZLE HOLDER

REEL STAND— SEE SHEET 3
MOUNT FILTERS TO STAND

8' LIGHT OVER TANK

3000 PAL ACE TANK

1.5" GRACO AOD PUMP

MOUNT— SEE SHEET3

4' LIGHT OVER REELS AND PUNP

ELECTRICAL ERVICE PANEL

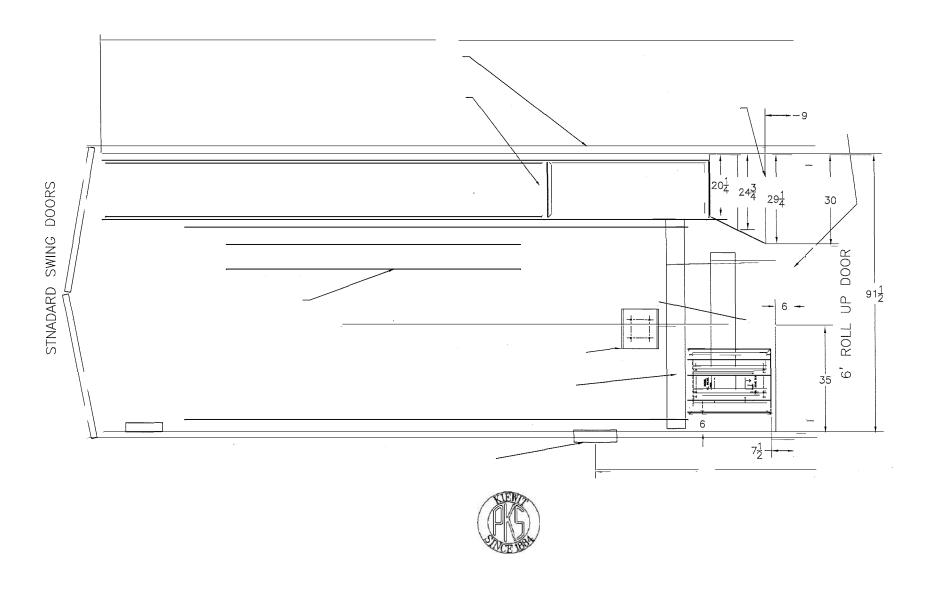
12" EXHAUST FAN
ADJUST LOCATION TO FMT
CORRELATION AS NEEDED

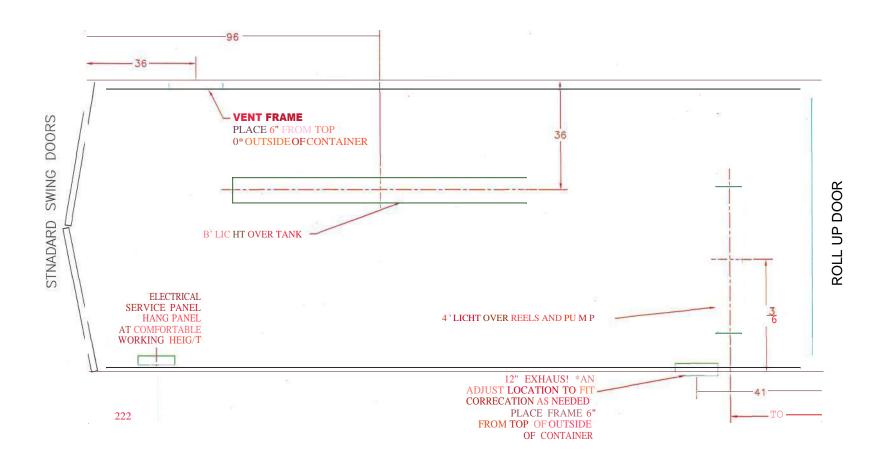
72

1. CONTAIN MENT PAN VOLUME 3300 GALLONS

BULK FUEL STORAGE CONTAINER — LAYOUT

SCALE


DWN: RYAN WAFER


NOTES:

SIZE. FSCM N 0.

D\//G NO.

REV

KIEVIT INFRASTRUCTURE WEST CO.

5000 GAL FUEL CONTAt NER ELECTRICAL COMPONENTS

CQ LUMBIA SHOP 13000 NE WHITAK ER WAY PORTLAND, OR 9 7230 (**503**) 256—5541

LI G HTS & PANEL AS SHOWN

SIZE FSCU NO.

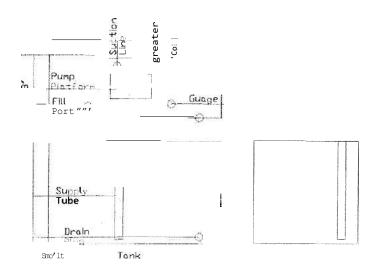
SCALE

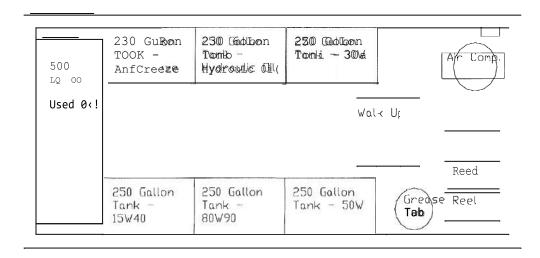
DWN: RYAN WAFER

SHEET 4

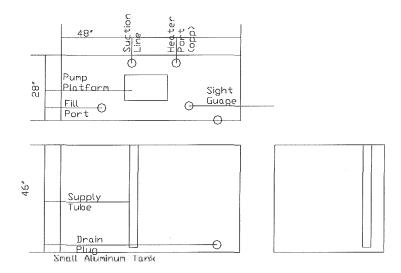
NOT ES:

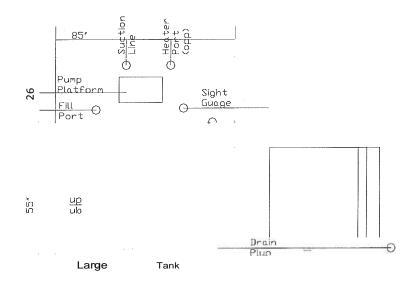
WELD ON FLAT BAR PLATES TO ROOF AND WALLS TO MOUNT

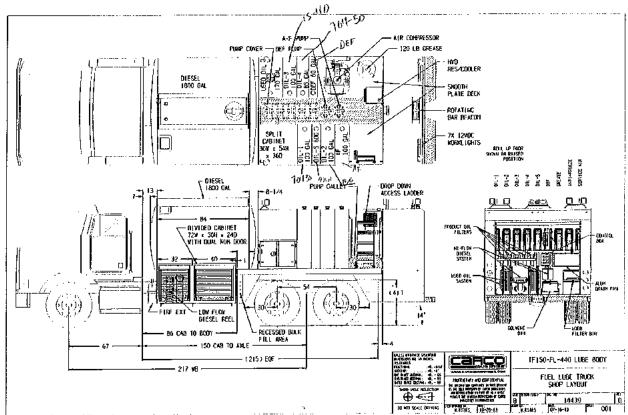

REV DWG NO. A

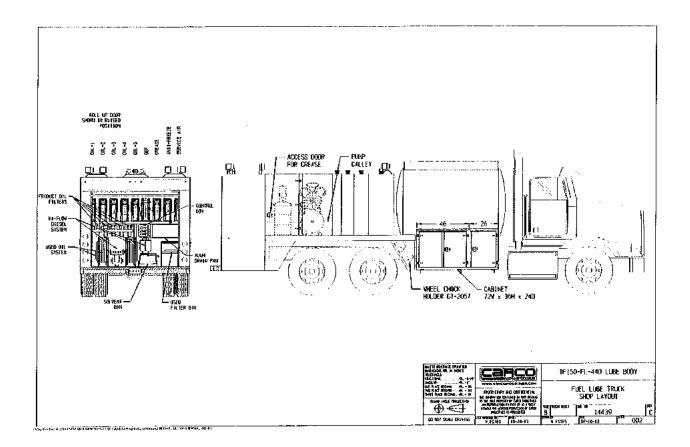

0

8' x 20' Conne x oas ie La you I


Above is the layout for an 8' x 20' Connex box. Below is the layout for the small aluminum tank and on the next page is the large aluminum tank.






8' x 20' Connex ba sic Layout

Above is the layout for an 8^{\prime} x 20^{\prime} Connex box. Below is the layout for the small alumlnum task and on the next page 1s the large aluminum tank.

SPECIFICATION DATA SHEET I MODEL: 20TCG

The TRANSCUBE[™] 20TCG is a multi—task on-site fuel deployment solution for the direct supply to stationary diesel engines or the refueling of equipment on demand.

- Transportable. Full load lifting eyes, forklift pockets and internal baffles designed to allow handling of the tank full of fuel.
- Stachable. Easily stackable (2)-high full of fuel and (4)-high empty to reduce storage space requirements.
- Accessible. Access manway for maintenance and inspection of inner tank. Removable inner tank for servicing and cleaning.
- Efficient. Lockable equipment cabinet locks and secures equipment and fuel ports to run up to 3 pieces of diesel-powered equipment.
- Environmentally Safe. Double-walled, 1 7 0% containment eliminates the need for spill pans, U L 142 approved.

SPEC	CIFICATIONS *
pipe, strainer & non-return valve; (1) engine feed and	"Fill Point; 2" fusible link fill port; 1" pump feed with flexible dip return port set; pressure/vacuum vent; breather vent. ter & particulate filter kits; fuel up to (2) feed & return blocks; fuel
Capacity (Brim-Fill) Litres: 2091	Dimension Height (mmfin): 1319 mm/51. 91"
Capacity (Brim-Fill) Imperial Gallons: 460	Weight Empty (lbs/kg): 1815 lbs (823kg)
Capacity (Brin-Fill) US Gallons: 552	Weight Full (lbs/kg): 6424 lbs (2914kg)
Dimension Length (nm/in): 2292 mm/90.24"	Approvals: U L142, ULC S—60 1-07, SUN I BC Type 3 IA,
Dimension Width (mm/in): 1140 mm/44.88"	U N DOT, NFPA, Transport Canada, Vlarem, Kiwa

'Model specifications may slightly differ based on stock availability in your area. Please contact your local representative to confirm tank specifications.

ITALY

Lower Klamath Project – FERC No. 14803	
Append	
	ix J

Supplied Tank Information

Appendix G J.C. Boyle Facility Tank Truck Unloading Procedures

Driver Name:	Date:	_	
Driver Company:	Vehicle License:		
Tank Truck Unloading Procedure Checklist:			
		YES	NO
Tank trailer brakes set and driver remains with the vehicle during the entire unloading period.			
Chocks placed behind and in front of the wheels of the trucks to prevent movement of the truck until unloading and all oil transfer procedures have been completed.			
Unloading operations performed only by reliable persons properly trained, instructed in, and made responsible, for careful compliance with applicable regulations.			
Unloading of tank trailers done during daylight hours except under emergency conditions.			
5.) No naked flame of any kind permitted, for any purpose whatsoever, near the tank trailer or within the vapor area surrounding the tank trailer. Smoking is forbidden within this area. Only spark-proof tools used.			
The storage tank or container and tank trailer vented before connecting the unloading line.			
7.) The level in the receiving tank checked to assure that sufficient space is available to receive the contents of the trailer.			
8.) The tank trailer number compared with that on shipping papers or invoices to determine the trailer's contents and avoid product mix-ups or contamination.			

Continued on next page		
9.) Ground strap attached to the bumper of the tank trailer.		
10.) The unloading line attached to the proper connection.		
11.) Drip pans or absorbent pads placed under the valves and hose connections to contain any leaks or drips that may occur during the transfer operation.		
12.) All adjacent or in proximity area drains, catch basins, curb inlets, floor drains, etc. plugged or otherwise capped to prevent inadvertent spillage into these collection facilities in the event of a release.		
13.) All hoses, pipelines, and connections to be used for receipt or discharge of oil product visually inspected for damage or neglect prior to use.		
14.) Inspection of receiving vessel or vehicle prior to loading or unloading for evidence of external damage or leakage.		
15.) Ensure all hose and pipe connections are securely and appropriately fastened and secured.		
16.) Verify requirement that the available storage capacity of the receiving tank prior to filling.		
17.) Inspect the availability of absorbent pads and booms.		
18.) Constant surveillance of loading/unloading operations.		
19.) The bottom inlet valve and other proper valves opened in the unloading lines.		
20.) Begin checking pump to assure no leakage at any of the connections. Should leakage be present, the pump will immediately be stopped. The liquid level in the receiving tank will be checked regularly and the pump stopped before the liquid overflows.		
21.) After the liquid has been unloaded, close all valves, disconnect the loading line from the tank trailer, close the cap to the inlet, and tighten, cap, and secure all other closures with chains and locks, as appropriate.		

Lower Klamath Project – FERC No. 14803	
	Appendix E
	Consultation Record
	Jonathanon Necolu

Consultation Record

Waste Disposal and Hazardous Materials Management Plan					
Sub-Plan	Agency	Date of Agency Plan Submittal	Agency Comments Received Date		
Oregon Spill Prevention, Control, and Countermeasure Plan	Oregon Department of Environmental Quality	January 26, 2021	No Comments Received		
	Oregon Department of Fish and Wildlife	January 26, 2021	No Comments Received		
Oregon Waste Disposal and Hazardous Materials Management Plan	Oregon Department of Environmental Quality	January 26, 2021 August 2, 2021	February 10, 2021 August 16, 2021 & September 7, 2021		
	Oregon Department of Fish and Wildlife	January 26, 2021 August 2, 2021	No Comments Received No Comments Received		
	Bureau of Land Management – Klamath Falls	February 12, 2021 August 2, 2021	April 15, 2021 No Comments Received		
California Waste Disposal Plan	California State Water Resource Control Board	January 26, 2021 August 2, 2021	February 11, 2021 No Comments Received		
	North Coast Regional Water Quality Control Board	January 26, 2021 August 2, 2021	No Comments Received No Comments Received		
	California Department of Fish and Wildlife	January 26, 2021 August 2, 2021	February 9, 2021 August 16, 2021		
	California Department of Water Resources	January 26, 2021 August 2, 2021	No Comments Received No Comments Received		
California Hazardous Materials Management Plan	California State Water Resources Control Board	January 26, 2021 August 2, 2021	February 11, 2021 September 7, 2021		
	California Department of Fish and Wildlife	January 26, 2021 August 2, 2021	February 9, 2021 August 16, 2021		
	California Department of Water Resources	January 26, 2021 August 2, 2021	No Comments Received No Comments Received		