

Klamath River Renewal Project

Daggett Bridge Design Project Design Documentation Report

IFC Design Submittal

Revision No. 03

June 2022

This page intentionally left blank.

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seals, as professional engineers licensed to practice as such, are affixed.

CIVIL DESIGN Jeffrey Lowy, P.E.

STRUCTURAL DESIGN Zachary Autin, P.E.

Table of Contents

1.0	Introd	uction and Background1	
	1.1	Purpose1	
	1.2	Background 1	
	1.2.1	Location1	
	1.2.2	Project Description1	
	1.3	Report Organization	
2.0	Desig	n Criteria5	;
	2.1	Pertinent Data	;
	2.1.1	Survey Datum5	,
	2.1.2	Topographic Mapping5	,
	2.2	References and Data Sources5	,
	2.3	General Design Criteria and Standards5	,
	2.3.1	Standard List of Terms and Abbreviations5	,
	2.4	Civil	,
	2.4.1	Erosion Control Plan7	,
	2.4.2	Roadway7	,
	2.5	Hydrology and Hydraulic	,
	2.5.1	Applicable Codes and Standards7	,
	2.6	Geotechnical	
	2.6.1	Applicable Codes and Standards8	
	2.7	Structural9)
	2.7.1	General Design Description9)
	2.7.2	Applicable Codes and Standards9)
	2.7.3	Materials10	1
	2.7.4	Design Loads	1
3.0	Projec	t Description14	,
	3.1	General Site Layout	
4.0	Civil E	Design	j
	4.1	General Description	;
	4.2	Design Criteria	;
	4.3	Erosion and Sediment Control	;
	4.4	Roadway Design	į

5.0	Hydro	logic and Hydraulic Design	17
	5.1	Annual Peak Floods at Iron Gate	17
	5.2	Water Surface Elevation Analysis	17
	5.3	Proposed Daggett Bridge	18
	5.4	Bridge Scour Analysis	18
	5.5	Revetment Stone Sizing	19
6.0	Geote	chnical Design	21
	6.1	Geotechnical Investigations	21
	6.2	Geotechnical Conditions	21
	6.3	Bearing Capacity	21
	6.4	Settlement	22
	6.5	Slope Stability	22
7.0	Struct	ural Design	23
	7.1	Bridge Superstructure and Abutments	23
	7.1.1	Design Loads	23
	7.1.2	Substructure Design	24
	7.2	New Waterline Support	25
	7.2.1	Design Loads	25
	7.2.2	Waterline Support Design	26
8.0	Refere	ences	27

List of Tables

Table 1-1. Major Report Sections and Purpose	4
Table 2-1. Civil Roadway Design Criteria	7
Table 2-2. Hydraulic Standards, References, and Standards of Practice	8
Table 2-3. Bridge Hydrologic and Hydraulic Design Criteria	8
Table 2-4. Geotechnical Codes and Standards	9
Table 2-5. Structural Codes and Standards	9
Table 2-6. Structural Material Properties	10
Table 2-7. Unit Weights of Materials	10
Table 2-8. Wind Load Factors	11
Table 2-9. Seismic Load Factors for Waterline	12
Table 2-10. Seismic Load Factors for Abutments	13

Table 5-1. Annual Peak Floods at Iron Gate	17
Table 5-2. Pre-Drawdown Water Surface Elevations (HEC-RAS Sta 491023)	17
Table 5-3. Post-Drawdown Water Surface Elevations (HEC-RAS Sta 491023)	18
Table 5-4. Water Surface Elevations Upstream of Proposed Daggett Bridge	18
Table 5-5. Revetment Sizing for Bridge Abutments	19
Table 7-1. Superstructure Loads Provided by Acrow	23
Table 7-2. Load Combinations and Load Factors	24
Table 7-3. Unfactored Loads	26
Table 7-4. Load Combinations per ASCE 7 Section 2.3	26

List of Figures

Figure 1-1. Daggett Road Bridge – Elevation South (Source: Knight Piésold Consulting, 2019)	2
Figure 1-2. Daggett Road Bridge – West End (Source: Knight Piésold Consulting, 2019)	3
Figure 1-3. Daggett Road Bridge – Elevation North (Source: Knight Piésold Consulting, 2019)	3
Figure 3-1. General Site Layout	15
Figure 5-1. Typical Revetment Placement for Right Abutment	20

Appendices

- Appendix A Civil Design Calculations
- Appendix B Hydrologic and Hydraulic Design Calculations
- Appendix C Geotechnical Design Calculations
- Appendix D Structural Design Calculations
- Appendix E Geotechnical Boring Logs

Distribution

То:	Mark Bransom Klamath River Renewal Corporation	
	Laura Hazlett Klamath River Renewal Corporation	
From:	Jodi Burns McMillen Jacobs Associates	
Prepared By:	Jodi Burns Civil Engineer McMillen Jacobs Associates	Nathan Cox, P.E. Hydraulic Engineer McMillen Jacobs Associates
	Greg Clark Structural Engineer McMillen Jacobs Associates	Shawn Spreng, P.E. Geotechnical Engineer McMillen Jacobs Associates
Reviewed By:	Jeff Lowy, P.E. Civil Engineer McMillen Jacobs Associates	Zachary Autin, P.E. Structural Engineer McMillen Jacobs Associates

Revision Log

Revision No.	Date	Revision Description
0	July 2, 2021	30% Design Submittal
1	August 25, 2021	60% Design Submittal
2	October 15, 2021	100% Design Submittal
3	June 24, 2022	IFC Design Submittal

1.0 Introduction and Background

1.1 Purpose

The purpose of this report is to present the design documentation associated with development of the Daggett Bridge Design Project (Project).

1.2 Background

1.2.1 Location

Daggett Road Bridge is located near the confluence of Fall Creek and Iron Gate Reservoir in Siskiyou County northwest of Iron Gate Dam near Yreka, California. The existing City of Yreka (City) water line currently crosses the Klamath River downstream from the existing Daggett Bridge adjacent to the mouth of Fall Creek.

1.2.2 Project Description

1.2.2.1 Background

The Daggett Bridge Project design prepared by Kiewit and Knight Piésold (Kiewit) proposed to construct a bridge located on the upstream side of the existing Daggett Bridge to support the removal of Iron Gate Dam. This bridge was proposed to be used during construction to support Kiewit's construction loads which exceed the existing Daggett Bridge rating. The bridge would be constructed during the predrawdown year to support Kiewit's construction activities during the Iron Gate Dam removal process.

The existing City waterline crosses the Klamath River just downstream from the mouth of Fall Creek which enters the Klamath River just below the existing Daggett Bridge. The existing pipeline was placed in shallow trench in the bottom of the river which is currently backwatered in the reservoir created by Iron Gate Dam. When Iron Gate Dam is removed, the Klamath River will return to a free-flowing condition which is expected to erode the existing pipeline crossing with potential failure of the pipeline.

When considering the various project components including the City waterline, Daggett Bridge construction, access for fire protection and recreation boating, and the establishment of anadromous fish runs back to the Fall Creek Hatchery, the Klamath River Renewal Corporation (KRRC) determined that it would be beneficial to consider a permanent bridge replacement at the Daggett Road crossing to replace the existing limited rating bridge and eliminate the need for a temporary construction bridge. The new bridge crossing will be designed to meet current load conditions as well as truck loads required to provide fire protection, support construction equipment, and a permanent elevated support of the City pipeline crossing the new Daggett Bridge eliminating the existing City buried river crossing.

1.2.2.2 Existing Daggett Road Bridge Overview

The Daggett Road Bridge is a single lane, four span bridge that spans the Iron Gate Reservoir and is approximately 233 feet in length. The superstructure of the bridge includes steel girders of varying section types, is 14 feet wide with no shoulders. The substructure of the bridge includes seat type concrete

abutments on pile caps with H-piles. The Daggett Road Bridge was reconstructed in 1983 to provide a HS-20 load rating; however, the structure has been de-rated with a 17-ton load limit for double axel vehicles, 27-ton load limit for triple axel vehicles, and 29-ton load limit for 4-axel vehicles, as shown in Figure 1-1.

Figure 1-1. Daggett Road Bridge – Elevation South (Source: Knight Piésold Consulting, 2019)

Knight Piésold Consulting inspected Daggett Road Bridge on July 27, 2019, and they made the following visual observations:

- Overall, the bridge is in generally fair condition.
- There is a posted load limit and speed limit.
- There is a cattle guard (grid) at the north approach.
- Abutments appear to be in good/fair condition. It was not clear from visual inspection how the mud sill abutment was performing due to access restrictions, but general profile and alignment appeared good. No movement noted.
- Railings and deck surfaces in good condition.
- Due to the large loads required during the dam removal construction, the existing bridge was
 determined to be inadequate for construction loads. As a result, a temporary bridge is planned on
 the upstream side of the existing bridge.

Figure 1-2. Daggett Road Bridge – West End (Source: Knight Piésold Consulting, 2019)

Figure 1-3. Daggett Road Bridge – Elevation North (Source: Knight Piésold Consulting, 2019)

1.3 Report Organization

This Design Documentation Report (DDR) is a record of the design effort for the Project and specifically describes the details of the design process and work effort. The DDR consists of a summary of the design

elements, design criteria, methods and approach, engineering calculations, and pertinent references. The major report sections and intended purpose are presented in Table 1-1.

Section	Description	Purpose
1	Introduction and Background	Presents the background, a description of the overall Project, and the report organization.
2	Design Criteria	Summarizes the basic design criteria that are used as the basis for the design of the new Daggett Bridge.
3	Project Description	Describes the Daggett Bridge Project.
4	Civil Design	Includes information related to the civil design associated with the Daggett Bridge.
5	Hydrologic & Hydraulic Design	Presents the hydrologic and hydraulic scour analysis of the Daggett Bridge abutments and revetment stone design of the new riprap within the Klamath River.
6	Geotechnical Design	Includes geotechnical information and design associated with the Daggett Bridge.
7	Structural Design	Includes information related to the structural design of the new Daggett Bridge and the pipe supports for the City of Yreka pipeline crossing across the new Daggett Bridge.
8	References	Documents the references used in developing the design.
Appendi	ces	
A	Civil Design Calculations	Presents the detailed calculations related to civil design.
В	Hydrologic & Hydraulic Design Calculations	Presents the detailed calculations related to hydrologic and hydraulic design.
С	Geotechnical Design Calculations	Presents the detailed calculations related to geotechnical design.
D	Structural Design Calculations	Presents the detailed calculations related to structural design.
E	Geotechnical Boring Logs	Presents the boring logs from the Geotechnical Data Report prepared by CDM Smith and AECOM Technical Services, Inc.

Table 1-1. Major Report Sections and Purpose

2.0 Design Criteria

2.1 Pertinent Data

Pertinent data for the Project include the assumed survey datum, topographic mapping, and references as described below.

2.1.1 Survey Datum

The Project data provided by the Klamath River Renewal Corporation (KRRC) were supplied in reference to the North American Vertical Datum of 1988 (NAVD88, Geoid 12B). This is the vertical datum that will be used on all drawings and in all calculations submitted as deliverable for the Project. The horizontal coordinate system is the California Coordinate System of 1983, Zone 1 North American Datum of 1983 (NAD83) in feet.

2.1.2 Topographic Mapping

Topographic data was supplied by KRRC and included the Light Detection and Ranging (LiDAR) and sonar survey performed in 2018 by GMA Hydrology, Inc. for the entire site.

2.2 References and Data Sources

A wide range of data sources and references were used in developing this DDR. Specific data related to the conceptual design of the Project were obtained from the various technical analyses and memoranda, which include the following:

- CDM Smith and AECOM. 2019. Klamath River Renewal Project Geotechnical Data Report.
- The California Oregon Power Company. 1981. Daggett Road Bridge Drawings.

Additional data sources, including publicly available aerial imagery, U.S. Geological Survey (USGS) maps, USGS streamflow gaging station data, soils maps, as-constructed drawings, and standard engineering reference documents, were used.

2.3 General Design Criteria and Standards

2.3.1 Standard List of Terms and Abbreviations

- ACI American Concrete Institute
- ADM Aluminum Design Manual
- AISC American Institute of Steel Construction
- ANSI American National Standards Institute
- ASCE American Society of Civil Engineers
- ASME American Society of Mechanical Engineers
- ASTM American Society of Testing and Materials
- AWS American Welding Society
- CCOR California Code of Regulations
- cfs cubic feet per second

CGP	Construction General Permit
DPS	Distinct Population Segment
ECP	Erosion Control Plan
ft ³	cubic feet
GBR	Geotechnical Baseline Report
gpm	gallons per minute
HEC-RAS	Hydrologic Engineering Center River Analysis System
ksf	kips per square foot
KRRC	Klamath River Renewal Corporation
LiDAR	Light Detection and Ranging Survey
mm	millimeter
NAD	North American Datum
NAVD	North American Vertical Datum
Project	Daggett Bridge Design Project
pcf	pounds per cubic foot
psf	pounds per square foot
RWQCB	Regional Water Quality Control Board
USACE	United States Army Corps of Engineers
USACE EMs	United States Army Corps of Engineers Engineer Manuals
USBR	United States Bureau of Reclamation
USGS	United States Geological Survey

2.4 Civil

2.4.1 Erosion Control Plan

The contractor will be required to obtain a Construction Storm Water General Permit from the California State Water Resources Control Board prior to construction. Construction General Permits (CGPs) are required for construction projects that result in greater than 1 acre of soil disturbance. The CGP requires temporary and post-construction Best Management Practices to prevent erosion and reduce sediment discharges from construction sites. Prior to permit issuance by Siskiyou County, submittal of an Erosion Control Plan (ECP) to the appropriate Director at Siskiyou County is required. The ECP shall include methods for controlling runoff, erosion, and sediment movement. The Contractor's ECP shall meet or exceed the requirements outlined in Specification Section 31 25 00 Erosion Sedimentation Controls prepared by Knight Piésold Consulting.

2.4.2 Roadway

Siskiyou County requested that any new roadways be designed that roadway geometry should be improved upon or maintained to the extent practical (Knight Piésold Consulting and Kiewit. 2020a).

Feature/Consideration	Criteria	Remarks	Reference
Design Vehicle	45 ton off-highway articulated haul truck	CAT 745	Project Company
Minimum Lane Width	11 ft		Project Company
Minimum Curve Radius	35 ft		Project Company
Road Grade	Normal road grade ≤7%. Maximum road grade = 15%.	The maximum roadway slope in the design is 7.1%.	Project Company
Cut/Fill Slopes	1V:3H or flatter	Embankment slopes no steeper than 1V:3H wherever practical and, ideally 1V:6H or flatter	Project Agreement

Table 2-1. Civil Roadway Design Criteria

Knight Piésold Consulting and Kiewit. 2020a

2.5 Hydrology and Hydraulic

2.5.1 Applicable Codes and Standards

The following codes, standards, and specifications will serve as the general design criteria for the hydraulic analysis of the Daggett Bridge abutment and required scour protection. The proposed hydrologic and hydraulic engineering criteria are presented in Tables 2-2 and 2-3 below. The criteria presented within these tables represent the anticipated operation and design elements used in the Project development. A permanent bridge at this location is required to provide adequate hydraulic capacity to pass the 1% Annual Probable Flood (ADF) event (Knight Piésold Consulting and Kiewit. 2020a).

Standard	Reference
Julien, Pierre Y. 2002	River Mechanics. Cambridge University Press, Cambridge, United Kingdom

Table 2-3. Bridge Hydrologic and Hydraulic Design Criteria

Feature/Consideration	Criteria	Remarks	Reference
Bridge Soffit Minimum Freeboard Requirements	Minimum freeboard for permanent bridges will be 1 ft during the 1% annual probable flood.	Distance is measured from water surface elevation to the lowest point on the bridge deck.	
Design Storm/Discharge Data	1% Annual Probable Flood Post Drawdown		AASHTO
Scour	See Section 5.0	See Section 5.0	Julien (2002)
Erosion Protection	Per California Bank and Shore Rock Slope	See Section 5.0	California Bank and Shore Rock Slope Protection Design (2000)

Knight Piésold Consulting and Kiewit. 2020a

2.5.1.1 Scour Analysis

The HEC-RAS model developed by Knight Piésold Consulting, that was used to analyze the scour potential on the Klamath River, was used to look at the river hydraulics at the proposed new Daggett Bridge location. The HEC-RAS model was originally developed to evaluate the reservoir drawdown period for the Klamath River Renewal Project. The HEC-RAS model was run for the new Daggett Bridge crossing which incorporates river abutments on both banks of the river. The scour depth estimate was based on an equation provided by Julien (2002), where the scour depth below of a grade-control structure is evaluated with the drop height being set to zero.

2.5.1.2 Revetment Stone Sizing

The HEC-RAS model was used to estimate the velocities for the 1% AEP flood to evaluate the required rock size to protect the bridge abutment slopes. The rock size will be based on the California Bank and Shore (CABS) method presented in the Caltrans publication on bank and shore rock slope protection design (2000).

2.6 Geotechnical

2.6.1 Applicable Codes and Standards

The following codes, standards, and specifications will serve as the general design criteria for the geotechnical design of the Daggett Bridge. The applicable version of each document is the latest edition in force unless noted otherwise. References to the specific codes and standards will be included in the applicable technical specifications as the final design documents are prepared. The geotechnical design,

engineering, materials, equipment, and construction will conform to the codes and standards listed in Table 2-4.

Table 2-4.	Geotechnical Codes and Standards
------------	----------------------------------

Code	Standard	
AASHTO	AASHTO LRFD Bridge Design Specification, 8th Ed. 2017	

2.7 Structural

2.7.1 General Design Description

The new Daggett Road Bridge will consist of a 260-foot, two-lane, 24-foot-wide pre-manufactured bridge superstructure, that will be supported by new seat type concrete abutments. The bridge will span the full distance across the Klamath River and is located approximately 75 feet upstream from the existing Daggett Road Bridge. The superstructure basis of design is the Acrow 700XS Panel Bridge.

The new proposed 24-inch diameter waterline is to be constructed as a steel pipeline and will be located along the underside of the new bridge, centered, with supports every 10'-0." The supports will be attached to the bottom of the transom beams and will be incrementally installed as the bridge is launched.

2.7.2 Applicable Codes and Standards

The following codes, standards, and specifications govern the structural design of the new Daggett Road bridge and abutments, as well as the 24-inch diameter waterline supports attaching to the underside of the new bridge. The latest edition of each code is utilized for the design, except as noted otherwise. The structural design, engineering, materials, equipment, and construction conform to the codes and standards listed in Table 2-5.

Element	Code	Standard
Waterline Support	AISC	AISC360-16 – Steel Construction Manual, 14th Edition
Waterline Support Abutments	ASCE	ASCE 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
Abutments	ACI	ACI 318-14 Building Code Requirements for Structural Concrete
Bridge and Waterline	CBC	2022 California Building Code
Bridge Superstructure	AASHTO	AASHTO LRFD Bridge Design Specifications – 8 th Edition, 2017 with CA Amendments
Pipe Support Bridge Superstructure	AWS D1.1	Structural Welding Code – Steel, 2020 Edition

	Table 2-5.	Structural	Codes	and	Standards
--	------------	------------	-------	-----	-----------

The bridge superstructure design incorporates load combination limit states required by AASHTO.

The bridge substructure (abutment) design is based on the worst-case loads produced by the limit states of Strength (I-V), Service (I-II) and Extreme I, as required by AASHTO. Additional load combination limit

states required by AASHTO were not evaluated as the load cases involved do not occur, which would not govern over evaluated limit states.

2.7.3 Materials

The material properties used for the design of the bridge superstructure, substructure, and waterline support components are listed in Table 2-6.

Structural Stainless Steel			
Wide-Flange Shapes (W)	A572, Grade 50		
Other Shapes (M, S, C, MC, L)	ASTM 572 Gr. 50 or A36		
Plate & Bars (Low Strength)	A36		
Structural Bolts	ASTM F3125 Gr. A325 Type 3		
Pipe	A53, Grade B		
Nuts and Washers	ASTM A563 and ASTM F436 Type 3		
Anchor Bolts	ASTM F1554 Gr. 36		
Concrete			
Concrete	4,500 psi normal weight		
Rebar	ASTM A615, Grade 60		

 Table 2-6.
 Structural Material Properties

2.7.4 Design Loads

The vertical and lateral loads considered in the design of the bridge superstructure, bridge substructure and waterline supports are summarized in this section. All loads were factored and combined per the requirements of ASCE 7 and AASHTO LRFD Bridge Design Specifications for the various load combinations to design the structural elements for the worst-case loading that may occur during the life of the structure. The more stringent design criteria requirements were applied in the event of conflicting code requirements.

The vertical and lateral loads produced by the new 24-inch waterline and supports were provided to the premanufactured bridge deck supplier (Acrow) to be incorporated into the bridge superstructure design.

The unit weights shown in Table 2-7 were utilized to determine the factored loads for the waterline support and abutment designs.

Unit Weights		
Reinforced Concrete	150 pcf	
Soil	125 pcf	
Steel Pipe Shell (Waterline)	490 pcf	
Water	62.4 pcf	

Table 2-7. Unit Weights of Materials

2.7.4.1 Dead Load (DL)

Dead loads consist of the weight of all permanent materials of construction incorporated into the Project, including self-weight and superimposed loads. The weight of the full, 24-inch diameter waterline was included as a dead load in the abutment design, adding approximately 38 kips to each abutment.

The abutment designs include the self-weight of the abutment and soil, in addition to all dead loads from the bridge superstructure. Reactions of 210 kips/corner, provided by Acrow, include the waterline, superstructure components, an epoxy deck coating, and the guardrail.

2.7.4.2 Live Load (LL)

Live loads consist of any loads produced by the use of the structure and do not include environmental loads. The bridge superstructure was designed and to support all live loads, , including the minimum vehicular live load (HL-93) required by AASHTO. Reactions of 165 kips/corner, provided by Acrow, include the maximum of two lanes of HL-93 loading, or one lane of HL-93 in conjunction with one lane of emergency vehicle (EV-2) loading.

In addition to the live load reactions produced by the superstructure, a live load surcharge due to a 32-kip axle load (design truck per AASHTO Section 3.6.1.2.2) as well as a braking force of 25% of the axle weight (AASHTO Section 3.6.4) were also included in the abutment designs.

2.7.4.3 Snow Load (SL)

Siskiyou County requires a minimum uniform roof snow load of 40 psf, with no reductions, based on the region. A uniform snow load of 40 psf was considered in the superstructure design in accordance with AASHTO. The snow load reactions from the superstructure are only considered under the Extreme Event II load combination in the abutment design.

2.7.4.4 Lateral Loads - Wind (WL)

Lateral forces due to wind on the waterline were determined based on ASCE 7 Chapter 26 for the waterline support design. A design wind speed (V) of 115 miles per hour, as required by Siskiyou County, was used to determine the velocity pressure. An Exposure Category of C were determined based on the location of the bridge in conjunction with the appropriate surface roughness category. The velocity pressure of 27.34 psf utilized was calculated from ASCE 7-16 Equation 26.10-1:

$$q_z = 0.00256 * K_z * K_{zt} * K_d * K_e * V^2$$

Table 2-8 provides additional information used to determine the velocity pressure.

Variable	Description	Value
Kz	Velocity Pressure Exposure Coefficient, Section 26.10.1	0.85
K _{zt}	Topographic Factor, Section 26.8.2	1.0
Kd	Wind Directionality Factor, Section 26.6	0.95
Ke	Ground Elevation Factor, Section 26.9	1.0

Table 2-8. Wind Load Factors

A lateral reaction of 86 kips per abutment, provided by Acrow, was incorporated into the design of the abutments, based on AASHTO requirements. The wind loads applied from the bridge superstructure, combined with the reactions from the waterline, were compared to the seismic loads required by AASHTO, with the larger forces governing the design based on load combinations applied.

2.7.4.5 Lateral Loads - Seismic (EQ)

Vertical and lateral seismic forces applied to the waterline were determined based on the requirements of ASCE 7 Chapter 13, utilizing information provided by the geotechnical data. The full waterline weight was used to determine the vertical and lateral seismic loads, producing the maximum seismic forces applied to the pipe support framing. The vertical seismic force was calculated based on Section 13.3.1.2, which indicates a concurrent vertical seismic force of $\pm 0.2S_{DS}W_p$. The horizontal seismic design force was determined from ASCE 7-16 Equation 13.3-1:

$$F_{p} = \frac{0.4 * a_{p} * S_{DS} * W_{p}}{\frac{R_{p}}{I_{p}}} * \left(1 + 2 * \frac{z}{h}\right)$$

Table 2-9 provides additional information used to determine the horizontal seismic force.

Variable	Description	Value
a _p	Component Amplification Factor, Table 13.6-1	2.5
Rp	Component Response Modification Factor, Table 13.6-1	6.0
I _p	Component Importance Factor, Section 13.1.3	1.5
S _{DS}	Spectral Acceleration, Short Period, Section 11.4.5	0.594
Wp	Component Operating Weight (Full Pipe Assumed)	294 plf
z	Height in Structure of Point of Attachment	-
h	Average Roof Height of Structure	-

Table 2-9. Seismic Load Factors for Waterline

Per ASCE 7 Section 13.3.1.1, the value of z/h does not need to exceed 1.0, therefore, 1.0 was conservatively used to determine the horizontal seismic force of 190 plf. A vertical seismic force of 50.5 plf was also determined using the above values.

Although the bridge superstructure was determined to be in Seismic Zone 3, a dynamic seismic analysis of the superstructure is not required for single span bridges per AASHTO Section 4.7.4.2. However, the bridge superstructure, abutments, and connections were designed for the minimum seismic forces and displacements as required by AASHTO based on the seismic zone on span. The abutments were designed to accommodate the seismic loads shown in Table 2-10, determined from information obtained from the geotechnical data and the below equations from AASHTO Sections 11.6.5 and 11.6.5.3:

Equation 11.6.5.1 - 1: $P_{IR} = k_h * (W_w + W_s)$

Equation 11.6.5.3 – 2:
$$P_{AE} = 0.5 * \gamma * h^2 * K_{AE}$$

Variable	Description	Value
PAE	Dynamic Lateral Earth Pressure Force, Section 11.6.5.3	2.52 klf
P _{IR}	Horizontal Force Due to Seismic Loading of Wall Mass, Section 11.6.5	0.573 klf
k _h	Seismic Horizontal Acceleration Coefficient, Section 11.6.5.2	0.04
Ww	Weight of Wall	10.64 klf
Ws	Weight of Soil Immediately Above Wall	3.75 klf
K _{AE}	Seismic Active Earth Pressure Coefficient	0.28
γ	Unit Weight of Soil	125 pcf
h	Total Wall Height	12 ft

Table 2-10. Seismic Load	Factors for Abutments
--------------------------	------------------------------

A lateral seismic reaction of 54 kips per abutment was provided from Acrow. The lateral seismic load was compared to the wind loads required by code, with the larger forces governing the design based on load combinations applied.

2.7.4.6 Earth Pressures (ES, EH)

The abutments were designed for vertical and lateral loads due to soil backfill acting on the structure. The abutments were analyzed based on full height of soil over the heel and 3 feet over the toe. Lateral soil loads were determined based on information obtained from the geotechnical data, assuming at-rest conditions, in conjunction with AASHTO Equation 3.11.5.1-1:

$$P = k_o * \gamma * h^2$$

The at-rest coefficient of lateral earth pressure, k_o , was calculated as 0.426 using an angle of internal friction of 35 degrees ($Ø_f$), which was determined based on the soil profile documented in the Geotechnical Report. AASHTO Equation 3.11.5.2-1 was used to determine k_o :

$$k_o = 1 - sin \phi_f$$

Due to the triangular loading of lateral earth pressure acting on the abutment, the resultant lateral earth load due to the weight of the backfill is applied at a height of H/3, where H is the wall height from bottom of footing to top of wall. The vertical earth pressures act uniformly over the length of the heel and the toe.

3.0 **Project Description**

3.1 General Site Layout

The general site layout is depicted in Figure 3-1 and shows the major components of the proposed Daggett Bridge improvements. The new improvements include construction of a new roadway off of the existing Daggett Road and a new single span bridge deck that will be located just upstream of the existing Daggett Bridge. The City of Yreka's new 24-inch diameter steel pipe will be supported along the new Daggett Bridge across the Klamath River. The design specifics are presented in the following sections within this report.

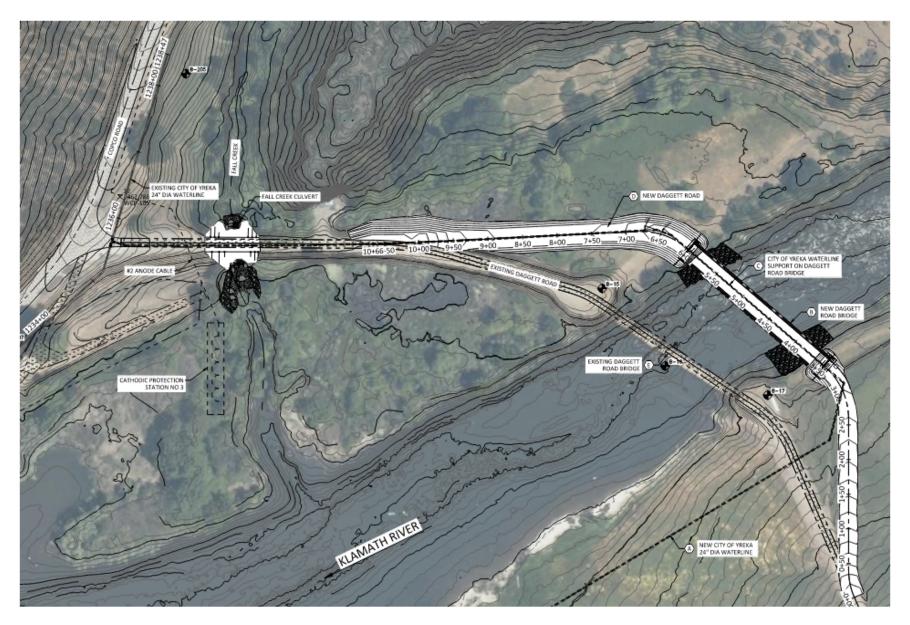


Figure 3-1. General Site Layout

McMillen Jacobs Associates

4.0 Civil Design

4.1 General Description

This section presents the civil design elements for the Project.

4.2 Design Criteria

For the civil design criteria see Section 2.4.

4.3 Erosion and Sediment Control

The Contractor is required to install, monitor, and maintain erosion and sediment control measures as identified within the Project Drawings, and prepare the required documents discussed in Section 2.4 as determined by the various regulatory agencies. The erosion control measures shall be maintained for the duration of the construction project. The Contractor will be required to install specified permanent post-construction measures as required for the Project. The permanent measures are designed to protect the exposed slopes until the vegetation is fully established. Following construction, the disturbed areas of the Project site will be revegetated with native plant mixes, or riprap to protect the Klamath River banks and the new bridge abutments. The Contractor will be required to submit a Notice of Termination (NOT) to the State Water Resources Control Board (SWRCB) after completing the Project. This is required to be relieved from the Construction General Permit requirements. Final soil stabilization throughout the proposed Project area must be achieved prior to the SWRCB approval of the NOT.

4.4 Roadway Design

The new Daggett Bridge will be accessed by a new gravel road from the existing Daggett Road on the north side of the Klamath River with multiple slopes and vertical curves to the bridge deck and will slope back up to connect back into the existing Daggett Road on the south side of the Klamath River with multiple slopes and vertical curves. The deck elevation 2342.60 ft is 8.8 feet above the post drawdown 100-year elevation of 2333.8 ft. giving 8.8 ft of freeboard during a 100-year storm. The road will be crowned to drain freely to a borrow ditch on both sides of the road. The vegetation within the borrow ditch will serve as a water quality filter, removing particulates prior to infiltrating or flowing back toward the Klamath River.

The new Daggett Road will be gravel road to match the existing road. The roadway section will be constructed of native material topped with a 6" Class II Aggregate Base on top of a 12" layer of Structural fill per Spec 31 05 00 prepared by Knight Piésold Consulting. During construction, an area located to the north of the Klamath River and new Daggett Bridge location will provide a staging area for equipment and materials required to complete construction of the new Daggett Road and Bridge. There is also a staging area located to the south of the Klamath River where the proposed bridge will be built and launched from.

5.0 Hydrologic and Hydraulic Design

5.1 Annual Peak Floods at Iron Gate

Knight Piésold Consulting and Kiewit (2020a) analyzed the annual peak floods for the Klamath River Renewal Project, 100% Design Report, Appendix A-6. They analyzed the historic USGS data and the 2019 BiOp data. The annual peak flood values selected are shown in Table 5-1.

Probability (%)	Return Period	Flow (cfs)
50%	2-yr	7,500
20%	5-yr	10,900
10%	10-yr	14,900
5%	20-yr	19,300
2%	50-yr	25,700
1%	100-yr	31,200
0.5%	200-yr	37,100
0.2%	500-yr	45,800

Table 5-1. Annual	Peak Floods at Iron Gate.

Source: Table 3.2, Appendix A-6 (Knight Piésold Consulting and Kiewit, 2020)

5.2 Water Surface Elevation Analysis

The HEC-RAS model, developed by Knight Piésold Consulting, was used to look at the river hydraulics at the proposed bridge location. River Station 491023 was used, as it was closest to the proposed location of the new Daggett Bridge. The HEC-RAS model was run under existing conditions in steady state with the same flows identified in Table 5-1. The pre-drawdown model results are summarized in Table 5-2.

 Table 5-2. Pre-Drawdown Water Surface Elevations (HEC-RAS Sta 491023).

Annual Exceedance Probability (%)	Return Period	Flow (cfs)	W.S. Elevation (ft)	Channel Velocity (ft/s)
10%	10-yr	14,900	2334.2	8.2
5%	20-yr	19,300	2336.8	8.7
2%	50-yr	25,700	2339.2	10.0
1%	100-yr	31,200	2341.1	10.9
0.5%	200-yr	37,100	2342.4	11.8
0.2%	500-yr	45,800	2343.8	13.3

The HEC-RAS model was slightly modified by removing the Iron Gate Dam and running the model in steady state with the same flows. The post-drawdown model results are summarized in Table 5-3.

The 100-year water surface elevation (post-drawdown) was used as the basis to set the new Daggett Bridge deck elevation to provide at least 1 ft of freeboard below the waterline supports during a 100-year flood.

Annual Exceedance Probability (%)	Return Period	Flow (cfs)	W.S. Elevation (ft)	Channel Velocity (ft/s)
10%	10-yr	14,900	2330.1	12.4
5%	20-yr	19,300	2331.7	13.4
2%	50-yr	25,700	2333.7	14.8
1%	100-yr	31,200	2335.1	16.0
0.5%	200-yr	37,100	2336.5	17.1
0.2%	500-yr	45,800	2338.1	18.9

Table 5-3. Post-Drawdown	Water Surface Flev	vations (HEC-RAS Sta 4	91023)
Table J-J. FUSI-Diawuuwii	Water Surface Liev	alions (neo-nao ola 4	JIUZJJ.

5.3 Proposed Daggett Bridge

The HEC-RAS model, developed by Knight Piésold Consulting, was used to look at the river hydraulics at the proposed Daggett bridge location and analyze the impacts to the river flow to evaluate the potential scour and required revetment size to ensure the stability of the bridge abutments. The HEC-RAS model was slightly modified by removing the Iron Gate Dam and adding the proposed bridge location. The proposed bridge spans the river without any piers or other obstructions. The water surface elevations and the channel velocities upstream of the proposed Daggett bridge location are shown in Table 5-4.

Annual Exceedance Probability (%)	Return Period	Flow (cfs)	W.S. Elevation Upstream of Bridge (ft)	Channel Velocity Upstream of Bridge (ft/s)
10%	10-yr	14,900	2328.6	15.1
5%	20-yr	19,300	2330.1	16.0
2%	50-yr	25,700	2332.4	16.7
1%	100-yr	31,200	2333.8	17.7
0.5%	200-yr	37,100	2336.7	17.5
0.2%	500-yr	45,800	2344.7	16.2

Table 5-4. Water Surface Elevations Upstream of Proposed Daggett Bridge.

5.4 Bridge Scour Analysis

The scour depth estimate is based on an equation provided by Julien (2002), where the scour depth downstream of a grade-control structure is evaluated with the drop height being set to zero. The scour depth estimation is based on the riverbed particle size, or grain size representing fine sand. The riverbed grain size was obtained from the description of the river alluvium as recorded in the log of soil and core borings reported by CDM Smith (2020a). The calculated potential scour depth for the 1% AEP flood is 2.8 feet. The scour depth calculations can be found in Appendix B.

5.5 Revetment Stone Sizing

The revetment size was calculated using the California Bank and Shore (CABS) method. The method consists of one or more layers of Rock Slope Protection (RSP), placed along the streambank at the abutments of the bridge to prevent erosion. The revetment sizing has been chosen to be the same for each abutment, where the revetment size is based on the largest calculated rock rise to maintain bank stability. The typical revetment slope protection would consist of a large-sized outside rock, a smaller-sized inner rock, and then a geotextile fabric. The slope revetment is intended to be flexible, where the rock may move without necessarily compromising the stability of the entire bank. The calculated revetment size for the left and right abutment are shown in Table 5-5. The right bank, or North abutment velocity multiplier was increased by 20 percent to account for the thalweg being located directly next to the bank. The left bank, or South abutment revetment size was increased to match the North abutment for installation simplification. Figure 5-1 shows a typical layout for revetment placement for the right bank or North abutment. The revetment stone sizing calculations can be found in Appendix B.

Description	South Abutment	North Abutment
Slope Angle	15 deg	28 deg
Outside Layer, RSP-Class	E7B	E7B
Minimum Layer Thickness (d)	3.3 ft	3.3 ft
Backing Layer, RSP-Class	E6	E6
Minimum Layer Thickness	1.25 ft	1.25 ft
RSP-Fabric Type	12 oz Nonwoven	12 oz Nonwoven
Total Rock Thickness (Perpendicular)	4.6 ft	4.6 ft

Table 5-5. Revetment Sizing for Bridge Abutments.

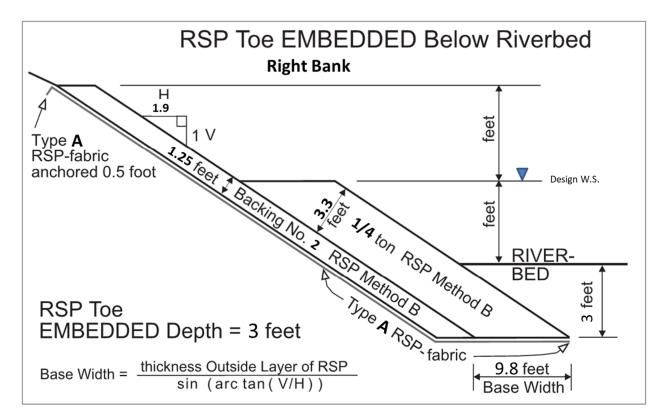


Figure 5-1. Typical Revetment Placement for Right Abutment.

6.0 Geotechnical Design

6.1 Geotechnical Investigations

CDM Smith and AECOM Technical Services, Inc. prepared a Geotechnical Data Report for KRRC in June 2019. Three (3) borings, B-15, B-16, and B-17 were drilled in the vicinity of the Daggett Bridge location. All three boring were drilled by Taber Drilling. Boring B-15 and B17 were drilled with a truck mounted CME-75 drill rig and boring B-16 was drilled over water with a barge mounted CME-45 drill rig. All borings were advanced with rotary wash, HQ-3 rock core methods. The borings reached depths of 51.5 feet (B-15), 24.5 feet (B-16), and 41.5 feet (B-17) below ground surface. Borings are shown relative to the existing Daggett Bridge location in Figure 3-1.

Borings B-15 and B-17, drilled adjacent to the existing bridge abutments, encountered localized fill near the ground surface. The fill is sandy lean clay with gravel to gravelly clay with sand (CL), stiff to very stiff, approximately 8 feet in depth. Underlying the fill in Boring B-15 is very dense clayey gravel with sand (GC) with a thickness of 9 feet, basalt boulders and cobbles in a sand and gravel matrix with a thickness of 11 feet, followed by a volcaniclastic breccia to the total depth of the boring. Underlying the fill in Boring B-17 is a very dense sandy gravel (GP) with a thickness of 4 feet, followed by the volcaniclastic breccia to the total depth of the boring.

Boring B-16, drilled over water near approximately the mid-point of the bridge, encountered the same volcaniclastic breccia from the ground surface to the entire depth of the boring.

6.2 Geotechnical Conditions

Borings B-15 and B-17 are used to develop the geotechnical conditions for the new bridge abutments and foundations. For design purposes the very dense Clayey Gravel with Sand encountered in boring B-15 was conservatively used for the full design section of both bridge abutments. This material has an N1₆₀ value greater than 50. Based on one sieve analysis it consists of 42% gravel seized particles, 27% sand, and 31% fines (passing the #200 sieve). The moist unit weight is 125 pounds per cubic foot (pcf). The design friction angle is conservatively taken as 35 degrees and includes a 3-degree reduction to account for the significant fines content of the material. For bearing capacity calculations the cohesion is conservatively taken as 0. For other calculations it is estimated to be 250 psf. Modulus is estimated to be 10 ksi. Poisson's ratio is estimated to be 0.4.

6.3 Bearing Capacity

The bearing capacity was calculated for shallow footings following the methodology in AASHTO for a footing that is 12-ft wide, by 37-ft long. It is assumed that the footing depth is between 7 to 10 feet below the existing ground surface. Ground water condition is assumed to be at the ground surface (i.e. flood conditions). Based on the geometry provided in Drawing C202 a slope reduction factor of 0.69 was calculated. A resistance factor of 0.45 was used, consistent with a theoretical method using STP values. A factored resistance q_R =9.2 ksf was calculated for vertical concentric loads.

6.4 Settlement

Settlement of the bridge foundations was checked following AASHTO methodology. The granular material at the bridge site is not anticipated to experience consolidation settlement. Per AASHTO Section 10.6.2.3 Service Load I is used for settlement calculations. Based on a distributed load of 4.05 ksf over a 12-ft x 37-ft footing, elastic settlements up to 0.52-inches could be seen during construction at each foundation.

6.5 Slope Stability

Global stability of the bridge footing was checked using the limit equilibrium slope stability program Slide2 by Rocscience. The higher and steeper NW bridge abutment was analyzed with an infinite, 2D slope using the Bishop method. The entire subsurface profile was conservatively modeled with the very dense clayey gravel with sand, with a friction angle of 35 degrees, a cohesion of 250 psf, and a unit weight of 125 pcf. The approximately 5 foot high approach fill was conservatively modeled as a distributed load of 450 psf in order to neglect the strength of the fill. The factor of safety with a 4.05 ksf distributed load over a 12-ft wide footing is 1.7. A pseudo-static analysis was performed to model slope stability in a seismic situation. A horizontal acceleration of 0.13, corresponding to half the site PGA was used in the analysis. A pseudo-static factor of safety FS=1.3 was calculated.

7.0 Structural Design

7.1 Bridge Superstructure and Abutments

The single span, pre-engineered bridge superstructure design, provided by Acrow, accommodates vertical and lateral loads required by AASHTO, in addition to loads from equipment required for the dam removal project, and emergency vehicles. The superstructure is supported by non-integral, reinforced concrete seat-type abutments at each end of the bridge, on the North and South sides of the Klamath River. The superstructure is attached to each abutment via bearing pads and post-installed anchors.

The vertical and lateral reactions at each pipe support location were provided to Acrow and incorporated into the superstructure design.

7.1.1 Design Loads

An analysis of the superstructure by Acrow produced the unfactored reactions shown in Table 7-1 and were incorporated into the abutment (substructure) design.

Load Case	Load	Description
Dead Load	210 kips	Total self-weight of superstructure and components, including wearing surface
Live Load	165 kips	Maximum of two lanes of concurrent HL-93 loading, or one lane loaded by an emergency vehicle concurrent with one lane of HL-93 loading
Wind Load	86 kips	Wind load determined from wind pressure and exposed area acting on superstructure
Seismic Load	54 kips	Seismic load determined from product of acceleration coefficient and the tributary permanent load (dead load)

Table 7-1. Superstructure Loads Provided by Acrow

Additional load cases and associated components considered in the substructure design include:

Dead Loads (DL):

- Self-weight of bridge superstructure and components.
- Self-weight of reinforced concrete abutment.
- Self-weight of full, 24-inch diameter steel pipe (waterline).

Live Loads (LL and LS):

- Both lanes loaded with HL-93, or a single lane loaded with HL-93 and a single lane loaded with EV-2.
- Braking force taken as the maximum of 25% of the axle weight of the design truck or tandem, or 5% of the design truck plus lane load, or 5% of the design tandem plus lane load.
- Vertical surcharge from vehicle loading acting on surface of backfill (LS).
- Lateral force due to vehicle surcharge

Snow Load (SL)

• 40 psf uniform load over bridge superstructure.

Wind Loads (WL)

• ASCE 7 specified wind load applied to waterline.

Seismic Loads (EQ)

- Vertical seismic force applied from the bridge superstructure taken as 25% of the tributary permanent load (dead load).
- Lateral seismic force applied from the bridge superstructure taken as the product of the acceleration coefficient, A_s, and the tributary permanent load (dead load).
- Lateral seismic force due to the dynamic lateral earth pressure force.
- Lateral seismic force induced by the self-weight of the substructure.

Earth Pressures (ES, EH)

- Vertical earth pressures due to soil over toe and heel.
- Lateral earth pressure due to backfill.

7.1.2 Substructure Design

The abutments were designed to resist the vertical and lateral loads from the bridge, in addition to vertical and lateral surcharge loads due to vehicles. The abutments also account for the self-weight of concrete and vertical and lateral loads due to soil, and seismic or wind forces. Each load was factored and combined as required per AASHTO Table 3.4.1-1, with the worst-case combined loading governing the abutment design. The load factors for each combination utilized in the design are indicated in Table 7-2.

Load Combination Limit State	D	ES	EH	LL	WL	EQ	IC
Strength I	1.25	1.50	1.35	1.75	-	-	-
Strength II	1.25	1.50	1.35	1.35	-	-	-
Strength III	1.25	1.50	1.35	-	1.0	-	-
Strength IV	1.50	1.50	1.35	-	-	-	-
Strength V	1.25	1.50	1.35	1.35	1.0	-	-
Extreme I	1.0	1.0	1.0	0.5	-	1.0	-
Extreme II	1.0	1.0	1.0	0.5	-	-	1.0
Service I	1.0	1.0	1.0	1.0	1.0	-	-
Service II	1.0	1.0	1.0	1.3	-	-	-

Table 7-2. Load Combinations and Load Factors

The abutments are comprised of a 6'-0" wide body, including a 2'-3" thick, approximately 3'-3" tall back wall and are supported by a 2'-0" thick spread footing, approximately 3'-0" below existing grade. The back wall transitions to 1'-0" thick at the returns to minimize materials and provide some cost savings. As

required by AASHTO Sections 11.5.3 and 11.5.4, the abutment designs included evaluations at the Strength Limit and Extreme Limit states for the following:

- bearing resistance failure,
- lateral sliding,
- loss of base contact due to eccentric loading and
- structural failure

The Extreme and Service Limit states were also evaluated for overall stability failure. Each limit state evaluated satisfied the AASHTO requirements of Equation 1.3.2.1-1:

$$\Sigma \eta_i \gamma_i Q_i \leq \emptyset R_n$$

where:

- η_i = load modifier relating to ductility, redundancy, and operational classification
- γ_i = load factor: a statistically based multiplier applied to force effects
- $Q_i = \text{force effects}$

 R_n = nominal resistance

 \emptyset = resistance factor: a statistically based multiplier applied to nominal resistance

The load factors applied in the above equation for each limit state are shown in Table 7-2. The Strength I load combination controlled the abutment designs over the Service and Extreme Limit states. The abutments were sized to limit eccentricity and to keep the resultant within the middle third, providing the most cost-effective design.

7.2 New Waterline Support

The new 24-inch proposed waterline is to be constructed as a minimum 0.750-inch-thick steel pipeline and will be located along the downstream of the new bridge. The pipeline will transition from a buried pipeline, through the concrete abutments and will span across the Klamath River. Expansion joints in the pipeline exist adjacent to each abutment. The bottom elevation of the pipe supports are 2342.91 ft is 9.1 feet above the post drawdown 100-year elevation of 2333.8 ft. giving 9.1 ft of freeboard during a 100-year storm.

Structural support locations for the waterline occur every 10'-0" and were determined based on the spacing of the pre-manufactured bridge deck transom beams. The transom beams occur at 10'-0" on center and are shallow enough to locate the pipe below the members while still providing adequate attachment surfaces and required freeboard. The main bridge girders are relatively deep members and can provide some shelter for the new waterline from environmental impacts.

7.2.1 Design Loads

The pipe was analyzed for gravity and lateral loads, including wind and seismic. The supports were designed for the following loads cases:

Dead Loads (DL):

• Self-weight of full, 24-inch diameter steel pipe (waterline).

Wind Loads (WL)

• ASCE 7 specified wind load applied to waterline.

Seismic Loads (EQ)

• ASCE 7 specified seismic loads applied to waterline.

Load Case	Load	Description
Dead Load	294 plf	Total self-weight of 24-inch diameter waterline and water
Wind Load	282 plf	Uniform lateral wind load applied to pipe
Seismic Load	131 plf	Uniform lateral seismic load applied to pipe
Seismic Load	35 plf	Uniform ± vertical seismic load applied to pipe

 Table 7-3. Unfactored Loads

The loads shown in Table 7-3 were determined using the ASCE 7 equations and coefficients found in Section 2.7.4.4 for wind and 2.7.4.5 for seismic forces.

7.2.2 Waterline Support Design

The steel support components were designed per the steel design code, AISC, which references the load combinations from ASCE 7 to determine the required strength. The design forces applied to the waterline supports were determined using ASCE 7, with applicable load factors conforming to the strength design (LRFD) methodology. Table 7-4 provides the load combinations and associated factors considered. The variable "E" represents calculated seismic forces with the subscripts "v" and "h" denoting vertical and horizontal forces, respectively.

Table 7-4. Load Combinations per ASCE 7 Section 2.3

Load Combination Number	Load Combination
1	1.4*DL
2	1.2*DL + 1.6*LL
3	1.2*DL + LL or 0.5*WL
4	1.2*DL + 1.0*WL + LL
5	0.9*DL + 1.0*WL
6	1.2*DL + 1.0*E _v + 1.0*E _h + LL
6	0.9*DL - 1.0*E _v + 1.0*E _h + LL

The Strength and Serviceability Limit states for each load combination was evaluated, and the supports were sized to satisfy the AISC requirements of Equation B3-1:

$$R_u \leq \emptyset R_n$$

where:

 R_u = required strength using LRFD load combinations

 $R_n = nominal strength$

\emptyset = resistance factor

The waterline support consists of two hanging wide-flange columns, welded to a plate, which is clamped to the bottom of the transom beam. The hanging columns are supported by the same transom beam and are spaced at 5'-0" transversely, allowing space to construct the connections and adequate clearance for the pipe.

A stiffened plate with a curved seat directly supports the waterline and is bolted via shear tab to each hanging column, serving as the pipe support, and transferring vertical and lateral forces to the hanging columns. The hanging columns will act as tension/compression members to resist the lateral (wind and seismic) forces perpendicular to the pipe span, which will avoid inducing torsion on the transom beams.

Angle braces attached to the bottom of the hanging members and extending up to each adjacent transom beam will resist the lateral (seismic and friction) forces parallel with the pipe span, eliminating torsion on the transom beams. The braces will attach to a plate that is welded on the outside face of the hanging columns at the bottom. The brace to plate connection can be bolted or welded, allowing flexibility in the field to install as the bridge is launched. At the transom beam, the flange of a WT member is bolted to the underside of the transom beam, extending the web down. The braces will attach to the WT web via bolt or weld, allowing for flexibility in the field to install as the bridge is launched.

8.0 References

CDM Smith and AECOM. 2019. Klamath River Renewal Project Geotechnical Data Report.

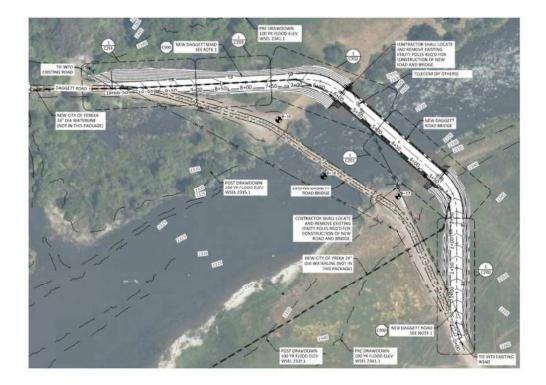
- Hydraulic Design Criteria (HDC). 1987. In-Line Conical Transitions and Abrupt Transitions, Loss Coefficients. HDC 228-4 to 228-4/1. U.S. Army Corps of Engineers. Revised 11-87.
- Julien, Pierre Y. (2002). River Mechanics. Cambridge University Press, Cambridge, United Kingdom.

Knight Piésold Consulting and Kiewit. 2020a. 100% Design Report.

Knight Piésold Consulting and Kiewit. 2020b. Daggett Road Bridge Drawings.

Rennels, Donald C. and Hudson, Hobart M. 2012. *Pipe Flow, A Practical and Comprehensive Guide*. Hoboken, New Jersey: John Wiley & Sons.

The California Oregon Power Company. 1981. Daggett Road Bridge Drawings.


Appendix A Civil Design Calculations

Calculation Cover Sheet

Project:	Daggett Bridge Desi	gn Project		
Client:	Kalamath River Renewal Corporation		Proj. No	21-067
Title:	Civil Design Calcula			
Prepare	d By, Name:	Ryan Hudson		
Prepare	d By, Signature:	Rycon Hindson	Date:	5/27/2022
Peer Reviewed By, Name:		Jeff Lowy		
Peer Re	viewed, Signature:	All Long	Date:	5/27/2022

SUBJECT:	Kalamath River Renewel Cooperation	BY: R. Hudsor	n CHK'D BY: J. Lowy
	Daggett Bridge Design	DATE: 5/27/2022	
	Civil Design Calculations	PROJECT NO.: 21-067	
Table of Cont	tent		

Page

EXAMPLE

Daggett Road Design 1

• Vertical Curve Calculations

SUBJECT:

Kalamath River Renewel Cooperation Daggett Bridge Design Civil Design Calculations BY: R. Hudson DATE: 5/27/2022 PROJECT NO.: 21-067

Purpose

The purpose of this cacualtion sheet is to show the vertical curves of the proposed Daggett Road meet the AASHTO vertical curve calculations.

References

• AASHTO. 2018. A Policy on Geometric Design of Highways and Streets 7th Edition. Washington, DC...

Equations

The following equations were used to calculate vertical curve information for the proposed Daggett Road.

	U.S. Cu	stomary	
Design Speed	Speed Sight	Rate of Vertical Curvature, Ka	
(mph)		Calculated	Design
15	80	3.0	3
20	115	6.1	7
25	155	11.1	12
30	200	18.5	19
35	250	29.0	29
40	305	43.1	44
45	360	60.1	61
50	425	83.7	84
55	495	113.5	114
60	570	150.6	151
65	645	192.8	193
70	730	246.9	247
75	820	311.6	312
80	910	383.7	384

Table 2 - Minimum K Value for Sag Curves

	U.S. Customary		
Design Speed	Stopping Sight Dis-	Rate of Vertical Curvature, K ^a	
(mph)	tance (ft)	Calculated	Design
15	80	9.4	10
20	115	16.5	17
25	155	25.5	26
30	200	36.4	37
35	250	49.0	49
40	305	63.4	64
45	360	78.1	79
50	425	95.7	96
55	495	114.9	115
60	570	135.7	136
65	645	156.5	157
70	730	180.3	181
75	820	205.6	206
80	910	231.0	231

The proposed speed limit for Dagget Road around the proposed bridge location is 15mph. From Tables 1 and 2, this corresponds to a minimum K value of 3 for crest curves and 10 for sag curves. The following equations will be used to calculate the K value of each proposed curve and checked againt the minimum K value for the 15 mph speed limit.

Rate of Curvature		
$K = \frac{L}{A}$	Where: L = Length of vertical curve, ft A = Algebraic difference between grades, %	
Parabolic Constant		
$e = \frac{A}{2L}$	Where: L = Length of vertical curve, ft A = Algebraic difference between grades, %	
Elevation of Curve at PVI		
$PVI_{Elevation} = PVC_{Elev}$	2	
$PVT_{Elevation} = PVI_{Elevation} + (g_2 * \frac{L}{2})$		
$Curve \ Elevation_{PVC-PVT} = \frac{PVC_{Elevation} + PVT_{Elevation}}{2}$		
$Curve \ Elevation_{PVI} =$	$\frac{Curve \ Elevation_{PVC-PVT} + PVT_{Elevation}}{2}$	

Where:

 $PVC_{Elevation}$ = Elevation of the point of vertical curvature (PVC), ft

PVI_{Elevation} = Elevation of the point of vertical inflection (PVI), ft

PVT_{Elevation} = Elevation of the point of vertical tangency (PVI), ft

Cuve Elevation_{PVC-PVT} = Elevation of the vertical curve at the midpoint of the chords PVC-PVT, ft

Curve Elevation $_{PVI}$ = Elevation of the vertical curve at the PVI station, ft

- g₁ = Grade into curve, %
- g2 = Grade out of curve, %

Curve Station 0+00 to 0+20

Input Vertical Curve Information		
Design Speed:	15 mph	
Sta of Point of Vertical Inflection (PVI):	0+10.00	
Elevation of PVI:	2355.35	
Elevation of PVC:	2355.35	
Length of Vertical Curve:	20.00	
Grade into Curve (g1) Grade out of Curve (g2)	0.00% -4.47%	

Calculated Varia	bles
Algebraic Difference Between Slopes (G):	-4.47%
Design K Value for the Crest Vertical Curve:	3
K Value of Prop. Curve:	4.5
e Value:	-0.11
Elevation of PVI:	2355.35
Elevation of PVT:	2354.90
Curve Elevation _{PVC-PVT} :	2355.13
Elevation of Curve at PVI:	2355.01
Sta of Point of Vertical Curvature (PVC):	0+00.00
Elevation of PVC:	2355.35
Sta of Point of Vertical Tangency (PVT):	0+20.00

Curve Station 2+70 to 3+20

Input Vertical Curve Information		
Design Speed:	15 mph	
Sta of Point of Vertical Inflection (PVI):	2+95.00	
Elevation of PVI:	2342.60	
Elevation of PVC:	2343.72	
Length of Vertical Curve:	50.00	
Grade into Curve (g1)	-4.47%	
Grade out of Curve (g2)	0.00%	

Curve Station 6+46 to 6+86

Input Vertical Curve Information			
Design Speed:	15 mph		
Sta of Point of Vertical Inflection (PVI):	6+66.00		
Elevation of PVI:	2342.60		
Elevation of PVC:	2342.60		
Length of Vertical Curve:	40.00		
Grade into Curve (g1)	0.00%		
Grade out of Curve (g2)	-3.10%		

Calculated Varia	bles
Algebraic Difference Between Slopes (G):	4.47%
Design K Value for the Crest Vertical Curve:	10
K Value of Prop. Curve:	11.2
e Value:	0.04
Elevation of PVI:	2342.60
Elevation of PVT:	2342.60
Curve Elevation _{PVC-PVT} :	2342.60
Elevation of Curve at PVI:	2342.60
Sta of Point of Vertical Curvature (PVC):	2+70.00
Elevation of PVC:	2343.72
Sta of Point of Vertical Tangency (PVT):	3+20.00

Calculated Varia	bles
Algebraic Difference Between Slopes (G):	-3.10%
Design K Value for the	3
Crest Vertical Curve: K Value of Prop. Curve:	12.9
e Value:	-0.04
Elevation of PVI:	2342.60
Elevation of PVT:	2341.98
Curve Elevation _{PVC-PVT} :	2342.29
Elevation of Curve at PVI:	2342.14
Sta of Point of Vertical Curvature (PVC):	6+46.00
Elevation of PVC:	2342.60
Sta of Point of Vertical	6+86 00

Tangency (PVT):

Curve Station 7+30 to 7+70

Input Vertical Curve Information			
Design Speed:	15 mph		
Sta of Point of Vertical Inflection (PVI):	7+50.00		
Elevation of PVI:	2340.00		
Elevation of PVC:	2340.62		
Length of Vertical Curve:	40.00		
Grade into Curve (g1)	-3.10%		
Grade out of Curve (g2)	0.00%		

Calculated Varia	bles
Algebraic Difference Between Slopes (G):	3.10%
Design K Value for the Crest Vertical Curve:	10
K Value of Prop. Curve:	12.9
e Value:	0.04
Elevation of PVI:	2340.00
Elevation of PVT:	2340.00
Curve Elevation _{PVC-PVT} :	2340.00
Elevation of Curve at PVI:	2340.00
Sta of Point of Vertical Curvature (PVC):	7+30.00
Elevation of PVC:	2340.62
Sta of Point of Vertical Tangency (PVT):	7+70.00

Curve Station 8+30 to 9+10

Input Vertical Curve Information					
Design Speed:	15 mph				
Sta of Point of Vertical Inflection (PVI):	8+70.00				
Elevation of PVI:	2340.00				
Elevation of PVC:	2340.00				
Length of Vertical Curve:	80.00				
Grade into Curve (g1)	0.00%				
Grade out of Curve (g2)	3.03%				

Calculated Variables						
Algebraic Difference	3.03%					
Between Slopes (G):	0.0070					
Design K Value for the	10					
Crest Vertical Curve:	10					
K Value of Prop. Curve:	26.4					
e Value:	0.02					
Elevation of PVI:	2340.00					
Elevation of PVT:	2341.21					
Curve Elevation _{PVC-PVT} :	2340.61					
Elevation of Curve at PVI:	2340.91					
Sta of Point of Vertical	8+30.00					
Curvature (PVC):						
Elevation of PVC:	2340.00					
Sta of Point of Vertical 9+10.00						
Tangency (PVT):	5 . 10.00					

Curve Station 10+10 to 10+50

Input Vertical Curve Information				
Design Speed:	15 mph			
Sta of Point of Vertical Inflection (PVI):	10+30.00			
Elevation of PVI:	2344.85			
Elevation of PVC:	2344.25			
Length of Vertical Curve:	40.00			
Grade into Curve (g1)	3.03%			
Grade out of Curve (g2)	0.00%			

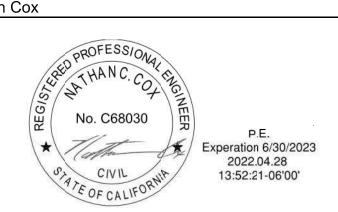
Calculated Varia	bles
Algebraic Difference Between Slopes (G):	-3.03%
Design K Value for the Crest Vertical Curve:	3
K Value of Prop. Curve:	13.2
e Value:	-0.04
Elevation of PVI:	2344.86
Elevation of PVT:	2344.86
Curve Elevation _{PVC-PVT} :	2344.85
Elevation of Curve at PVI:	2344.85
Sta of Point of Vertical Curvature (PVC):	10+10.00
Elevation of PVC:	2344.25
Sta of Point of Vertical Tangency (PVT):	10+50.00

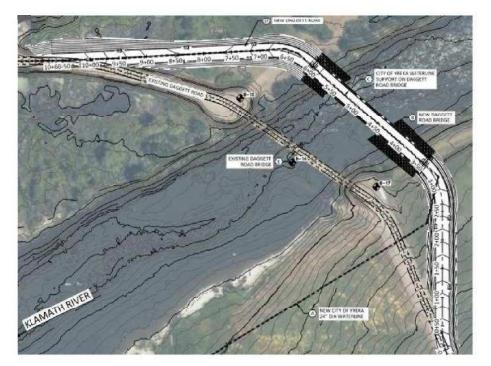
Conclusion

Using vertical curve equations provided by AASHTO, the K values for the 6 vertical curves of the proposed Daggett Road were calculated and compared to design K values of 3 and 10 for crest and sag curves, respectivly. The proposed curve K values are all greater than the design K values meeting the limits constraining the stopping sight distance.

Appendix B Hydrologic & Hydraulic Design Calculations

Calculation Cover Sheet


Project: Daggett Bridge Design Project


Client: Kalamath River Renewal Corporation

Proj. No. 21-067

Title: Hydrologic and Hydraulic Design Calcs

Prepared By, Name: Nathan Cox

SUBJECT:	Kalamath River Renewal Corporation BY: N. C Daggett Bridge Design Project DATE: 1/0/1 Table of Contents PROJECT NO.: 21-0	900
Table of Conte	nt	
Description		Page
Scour Depth		B3
Determine	e the Expected Scour at the Bridge	
CABS RSP D	esign	B4
Determine	e the Rock Stone Size Slope Protection	
HEC-RAS Re	sults	B6
 Results or 	f HEC-RAS Simulations	

Daggett Bridge_Revetment_Sizing.xlsm

SUBJECT:	Klamath River Renewal Corp.	BY: N.Cox	CHK'D BY: M.Cerucci
	Daggett Bridge Modification	DATE: 9/20/2021	
	Scour Depth Estimate	PROJECT NO.: 21-067	

Purpose

The purpose of this calculation sheet is to determine the expected scour depth at Bridge.

References

• Julien, Pierre Y. (2002). River Mechanics. Cambridge University Press, Cambridge, United Kingdom.

Equations

$$\Delta z = \left[1.8 \left(\frac{\sin \phi}{\sin(\theta_j + \phi)} \right)^{0.8} \frac{q^{0.6} V_1 \sin \theta_j}{[(G - 1)g]^{0.8} d_s^{0.4}} \right] - D_p \qquad \text{Eqn. 9.6 (Julien, 2002)}$$

Where:

 Δz = Scour depth below the grade-control structure (m)

 D_{p} = Drop height of the grade control structure (m)

q = Unit Discharge (m ³/s /m)

 V_1 = Approach Velocity (m/s)

 d_s = Particle Size (m)

g = gravitational constant (m/s²)

G = Specific Gravity of bed Material

 ϕ = Angle of Repose of the Bed Material (degrees)

 θ_j = Jet Angle measured from the horizontal (degrees)

Scour Depth Calculations

Depth Galculations			
Unit Weight of Water, γ_w =	62.4	lbs/ft ³	
Unit Weight of Stone, γ_s =	156	bs/ft ³	Assumed
Acceleration of Gravity, $g =$	32.2	ft/s²	
Flow , Q =	31,200	ft³/s	
Average Channel Width, $W =$	167	ft	
Depth of Flow, $d =$	13.8	ft ft/a	HEC-RAS Model
Depth-Averaged Velocity, V =	17.7	ft/s	HEC-RAS Model
Acceleration of Gravity, $q =$	9.81	m/s²	
Specif Gravity, $G =$	2.50		
Angle of Repose, ϕ =	40	degrees	
Flow , Q =	883.5	m³/s	
Channel Width, $W =$	50.9	m	
Unit Discharge, $q =$	17.4	m²/s	
Approach Velocity, V_1 =	5.4	m/s	
Jet Angle, θ_j =	1:204	V:H	E.G. Slope of 0.0049
Jet Angle, θ_j =	0.28	degrees	
Drop Height, D_{p} =	0.0	ft	
Drop Height, D_{ρ} =	0.00	m	
Particle Size, d_s =	0.25	mm	Fine Sand (0.125 - 0.250 mm), Medium Sand (0.25 - 0.50 mm)
Particle Size, d_s =	0.00025	m	
Scour Depth, Δ_z =	0.8	m	
Scour Depth, Δ_z =	2.8	ft	

SUBJECT:	Klamath River Renewal Corp.	BY: N.Cox	CHK'D BY: M.Cerucci
	Daggett Bridge Modification	DATE: 9/20/2021	-
	Rock Slope Protection Stone Size/Weight	PROJECT NO.: 21-067	

Purpose

The purpose of this calculation sheet is to determine the rock slope protection stone size and required revetment layering, using the California Bank and Shore Rock Slope Protection Design Method.

References

• Caltrans, (2000). California Bank and Shore Rock Slope Protection Design, Practitioner's Guide and Field Evaluations of Riprap Methods, Third Edition. FHWA-CA-TL-95-10. State of California, Department of Transportation, Engineering Service Center, Office of Structural Foundations, Transportation Laboratory. October 2000.

Equations

 $W = \frac{0.00002V^6SG}{(SG-1)^3(\sin(r-a))^3}$

Equation 1 (Caltrans, 2000)

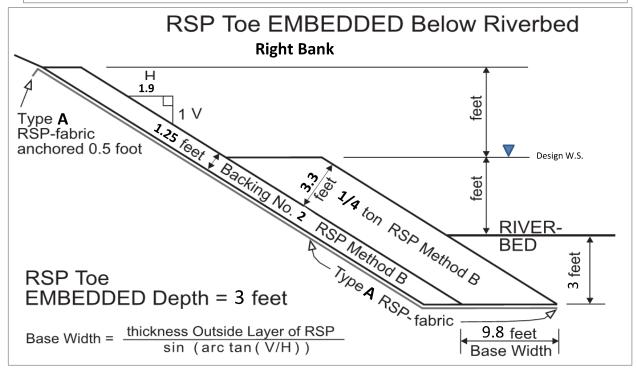
Where: W = Theoretical Minimal Rock Mass (Size or Weight) (lbs) V = Velocity (ft/s) for PARALLEL flow multiply average channel velocity by 0.67 (2/3) for IMPINGING flow multiply average channel velocity by 1.33 (4/3)

- SG = Specific Gravity of the Rock
- r = 70 degrees (for ramdonly placed rubble, a constant)
 a = Outside slope face angle with horizontal (degrees)

Calculations

liculations			
Unit Weight of Water, γ_w =	62.4	lbs/ft³	
Unit Weight of Stone, γ_s =	156	bs/ft ³	Assumed
Specific Gravity, SG =	2.50		
oposino oravity, oo	2.00		
Depth-Averaged Velocity, V =	17.7	ft/s	HEC-RAS Model
Left Bank Slope, a =	15.0	degrees	
Right Bank Slope, a =	27.7	degrees	Thalweg locaged on Right Bank
0 1		0	
	Left Bank		_
a =	15.0	degrees	-
Velocity Multiplier =	0.67		Parallel with Flow
Rock Mass, W =	73	bs	
Rock Mass, W =	33	Kg	
Rock Mass, W =	0.03	Tonnes	
Equivalent Rock Size, Diameter =	11.5	inches	
Outside Layer, RSP-Class =	1/4 ton		Table 5-1 (Caltrans, 2000)
Minimum Layer Thickness =	3.3	ft	Table 5-3 (Caltrans, 2000)
Backing, RSP-Class =	2		Table 5-2 (Caltrans, 2000)
Minimum Layer Thickness =	1	ft	Table 5-3 (Caltrans, 2000)
RSP-Fabric Type =	A		Table 5-2 (Caltrans, 2000)
Total Thickness =	4.6	ft	
	Diaht Donk		
a =	Right Bank 27.7	degrees	-
a – Velocity Multiplier =	0.80	uegrees	Assumed, Parallel with Flow plus Thalweg located at Bank
Rock Mass, W =	392	bs	Assumed, I arallel with now plus thatwey located at bank
Rock Mass, W =	178	Kg	
Rock Mass, W =	0.18	Tonnes	
Equivalent Rock Size, Diameter =	20.2	inches	
	20.2	mones	
RSP-Class of Outside Layer =	1/4 ton		Table 5-1 (Caltrans, 2000)
Minimum Layer Thickness =	3.3	ft	Table 5-3 (Caltrans, 2000)
Backing, RSP-Class =	2		Table 5-2 (Caltrans, 2000)
Minimum Layer Thickness =	1.25	ft	Table 5-3 (Caltrans, 2000)
RSP-Fabric Type =	A		Table 5-2 (Caltrans, 2000)
Total Thickness =	4.6	ft	(

Daggett Bridge_Revetment_Sizing xlsm CABS RSP Design



		GRADING OF ROCK SLOPE PROTECTION PERCENTAGE LARGER THAN											
	ANDARD RSP-Classes [A]												
	ck SIZE		Metho	od A Place	ement				Metho	od B Place	ement		
or Roc	k WEIGHT			R	SP-Classe	es other ti	nan Backi	ng			В	acking No	D.
US unit		8 ton	4 ton	2 ton	1 ton	1/2 ton	1 ton	1/2 ton	1/4 ton	Light	1 [B]	2	3
	SI unit	8 T	4 T	2 T	1 T	1/2 T	1 T	1/2 T	1/4 T	Liaht	1 (B)	2	3
16 ton	14.5 tonne	0-5											
8 ton	7.25 tonne	50-100	0-5										
4 ton	3.6 tonne	95-100	50-100	0-5									
2 ton	1.8 tonne		95-100	50-100	0-5		0-5						
1 ton	900 kg			95-100	50-100	0-5	50-100	0-5					
1/2 ton	450 kg				95-100	50-100		50-100	0-5				
1/4 ton	220 kg					95-100	95-100		50-100	0-5			
200 lb	90 kg							95-100		50-100	0-5		
75 lb	34 kg								95-100		50-100	0-5	
25 lb	11 kg									95-100	90-100	25-75	0-5
5 lb	2.2 kg											90-100	25-75
1 lb	0.4 kg												90-100

[A] US customary names (units) of RSP-Classes listed above SI names, example US is "2 ton" metric is "2 T".
 [B] "Facing" has same gradation as "Backing No. 1". To conserve space "Facing" is not shown .

Example for determining RSP-Class of outside layer. By using Equation 1, if the calculated W=135 kg (minimum stable rock size): 1. Enter table at left and select closest value of STANDARD Rock SIZE which is greater than calculated W, in this case 220 kg 2. Trace to right and locate "50-100" entry 3. Trace upward and read column heading "1/4 T", then 1/4 T is first trial RSP-Class.

Table 5-1. Guide for Determining RSP-Class of Outside Layer

Daggett Bridge_Revetment_Sizing.xlsm CABS RSP Design

SUBJECT:	Klamath River Renewal Corp.	BY: N.Cox CHK'D BY:
	Daggett Bridge Modification	DATE: 8/11/2021
	HEC-RAS Model Results for Daggett Bridge	PROJECT NO .: 21-067

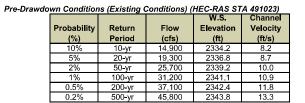
Purpose

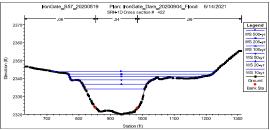
The purpose of this calculation sheet is to determine the water surface elevation at the proposed Daggett Road Bridge.

Annual Percent Probable Flood

Appendix A6, "Hydrology", Knight Piésold Consulting. Part of Kiewit Infrastructure West Co., Klamath River Renewal Project, 90% Design Report.

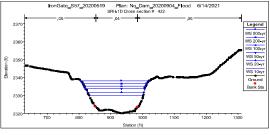
Table 3.2.	Annual	Peak	Floods	at Iron	Gate.
	-				1


Probability (%)	Return Period	Flow (cfs)
50%	2-yr	7,500
20%	5-yr	10,900
10%	10-yr	14,900
5%	20-yr	19,300
2%	50-yr	25,700
1%	100-yr	31,200
0.5%	200-yr	37,100
0.2%	500-yr	45,800

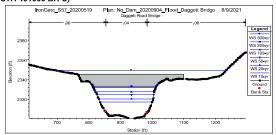

HEC-RAS Results

The HEC-RAS model was developed by Knight Piésold Consulting. The model was originally used to evaluate how the system would respond to historic flooding during drawdown conditions, in preparation for dam removel, at Iron Gate Dam.

HEC-RAS model was modified by removing Iron Gate Dam and running in steady-state conditions. Model was minimially changed. The results are below are based on the closest upstream cross-section to the proposed feature, or a bridge section was added to model the influcence of the proposed bridge. For documentation on the model please see documentation by Knight Piesold.


94033486 497600 4989 Proposed Daggett - 464376 457037 6633 Iron Gate Dam

Post-Drawdown Conditions (Iron Gate Dam is Removed) (HEC-RAS STA 491023)


Probability (%)	Return Period	Flow (cfs)	Elevation (ft)	Velocity (ft/s)
10%	10-yr	14,900	2330.1	12.4
5%	20-yr	19,300	2331.7	13.4
2%	50-yr	25,700	2333.7	14.8
1%	100-yr	31,200	2335.1	16.0
0.5%	200-yr	37,100	2336.5	17.1
0.2%	500-yr	45,800	2338.1	18.9

HEC-RAS Results - Proposed Daggett Bridge

Proposed Daggett Bridge Conditions (Iron Gate Dam is Removed) (HEC-RAS STA 491000 BR U)

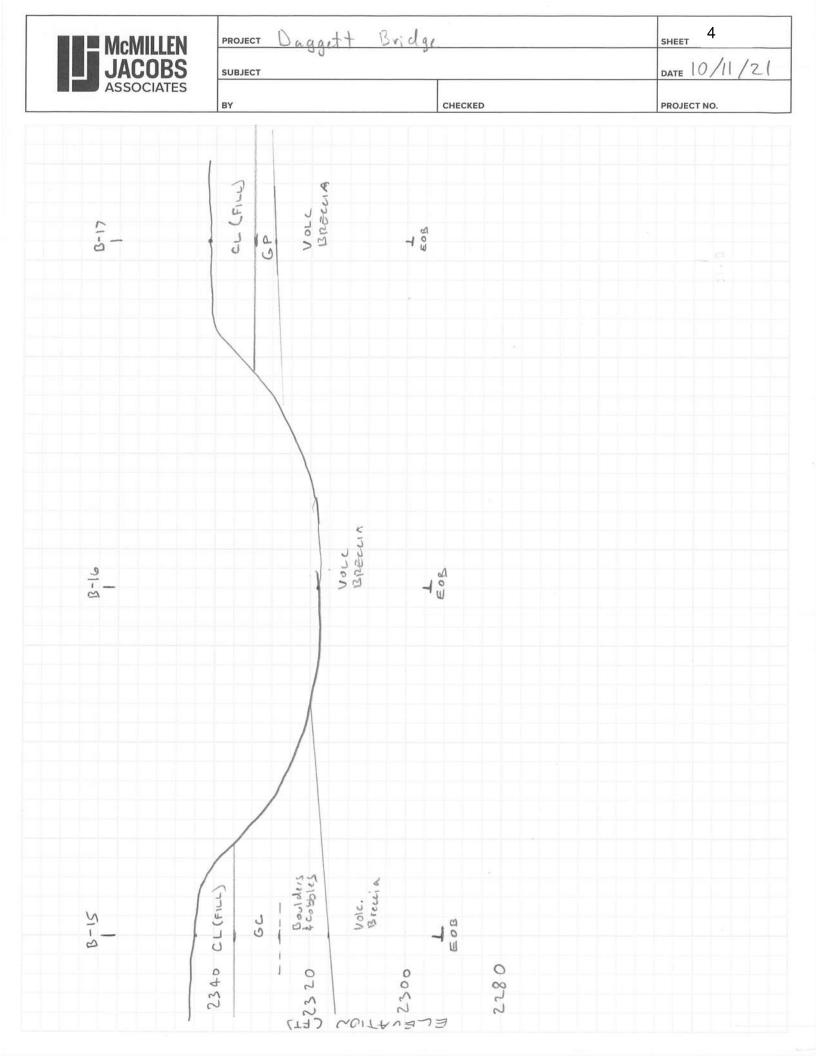
Probability (%)	Return Period	Flow (cfs)	W.S. Elevation (ft)	Channel Velocity (ft/s)
10%	10-yr	14,900	2328.6	15.1
5%	20-yr	19,300	2330.1	16.0
2%	50-yr	25,700	2332.4	16.7
1%	100-yr	31,200	2333.8	17.7
0.5%	200-yr	37,100	2336.7	17.5
0.2%	500-yr	45,800	2344.7	16.2

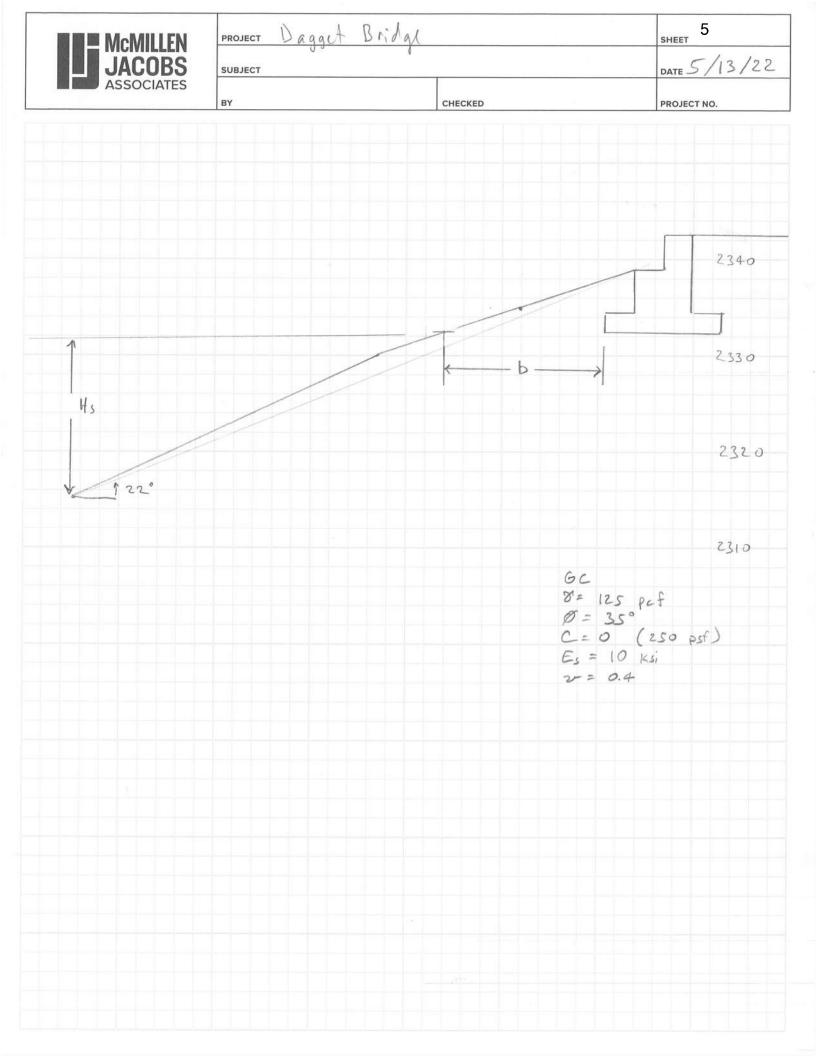


Appendix C Geotechnical Design Calculations

Calculation Cover Sheet

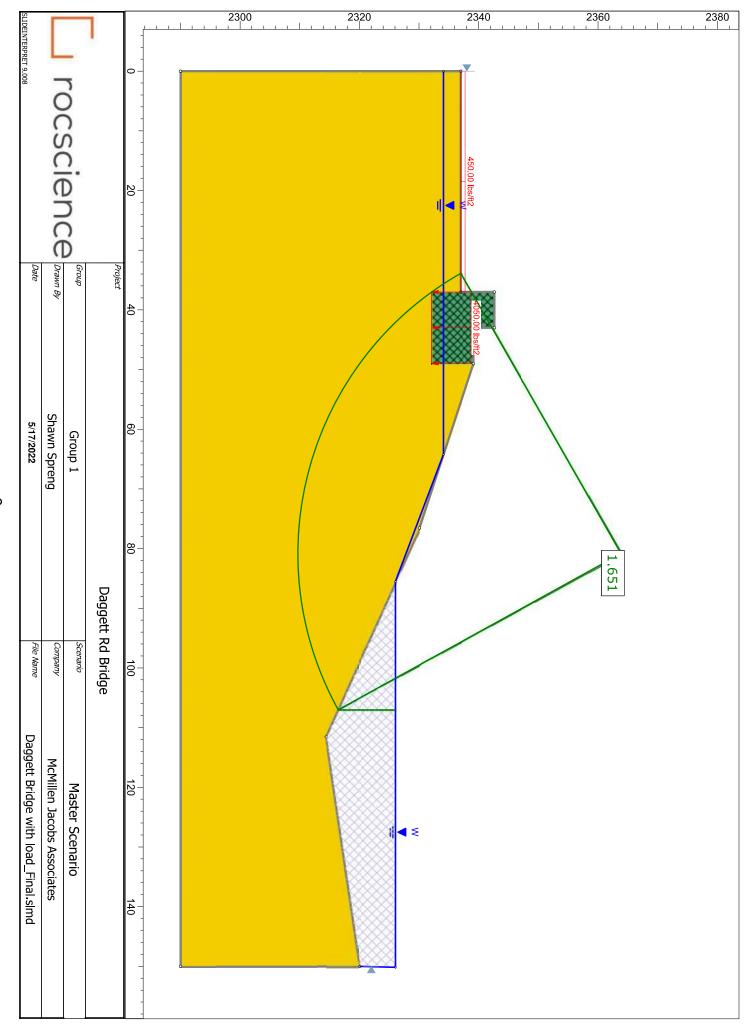
Project:	Daggett Bridge Des	ign Project		
Client:	Klamath River Renewal Corporation		Proj. No . 21-067	
Title:	Geotechnical Desig	n Calculations		
Prepare	d By, Name:	Shawn Spreng		
Prepare	d By, Signature:		Date:	5/19/2022
Peer Re	viewed By, Name:	Thomas Borden		
Peer Re	viewed, Signature:	Thomas A Borden	Date:	5/19/2022





SUBJECT:	Klamath River Renewal C		BY: S. Spreng	CHK'D BY: T. Borden
	Dagget Bridge Geotechni	cal Design	DATE: 5/19/2022	
	Table of Contents		PROJECT NO.: 21-067	
Table of Co	ntent			
				Page
Cast	echncial Parameters			
Geote	echncial Parameters			3
Typical Co	atachnical Cross Section			4
i ypical Ge	Clechnical Cross Section			4
	Design Section		4	5
	Design Dection			5
Sett	lement Calculation			6
				-
• Analyz	ze settlement at abutments.			
В	Bearing Capacity			7
Presur	mptive Bearing Capacity			
	Strength Bearing Capacity			
Slo	pe Stability Output			17
	-			

	PROJECT Daggett	Bridge	SHEET 3
JACOBS	SUBJECT Geotechnic		DATE 10/11/21
ASSOCIATES	BY SPS	CHECKED	PROJECT NO.
BORINGS	B-15, B-16,	13-17	
USE B-15	AS REPRESENTATIO	IE OF CONDITIONS	AT BOTH ABUTMENTS
B-15 15	CLAYEY GRAVEL	W/SAND @ EL= :	2336' to EL=2327'
N=54			
CN	= 0.77 log, (40/0;)	0 + 4 (130-62.4) = 1790 = 1.037	psf = 1.8 ksf
En	2 = 80% A.	TO TRIP HAMMER	*
N 160 =	$C_N N^{(e_2/60%)}$ 1.037 × 54 (-8/.6) =		HTO CH 10 H
$\mathcal{O}_{f} \approx$	3¢°	A A	SHTO Table 10.4.6.2.4.1
	BUT DEDUCT 3° FOR		
Ø ₄ = -			
E, =	13 Ksi For Med. 0	ense Grant on V. Stiff Clo	AASHTO Table C 10.4.6.3.1
AND		2.5 KSi Win NIN = 1	50 Table C 10.4.6.2.
		0.5 (0.1 0.1 0.1 0.1 0.0	
OSE E	s= 10 Ksi		
2=	0.4		AASHTO TOSL C 10. 4. 6.3
			ath a last
* ALL REFERENCES	S ARE TO AASHT(I LIZED BIZINGE DESIGN	SPECIFICATION , 8th ED . 2017
	i i i i i i i i i i i i i i i i i i i		



sheet 6 PROJECT Dagast Bridge McMILLEN JACOBS DATE 5/13/22 SUBJECT BY CHECKED PROJECT NO. SETTLEMENT Soil is clayer gravel (GG) > Granular cohesionless soil will not experience long term consolidation settlement. Check elastic settlement Se using AASHTO Section 10.6.2.4.2 Se = 8. (1-2-2) - VA Fr=51.40 Kips / Ft From Structural Engineer . Using Service Load I (10.6.2.3) 8.= (51.4 Kips/FT × 35 FT) / (12FT × 37 FT) = 4.05 KSF A = 12'x37' = 444 sf Es= 10 Ksi $\beta_z = \frac{L}{13} = \frac{37}{12} = 3.1 \Rightarrow \beta_z = 1.15$ Table 10.6.2.4.2-1 V= 0.4 $S_{e} = \frac{4.05}{144 \cdot 10} \cdot \frac{(1 - 4^{2})}{144} = 0.043 \text{ ft} = 0.52 \text{ inches}$

PROMETERPROMETERDescriptionSUBJECTDescriptionDescriptionDECATIONECARDENTYDetermine bearing expected of footings per Addition 10.6.2.6OCheck Presomptive bearing resistanceGC 4 SC Very bense16 - 24 KSFOCheck Strength Limit State
$$y_{R} = 0_{V} y_{R}$$
 $y_{R} = 0_{V} y_{R}$ y_{R}

SHEET 8 PROJECT Dagget Bridge MCMILLEN JACOBS ASSOCIATES DATE 5/13/22 SUBJECT BY CHECKED PROJECT NO. BEARING CAPACITY (cont.) $q_n = 0 + 0.125(6.25)(41.0)(0.5) + 0.5(0.125)(12)(41.8)(0.5)$ = 0 + 16.01 + 15.68 - 31.69 KSF Slope Reduction Factor gn-sloping ground = RC BC Bn Hs= 17.75' 6 = 16' B = 12' B/H = 0.68 6/13 -16/12= 1.33 B = 22° RCBC = 0.64 Table 10.6.3.1.26-1 9n= 0.64 (31.69) = 20.4 Ksf En= Pbgn = 0.45 (20.4) = 9.2 KSF considering presumptive bearing resistance from () above = 16-24 Ksf USE 9.2KSF

ശ

Daggett Bridge with load_Final Daggett Rd Bridge McMillen Jacobs Associates Date Created: 5/17/2022 Software Version: 9.008

Table of Contents

3
4
5
6
7
8
9
0
1
2
2
3
3
4
4
5
5
6
6
6
6

Slide Analysis Information

Daggett Bridge with load_Final

Project Summary

File Name: Slide Modeler Version: Compute Time: Project Title: Author: Company: Date Created: Daggett Bridge with load_Final.slmd 9.008 00h:00m:09.16s Daggett Rd Bridge Shawn Spreng McMillen Jacobs Associates 6/11/2021

General Settings

Units of Measurement: Time Units: Permeability Units: Data Output: Failure Direction: Imperial Units days feet/second Standard Left to Right

Analysis Options

Slices Type:	Vertical			
Analysis Methods Used				
	Bishop simplified			
Number of slices:	50			
Tolerance:	0.005			
Maximum number of iterations:	75			
Check malpha < 0.2:	Yes			
Create Interslice boundaries at intersections with wate tables and piezos:	r Yes			
Initial trial value of FS:	1			
Steffensen Iteration:	Yes			

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

Surface Options

Surface Type:
Search Method:
Divisions along slope:
Circles per division:
Number of iterations:
Divisions to use in next iteration:
Composite Surfaces:
Minimum Elevation:
Minimum Depth:
Minimum Area:
Minimum Weight:

Circular Auto Refine Search 20 10 10 50% Disabled Not Defined Not Defined Not Defined Not Defined Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No

Loading

2 Distributed Loads present	
	Distributed Load 1
Distribution:	Constant
Magnitude [psf]:	4050
Orientation:	Vertical
	Distributed Load 2
Distribution:	Constant
Magnitude [psf]:	450
Orientation:	Normal to boundary

Materials

Material 1	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	125
Cohesion [psf]	250
Friction Angle [deg]	35
Water Surface	Water Table
Hu Value	1
Material 2	
Color	
Strength Type	Infinite strength
Unit Weight [lbs/ft3]	120
Allow Sliding Along Boundary	Yes
Water Surface	Water Table
Hu Value	1

Global Minimums

Method: bishop simplified

FS	1.650540
Center:	80.868, 2363.834
Radius:	54.123
Left Slip Surface Endpoint:	33.865, 2337.000
Right Slip Surface Endpoint:	107.014, 2316.445
Left Slope Intercept:	33.865 2337.000
Right Slope Intercept:	107.014 2326.068
Resisting Moment:	5.86172e+06 lb-ft
Driving Moment:	3.5514e+06 lb-ft
Total Slice Area:	1230.66 ft2
Surface Horizontal Width:	73.1489 ft
Surface Average Height:	16.8241 ft

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	8772
Number of Invalid Surfaces:	0

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.65054

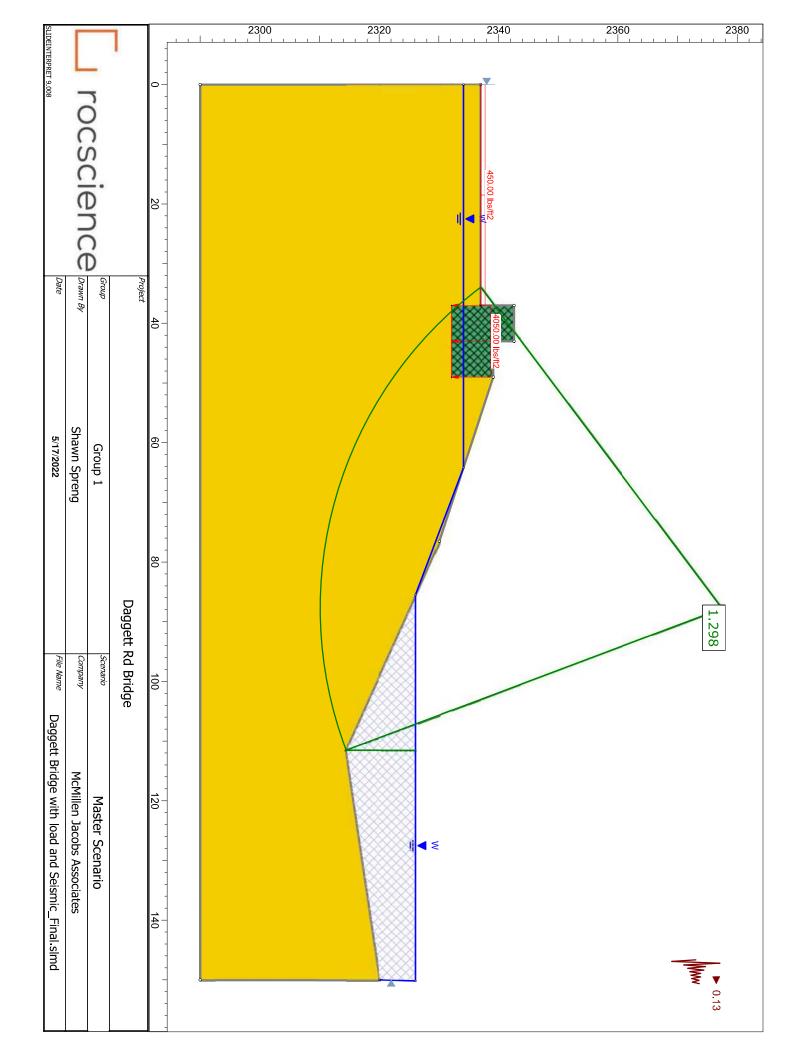
Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [deg]	Base Material	Base Cohesion [psf]	Base Friction Angle [deg]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	1.76955	319.19	-58.486	Material 1	250	35	247.673	408.794	226.781	0	226.781	630.726	630.726
2	1.45672	776.724	-55.338	Material 1	250	35	384.296	634.296	614.542	65.7088	548.833	1170.32	1104.61
3	1.45672	2027.19	-52.7093	Material 1	250	35	1528.26	2522.46	3436.52	191.121	3245.4	5443.33	5252.21
4	1.45672	2360.71	-50.2311	Material 1	250	35	1608.37	2654.68	3739.66	305.413	3434.24	5672.22	5366.8
5	1.45672	2666.73	-47.876	Material 1	250	35	1683.22	2778.22	4020.95	410.282	3610.67	5882.24	5471.96
6	1.45672	2948.93	-45.6238	Material 1	250	35	1753.64	2894.45	4283.66	506.99	3776.67	6075.9	5568.91
7	1.45672	2632.22	-43.4589	Material 1	250	35	1700.2	2806.25	4247.21	596.509	3650.7	5858.33	5261.82
8	1.45672	2840.46	-41.3691	Material 1		35	1753.82	2894.75	4456.7	679.603	3777.1	6001.22	5321.62
9	1.45672	3065.99	-39.3445	Material 1		35	1811.81	2990.47	4670.69	756.888	3913.8	6155.99	5399.1
10	1.45672	3276.03	-37.3771	Material 1	250	35	1867.36	3082.16	4873.61	828.867	4044.74	6300.13	5471.27
11	1.45672	3484.16	-35.4601	Material 1	250	35	834.388	1377.19	2505.75	895.958	1609.79	3100.04	2204.08
12	1.45672	3589.91	-33.5877	Material 1	250	35	616.705	1017.9	2055.18	958.512	1096.67	2464.73	1506.22
13	1.45672	3673.08	-31.7553	Material 1	250	35	625.643	1032.65	2134.56	1016.83	1117.73	2521.8	1504.97
14	1.45672	3744.61	-29.9584	Material 1	250	35	632.933	1044.68	2206.08	1071.15	1134.93	2570.89	1499.74
15	1.45672	3805.15	-28.1935	Material 1	250	35	638.639	1054.1	2270.09	1121.71	1148.38	2612.43	1490.72
16	1.45672	3855.25	-26.4573	Material 1	250	35	642.812	1060.99	2326.9	1168.69	1158.21	2646.8	1478.11
17	1.45672	3895.39	-24.747	Material 1	250	35	645.496	1065.42	2376.8	1212.26	1164.54	2674.33	1462.07
18	1.45672	3925.99	-23.0599	Material 1	250	35	646.728	1067.45	2420	1252.56	1167.44	2695.32	1442.76
19	1.45672	3947.41	-21.3937	Material 1	250	35	646.54	1067.14	2456.71	1289.71	1167	2710	1420.29
20	1.45672	3959.98	-19.7463	Material 1	250	35	644.956	1064.53	2487.1	1323.84	1163.26	2718.61	1394.77
21	1.45672	3963.98	-18.1157	Material 1	250	35	641.998	1059.64	2511.31	1355.02	1156.29	2721.34	1366.32
22	1.45672	3959.65	-16.5002	Material 1	250	35	649.172	1071.49	2526.06	1352.86	1173.2	2718.36	1365.5
23	1.45672	3947.23	-14.8981	Material 1	250	35	656.741	1083.98	2535.09	1344.05	1191.04	2709.81	1365.76
24	1.45672	3926.88	-13.3079	Material 1	250	35	663.266	1094.75	2538.95	1332.52	1206.43	2695.83	1363.31
25	1.45672	3898.79	-11.728	Material 1	250	35	668.753	1103.8	2537.7	1318.34	1219.36	2676.53	1358.19
26	1.45672	3863.09	-10.1571	Material 1	250	35	673.202	1111.15	2531.4	1301.55	1229.85	2652.01	1350.46
27	1.45672	3819.89	-8.59392	Material 1		35	676.614	1116.78	2520.09	1282.2	1237.89	2622.34	1340.14
28	1.45672	3769.31	-7.03715	Material 1		35	678.984	1120.69	2503.78	1260.31	1243.47	2587.6	1327.29
29	1.45672	3711.42	-5.48558	Material 1	250	35	680.306	1122.87	2482.51	1235.92	1246.59	2547.85	1311.93
30	1.45672	3632.71	-3.93805	Material 1		35	676.732	1116.97	2447.21	1209.04	1238.17	2493.79	1284.75
31	1.45672	3528.9	-2.39339	Material 1	250	35	666.878	1100.71	2394.64	1179.71	1214.93	2422.51	1242.8
32	1.45672	3417.84	-0.850472	Material 1	250	35	655.711	1082.28	2336.53	1147.91	1188.62	2346.26	1198.35
33	1.45672	3299.64	0.69183	Material 1	250	35	643.232	1061.68	2272.87	1113.67	1159.2	2265.1	1151.43
34	1.45672	3174.29	2.23463	Material 1		35	629.41	1038.87	2203.6	1076.98	1126.62	2179.04	1102.06
35	1.45672	3041.78	3.77906	Material 1	250	35	614.214	1013.78	2128.64	1037.84	1090.8	2088.07	1050.23
36	1.45672	2920.04	5.32625	Material 1		35	598.811	988.361	2060.31	1005.82	1054.49	2004.48	998.66
37	1.45672	2830.86	6.87734	Material 1	250	35	583.108	962.443	2013.58	996.102	1017.47	1943.25	947.145
38	1.45672	2735.82	8.43352	Material 1	250	35	566.399	934.864	1961.97	983.881	978.09	1877.99	894.113
39	1.45672	2633.4	9.996	Material 1	250	35	548.188	904.806	1904.29	969.132	935.158	1807.67	838.537
40	1.45672	2523.5	11.566	Material 1		35	528.41	872.162	1840.36	951.82	888.541	1732.22	780.4
41		2406	13.1449	Material 1		35	506.99	836.807	1769.95	931.904	838.046	1651.55	719.646
42	1.45672	2280.77	14.734	Material 1		35	483.84	798.598	1692.82	909.338	783.479	1565.58	656.238
43	1.45672	2147.64	16.3349	Material 1		35	458.862	757.37	1608.67	884.065	724.601	1474.18	590.117
44	1.45672	2006.43	17.9489	Material 1		35	431.939	712.932	1517.16	856.022	661.135	1377.24	521.216
45	1.45672	1856.92	19.5778	Material 1		35	402.935	665.06	1417.9	825.135	592.768	1274.6	449.465
46	1.45672	1698.86	21.2234	Material 1		35	371.692	613.493	1310.44	791.321	519.119	1166.1	374.774
47	1.45672	1531.99	22.8876	Material 1		35	338.026	557.925	1194.24	754.484	439.758	1051.54	297.057
48	1.45672	1355.97	24.5724	Material 1		35	301.712	497.988	1068.68	714.514	354.162	930.717	216.203
49	1.45672	1170.45	26.2803	Material 1		35	262.487	433.246	932.99	671.289	261.701	803.373	132.084
50	1.45672	975.023	28.0137	Material 1	250	35	220.029	363.167	786.285	624.666	161.619	669.226	44.5605

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.65054

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [deg]
1	33.8654	2337	0	0	0
2	35.6349	2334.11	216.612	0	0
3	37.0917	2332.01	951.966	0	0
4	38.5484	2330.09	5301.24	0	0
5	40.0051	2328.34	9505.98	0	0
6	41.4618	2326.73	13533.2	0	0
7	42.9185	2325.24	17358.3	0	0
8	44.3753	2323.86	20746.5	0	0
9	45.832	2322.58	23911.3	0	0
10	47.2887	2321.39	26852	0	0
11	48.7454	2320.27	29557.6	0	0
12	50.2022	2319.24	30942.9	0	0
13	51.6589	2318.27	32033.5	0	0
14	53.1156	2317.37	33047.5	0	0
15	54.5723	2316.53	33978.6	0	0
16	56.029	2315.75	34821.7	0	0
17	57.4858	2315.02	35573	0	0
18	58.9425	2314.35	36229.4	0	0
19	60.3992	2313.73	36788.9	0	0
20	61.8559	2313.16	37249.9	0	0
21	63.3127	2312.64	37611.7	0	0
22	64.7694	2312.16	37874.1	0	0
23	66.2261	2311.73	38019.3	0	0
24	67.6828	2311.34	38045.9	0	0
25	69.1395	2311	37955.4	0	0
26	70.5963	2310.69	37749.4	0	0
27	72.053	2310.43	37430.3	0	0
28	73.5097	2310.21	37000.3	0	0
29	74.9664	2310.03	36462.3	0	0
30	76.4232	2309.89	35819.4	0	0
31	77.8799	2309.79	35079.8	0	0
32	79.3366	2309.73	34255	0	0
33	80.7933	2309.71	33351.2	0	0
34	82.25	2309.73	32375	0	0
35	83.7068	2309.78	31333.6	0	0
36	85.1635	2309.88	30234.8	0	0
37	86.6202	2310.02	29075.4	0	0
38	88.0769	2310.19	27839.1	0	0
39	89.5337	2310.41	26530.7	0	0
40	90.9904	2310.41	25157.1	0	0
40	92.4471	2310.07	23726.2	0	0
42	93.9038	2310.90	22246.5	0	0
42	95.3605	2311.5	20727.6	0	0
43	96.8173	2312.11	19180.4	0	0
45	98.274	2312.59	17616.7	0	0
46	99.7307	2312.39	16050.2	0	0
40	101.187	2313.67	14495.9	0	0
47	102.644	2313.07	12971.1	0	0
48	102.844	2314.28	11495.2	0	0
50	105.558	2314.95	10090.7	0	0
51	105.558	2315.67 2316.44	2889.5	0	0
51	107.014	2510.44	2007.J	U	U

Entity Information


🔷 <u>Group 1</u>

Shared Entities

Туре	Coordinates (x,y)
External Boundary	0, 2337 0, 2290 150, 2290 150, 2320 111.533, 2314.43 76.529, 2330.07 49, 2339.1 43, 2339.1 43, 2342.6 37, 2342.6
	37, 2337
Material Boundary	37, 2337 37, 2332.12 49, 2332.12 49, 2339.1

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-2.77556e-17, 2334.11 64.2053, 2334.11 85.4855, 2326.07 150.17, 2326.07 150, 2320	Assigned to: Material 1 Material 2
Distributed Load	49, 2332.12 37, 2332.12	Constant DistributionOrientation: VerticalMagnitude: 4050 Ibs/ft2Creates Excess Pore Pressure: No
Distributed Load	37, 2337 0, 2337	Constant DistributionOrientation: Normal to boundaryMagnitude: 450 lbs/ft2Creates Excess Pore Pressure: No

Daggett Bridge with load and Seismic_Final Daggett Rd Bridge McMillen Jacobs Associates Date Created: 5/17/2022 Software Version: 9.008

Table of Contents

Slide Analysis Information

Daggett Bridge with load and Seismic_Final

Project Summary

File Name: Slide Modeler Version: Compute Time: Project Title: Author: Company: Date Created: Daggett Bridge with load and Seismic_Final.slmd 9.008 00h:00m:08.313s Daggett Rd Bridge Shawn Spreng McMillen Jacobs Associates 6/11/2021

General Settings

Units of Measurement: Time Units: Permeability Units: Data Output: Failure Direction: Imperial Units days feet/second Standard Left to Right

Analysis Options

Slices Type:	Vertical			
Analysis Methods Used				
	Bishop simplified			
Number of slices:	50			
Tolerance:	0.005			
Maximum number of iterations:	75			
Check malpha < 0.2:	Yes			
Create Interslice boundaries at intersections with wate tables and piezos:	r Yes			
Initial trial value of FS:	1			
Steffensen Iteration:	Yes			

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: Random Number Generation Method: 10116 Park and Miller v.3

Surface Options

Surface Type:
Search Method:
Divisions along slope:
Circles per division:
Number of iterations:
Divisions to use in next iteration:
Composite Surfaces:
Minimum Elevation:
Minimum Depth:
Minimum Area:
Minimum Weight:

Circular Auto Refine Search 20 10 10 50% Disabled Not Defined Not Defined Not Defined Not Defined Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No
Seismic Load Coefficient (Horizontal):	0.13

Loading

2 Distributed Loads present			
	Distributed Load 1		
Distribution:	Constant		
Magnitude [psf]:	4050		
Orientation:	Vertical		
Distributed Load 2			
Distribution:	Constant		
Magnitude [psf]:	450		
Orientation:	Normal to boundary		
Magnitude [psf]: Orientation: Distribution: Magnitude [psf]:	4050 Vertical Distributed Load 2 Constant 450		

Materials

Material 1	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	125
Cohesion [psf]	250
Friction Angle [deg]	35
Water Surface	Water Table
Hu Value	1
Material 2	
Color	×
Strength Type	Infinite strength
Unit Weight [lbs/ft3]	120
Allow Sliding Along Boundary	Yes
Water Surface	Water Table
Hu Value	1

Global Minimums

Method: bishop simplified

FS	1.298050
Center:	87.771, 2377.410
Radius:	67.319
Left Slip Surface Endpoint:	33.930, 2337.000
Right Slip Surface Endpoint:	111.533, 2314.425
Left Slope Intercept:	33.930 2337.000
Right Slope Intercept:	111.533 2326.068
Resisting Moment:	6.58681e+06 lb-ft
Driving Moment:	5.07438e+06 lb-ft
Total Slice Area:	1232.73 ft2
Surface Horizontal Width:	77.6031 ft
Surface Average Height:	15.8851 ft

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	10076
Number of Invalid Surfaces:	0

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.29805

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [deg]	Base Material	Base Cohesion [psf]	Base Friction Angle [deg]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	2.29229	413.481	-51.5412	Material 1	250	35	317.437	412.049	231.429	0	231.429	631.092	631.092
2	1.53695	1218.61	-48.9761	Material 1	250	35	440.675	572.018	514.985	55.0951	459.89	1021.5	966.401
3	1.53695	2048.3	-47.0201	Material 1	250	35	1715.31	2226.56	2984.49	161.672	2822.82	4825.23	4663.56
4	1.53695	2354.94	-45.1335	Material 1	250	35	1987.6	2580	3588.89	261.308	3327.59	5585.77	5324.46
5	1.53695	2642.43	-43.3074	Material 1	250	35	2065.18	2680.71	3826.1	354.685	3471.42	5772.74	5418.05
6	1.53695	2531.21	-41.5348	Material 1	250	35	2049.49	2660.34	3884.69	442.363	3442.33	5700.14	5257.78
7	1.53695	2520.32	-39.8095	Material 1	250	35	2056.04	2668.84	3979.27	524.806	3454.46	5692.87	5168.06
8	1.53695	2759.24	-38.1265	Material 1	250	35	2123.38	2756.25	4181.71	602.408	3579.3	5848.24	5245.83
9	1.53695	2984.29	-36.4816	Material 1	250	35	2188.78	2841.15	4376.05	675.504	3700.55	5994.58	5319.07
10	1.53695	3210.36	-34.8708	Material 1	250	35	1165.71	1513.15	2548.34	744.379	1803.96	3360.67	2616.29
11	1.53695	3334.94	-33.2911	Material 1	250	35	684.492	888.505	1721.16	809.284	911.879	2170.64	1361.35
12	1.53695	3426.37	-31.7395	Material 1	250	35	694.35	901.301	1800.59	870.435	930.151	2230.09	1359.65
13	1.53695	3506.82	-30.2135	Material 1	250	35	702.511	911.895	1873.31	928.021	945.286	2282.4	1354.38
14	1.53695	3576.82	-28.7108	Material 1	250	35	709.017	920.339	1939.55	982.211	957.343	2327.9	1345.69
15	1.53695	3636.81	-27.2295	Material 1	250	35	713.897	926.674	1999.54	1033.15	966.392	2366.9	1333.75
16	1.53695	3687.2	-25.7676	Material 1	250	35	717.18	930.936	2053.45	1080.98	972.474	2399.65	1318.67
17	1.53695	3728.36	-24.3235	Material 1	250	35	718.89	933.155	2101.44	1125.8	975.645	2426.39	1300.59
18	1.53695	3760.6	-22.8957	Material 1	250	35	719.045	933.356	2143.66	1167.73	975.929	2447.33	1279.6
19	1.53695	3784.21	-21.4828	Material 1	250	35	717.658	931.556	2180.21	1206.85	973.362	2462.66	1255.81
20	1.53695	3799.45	-20.0834	Material 1	250	35	719.532	933.988	2209.46	1232.63	976.832	2472.54	1239.91
21	1.53695	3806.55	-18.6965	Material 1	250	35	731.695	949.777	2229.51	1230.13	999.384	2477.13	1247
22	1.53695	3805.71	-17.3208	Material 1	250	35	742.744	964.119	2244.92	1225.05	1019.87	2476.55	1251.5
23	1.53695	3797.12	-15.9554	Material 1	250	35	752.679	977.015	2255.74	1217.45	1038.29	2470.93	1253.48
24	1.53695	3780.94	-14.5992	Material 1	250	35	761.499	988.464	2262.03	1207.39	1054.64	2460.37	1252.98
25	1.53695	3757.32	-13.2513	Material 1	250	35	769.201	998.462	2263.83	1194.92	1068.91	2444.97	1250.05
26	1.53695	3726.38	-11.9109	Material 1	250	35	775.782	1007	2261.18	1180.06	1081.12	2424.82	1244.76
27	1.53695	3688.25	-10.5771	Material 1		35	781.232	1014.08	2254.09	1162.87	1091.22	2399.97	1237.1
28	1.53695	3632.46	-9.24898	Material 1	250	35	782.139	1015.25	2236.28	1143.38	1092.9	2363.64	1220.26
29	1.53695	3545.95	-7.92591	Material 1	250	35	774.076	1004.79	2199.55	1121.6	1077.95	2307.32	1185.72
30	1.53695	3451.62	-6.60708	Material 1		35	764.29	992.087	2157.38	1097.57	1059.81	2245.91	1148.34
31	1.53695	3350.4	-5.29175	Material 1	250	35	753.045	977.49	2110.28	1071.31	1038.97	2180.02	1108.71
32	1.53695	3242.36	-3.97922	Material 1	250	35	740.316	960.967	2058.19	1042.83	1015.36	2109.69	1066.86
33	1.53695	3127.52	-2.66878	Material 1	250	35	726.071	942.476	2001.09	1012.14	988.954	2034.94	1022.8
34	1.53695	3035.49	-1.35973	Material 1	250	35	711.883	924.06	1958.13	995.477	962.657	1975.03	979.554
35	1.53695	2972.93	-0.0513982		250	35	698.052	906.107	1933.67	996.658	937.016	1934.3	937.642
36	1.53695	2903.72	1.25691	Material 1		35	682.709	886.191	1904.22	995.649	908.575	1889.25	893.596
37	1.53695	2827.77	2.56587	Material 1	250	35	665.777	864.212	1869.63	992.448	877.182	1839.79	847.347
38	1.53695	2745.05	3.87618	Material 1	250	35	647.203	840.102	1829.8	987.05	842.752	1785.95	798.9
39	1.53695	2655.54	5.18852	Material 1	250	35	626.93	813.787	1784.62	979.446	805.171	1727.69	748.243
40	1.53695	2559.2	6.5036	Material 1		35	604.893	785.181	1733.94	969.625	764.317	1664.98	695.359
41	1.53695	2455.98		Material 1		35	581.018	754.191	1677.63	957.571	720.061	1597.81	640.242
42	1.53695	2345.83	9.14485	Material 1		35	555.224	720.708	1615.5	943.264	672.239	1526.12	582.861
43	1.53695	2228.67	10.4725	Material 1		35	527.417	684.614	1547.37	926.681	620.693	1449.88	523.204
44	1.53695	2104.42	11.8059	Material 1		35	497.495	645.773	1473.02	907.794	565.226	1369.03	461.241
45	1.53695	1972.98	13.1458	Material 1		35	465.338	604.032	1392.18	886.572	505.609	1283.5	396.93
46	1.53695	1834.24	14.493	Material 1		35	430.813	559.217	1304.58	862.977	441.608	1193.23	330.248
47	1.53695	1688.06	15.8485	Material 1		35	393.768	511.13	1209.9	836.969	372.93	1098.11	261.145
48	1.53695	1534.31	17.2132	Material 1		35	354.027	459.545	1107.76	808.5	299.26	998.081	189.581
49	1.53695	1372.82	18.588	Material 1		35	311.392	404.202	997.742	777.517	220.225	893.02	115.503
50	1.53695	1203.39	19.9774	Material 1	250	35	265.64	344.813	879.367	743.958	135.409	782.801	38.8432

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.29805

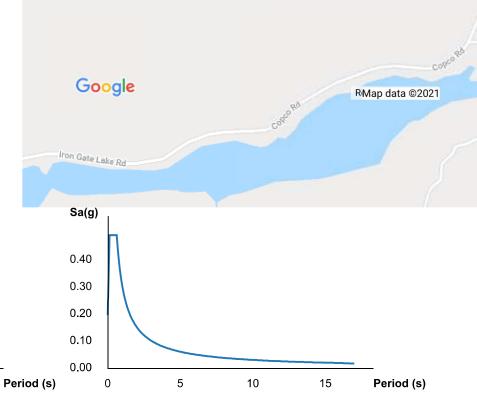
Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [deg]
1	33.9299	2337	0	0	0
2	36.2222	2334.11	-4.68492	0	0
3	37.7592	2332.35	387.404	0	0
4	39.2961	2330.7	2944.48	0	0
5	40.8331	2329.15	5742.95	0	0
6	42.3701	2327.71	8461.02	0	0
7	43.907	2326.34	10934.5	0	0
8	45.444	2325.06	13205.1	0	0
9	46.9809	2323.86	15350.4	0	0
10	48.5179	2322.72	17353.8	0	0
11	50.0548	2321.65	18712	0	0
12	51.5918	2320.64	19832.5	0	0
13	53.1287	2319.69	20924.5	0	0
14	54.6657	2318.79	21979.2	0	0
15	56.2026	2317.95	22989.2	0	0
16	57.7396	2317.16	23948.1	0	0
17	59.2766	2316.42	24850.6	0	0
18	60.8135	2315.72	25692.3	0	0
19	62.3505	2315.08	26469.5	0	0
20	63.8874	2314.47	27179.2	0	0
21	65.4244	2313.91	27810.8	0	0
22	66.9613	2313.39	28342.7	0	0
22	68.4983	2312.91	28773.9	0	0
24	70.0352	2312.91	29104	0	0
25	71.5722	2312.07	29332.8	0	0
26	73.1091	2311.71	29460.5	0	0
27	74.6461	2311.38	29487.7	0	0
28	76.1831	2311.38	29415.6	0	0
28	77.72	2310.85	29247.5	0	0
30	79.257	2310.63	28991.5	0	0
31	80.7939	2310.05	28651.7	0	0
32	82.3309			0	0
33	83.8678	2310.31 2310.2	28232.4 27738.1		
				0	0
34	85.4048	2310.13	27174.1	0	
35	86.9417	2310.1	26530.9	0	0
36	88.4787	2310.1	25794.1	0	0
37	90.0156	2310.13	24966.9	0	0
38	91.5526	2310.2	24053.2	0	0
39	93.0895	2310.3	23057.5	0	0
40	94.6265	2310.44	21984.7	0	0
41	96.1635	2310.62	20840.4	0	0
42	97.7004	2310.83	19630.9	0	0
43	99.2374	2311.08	18363.2	0	0
44	100.774	2311.36	17045	0	0
45	102.311	2311.68	15684.9	0	0
46	103.848	2312.04	14292.5	0	0
47	105.385	2312.44	12878.4	0	0
48	106.922	2312.87	11454.6	0	0
49	108.459	2313.35	10034.2	0	0
50	109.996	2313.87	8631.86	0	0
51	111.533	2314.43	4229.74	0	0

Entity Information

🔷 <u>Group 1</u>

Shared Entities

Туре	Coordinates (x,y)
	0, 2337
	0, 2290
	150, 2290
	150, 2320
	111.533, 2314.43
External Boundary	76.529, 2330.07
	49, 2339.1
	43, 2339.1
	43, 2342.6
	37, 2342.6
	37, 2337
	37, 2337
Material Boundary	37, 2332.12
Material Boundary	49, 2332.12
	49, 2339.1


Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-2.77556e-17, 2334.11 64.2053, 2334.11 85.4855, 2326.07 150.17, 2326.07 150, 2320	Assigned to: Material 1 Material 2
Distributed Load	49, 2332.12 37, 2332.12	Constant DistributionOrientation: VerticalMagnitude: 4050 Ibs/ft2Creates Excess Pore Pressure: No
Distributed Load	37, 2337 0, 2337	Constant DistributionOrientation: Normal to boundaryMagnitude: 450 Ibs/ft2Creates Excess Pore Pressure: No

ATC Hazards by Location

Search Information

Address:	18800 Daggett Rd, Hornbrook, CA 96044,
Coordinates:	41.9732391, -122.3674723
Elevation:	2362 ft
Timestamp:	2021-06-11T22:36:43.799Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	С

MCER Horizontal Response Spectrum

10

Basic Parameters

5

Sa(g)

0.60

0.40

0.20

0.00

0

Name	Value	Description
SS	0.581	MCE _R ground motion (period=0.2s)
S ₁	0.304	MCE _R ground motion (period=1.0s)
S _{MS}	0.737	Site-modified spectral acceleration value
S _{M1}	0.456	Site-modified spectral acceleration value
S _{DS}	0.491	Numeric seismic design value at 0.2s SA
S _{D1}	0.304	Numeric seismic design value at 1.0s SA

15

my Creek

Additional Information

Name	Value	Description
SDC	D	Seismic design category
Fa	1.267	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s

CR _S	0.893	Coefficient of risk (0.2s)
CR ₁	0.877	Coefficient of risk (1.0s)
PGA	0.264	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.316	Site modified peak ground acceleration
TL	16	Long-period transition period (s)
SsRT	0.581	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.651	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.304	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.347	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Appendix D Structural Design Calculations

Calculation Cover Sheet

Project:	Daggett Road Bridg	e at Iron Gate Rese	rvoir			
Client:	Klamath River Rene	wal Corporation		_Proj. No.:	21-067	
Title:	le: Daggett Road Bridge Abutment and Yreka Waterline Support Calculations					
Prepare	d By, Name:	KNH/GAC				
Prepare	d By, Signature:	22 Clar		_Date:	6/24/2022	
Peer Re	eviewed By, Name:	ZDA				
Peer Re	viewed, Signature:	ZAR		Date:	6/24/2022	
	TAT	Iren Gate Reservoir Cairfornia 96644 41 972846-122 364	20			

SUBJECT:	Klamath River Renewal Corporation	BY: KNH/GAC CHK'D BY: 0
	Daggett Road Bridge at Iron Gate Reservoir	DATE: 10/15/2021
	Daggett Road Bridge Abutment and Yreka Waterline Support Ca	culationsPROJECT NO.: 21-067
Contents		
Structural (Calculations	Page
1.0 Design (
 Purpo 		
 Refer 		
• Gene	ral Information	
New	Bridge Information	
 Desig 	n Criteria for Superstructure	
• Desig	n Criteria for Substructure (Abutments)	
1.1 ARS (Ad	celerated Response Spectra)	
• SEE	Design	
• AASH	ITO Design	
2.0 Waterlin	e Support Calculations	
	ral Properties and Loads	
	Moment Capacity Check	
	Determination	
• Reac		
 Memi 	ber Checks	
 Conn 	ection Calculations	
3.0 Abutmer	nt Calculations	
 Information 	nation	
• Calcı	lations: General Properties and Vehicle Surcharge Loads	
• Calcı	ilations: Backwall Calculations	
• Calcı	lations: Loads Applied to Abutments	
• Calcı	lations: Load Combinations and Factored Loads	
• Calcı	ilations: Overturning	
	lations: Bearing Pressure	
	ılations: Sliding	
• Calcı	ilations: Abutment Wall Check	
• Calcı	lations: Footing Check	
4.0 Bridge-A	butment Connection Calculations	26
 Inform 	nation: Loads	
• Calcı	lations: Bridge Superstructure to Abutment	
5.0 Reactior	ns from Water Pipe AND Bending Stress in Pipe	HAND CALCS pgs. 1 - 6
6.0 Bending	Stress in Pipe at Bends	HAND CALCS pgs. 7, 8, 9
7 0 Pipe Su	pport and Saddle	
i o Fipe Sul		HAND CALCS pgs. 10 - 15

SUBJECT: Klamath River Renewal Corporation BY: KNH/GAC CHK'D BY: Daggett Road Bridge at Iron Gate Reservoir DATE: ########## Daggett Road Bridge Abutment and Yreka Waterline Suppor PROJECT NO.: 21-067

0

Purpose

Summarize general structural design information applicable to all calculations.

References

- 2017 AASHTO LRFD Bridge Design Specifications 8th Edition
- ASCE 7-16: Minimum Design Loads for Buildings and Other Structures
- AISC 360-16: Specification for Structural Steel Buildings

General Information

Unit Weights

$\gamma_w =$	62.4 pcf	Water
$\gamma_{c} =$	150 pcf	Concrete
$\gamma_s =$	125 pcf	Soil

Concrete Properties

f'c=	4500 psi	Compressive Strength of Concrete
$E_c =$	120915.3 ksi	Modulus of Elasticity of Concrete

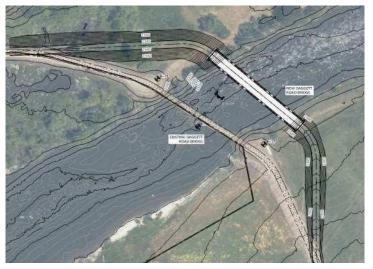
Steel Properties

F _y =	60 ksi	Yield Strength of Steel Reinforcing Bar
F _u =	75 ksi	Tensile Strength of Steel Reinforcing Bar
E _s =	29000 ksi	Modulus of Elasticity of Reinforcing Bar

Soil Properties

Ø _f =	35 degrees 0.6109 radians	Internal Friction Angle
K _a = K _o = K _p =	0.271 0.426 3.690	Lateral Active Pressure Coefficient (N/A) Lateral At Rest Pressure Coefficient Passive Pressure Coefficient (N/A)
q _{allow} =	3500 psf	Allowable Bearing Pressure
ors		

Reduction Factors


Ø _m =	0.9	AASHTO Section 5.5.4.2 for Tension-Controlled Reinforced Sections
Ø _v =	0.9	AASHTO Section 5.5.4.2 for Shear in Reinforced Concrete Sections
Ø _b =	0.7	AASHTO Section 5.5.4.2 for Bearing on Concrete
Ø _c =	0.75	AASHTO Section 5.5.4.2 for Compression-Controlled Sections with Spirals or
		Ties

New Bridge Information

Top of Wall Elev.	2342.60 ft	Wall Height =	12.00 ft
Bottom of Wall Elev.	2332.00 ft	Length of Wall =	35.00 ft
Water Elev. (R)=	2335.10 ft	Bridge Length =	260.00 ft

Based on the Caltrans Seismic Design Criteria (SDC) Version 2.0 (April 2019), the new bridge will be classified as Ordinary Standard Bridge to determine the seismic forces for the abutment design. Based on AASHTO LRFD Bridge Design Specifications, the new bridge will be classified as an Other bridge for the general abutment design.

Abutment Bearing and Stability per AASHTO LRFD Bridge Design Specifications Section 11.6.3

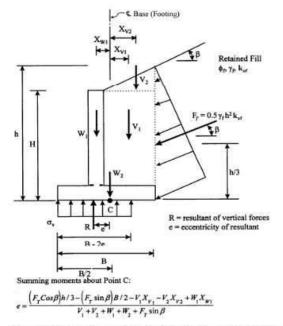


Figure 11.6.3.2-1—Bearing Stress Criteria for Conventional Wall Foundations on Soil

Design Criteria for Superstructure DESIGN CRITERIA PROVIDED TO BRIDGE MANUFACTURER FOR SUPERSTRUCTURE

Dead Loads

- 24" Diameter, 1/4" Thick Pipe (Waterline): 490 pcf
- Weight of Water in Pipe: 62.4 pcf

Live Loads

HL-93 Vehicle Load

Snow Loads

Uniform Snow Load: 40 psf

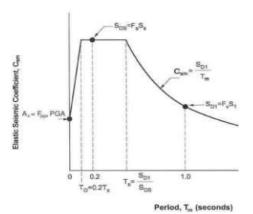
Seismic Criteria

Site Class determination was made based on the blow counts documented by the Standard Penetration Test (SPT) and boring logs (15 and 17) in the Geotechnical Report and AASHTO Table 3.10.3.1-1. The new bridge is classified as Other

• $N_{avg_{15}} = (1.5ft + 1.5ft)/((1.5ft/54 blows/ft) + (1.5ft/100 blows/ft) = 70.1$

- N_{avg_17} = 100 (Refusal Before 100)
- Site Class C

Table 3.10.3.1-1-Site Class Definitions


Site Class	Soil Type and Profile			
А	Hard rock with measured shear wave velocity, $\overline{v}_s > 5,000$ ft/s			
В	Rock with 2,500 ft/sec $< \overline{v}_s < 5,000$ ft/s			
C	Very dense soil and soil rock with 1,200 ft/sec $< \overline{v}_s < 2,500$ ft/s, or with either $\overline{N} > 50$ blows/ft, or $\overline{s}_u > 2.0$ ksf			
D	Stiff soil with 600 ft/s $< \overline{v}_s < 1,200$ ft/s, or with either $15 < \overline{N} < 50$ blows/ft, or $1.0 < \overline{s}_u < 2.0$ ksf			
Е	Soil profile with $\overline{v}_s < 600$ ft/s or with either $\overline{N} < 15$ blows/ft or $\overline{s}_u < 1.0$ ksf, or any profile with more than 10.0 ft of soft clay defined as soil with $PI > 20$, $w > 40$ percent and $\overline{s}_u < 0.5$ ksf			
F	 Soils requiring site-specific evaluations, such as: Peats or highly organic clays (H > 10.0 ft of peat or highly organic clay where H = thickness of soil) Very high plasticity clays (H > 25.0 ft with PI > 75) Very thick soft/medium stiff clays (H > 120 ft) 			

PGA =	0.2137
Ss =	0.4949
S1 =	0.2132

Using Site Class C and AASHTO Tables 3.10.3.2-1 through 3.10.3.2-3

F _{pga} =	1.1863
F _a =	1.200
$F_v =$	1.587
$A_s =$	0.2535
S _{DS} =	0.5939
S _{D1} =	0.3383
$T_s =$	0.5697
$T_o =$	0.1139
C _{sm} =	0.5939 Equal to SDS per single-mode method

Load Combinations and Load Factors from AASHTO

Table 3.4.1-1-Load Combinations and Load Factors

	DC									U	se One	of Thes	e at a Tir	me
Load Combination Limit State	DD DW EH EV ES EL PS CR SH	LL IM CE BR PL LS	WA	WS	WL	FR	TU	TG	SE	EQ	BL	IC	СТ	CV
Strength I (unless noted)	γ_P	1.75	1.00		-	1.00	0.50/1.20	γīg	ΎSE	_	_	_	_	_
Strength II	γ_{ρ}	1.35	1.00			1.00	0.50/1.20	γ_{TG}	YSE	-		Ţ		
Strength III	Yp	-	1.00	1.00	-	1.00	0.50/1.20	77G	YSE	1	_			i
Strength IV	Yp	-	1.00	_		1.00	0.50/1.20	-	-	-	-			š
Strength V	γ_P	1.35	1.00	1.00	1.00	1.00	0.50/1.20	77G	YSE		_	-		
Extreme Event I	1.00	γEQ	1.00		-	1.00				1.00		-		
Extreme Event II	1.00	0.50	1.00	-	ļ	1.00		+	ļ	1	1.00	1.00	1.00	1.00
Service I	1.00	1.00	1.00	1.00	1.00	1.00	1.00/1.20	YTG	YSE					
Service II	1.00	1.30	1.00	_		1.00	1.00/1.20					-		
Service III	1.00	YLL	1.00	-	I	1.00	1.00/1.20	Y70	YSE		1		-	L.
Service IV	1.00	_	1.00	1.00		1.00	1.00/1.20		1.00		_	-		_
Fatigue I— LL, IM & CE only	-	1.75	-		I	1	_	1	-	T	-	-		
Fatigue II— LL, IM & CE only		0.80												

Table 3.4.1-2—Load Factors for Permanent Loads, γ_{P}

	Load I	Factor	
	Maximum	Minimum	
DC: Component	and Attachments	1.25	0.90
DC: Strength IV	only	1.50	0.90
DD: Downdrag	Piles, a Tomlinson Method	1.40	0.25
	Piles, λ Method	1.05	0.30
	Drilled shafts, O'Neill and Reese (2010) Method	1.25	0.35
DW: Wearing Su	rfaces and Utilities	1.50	0.65
EH: Horizontal E	arth Pressure		
 Active 		1.50	0.90
 At-Rest 	1.35	0.90	
AEP for ancl	1.35	N/A	
EL: Locked-in Construction Stresses		1.00	1.00
EV: Vertical Eart	h Pressure		
 Overall Stab 	1.00	N/A	
 Retaining W 	alls and Abutments	1.35	1.00
 Rigid Buried 	Structure	1.30	0.90
 Rigid Frame. 	8	1.35	0.90
 Flexible Buri 	ed Structures		
 Metal I 	1.50	0.90	
Fibergl	1.30	0.90	
 Thermo 	1.95	0.90	
 All other 	ers		
ES: Earth Surcha	rge	1.50	0.75

Design Criteria for Substructure (Abutments)

SUMMARY OF PROVIDED AND CALCULATED VERTICAL LOADS

Dead Loads

- Self Weight of Abutment: 150 pcf
- Weight of Soil: 125 pcf
- Weight of Wearing Surface: 35 psf (Included in Reactions Provided by Manufacturer)
- 24" Diameter Waterline (Assuming Full)

Calculated Allowable Bearing Pressure at Footing (Geotechnical Calculations)

q_{allow} = 8.90 ksf

Calculated Superimposed Dead Loads (DL)

W _{pipe_water} =	196.04 plf
W _{pipe_self} =	97.715 plf

Provided Superimposed Dead Loads (DL)

 P_{DL_Pipe} =
 0.0 kips
 Dead Load Reaction from 24" Waterline at Each Abutment (Included in Bridge Reaction)

 P_{DL_Veh} =
 244.00 kips
 Dead Load Reaction from Bridge (Provided by Manufacturer) - 2 Per Abutment

Provided Superimposed Live Loads (LL)

P_{LL_Veh} = 165.00 kips Live Load Reaction from Bridge (Provided by Manufacturer) - 2 Per Abutment

Provided Superimposed Wind Loads (WL)

P_{L W} = 86.00 kips Wind Load from Bridge (Provided by Manufacturer)

Provided Superimposed Earthquake Loads (EQ)

P_{L_EQ} = 62.00 kips Seismic Load from Bridge (Provided by Manufacturer)

*No Seismic Analysis of Superstructure Required for Single-Span Bridges per AASHTO Table 4.7.4.3.1-1. Seismic Loads Based on Product of Permanent Dead Load and Acceleration Coefficient

Calculated Earthquake Loads (EQ) For Connection Design

P_{L_EQ} = 61.86 kips Seismic Load from Superstructure at Each Abutment for Connection Design

SUBJECT: Klamath River Renewal Corporation

Daggett Road Bridge at Iron Gate Reservoir

BY: KNH/GAC CHK'D BY: DATE: #########

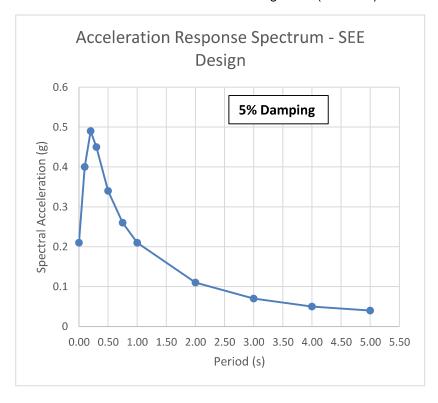
Daggett Road Bridge Abutment and Yreka Water IPROSLECT NO.: 21-067

Bridge Name: Daggett Road Bridge

Lat/Long: 41.972865, -122.364372

ARS INFORMATION PROVIDED BY CALTRANS: https://arsonline.dot.ca.gov/output2-5.php

Period, T (s)	Design Spectral Acceleration, Sa (g)
0.00	0.21
0.10	0.4
0.20	0.49
0.30	0.45
0.50	0.34
0.75	0.26
1.00	0.21
2.00	0.11
3.00	0.07
4.00	0.05
5.00	0.04


Period(s)	Sa ₂₀₀₈ (g)	Sa ₂₀₁₄ (g)	Basin ₂₀₀₈	Basin ₂₀₁₄	Near Fault Amp	Design Sa ₂₀₀₈ (g)	Design Sa ₂₀₁₄ (g)
PGA	0.22	0.21	1	1	1	0.22	0.21
0.10	0.43	0.4	1	1	1	0.43	0.4
0.20	0.52	0.49	1	1	1	0.52	0.49
0.30	0.5	0.45	1	1	1	0.5	0.45
0.50	0.39	0.34	1	1	1	0.39	0.34
0.75	0.29	0.26	1	1	1	0.29	0.26
1.0	0.22	0.21	1	1	1	0.22	0.21
2.0	0.12	0.11	1	1	1	0.12	0.11
3.0	0.07	0.07	1	1	1	0.07	0.07
4.0	0.04	0.05	1	1	1	0.04	0.05
5.0	0.03	0.04	1	1	1	0.03	0.04
Copy table							

mean site-source distance (km, for Sa at 1s) 108.7

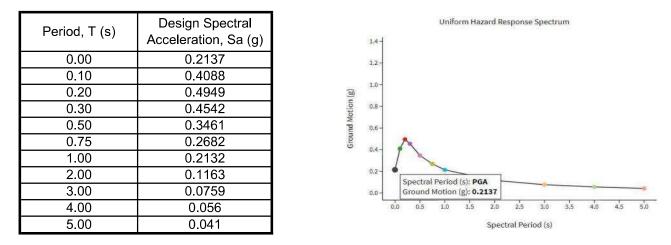
V_{s30} = 540 m/s Site Class C

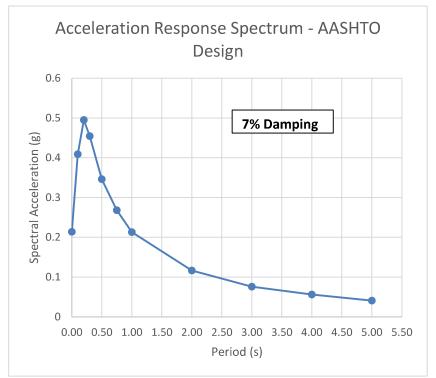
PGA = 0.2137

Mean Moment Magnitude (For PGA) = 7.72

The ARS was based on the USGS 2014 National Seismic Hazard Map for **975-years return period**, Hazard Model/Edition Dynamic Conterminous U.S. 2014 (Update)(v4.2.0) hazard data obtained by using ARS Online V3.0

No Near Fault or Basin Amplification Factors Required


0



Bridge Name: Daggett Road Bridge

Lat/Long: 41.972865, -122.364372

ARS INFORMATION PROVIDED BY USGS: https://earthquake.usgs.gov/hazards/interactive/

The ARS was based on the USGS 2014 National Seismic Hazard Map for **1000-years return period**, *Dynamic Conterminous U.S. 2014 (Update)(v4.2.0)* hazard data obtained by using online Unified Hazard Tool

SUBJECT:	Klamath River Renewal Corporation	BY:	KNH/GAC	CHK'D BY:	0
	Daggett Road Bridge at Iron Gate Reservoir	DATE:	10/15/2021		
	Daggett Road Bridge Abutment and Yreka Waterline Support Calculations	PROJECT NO.:	21-067		

Purpose Design of 24" diameter waterline support to resist vertical and lateral loads due to pipe and environmental loads, including wind and seismic lateral loads.

Calculations 24" Waterline Calculations: General Properties and Loads Pipe Properties:

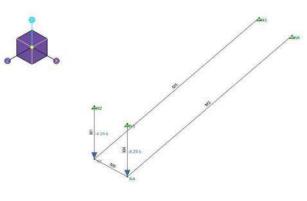
1		THICKNESS	THICKNESS	THICKNESS	THICKNESS	THICKNESS	THICKNESS	THICKNESS
	O.D.	V."	W ₁₆ ¹⁰	a/	''y2"	*/ ₄ **		
	SIZE	1		POUND	S PER LINE	AL FOOT		
	3.500"	2.66				_	1 1	
	4.500"	3.42	4.20					
	6.625"	5.18	6.41	7.61				
	8.625"	6.83	8.48	10.09				
	10.75"	8.59	10.68	12.73				
	12.750"	10.25	12.75	15.22	20.08			
	15.250"	12.94	16.11	19.25	25.46	31.57	37.57	48.85
	17.375"	15.59	18.18	21.74	28.77	35.71	42.54	55.48
	19.781"		20.70	24.06	31.88	39.59	47.20	62.10
	21.781"		22.77	26.55	35.19	43.73	52.16	68.72
1	25.750"			31.52	41.81	52.01	52.10	81.97
	31.875"			38.64	51.75	64.43	77.00	101.84
	37.875"			45.92	61.69	76.85	91.90	121.71
	43.875"				71.56	89.18	106.69	141.39
	49.875"				81.56	99.18	116.69	151.39

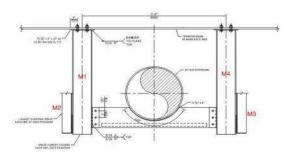
		THICKNESS	THICKNESS	THICKNESS	THICKNESS	THICKNESS	THICKNESS
ING	0.D.		¥/**		1"	1 1/4"	
≦.	SIZE		PO	UNDS PER	LINEAL FO	от	
OATI	3.500"	6.44	8.25	10.14	14.17	18.51	23.18
Ô.	4,500"	8.28	10.61	13.04	18.22	23.81	29.81
ō	6.625"	11.80	15.01	18.32	25.26	32.61	40.36
r	8.625"	15.11	19.15	23.29	31.88	40.88	50.30
A	10.75"	18.63	23.55	28.57	38.92	49.68	60.86
F	12.750"	21.94	27.69	33.54	45.54	57.96	70.78
MUHI	15.250"		34.42	41.61	56.30	71.42	86.91
₹.	17.375"		38.56	46.58	62.93	79.70	96.97
<	19.781"		42.70	51.55	69.55	87.98	106.83
F	21.781"			56.51	76.17	96.26	116.70
ī	25.750"			66.45	89.48	112.81	136.62
EMEN	31.875"			81.35	109.29	137.65	166.42
	37.875"			96.26	129.16	162.49	196.21
D	43.875"			111.25	149.19	187.58	226.42
	49.875"	10		126.03	163.97	202.36	241.20

Nominal Diameter	AWWA Pipe Size (O.D.)	Yw =	62.4 pcf	Unit Weight of Water
4"	4 1/2" (4.500)	γ _s =	490.0 pcf	Unit Weight of Steel
6"	6 ^s / _s " (6.625)	TS .	400.0 por	
8"	8 ⁵ / ₈ " (8.625)	F _{v pipe} =	50.00 ksi	Yield Strength of Steel Pipe (City of Yreka Calculations)
10"	10 1/4" (10.750)	F _{y_pipe} = E _{pipe} =	29000.00 ksi	Modulus of Elasticity of Steel Pipe (City of Yreka Calculations)
12"	12 3/4" (12.750)	pipe		
14"	15 1/4" (15.250)	t _{pipe} =	0.38 in	Pipe Wall Thickness (City of Yreka Calculations - Assuming 1/2" Wall Thickness Max)
16"	17 ³ / ₈ " (17.375)	d _{pipe in} =	24.0 in	Nominal Pipe Diameter (Inside Diameter of Pipe)
18"	19 25/32" (19.781)	d _{pipe out} =	24.8 in	
20"	21 25/32" (21.781)	Spipe_out	21.0 11	$= (d^2 + d^2)$
24"	25 % (25.750)			$A_{nine} = \frac{n(a_o - a_i)}{n(a_o - a_i)}$
30"	31 7/8" (31.875)	A _{pipe} =	28.72 in ²	Area of Pipe
36"	37 7/8" (37/875)		172.38 in ³	Section Modulus of Pipe $S_{\text{mine}} = \frac{\pi (d_o^4 - d_i^4)}{S_{\text{mine}}}$
40"	41 ⁷ / ₈ " (41.875)	S _{pipe} =	172.38 "	Section modulus of Pipe $S_{pipe} = \frac{32 * d_o}{32 * d_o}$
42"	43 ⁷ / ₈ " (43.875)			$(d \cdot \cdot \cdot)^2$
48"	49 ⁷ / ₈ " (49.875)	Wwater =	196.04 plf	$A_{pipe} = \frac{\pi (d_o^2 - d_i^2)}{4}$ Area of Pipe Section Modulus of Pipe $S_{pipe} = \frac{\pi (d_o^2 - d_i^2)}{32 * d_o}$ Weight of Water Assuming Pipe is Full Weight of Pipe $W_{pipe_{shell}} = \gamma_s * A_{pipe}$
Nominal I.D to Cement L		W _{pipe_she} =	97.71 plf	Weight of Pipe $W_{pipe_shell} = \gamma_s * A_{pipe}$
		W _{lining} =	0.00 plf	Theoretical Weight of 0.375" Mortar Lining (Doesn't Occur at Bridge)
		W _{coating} =	0.00 plf	Theoretical Weight of 0.75" Mortar Coating (Doesn't Occur at Bridge)
		W _{pipe_empty} =	97.71 plf	Uniform Weight of Empty Pipe
		W _{pipe_ful} =	293.75 plf	Uniform Weight of Full Pipe
		L _{span} =	10.00 ft	Typical Pipe Span (Attachment at Every Other Transom Beam)

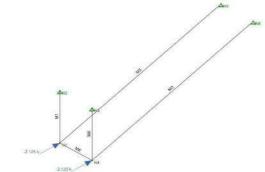
24" Waterline Calculations: Moment Capacity Check of Pipe for Required Span

	D/t =	66	Pipe Outside Diamete	r to Th	nickness Ratio				
	0.45 * E _{pipe} / F _{y_pipe} = IF 0.45*E _{pipe} / F _{y_pipe} ≥ D/t Use /	261				Width-to-	Limit Width-to-Thic		
	$\lambda_{p} = \lambda_{r} =$	40.6 179.8	0.07 * E _{pipe} / F _{y_pipe} 0.31 * E _{pipe} / F _{y_pipe}	20 Case	Description of Element Round HSS	Thick- ness Ratio D/t	λ_p (compact/ noncompact) $0.07 \frac{E}{F_y}$	$\frac{\lambda_r}{(noncompact/slender)}$ $0.31\frac{E}{F_r}$	Examples
	$\lambda_{p} \leq D/t \leq \lambda_{r}$ Meml	per Noncompact							1 _t
$M_a = \frac{W_{pipe_full} * L_{span}^2}{8}$	Ω = M _a =	1.67 3.67 k-ft	Safety Factor for Flex Moment Applied to Pi		e to Self-Weigh	nt and Wa	ter		
	$M_n / \Omega =$	430.09 k-ft	Flexural Strength of P	ipe (Y	ielding Per AIS	C Sectior	n F8.1)	$M_n =$	$M_p = F_y Z$
	$M_n / \Omega =$	509.46 k-ft	Flexural Strength of P	ipe (Lo	ocal Buckling F	Per AISC :	Section F8.2,		()
	IF ØM _n ≥ M _a	GOOD	Supports at 10'-0" oo	c. are	ок			$M_n =$	$\left \frac{0.021E}{\left(\frac{D}{t}\right)} + F_y \right S$




Waterline Support Calculations: Load Determination

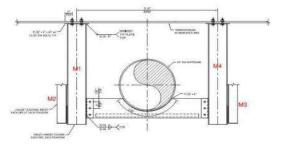
Self-Weight:			
	P _{support} =	2937.50 bs	Reaction at Each Pipe Support Location (Transom Beam)
	P _{vert} =	1468.75 lbs	Reaction at Each Pipe Support Hanging Beam (2 Per Transom Beam)
	μ=	0.50	Kinetic Coefficient of Friction (Assumed Steel-Steel with Not Clean Surface)
	F _{sliding} =	1468.75 bs	Lateral Reaction at Each Pipe Support Location (Transom Beam) Due to Sliding Friction
	P _{friction} =	734.37 Ibs	Reaction at Each Pipe Support Hanging Beam (2 Per Transom Beam)
Wind:	V _{ult} =	115 mph	Design Wind Speed
E	xposure =	С	Exposure Category (ASCE 7-16 Section 26.7.3)
	K _z =	0.85	Velocity Pressure Coefficient (ASCE 7-16 Table 26.10-1)
	K _{zt} =	1.00	Topographic Factor (ASCE 7-16 Section 26.8-1)
26.10.2 Velocity Pressure. Velocity pressure, q., evaluated at	K _d =	0.95	Wind Directionality Factor (ASCE 7-16 Table 26.6-1)
height z above ground shall be calculated by the following equation:	K _e =	1.00	Ground Elevation Factor (ASCE 7-16 Table 26.9-1)
$q_z = 0.00256K_zK_zK_dK_eV^2 (\text{Ib/ft}^2); V \text{ in mi/h}$ (26.10-1)	q _z =	27.34 psf	Velocity Pressure
	w _{wind} =	56.39 plf	Uniform Loading Along Full Length of Pipe
	P _{wind} =	281.93 lbs	Reaction at Each Pipe Support Hanging Beam (2 Per Transom Beam)
Seismic:	S _{DS} =	0.594	Design Earthquake Spectral Response Acceleration Parameter at Short Periods
	I _p =	1.50	Importance Factor per ASCE 7-10 Section 13.1.3
	a _p =	2.50	ASCE 7-10 Table 13.6-1
13.3.1.1 Horizontal Force. The horizontal seismic design force	R ₀ =	6.00	ASCE 7-10 Table 13.6-1
(F_p) shall be applied at the component's center of gravity and distributed relative to the component's mass distribution and shall be determined in accordance with Eq. (13.3-1):	z/h =	1.00	ASCE 7-10 Section 13.3.1
$F_{p} = \frac{0.4a_{p}S_{DS}W_{p}}{\left(\frac{R_{p}}{L}\right)}\left(1 + 2\frac{z}{b}\right) $ (13.3-1)	F _p =	130.84 plf	Uniform Seismic Loading Along Full Length of Pipe (ASCE 7-10 Eq. 13.3-1)
$\left(\frac{1}{T_{\rho}}\right)$	F _{p min} =	78.50 plf	Minimum Uniform Seismic Loading Along Full Length of Pipe (ASCE 7-10 Eq. 13.3-3)
F_{μ} is not required to be taken as greater than	F _{p max} =	418.69 plf	Maximum Uniform Seismic Loading Along Full Length of Pipe (ASCE 7-10 Eq. 13.3-2)
$F_{\mu} = 1.6S_{DS}I_{\mu}W_{\mu}$ (13.3-2)	· p_max		······································
and F_{μ} shall not be taken as less than		Use Fp	
$F_{\mu} = 0.3 S_{DS} I_{\mu} W_{\mu} \tag{13.3-3}$			
	F _{p_lat} =	654.20 Ibs	Reaction at Each Pipe Support Hanging Beam (2 Per Transom Beam)
13.3.1.2 Vertical Force. The component shall be designed for a concurrent vertical force $\pm 0.2S_{\text{DV}}W_{\text{c}}$	F _{p_vert} =	174.45 lbs	Reaction at Each Pipe Support Hanging Beam (2 Per Transom Beam)


13.3.1.2 Vertical Force. The component shall be designed for a concurrent vertical force $\pm 0.2S_{DS}W_p$.

Vertical Loading Application: Pipe Load Shown

Uniform Seismic Loading Along Full Length of Pipe (ASCE 7-10 Eq. 13.3-1)
Minimum Uniform Seismic Loading Along Full Length of Pipe (ASCE 7-10 Eq. 13.3-3) Maximum Uniform Seismic Loading Along Full Length of Pipe (ASCE 7-10 Eq. 13.3-2)
Reaction at Each Pipe Support Hanging Beam (2 Per Transom Beam) Reaction at Each Pipe Support Hanging Beam (2 Per Transom Beam)
Lateral Loading Application: Friction Force Shown

LC G	enerator	RSA Sc	aling Factor							
- 3	Description	Solve	P-Delta	SRSS	BLC	Factor	BLC	Factor	BLC	Factor
1	IBC 16-1	2	Y	1	DL	1.4			-	1
2	IBC 16-2 (a)	•	Y		DL	1.2	LL	1.6		
3	IBC 16-3 (2	Y		DL	1.2	WLX	0.5		
-4	IBC 16-3 (~	Y		DL	1.2	WLZ	0.5		
5	IBC 16-3 (~	Y		DL	1.2	WLX	-0.5		
6	IBC 16-3 (Y		DL	1.2	WLZ	-0.5		
7	IBC 16-4 (~	Y		DL	1,2	WLX	1	LL	0.5
8	IBC 16-4 (Y		DL	1.2	WLZ	1	LL	0.5
9	IBC 16-4 (1	Y	i i	DL	1.2	WLX	-1	LL	0.5
10	IBC 16-4 (Y]]	DL	1.2	WLZ	-1	LL	0.5
11	IBC 16-6 (a)	2	Y.		DL	0.9	WLX	1		
12	IBC 16-6 (b)	2	Y		DL	0.9	WLZ			
13	IBC 16-6 (c)	Y	Ŷ		DL	0.9	WLX	-1		
14	IBC 16-6 (d)		Y		DL	0.9	WLZ	-1		
15	IBC 16-5 (a)	~	Y		DL	1,2	EL	1	LL	0.5
16	IBC 16-5 (b)	~	Y		DL	1.2	EL	-1	ш	0.5
17	IBC 16-7 (a)	5	Y		DL	0.9	EL	1		
18	IBC 16-7 (b)		Y		DL	0.9	EL	-1		


Reactions:

Worst Case Nodes 2 and 5	P _{max} =	3.305 kips	LRFD Vertical Reaction at Each Pipe Support Location (2 Per Transom Beam)
	V _x =	0.323 kips	LRFD Lateral Reaction at Each Pipe Support Location (2 Per Transom Beam)
	V _z =	0.045 kips	LRFD Lateral Reaction at Each Pipe Support Location (2 Per Transom Beam)
	M _x =	0.000 k-ft	LRFD Moment Reaction at Each Pipe Support Location (2 Per Transom Beam)
	M _z =	0.000 k-ft	LRFD Moment Reaction at Each Pipe Support Location (2 Per Transom Beam)
Worst Case Nodes 3 and 6	_		
Worst Case Nodes 3 and 6	P _{max} =	0.251 kips	LRFD Vertical Reaction at Each Pipe Support Location (2 Per Transom Beam)
Worst Case Nodes 3 and 6	P _{max} = V _x =	0.251 kips 0.000 kips	LRFD Vertical Reaction at Each Pipe Support Location (2 Per Transom Beam, LRFD Lateral Reaction at Each Pipe Support Location (2 Per Transom Beam)
Worst Case Nodes 3 and 6		•	
Worst Case Nodes 3 and 6	V _x =	0.000 kips	LRFD Lateral Reaction at Each Pipe Support Location (2 Per Transom Beam)

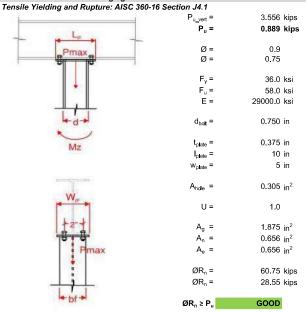
W8x15 Member Check: Members M1 and M4

4.44 in ²
8.11 in
0.245 in
4.020 in
0.315 in

AISC 15th (360-16): LRFD Code Check

Limit State	Gov. LC	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial	15		-	-	-
Applied Loading - Shear + Torsion	17	4	-	-	-
Axial Tension Analysis	15	3.251 k	199.8 k	-	
Axial Compression Analysis	15	0.000 k	176.608 k	-	*
Flexural Analysis (Strong Axis)	15	0.957 k-ft	51 k-ft	· • .	
Flexural Analysis (Weak Axis)	15	0.133 k-ft	10.012 k-ft	÷.,	-
Shear Analysis (Major Axis y)	17	0.319 k	59.609 k	0.005	Pass
Shear Analysis (Minor Axis z)	17	0.036 k	68.38 k	0.000	Pass
Bending & Axial Interaction Check (UC Bending Max)	15	-	-	0.04	Pass

L4x4x1/4 Brace Member Check: Members M2 and M3


A =	1.94 in ²	Area of Angle
d =	4 in	Angle Leg Depth
t _{leg} =	0.250 in	Angle Leg Thickness

AISC 15th (360-16): LRFD Code Check

Limit State	Gov. LC	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial	15			-	
Applied Loading - Shear + Torsion	1	-	-	×	
Axial Tension Analysis	15	0.000 k	62.532 k	-	+
Axial Compression Analysis	15	1.107 k	17.031 k	-	•
Flexural Analysis (Strong Axis)	15	0.143 k-ft	5.361 k-ft	-	
Flexural Analysis (Weak Axis)		0.046 k-ft	3.138 k-ft	=	-
Shear Analysis (Major Axis y)	1	0.056 k	19.44 k	0.003	Pass
Shear Analysis (Minor Axis z)	1	0.001 k	19.44 k	0.000	Pass
Bending & Axial Interaction Check (UC Bending Max)	15	-	(*)	0.107	Pass

Connection Calculation: Hanging Column to Transom Beam

Shear Yielding, Rupture and Block Shear: AISC 360-16 Section J4.2 and J4.3

V _{u_lat} =	1.200 kips
V _u =	0.300 kips
Ø =	1.0
Ø =	0.75
$A_{gv} =$	1.875 in ²
$A_{nt} =$	0.656 in ²
$A_{nv} =$	0.656 in ²
ØR _n =	40.50 kips
ØR _n =	17.13 kips
ØR _n =	45.68 kips

Compression Yielding and Buckling: AISC 360-16 Section J4.4

	S _{plate} = A _{plate} =	0.117 in ³ 1.875 in ²
$\emptyset R_n = \emptyset * F_y * A_g$	ØR _n =	60.75 kips
	ØR _n ≥ P _u	GOOD
Flexural Yielding: AISC 360-16		
	M _{u_x} =	8.890 k-in
	M _{u_x} = M _{u_x} =	0.741 k-ft
	ØM _n =	3.80 k-ft
	ØM _n ≥ M _{u_x} =	GOOD

LRFD Tension Force Due to Vertical Load of Column and Brace (Per Plate - 2 Per Connection) Maximum LRFD Tension Force Applied to Each Girder Clamp (4 Total)

Reduction Factor for Tensile Yielding (EQ J4-1) Reduction Factor for Tensile Rupture (EQ J4-2)

Yield Strength of Plate Tensile Strength of Plate Modulus of Elasticity

Bolt Diameter

Plate Thickness Length of Plate Width of Plate

Area of Hole

Shear Lag Factor (Table D3.1)

Tensile Rupture Capacity (EQ J4-1) $\emptyset R_n = \emptyset * F_y * A_g$ $\mathcal{Q} R_n = \emptyset * F_u * A_g$ $\emptyset R_n = \emptyset * F_u * A_g$

Pipe Support Plate Tension Check

LRFD Shear Force Due to Lateral Loads Maximum LRFD Shear Force Applied to Each Girder Clamp (4 Total)

Reduction Factor for Shear Yielding (EQ J4-3) Reduction Factor for Shear Rupture (EQ J4-3)

Gross Area of Plate Net Area Subject to Tension Net Area Subject to Shear

 $\begin{array}{ll} \text{Shear Yielding Capacity (EQ J4-3)} & \emptyset R_n = \emptyset * 0.6 * F_y * A_{gv} \\ \text{Shear Rupture Capacity (EQ J4-4)} & \emptyset R_n = \emptyset * 0.6 * F_u * A_{nv} \\ \text{Block Shear Strength (EQ J4-4)} & \emptyset R_n = \emptyset (0.6F_u A_{nv} + U_{bs}F_u A_{nt}) \leq \emptyset (0.6F_y A_{gv} + U_{bs}F_u A_{nt}) \\ \end{array}$

Pipe Support Plate Shear Check

Section Modulus About Strong Axis Area of Plate

Compression Yielding/Buckling Capacity (EQ J4-6)

Pipe Support Plate Compression Check

LRFD Moment Applied to Plate Due to Vertical Load LRFD Moment Applied to Plate Due to Vertical Load

Flexural Capacity of Plate About Strong Axis **Pipe Support Plate Flexure Check**

Bolt Bearing and Tearout: AISC 360-16 Section J3.10

	ØR _n =	29.36 kips	Available Strength at Bolt Hole Due to Bearing (EQ J3-6a)
$\label{eq:relation} \ensuremath{ \varnothing R_n} = \ensuremath{ \varnothing * 1.2 * l_c * t_{plate} * F_u}$	ØR _n =	97.88 kips	Available Strength at Bolt Hole Due to Tearout (EQ J3-6c)
	ØR _n ≥ P _u	GOOD	3/4" Diameter Bolts are OK for Use in 3/4" Thick Plate

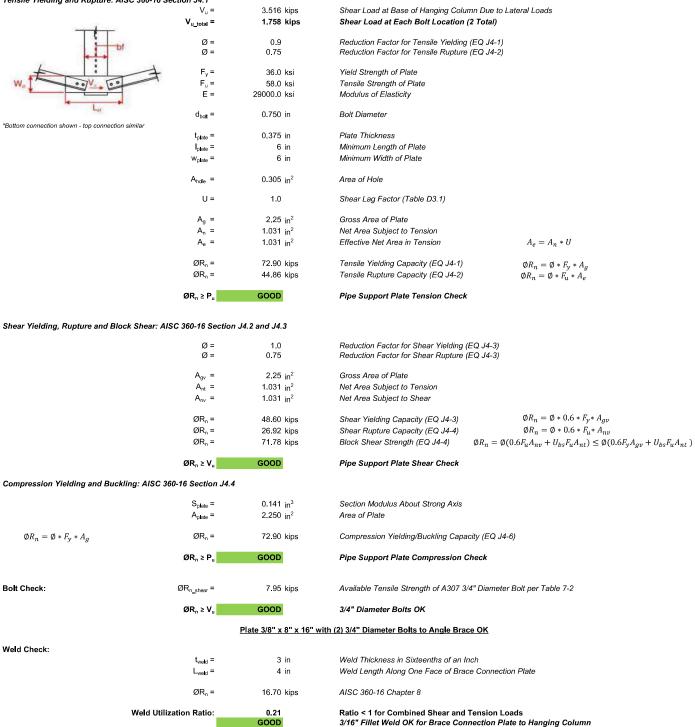
Allowable Lindapter Girder Clamp Loads

Technical Specification

		Safe Working L	Loads (FOS 5:1)				Dimensions		
Product Code	Bolt Grd. 5 / A325 Z	Tensile Resistance / 1 Bolt	Slip Resistance / 2 Bolts	Tightening Torque*	Clamping Range ¹⁾ V	Y	x	т	Width with Saddle
		lbs	lbs	ft.lb					
LLR037	3/8"	337	22)	15	1/8" - 3/8"	13/10"-15/10"	15/16"-1"	13/16" - 15/16"	15/16
LLR050	1/2**	1304	202	50	1/0" - 1/2"	$T^{\prime\prime\prime}=13^{+}_{-13}$	$1^m \sim 1^{1/2}_{-4}$	1"-15/8=	19/10
LLR062	5/8"	1911	382	108	1/8" - 5/8"	13/16" - 13/18"	15%"-17%"	13/16"-17/16"	173/10"
LLR075	3/2"	3305	674	210	3/8" - 3/4"	13/8"-113/16"	113/16" - 2"	15/0"-17/0"	21/4"
LLR100	- pr	4430	1012	362	1/6 " - 1"	17/8" - 21/4"	21/16" - 21/4"	13/4"-23/8"	3"

Girder Clamp Check: Combined Shear and Tension

P _u =	0.889 kips	Maximum LRFD Tension Force Applied to Each Girder Clamp (4 Total)
V _u =	0.300 kips	Maximum LRFD Shear Force Applied to Each Girder Clamp (4 Total)
ØR _{n_tension} =	3.31 kips	Available Tensile Strength of A307 3/4" Diameter Bolt per Table 7-2
ØR _{n_shear} =	0.67 kips	Available Tensile Strength of A307 3/4" Diameter Bolt per Table 7-2
Utilization Ratio:	0.71 GOOD	Ratio < 1 for Combined Shear and Tension Loads 3/4" Diameter Bolt Girder Clamp (Lindapter LLR075) OK for Hanging Pipe Support Connection


Plate 3/8" x 5" x 10" with (4) 3/4" Diameter Lindapter LLR075 Girder Clamps to Transom Beam OK

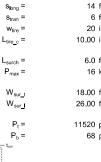
Weld Check: Combined Shear and Tension						
	P _{u_vert} =	3.305 kips	Tension Load at Weld due to Vertical Load			
	V _{u_total} =	1.200 kips	Shear Load at Weld due to Lateral Loads			
	t _{weld} =	3 in	Weld Thickness in Sixteenths of an Inch			
	L _{weld} =	12 in	Weld Length Along Hanging Column Perimeter			
	ØR _n =	50.11 kips	AISC 360-16 Chapter 8			
Weld	Utilization Ratio:	0.09 GOOD	Ratio < 1 for Combined Shear and Tension Loads 3/16" Fillet Weld OK for Hanging Pipe Support Connection			

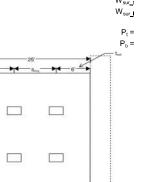
3/16" Fillet Weld from Hanging Column to Plate OK

Connection Calculation: Hanging Column to Brace Tensile Yielding and Rupture: AISC 360-16 Section J4.1

UBJECT:	Klamath River Renewal Corporation		BY: KNH/GAC CHK'D BY: 0
	Daggett Road Bridge at Iron Gate Reservoir		DATE: 10/15/2021
	Daggett Road Bridge Abutment and Yreka Waterline Support Calc	ulations	PROJECT NO.: 21-067
urpose asign of abut	ments with backwall to support new permanent Daggett Road Bridge	with supers	structure self-weight, 24" dia. water pipe, loading from HL-93 (Design Truck per AASHTO Section 3.6.1.2) and
	soil at active conditions. Drains exist in abutment so undrained condition		
formation	soli al active conditions. Drains exist in abutinent so undrained conditio	113 010 033	anned. Venicle suicharging is included in design.
	ctors and Combinations Applicable to Abutment Desig	n AASH	TO Section 3.3.2
buunigru		ymbol	
	Force Effects Due to Creep	CR	Not Applicable for abutment design
	Downdrag Force	DD	Not Applicable for abutment design
De	ead Load of Structural Components and Nonstructural Attachments	DC	Provided by Manufacturer (Acrow)
	Dead Load of Wearing Surfaces and Utilities	DW	Provided by Manufacturer (Acrow)
	Horizontal Earth Pressures	EH	Calculated
Mis	sc. Locked-in Force Effects from Construction Process (e.g. jacking)	EL	Not Applicable for abutment design
	Earth Surcharge Load	ES	Calculated
	Vertical Pressure from Self-weight of Earth Fill	EV	Calculated
	Secondary Forces from Post-Tensioning for Strength	PS	Not Applicable for abutment design
	Force Effects Due to Shrinkage	SH	Not Applicable for abutment design
		-	
	Blast Loading	BL	Not Applicable for abutment design
	Vehicular Braking Force	BR	Provided by Manufacturer (Acrow)
	Vehicular Centrifugal Force	CE	Not Applicable for abutment design
	Vehicular Collision Force	CT	Not Applicable for abutment design
	Vessel Collision Force	CV	Not Applicable for abutment design
	Earthquake Load	EQ	Calculated
Friction Load		FR	Not Applicable for abutment design
	Ice Load	IC	Not Applicable for abutment design
Vehicular Dynamic Load Allowance		IM	Not Applicable for abutment design
	Vehicular Live Load	LL	Provided by Manufacturer (Acrow)
	Live Load Surcharge	LS	Calculated
	Pedestrian Live Load	PL	Not Applicable for abutment design
	Force Effect Due to Settlement	SE	Not Applicable for abutment design
	Force Effect Due to Temperature Gradient	TG	Not Applicable for abutment design
	Force Effect Due to Uniform Temperature	TU	Not Applicable for abutment design
	Water Load and Stream Pressure	WA	Not Applicable for abutment design
	Wind on Live Load	WL	Provided by Manufacturer (Acrow)
	Wind Load on Structure	WS	Provided by Manufacturer (Acrow)
rength I:	Load combo with normal vehicle use w/o wind	LC1	1.25DC + 1.35EH + 1.5ES + 1.35EV + 1.75LL+ 1.75BR + 1.75LS
rength II:	Load combo with special design vehicle use w/o wind	LC2	1.25DC + 1.35EH + 1.5ES + 1.35EV + 1.35LL+ 1.35BR + 1.35LS
rength III:	Load combo with design wind speed at location	LC3	1.25DC + 1.35EH + 1.5ES + 1.35EV + 1.0WS
rength IV:	Load combo emphasizing dead load force effects	LC4	1.5DC + 1.35EH + 1.5ES + 1.35EV
rength V:	Load combo with normal vehicle use w/ 80mph wind	LC5	1.25DC + 1.35EH + 1.5ES + 1.35EV + 1.35LL+ 1.35BR + 1.35LS + 1.0WS
xtreme I	Load combo including earthquake forces	LC6	1.0DC + 1.0EH + 1.0ES + 1.0EV + 0.5LL+ 0.5BR + 0.5LS + 1.0EQ
xtreme II	Load combo with ice, collisions, and hydraulic effects	LC7	Reviewed to verify Snow Load doesn't govern
on vice I	Load combo with normal vabials use of 70-orb with t	1.00	
ervice I	Load combo with normal vehicle use w/ 70mph wind	LC8	1.0DC + 1.0DD + 1.0DW + 1.0EH + 1.0ES + 1.0EV + 1.0LL + 1.0BR + 1.0LS
ervice II	Load combo intended to control yielding of steel	LC9	1.0DC + 1.0EH + 1.0ES + 1.0EV + 1.3LL+ 1.3BR + 1.3LS
ervice III	Load combo for long. analysis (prestressed concrete)	LC10	Not Applicable
ervice IV	Load combo for tension (prestressed concrete col.)	LC11	Not Applicable

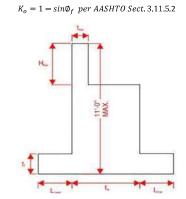
All limit states (Strength, Extreme and Service) are equal to 1.0 for ductility, redundancy and operational classification based on conventional designs and details and conventional levels of redundancies for a typical bridge per AASHTO Section 1.3.2


Abutment Analysis Calculations: General Properties and Vehicle Surcharge Loads Soil Properties: Assumed 2(V):1(H) Pressure Distribution


Properties of

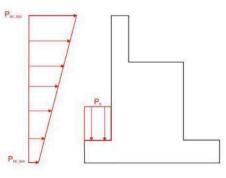
γ _w =	62.4 pcf	Unit weight of water
Ø _f =	35 degrees	Angle of Internal Friction (Geotech Report)
γ _s =	125 pcf	Unit weight of soil
K _o =	0.426	Lateral At-Rest Pressure Coefficient
f Abutment:		
H =	12.00 ft	Height of Abutment Wall
L _{eff} =	35.0 ft	Effective Abutment Length
L _{abut} =	37.0 ft	Total Abutment Length
t _w =	6.00 ft	Thickness of Abutment Wall
t _{ow} =	2.25 ft	Thickness of Back Wall
H _{bw} =	3.50 ft	Height of Back Wall
t _f =	2.00 ft	Thickness of Footing
L _{heel} =	3.00 ft	Length of Heel
L _{toe} =	3.00 ft	Length of Toe
$\gamma_c =$	150.0 pcf	Unit weight of Concrete
A _{abut} =	70.9 ft ² / ft	Cross-Sectional Area of Abutment

Vertical Surcharge Loading Applied from Design Truck:



Horizontal Loading Applied Due to Seismic Forces:

0.1863
0.2137
0.2535
0.040
0.280
2520.0 plf
572.55 plf
3092.55 plf
4.00


Worst Case Axle Load (AASHTO Section 3.6.1.2.2 for Design Truck)

Spacing of Wheels Along Length of Vehicle (CL-CL) Spacing of Wheels Along Width of Vehicle (Out-Out) Width of Tire (AASHTO Section 3.6.1.2.5) Minimum Length of Wheel Contact (AASHTO Section 3.6.1.2.5)

Length of Surcharge Based on 2:1 Slope Maximum Wheel Load (1/2 Axle Load)

Width of Surcharge (Transverse) Width of Surcharge (Longitudinal)

Vehicle Surcharge at Height 0' from Top Vehicle Surcharge at bottom of Abutment

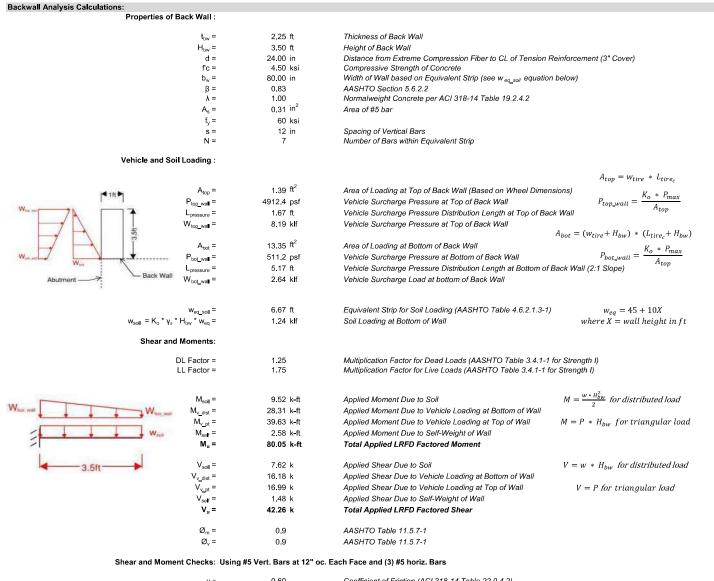
 $W_{\underline{axle}}$ $p_b = \frac{1}{(2 * L_{surch} + s_{tran}) * (L_{surch} + s_{long} + t_{wall})}$

 $P_{max} = \frac{W_{axle}}{2}$

Seismic Horizontal Acceleration Coefficie Seismic Active Pressure Coefficient (AAS	HTO Figure A.11.3.2-3)
Dynamic Lateral Earth Pressure Force Horizontal Inertial Force Due to Seismic L	oading of Wall Mass P_I
Total Horizontal Seismic Load	$P_{eq} = P_{AE} + P_{IR}$

 P_{eq} Height of Lateral Force

Ŧ


ł

f f.

- 1/2"H (2:1 Slope)

Abutmen

μ=	0.60	Coefficient of Friction (ACI 318-14 Table 22.9.4.2)	
a =	0.43 in	Depth of Equivalent Rectangular Stress Block	$a = \frac{A_s * f_y}{0.85 * f_c' * b_w}$
ØM _n = IF ØM _n ≥ M _u	232.28 k-ft GOOD	Allowable Moment Capacity of Back Wall	$\phi M_n = \phi * A_s * f_y * \left(d - \frac{a}{2}\right)$
ØV _c = IF ØV _c ≥ V _u	231.8 k GOOD	Allowable Shear Capacity of Back Wall	$\emptyset V_c = \phi * 2 * \lambda * \sqrt{f'_c} * b * d$
ØV _n = IF ØV _n ≥ V _u	70.308 k GOOD	Allowable Shear Friction (ACI 318-14 EQ. 22.5.5.1) Reinforcing Capable of Resisting Shear at Abutment I	
$A_{s_min} = A_{s_min} < A_{s} =$	0.178 in ² /ft GOOD	Minimum Area of Steel Required (AASHTO Eq. 5.10.6	(-1) $A_{s_min} = \frac{1.3 * b * h}{2 * (b + h) * F_y}$

Abutment Calculations: Loads Applied to Abutment Summing Moments About Footing CL Lateral Surcharge Loading Applied from Design Truck: P_{lat_top} = 281 plf/f Lateral Pressure from Vehicle at Height 0' from Top $K_o * \frac{L_{eff}}{2 * P_{max}} * \frac{W_{surt}}{W_{surt}}$ P_{lat_bot} = 15 plf/f Lateral Pressure from Vehicle at bottom $p_{lat_bot} = K_o$ Wsur_t * Wsur_l L_{eff} F₁ = 1.59 kips/ft Lateral Force from Vehicle (Trianglular Loading) 8.00 ft Distance from Bottom of Abutment to Lateral Force y₁ = $F_2 =$ 0.18 kips/ft Lateral Force from Vehicle (Uniform Loading) 6.00 ft Distance from Bottom of Abutment to Lateral Force y₂ = Lateral Surcharge Loading Applied from Soil: Height of Soil Above Heel H_{soil} = 10.00 ft $p_{h_soil} = k_o * \gamma_s * H$ Lateral Soil Pressure at Base of Abutment Ph_soil = 533 psf $p_{l_soil} = 0.5 * p_{h_soil} * H$ 2665 plf Lateral Force Due to Soil PLsoil= y_{Lsol} = 3.333 ft Height of Resultant Lateral Force Lateral Loading Applied from Bridge/Vehicles: F., = 20 kips Brake Load at Each Abutment: 25% of Axle Loading P_w = Wind Load on Each Abutment: Reaction Provided by Bridge Manuf. 86 kips Lateral Loading Due to Seismic: 3.09 kip/ft P_{eq} = h_{eq} = Total Horizontal Seismic Load (Abutment Self-Weight and Soil Above Heel) 4 00 Height of Lateral Force 3.53 kip/ft P_{eq} = Total Horizontal Seismic Load Over Abutment Length from Bridge Superstructure h_{eq} = 9.750 ft Centroid of concrete section from CL Vertical Surcharge Loading Applied from Soil Over Heel: Height of Soil Above Heel H_{soil} = 10.00 ft $p_{soil} = H_{soil} * \gamma_s$ P_{v_soi} = 1250 psf Vertical Soil Pressure (Surcharge) x_{soil} = -4.50 ft Centroid of Soil from CL Vertical Surcharge Loading Applied from Soil Over Toe: Height of Soil Above Heel H_{soil} = 3.00 ft $p_{soil} = H_{soil} * \gamma_s$ P_{v_sol} = 375 psf Height of Soil Above Toe (Assumed for Slope Stability) 4.50 ft Centroid of Soil from CL $\mathbf{x}_{soil} =$ Vertical Loading Applied from Snow Load on Bridge: Design Snow Load Acting on Bridge P_{snow} = 40.00 psf w_{snow} = 5.20 kip/ft Vertical Snow Load from Bridge Along Abutment Length 0.125 ft Centroid of concrete section from CL $\mathbf{x}_{\text{bridge}} =$ Vertical Loading Applied from Bridge: 0.00 kips Point Load from 24" Waterline at Each Abutment (Included in Bridge Reactions Provided by Manuf.) P_{DL_Pipe} = P_{DL} = 244 kips Point Load at Each Corner (2 per Abutment): Reactions Provided by Bridge Manuf. P_{LL} = 165 kips Point Load at Each Corner (2 per Abutment): Reactions Provided by Bridge Manuf. d = 10.5 in Distance from Face of Backwall to Load Location x_{bridge} = 0.125 ft Centroid of concrete section from CL Vertical Seismic Loading Applied from Bridge Superstructure: $0.25 * 2 * P_{DL}$ $p_{eq_v} =$ P_{eq_v} = 3.53 kip/ft Total Vertical Seismic Load Over Abutment Length from Bridge Superstructure L_{abut} x_{bridge} = 0.125 ft Centroid of concrete section from CL Concrete Wall Sections: Section 1 2.25 ft Thickness of Section 1 t1 = H₁ = 3.50 ft Height of Section 1 $W_1 = \gamma_c * t_1 * H_1 =$ 1.18 kip/ft Weight of Section 1 **x**₁ = -1.88 ft Centroid of concrete section from CL SURCHARGE AND BRIDGE LOADING Pa = 185 k /corner (2 per ab Pa = 165 k /corner (2 per abs Section 2 t₂ = 6.00 ft Thickness of Section 2 P.... - 54 k (per abutment) H₂ = 6.50 ft Height of Section 2 W____ = 0.25* 32 k = 8 k 9.5 $W_2 = \gamma_c * t_2 * H_2 =$ 5.85 kip/ft Weight of Section 2 2 **x**₂ = 0.00 ft Centroid of concrete section from CL Section 3 3 12.00 ft Thickness of Section 3 t₃ = 2.00 ft H₃ = Height of Section 3 $W_3 = \gamma_c * t_3 * H_3 =$ 1.80 kip/ft Weight of Section 3 0.00 ft

Centroid of concrete section from CL

x₃ =

Abutment Calculations: Load Combinations and Factored Loads

	Summation of Forces Applied to Abutment:				
١	/ertical Loads:				
DL	F _{v_abutment} =	8.83 kips/ft	Positive Vertical Loads (Down) From Abutment Self-Weight Over Abutment Length		
DL	F _{vD_Bridge} =	13.94 kips/ft	Positive Vertical Dead Loads (Down) From Bridge and Vehicle Loading Over Abutment Length		
LL	F _{vl_Bridge} =	9.43 kips/ft	Positive Vertical Live Loads (Down) From Bridge and Vehicle Loading Over Abutment Length		
ES	F _{v_sol_h} =	3.75 kips/ft	Positive Vertical Loads (Down) From Soil Loading Over Heel Over Abutment Length		
ES	F _{v_soi_t} =	1.13 kips/ft	Positive Vertical Loads (Down) From Soil Loading Over Toe Over Abutment Length		
IC (Snow)	F _{v_snow} =	5.20 kips/ft	Positive Vertical Loads (Down) From Snow Loading Over Abutment Length		
EQ	F _{v_eq} =	3.53 kips/ft	Positive Vertical Loads (Down) From Superstructure Seismic Loads Over Abutment Length		
	F _v =	45.81 kips/ft	Total Unfactored Vertical Load Over Abutment Length		
١	/ehicle Surcharge Loads:				
LS	P _{top_v} =	0.068 ksf	Vertical Vehicle Pressure (Surcharge) at Top of Wall		
LS	P _{base_v} =	0.035 ksf	Vertical Vehicle Pressure (Surcharge) at Top of Footing/Base of Wall		
	P _b =	0.104 ksf	Total Unfactored Vertical Pressure (Surcharge) Over Heel		
L	_ateral Loads:				
LL	F _{h_Bridge} =	0.571 kips/ft	Lateral Loads From Bridge and Vehicles Over Abutment Length (Braking Force)		
DL	F _{h_bw_soll} =	1.244 kips/ft	Lateral Loads From Soil at Base of Back Wall		
EH	F _{h_soi} =	2.665 kips/ft	Lateral Loads From Soil at Base of Footing (Includes Lateral Load from Soil at Base of Back Wall)		
LS	F _{h_v} =	1.774 kips/ft	Lateral Loads From Vehicle at Base of Footing		
WL	F _{h_w} =	2.457 kips/ft	Lateral Wind Load Over Abutment Length		
EQ	F _{h_eq_self} =	3.093 kips/ft	Lateral Seismic Load Over Abutment Length Due to Soil and Abutment Self-Weight		
EQ	F _{h_eq_bridge} =	3.535 kips/ft	Lateral Seismic Load Over Abutment Length Due to Bridge Superstructure		
	F _b =	12.882 kips/ft	Unfactored Lateral Load Over Abutment Length		

								Factored Lo	ads (kips/ft)
Load Combination	DL Factor	γ _p Factor (ES)	γ _p Factor (EH)	LL Factor	WL Factor	EQ Factor	IC Factor	Fv	F _h
Strength I	1.25	1.50	1.35	1.75	-	-	-	52.46	9.26
Strength II	1.25	1.50	1.35	1.35	-	-	-	48.65	8.32
Strength III	1.25	1.50	1.35	-	1.0	-	-	35.78	7.61
Strength IV	1.50	1.50	1.35	-	-	-	-	41.47	5.46
Strength V	1.25	1.50	1.35	1.35	1.0	-	-	48.65	10.78
Extreme Event I	1.0	1.0	1.0	0.5	-	1.0	-	35.95	11.71
Extreme Event II	1.0	1.0	1.0	0.5	-	-	1.0	37.62	5.08
Service I	1.0	1.0	1.0	1.0	1.0	-	-	37.18	8.71
Service II	1.0	1.0	1.0	1.3	-	-	-	40.04	5.71

Sum of Moments (About Centerline of Footing):

Vertical Load Moments M			3,	
Moving, 1 1.18. Hvftt Moment About CL. Due to Vericel Live Lad Struttarge Muss, 1 3.26. Hvftt Moment About CL. Due to Vericel Loading from Sol Muss, 2 5.06. Hvftt Moment About CL. Due to Vericel Loading from Sol Muss, 2 5.06. Hvftt Moment About CL. Due to Vericel Loading from Sol Muss, 2 0.44. Hvftt Moment About CL. Due to Vericel Loading from Sol Muss, 2 0.44. Hvftt Moment About CL. Due to Vericel Loading from Bidge Superstructure Lateral Load Moments Muss, 2 0.88. Hvftt Moment About CL. Due to Vericel Scading Muss, 2 0.88. Hvftt Moment About CL. Due to Vericel Scading from Sol Sol Muss, 2 0.88. Hvftt Moment About CL. Due to Vericel Scading from Sol Sol Muss, 2 0.98. Hvftt Moment About CL. Due to Vericel Scading from Sol Sol Muss, 2 0.98. Hvftt Moment About CL. Due to Vericel Scading from Sol Sol Muss, 2 0.98. Hvftt Moment About CL. Due to Vericel Scading from Sol Sol Muss, 2 0.98. Hvftt Sorvice In Positive Moment About CL (CW) Sol Muss, 2 0.98. Hvftt Sorvice In Positive Moment About CL (CW) Sorvice In Positive Momen	Vertical Load Moments	M _{conc} =	-2.21 k-ft/ft	Moment About CL Due to Self-Weight of Abutment
Magent 3.28 k-Mt Moment About CL Due to Vertical Loading trom Soil Magent 6.68 k-Mt Moment About CL Due to Vertical Loading trom Soil Magent 0.68 k-Mt Moment About CL Due to Vertical Loading trom Soil Magent 0.44 k-Ht Moment About CL Due to Vertical Loading trom Soil Magent 0.44 k-Ht Moment About CL Due to Vertical Loading trom Bridge Superstructure Lateral Load Moments Magent 13.83 k-Mt Moment About CL Due to Vertical Sessmic Loading Magent 8.88 k-Mt Moment About CL Due to Vertical Sessmic Loading trom Bridge Superstructure Magent 2.038 k-Mt Moment About CL Due to Virid Magent 3.004 k-Mt Moment About CL Due to Virid Magent 5.971 k-Mt Service I and II Positive Moment About CL (CW) Magenterset 4.776 k-Mt Service I and II Positive Moment About CL (CW) Magenterset 4.265 k-Mt Strength II Positive Moment About CL (CW) Magenterset 4.265 k-Mt Strength II Positive Moment About CL (CW) Magenterset 4.265 k-Mt Strength II Positive Moment About CL (CW) Magenterset 4.265 k-Mt Strength II Positive Moment About CL (CW) Magenterset		M _{bridge_D} =	1.74 k-ft/ft	Moment About CL Due to Vertical Dead Load from Bridge
Maunt and Shares and Sha		M _{bridge_L} =	1.18 k-ft/ft	Moment About CL Due to Vertical Live Load from Bridge
M. Mage = 5.66 k-Mth Moment About CL. Due to Vertical Loading from Soil M. Mage = 0.63 k-Mth Moment About CL. Due to Vertical Selsmic Loading from Bridge Superstructure Lateral Load Moments Mage = 13.83 k-Mth Moment About CL. Due to Vertical Selsmic Loading from Soil Mage = 4.86 k-Mth Moment About CL. Due to Vertical Selsmic Loading from Soil Moment About CL. Due to Vertical Selsmic Loading from Soil Mage = 4.86 k-Mth Moment About CL. Due to Vertical Selsmic Loading from Soil Moment About CL. Due to Vertical Selsmic Loading from Soil Mage = 2.03 k-Mth Moment About CL. Due to Vertical Selsmic Loading from Soil Moment About CL. Due to Vertical Selsmic Loading from Soil Mage = 2.03 k-Mth Moment About CL. Due to Vertical Selsmic Loading from Soil Moment About CL. Due to Vertical Selsmic Loading from Soil Mage = 55.71 k-Mth Service 1 If Ositive Moment About CL (CW) Moment About CL (CW) Mage		M _{L_surch} =	3.26 k-ft/ft	Moment About CL Due to Vertical Live Load Surcharge
Lateral Load Moments Mm 0.65 k-lt/tt Moment About CL. Due to Vertical Loading from Bridge Superstructure Lateral Load Moments Mm 1.333 k-lt/tt Moment About CL. Due to Vertical Seismic Loading from Bridge Superstructure Mm 8.88 k-lt/tt Moment About CL. Due to Soil Loading Mm 1.288 k-lt/tt Moment About CL. Due to Soil Loading from Soil-Weight and Soil Mm 2.088 k-lt/tt Moment About CL. Due to Horizontal Seismic Loading from Soil-Weight and Soil Mm 1.237 k-lt/tt Moment About CL. Due to Horizontal Seismic Loading from Soil-Weight and Soil Mm Mm 59.71 k-lt/tt Service I and II Positive Moment About CL (CW) Mm Service I Positive Moment About CL (CW) Service I Positive Moment About CL (CW) Mm 52.99 k-lt/tt Strength II Positive Moment About CL (CW) Mm 52.99 k-lt/tt Strength II Positive Moment About CL (CW) Mm 52.99 k-lt/tt Strength II Positive Moment About CL (CW) Mm Service I Regative Moment About CL (CW) Service I Regative Moment About CL (CW) Mm Service I Negative Moment About CL (CW) Service I Negative Moment About CL (CW) Mm Service I Negative Moment About CL (CW) Service I Negative Moment About		M _{sol_h} =	-16.88 k-ft/ft	Moment About CL Due to Vertical Loading from Soil
Lateral Load Moments Mag = 0.44 k-fth Moment About CL Due to Vertical Seismic Loading from Bridge Superstructure Lateral Load Moments Mag = 13.83 k-fth Moment About CL Due to Vertical Seismic Loading Mage = 4.86 k-fth Moment About CL Due to Bridge (Braking Force) Mage = 20.89 k-fth Moment About CL Due to Wind Mage = 12.37 k-fth Moment About CL Due to Wind Mage = 12.37 k-fth Moment About CL Due to Horizontal Seismic Loading from Self-Weight and Solf Mage = 12.37 k-fth Service 1 and 1 Positive Moment About CL (CW) Mage = 55.71 k-fth Service 1 Positive Moment About CL (CW) Mage = 52.99 k-fth Strength I Positive Moment About CL (CW) Mage = 22.20 k-fth Strength II Positive Moment About CL (CW) Mage = 22.20 k-fth Strength II Positive Moment About CL (CW) Mage = 73.88 k-fth Strength II Positive Moment About CL (CW) Mage = 19.99 k-fth Strength II Positive Moment About CL (CW) Mage = 19.99 k-fth Strength II Positive Moment About CL (CW) Mage = 19.99 k-fth Strength II Positive Moment About CL (CCW) Mage = <td< td=""><td></td><td>M_{soil_t} =</td><td>5.06 k-ft/ft</td><td>Moment About CL Due to Vertical Loading from Soil</td></td<>		M _{soil_t} =	5.06 k-ft/ft	Moment About CL Due to Vertical Loading from Soil
Lateral Load Moments More = 13.83 k-ft/ft Moment About CL Due to Soil Loading More = 8.88 k-ft/ft Moment About CL Due to Soil Loading More = 20.89 k-ft/ft Moment About CL Due to Bridge (Braking Force) More = 20.89 k-ft/ft Moment About CL Due to Wind More = 20.89 k-ft/ft Moment About CL Due to Horizontal Seismic Loading from Self-Weight and Soil More = 12.37 k-ft/ft Moment About CL Due to Horizontal Seismic Loading from Bridge Superstructure More = 45.76 k-ft/ft Service I and II Positive Moment About CL (CW) More = 62.24 k-ft/ft Service I Positive Moment About CL (CW) More = 62.24 k-ft/ft Strength II Positive Moment About CL (CW) More = 62.24 k-ft/ft Strength II Positive Moment About CL (CW) More = 73.88 k-ft/ft Strength II Positive Moment About CL (CW) More = 73.88 k-ft/ft Strength II Positive Moment About CL (CW) More = 73.88 k-ft/ft Strength II Positive Moment About CL (CW) More = 73.88 k-ft/ft Strength II Positive Moment About CL (CW) More = 73.88 k-ft/ft Strength II Positive Moment About CL (CW) More = 73.		M _{snow} =	0.65 k-ft/ft	Moment About CL Due to Vertical Loading from Soil
Mail = 8.88 k-ft/ft Moment About CL Due to Soil Loading Mouge = 4.86 k-ft/ft Moment About CL Due to Soil Loading from Soil-Weight and Soil Multiple = 20.89 k-ft/ft Moment About CL Due to Vind Multiple = 12.37 k-ft/ft Moment About CL Due to Horizontal Seismic Loading from Bridge Superstructure Multiple = 30.04 k-ft/ft Moment About CL Due to Horizontal Seismic Loading from Bridge Superstructure Multiple = 59.71 k-ft/ft Service I and II Positive Moment About CL (CW) Multiple = 52.99 k-ft/ft Strength II Positive Moment About CL (CW) Multiple = 62.24 k-ft/ft Strength II Positive Moment About CL (CW) Multiple = 42.65 k-ft/ft Strength II Positive Moment About CL (CW) Multiple = 70.88 k-ft/ft Strength II Positive Moment About CL (CW) Multiple = 70.11 k-ft/ft Extreme I Positive Moment About CL (CW) Multiple = 70.01 k-ft/ft Service I Negative Moment About CL (CW) Multiple = 70.00 k-ft/ft Service I Negative Moment About CL (CW) Multiple = 70.00 k-ft/ft Service I Negative Moment About CL (CW) Multiple = -19.09 k-ft/ft Service I Negative Moment About CL (CW)		M _{eq} =	0.44 k-ft/ft	Moment About CL Due to Vertical Seismic Loading from Bridge Superstructure
Mount = 4.66 k-t/tr. Moment About CL Due to Bridge (Braking Force) Mund = 20.89 k-t/tr. Moment About CL Due to Wind Mutter = 12.37 k-t/tr. Moment About CL Due to Horizontal Seismic Loading from Bridge Superstructure Mutter = 30.04 k-t/tr. Komment About CL Due to Horizontal Seismic Loading from Bridge Superstructure Mutter = 59.71 k-t/tr. Service II Positive Moment About CL (CW) Mone_arrows_1 = 62.24 k-t/tr. Strength I Positive Moment About CL (CW) Mone_arrows_1 = 62.24 k-t/tr. Strength I Positive Moment About CL (CW) Mone_arrows_1 = 62.24 k-t/tr. Strength I Positive Moment About CL (CW) Mone_arrows_1 = 62.24 k-t/tr. Strength I Positive Moment About CL (CW) Mone_arrows_1 = 73.86 k-t/tr. Strength I Positive Moment About CL (CW) Mone_arrows_1 = 70.18 k-t/tr. Strength V Positive Moment About CL (CW) Mone_arrows_1 = 71.90 k-t/tr. Strength I Positive Moment About CL (CW) Mone_arrows_1 = -19.09 k-t/tr. Strength I Mogative Moment About CL (CCW) Mone_arrows_1 = -28.08 k-t/tr. Strength I Negative Moment About CL (CCW) Mone_arrows_1 = -19.09 k-t/tr. Strength I Negative Moment About C	Lateral Load Moments	M _{veh} =	13.83 k-ft/ft	Moment About CL Due to Vehicle Surcharge Loading
Manual F 20.89 k-Hrft Moment About CL. Due to Wind Mactive F 12.37 k-Hrft Moment About CL. Due to Horizontal Seismic Loading from Bridge Superstructure Mactive F 30.04 k-Hrft Moment About CL. Due to Horizontal Seismic Loading from Bridge Superstructure Mactive F 59.71 k-Hrft Service I and II Positive Moment About CL (CW) Mactive F 52.99 k-Hrft Service I and II Positive Moment About CL (CW) Mactive F 52.29 k-Hrft Strength IP Solive Moment About CL (CW) Mactive F 22.20 k-Hrft Strength II Positive Moment About CL (CW) Mactive F 73.88 k-Hrft Strength II Positive Moment About CL (CW) Mactive F 73.88 k-Hrft Strength IV Positive Moment About CL (CW) Mactive F 73.88 k-Hrft Strength IV Positive Moment About CL (CW) Mactive F 73.88 k-Hrft Strength IV Positive Moment About CL (CW) Mactive F 73.88 k-Hrft Service I Negative Moment About CL (CW) Mactive F 73.88 k-Hrft Service I Negative Moment About CL (CW) Mactive Mactive F -28.08 k-Hrft Service I Negative Moment About CL (CW) Mactive Mactive F -28.08 k-Hrft Strength IN Regative Moment About CL (CCW) M		M _{soil} =	8.88 k-ft/ft	Moment About CL Due to Soil Loading
Mot_base 12.37 k-ft/ft Moment About CL Due to Horizontal Seismic Loading from Self-Weight and Soil Mot_base 30.04 k-ft/ft Service I and II Positive Moment About CL (CW) Mot_base 45.76 k-ft/ft Service II Positive Moment About CL (CW) Mot_base Mot_base 45.76 k-ft/ft Service II Positive Moment About CL (CW) Mot_base Mot_base Strength IP Positive Moment About CL (CW) Mot_base Mot_base Strength IP Positive Moment About CL (CW) Mot_base Mot_base Strength IP Positive Moment About CL (CW) Mot_base Mot_base Strength IP Positive Moment About CL (CW) Mot_base Mot_base Strength IP Positive Moment About CL (CW) Mot_base Trans IP Positive Moment About CL (CW) Motobase Mot_base Trans IP Positive Moment About CL (CW) Motobase Mot_base Thit Extreme IP Positive Moment About CL (CW) Mot_base Thit Strength IP Regative Moment About CL (CW) Mot_base Thit Strength IP Regative Moment About CL (CW) Mot_base Motobase Strength IN Regative Moment About CL (CW) Mot_base Motobase Strength IN Regative Moment About CL (CW) <td></td> <td>M_{bridge} =</td> <td>4.86 k-ft/ft</td> <td>Moment About CL Due to Bridge (Braking Force)</td>		M _{bridge} =	4.86 k-ft/ft	Moment About CL Due to Bridge (Braking Force)
Motor Support 30.04 k-ft/ft Moment About CL Due to Horizontal Seismic Loading from Bridge Superstructure Motor Support = 59.71 k-ft/ft Service I and II Positive Moment About CL (CW) Motor Support = 62.24 k-ft/ft Strength I Positive Moment About CL (CW) Motor Support = 62.24 k-ft/ft Strength I Positive Moment About CL (CW) Motor Support = 22.20 k-ft/ft Strength II Positive Moment About CL (CW) Motor Support = 22.20 k-ft/ft Strength II Positive Moment About CL (CW) Motor Support = 27.30 k-ft/ft Strength II Positive Moment About CL (CW) Motor Support = 7.38 k-ft/ft Strength II Positive Moment About CL (CW) Motor Support = 27.30 k-ft/ft Strength II Positive Moment About CL (CW) Motor Support = -19.09 k-ft/ft Service I Negative Moment About CL (CCW) Motor Support = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Motor Support = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Motor Support = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Motor Support <		M _{wind} =	20.89 k-ft/ft	Moment About CL Due to Wind
Mone_more = 59.71 k-ft/ft Service I and II Positive Moment About CL (CW) Mone_more = 45.76 k-ft/ft Service II Positive Moment About CL (CW) Mone_more = 62.24 k-ft/ft Strength I Positive Moment About CL (CW) Mone_more = 62.94 k-ft/ft Strength II Positive Moment About CL (CW) Mone_more = 62.92 k-ft/ft Strength II Positive Moment About CL (CW) Mone_more = 22.00 k-ft/ft Strength V Positive Moment About CL (CW) Mone_more = 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mone_more = 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mone_more = 73.08 k-ft/ft Strength V Positive Moment About CL (CW) Mone_more = 73.08 k-ft/ft Strength V Positive Moment About CL (CW) Mone_more = 73.00 k-ft/ft Strength V Positive Moment About CL (CW) Mone_more = 73.00 k-ft/ft Strength V Positive Moment About CL (CCW) Mone_more = -19.09 k-ft/ft Strength V Regative Moment About CL (CCW) Mone_more = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mone_more = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mone_more = -28.08 k		M _{eq_self} =	12.37 k-ft/ft	Moment About CL Due to Horizontal Seismic Loading from Self-Weight and Soil
Mps_service_ur 45.76 k-ft/ft Service II Positive Moment About CL (CW) Mps_service_ur 52.99 k-ft/ft Strength II Positive Moment About CL (CW) Mps_service_ur 52.99 k-ft/ft Strength II Positive Moment About CL (CW) Mps_service_ur 52.99 k-ft/ft Strength II Positive Moment About CL (CW) Mps_service_ur 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mps_service_ur 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mps_service_ur 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mps_service_ur 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mps_service_ur 73.99 k-ft/ft Strength I Negative Moment About CL (CCW) Mps_service_ur 1 -19.09 k-ft/ft Strength I Negative Moment About CL (CCW) Mms_service_ur 2 -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mms_service_ur 2 -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mms_service_ur 2 28.08 k-ft/ft Strength II Negative Moment About CL (CCW)		M _{eq_bridge} =	30.04 k-ft/ft	Moment About CL Due to Horizontal Seismic Loading from Bridge Superstructure
Moc_strongth_limit 62.24 k-ft/ft Strongth I Positive Moment About CL (CW) Moc_strongth_limit 52.99 k-ft/ft Strongth II Positive Moment About CL (CW) Moc_strongth_v 42.65 k-ft/ft Strongth II Positive Moment About CL (CW) Moc_strongth_v 73.88 k-ft/ft Strongth V Positive Moment About CL (CW) Moc_strongth_v 73.88 k-ft/ft Strongth V Positive Moment About CL (CW) Moc_strongth_v 73.014 k-treme II Positive Moment About CL (CW) Moc_strongth_i 27.90 k-ft/ft Extreme I Positive Moment About CL (CW) Moc_strongth_i 19.09 k-ft/ft Service I Negative Moment About CL (CCW) Mos_strongth_i 1 -19.09 k-ft/ft Strongth IN Positive Moment About CL (CCW) Mos_strongth_i 2 -28.08 k-ft/ft Strongth IN Regative Moment About CL (CCW) Mos_strongth_i 2 28.08 k-ft/ft Strongth IN Regative Moment About CL (CCW) Mos_strongth_i 2 28.08 k-ft/ft Strongth IN Regative Moment About CL (CCW) Mos_strongth_i 2 28.03 k-ft/ft Strongth IN Regative Moment About CL (CCW)		M _{pos_service_I} =	59.71 k-ft/ft	Service I and II Positive Moment About CL (CW)
Mpo_strong_III = 52.99 k-ft/ft Strength II Positive Moment About CL (CW) Moss_strong_IVI = 42.65 k-ft/ft Strength II Positive Moment About CL (CW) Mpo_strong_VI = 22.20 k-ft/ft Strength IV Positive Moment About CL (CW) Mpo_strong_VI = 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mpo_strong_VI = 70.11 k-ft/ft Extreme I Positive Moment About CL (CW) Mpo_strong_VI = 71.90 k-ft/ft Extreme I Positive Moment About CL (CCW) Mpo_strong_VI = -19.09 k-ft/ft Strength I Negative Moment About CL (CCW) Mpo_strong_VI = -19.09 k-ft/ft Strength I Negative Moment About CL (CCW) Mpo_strong_VI = -28.08 k-ft/ft Strength I Negative Moment About CL (CCW) Mpo_strong_VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		M _{pos_service_II} =	45.76 k-ft/ft	Service II Positive Moment About CL (CW)
Mosstrength_uii 42.65 k-ft/ft Strength IV Positive Moment About CL (CW) Mosstrength_uv 22.20 k-ft/ft Strength IV Positive Moment About CL (CW) Mosstrength_uv 73.88 k-ft/ft Strength IV Positive Moment About CL (CW) Mosstrength_uv 73.88 k-ft/ft Extreme I Positive Moment About CL (CW) Mosstrength_uii 70.11 k-ft/ft Extreme I Positive Moment About CL (CW) Mosstrength_uii -19.09 k-ft/ft Service I Negative Moment About CL (CCW) Mos_matcheringth -19.09 k-ft/ft Service I Negative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Regative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Regative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Regative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Regative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Regative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Regative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Regative Moment About CL (CCW) Mos_matcheringth -28.08 k-ft/ft Strength IN Ned Moment		M _{pos_strength_I} =	62.24 k-ft/ft	Strength I Positive Moment About CL (CW)
Mpdstrengt_IV = 22.20 k-ft/ft Strength IV Positive Moment About CL (CW) Mpdstrengt_V = 73.88 k-ft/ft Strength V Positive Moment About CL (CW) Mpdstrengt_V = 73.88 k-ft/ft Extreme I Positive Moment About CL (CW) Mpdstrengt_V = 70.11 k-ft/ft Extreme I Positive Moment About CL (CW) Mpdstrengt_I = -19.09 k-ft/ft Service I Negative Moment About CL (CCW) Mneg_strengt_I = -19.09 k-ft/ft Service I Negative Moment About CL (CCW) Mneg_strengt_I = -28.08 k-ft/ft Strength I Negative Moment About CL (CCW) Mmeg_strengt_I = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mmeg_strengt_I = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mmeg_strengt_I = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mmeg_strengt_I = -28.08 k-ft/ft Strength IV Negative Moment About CL (CCW) Mmeg_strengt_I = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmeg_strengt_I = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmeg_strengt_I = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmeg_strengt_I = -19.09 k-ft/ft Extreme I Negative Moment A		M _{pos_strength_II} =	52.99 k-ft/ft	Strength II Positive Moment About CL (CW)
Mpostrongh_V 73.88 k-fl/ft Strengt V Positive Moment About CL (CW) Mpostrongh_I 70.11 k-fl/ft Extreme I Positive Moment About CL (CW) Mpostrongh_I 27.90 k-fl/ft Extreme II Positive Moment About CL (CW) Mpostrongh_I = 19.09 k-fl/ft Service I Negative Moment About CL (CCW) Mpostrongh_I = -19.09 k-fl/ft Service I Negative Moment About CL (CCW) Mnot_strongh_I = -19.09 k-fl/ft Service I Negative Moment About CL (CCW) Mnot_strongh_II = -28.08 k-fl/ft Strength INegative Moment About CL (CCW) Mnot_strongh_II -28.08 k-fl/ft Strength II Negative Moment About CL (CCW) Mnot_strongh_II -28.08 k-fl/ft Strength II Negative Moment About CL (CCW) Mnot_strongh_II -28.08 k-fl/ft Strength II Negative Moment About CL (CCW) Mnot_strongh_II = -28.08 k-fl/ft Strength IN Negative Moment About CL (CCW) Mnot_strongh_II = -28.08 k-fl/ft Strength IN Negative Moment About CL (CCW) Mnot_strongh_II = -28.08 k-fl/ft Strength IN Negative Moment About CL (CCW) Mnot_strongh_II = -19.09 k-fl/ft Extreme I Negative Moment About CL (CW)		M _{pos_strength_III} =	42.65 k-ft/ft	Strength III Positive Moment About CL (CW)
Mode_Estreme_IT0.11 k-ft/ftExtreme I Positive Moment About CL (CW)Mode_Estreme_II27.90 k-ft/ftExtreme II Positive Moment About CL (CW)Mnet_estreme_II-19.09 k-ft/ftService I Negative Moment About CL (CCW)Mnet_estreme_II-28.08 k-ft/ftStrength I Negative Moment About CL (CCW)Mnet_estreme_II-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mnet_estreme_II-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mnet_estreme_III-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mnet_estreme_IIII-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mnet_estreme_IIIIII-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mnet_estreme_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		M _{pos_strength_IV} =	22.20 k-ft/ft	Strength IV Positive Moment About CL (CW)
Mpos_Externe_II=27.90 k-ft/ftExtreme II Positive Moment About CL (CW)Mpos_Extrance_I =-19.09 k-ft/ftService I Negative Moment About CL (CCW)Mpos_Extrance_II=-19.09 k-ft/ftService II Negative Moment About CL (CCW)Mpos_Extrance_II=-28.08 k-ft/ftStrength I Negative Moment About CL (CCW)Mpos_Extrance_III=-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mpos_Extrance_IIIII=-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mpos_Extrance_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		M _{pos_strength_V} =	73.88 k-ft/ft	Strength V Positive Moment About CL (CW)
Mneq_service_I =-19.09 k-ft/ftService I Negative Moment About CL (CCW)Mneq_service_II =-19.09 k-ft/ftService II Negative Moment About CL (CCW)Mneq_service_II =-28.08 k-ft/ftStrength I Negative Moment About CL (CCW)Mneq_strength_II =-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mneq_strength_II =-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mneq_strength_II =-28.08 k-ft/ftStrength II Negative Moment About CL (CCW)Mneq_strength_II =-28.08 k-ft/ftStrength IV Negative Moment About CL (CCW)Mneq_strength_V =-28.08 k-ft/ftStrength IV Negative Moment About CL (CCW)Mneq_strength_V =-28.08 k-ft/ftStrength IV Negative Moment About CL (CCW)Mneq_strength_V =-28.08 k-ft/ftStrength V Negative Moment About CL (CCW)Mneq_strength_I =-19.09 k-ft/ftExtreme I Negative Moment About CL (CW)Mneq_strength_I =-19.09 k-ft/ftExtreme I Negative Moment About CL (CW)Mneq_strength_I =-19.09 k-ft/ftService I Net Moment About CL (CW)Mnet_strengt_I =-19.09 k-ft/ftService I Net Moment About Centerline of FootingMnet_strengt_I =-19.09 k-ft/ftService I Net Moment About Centerline of FootingMnet_strengt_I =-19.09 k-ft/ftStrength I Net Moment About Centerline of Footing <td></td> <td>M_{pos_Extreme_I} =</td> <td>70.11 k-ft/ft</td> <td>Extreme I Positive Moment About CL (CW)</td>		M _{pos_Extreme_I} =	70.11 k-ft/ft	Extreme I Positive Moment About CL (CW)
Mneg_service_II = -19.09 k-ft/ft Service II Negative Moment About CL (CCW) Mneg_strength_II = -28.08 k-ft/ft Strength I Negative Moment About CL (CCW) Mneg_strength_III = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mneg_strength_III = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mneg_strength_IV = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mneg_strength_V = -28.08 k-ft/ft Strength IV Negative Moment About CL (CCW) Mneg_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mneg_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mneg_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mneg_strengt_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mneg_strengt_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CCW) Mneg_strengt_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mnet_strength_III = -19.09 k-ft/ft Extreme I Negative Moment About Centerline of Footing		M _{pos_Extreme_II} =	27.90 k-ft/ft	Extreme II Positive Moment About CL (CW)
Mode_strength_I=-28.08k-ft/ftStrength I Negative Moment About CL (CCW)Mode_strength_II=-28.08k-ft/ftStrength II Negative Moment About CL (CCW)Mode_strength_III=-28.08k-ft/ftStrength III Negative Moment About CL (CCW)Mode_strength_IV=-28.08k-ft/ftStrength IV Negative Moment About CL (CCW)Mode_strength_IV=-28.08k-ft/ftStrength IV Negative Moment About CL (CCW)Mode_strength_IV=-28.08k-ft/ftStrength V Negative Moment About CL (CCW)Mode_strength_IV=-28.08k-ft/ftStrength V Negative Moment About CL (CCW)Mode_strength_III=-19.09k-ft/ftExtreme I Negative Moment About CL (CCW)Mode_strength_III=-19.09k-ft/ftExtreme I Negative Moment About CL (CW)Mode_strength_IIII=-19.09k-ft/ftStrength Negative Moment About CL (CW)Mode_strength_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		M _{neg_service_I} =	-19.09 k-ft/ft	Service I Negative Moment About CL (CCW)
Mneg_strength_II = -28.08 k-ft/ft Strength II Negative Moment About CL (CCW) Mneg_strength_III = -28.08 k-ft/ft Strength III Negative Moment About CL (CCW) Mneg_strength_IV = -28.08 k-ft/ft Strength IV Negative Moment About CL (CCW) Mneg_strength_IV = -28.08 k-ft/ft Strength IV Negative Moment About CL (CCW) Mneg_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mneg_strength_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CCW) Mneg_strength_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mnet_strength_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mnet_strength_III = -19.09 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_strength_III = -26.67 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_strength_III = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_III = 24.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_III = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_III = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing M		M _{neg_service_II} =	-19.09 k-ft/ft	Service II Negative Moment About CL (CCW)
Mmed_strength_III = -28.08 k-ft/ft Strength III Negative Moment About CL (CCW) Mmed_strength_V = -28.08 k-ft/ft Strength IV Negative Moment About CL (CCW) Mmed_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmed_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmed_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmed_strength_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mmed_strength_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mmed_strength_III = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mmed_strength_III = -19.09 k-ft/ft Service I Net Moment About Centerline of Footing Mmed_strength_III = -19.09 k-ft/ft Service I Net Moment About Centerline of Footing Mmed_strength_III = 24.67 k-ft/ft Strength I Net Moment About Centerline of Footing Mmed_strength_III = 24.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mmed_strength_III = 24.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mmed_strength_III = 14.97 k-ft/ft Strength II Net Moment About Centerline of Footing Mmed_st		M _{neg_strength_I} =	-28.08 k-ft/ft	Strength I Negative Moment About CL (CCW)
Mmed_strength_IV = -28.63 k-ft/ft Strength IV Negative Moment About CL (CCW) Mmed_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmed_strength_V = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mmed_strength_I = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mmed_strength_I = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mmed_strength_I = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mmed_strength_I = -19.09 k-ft/ft Service I Net Moment About Centerline of Footing Mmed_strength_I = 26.67 k-ft/ft Service I Net Moment About Centerline of Footing Mmed_strength_I = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mmed_strength_I = 24.91 k-ft/ft Strength I Net Moment About Centerline of Footing Mmed_strength_I = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing Mmed_strength_V = 6.43 k-ft/ft Strength II Net Moment About Centerline of Footing Mmed_strength_V = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing <td></td> <td>M_{neg_strength_II} =</td> <td>-28.08 k-ft/ft</td> <td>Strength II Negative Moment About CL (CCW)</td>		M _{neg_strength_II} =	-28.08 k-ft/ft	Strength II Negative Moment About CL (CCW)
Mneg_strengt_v = -28.08 k-ft/ft Strength V Negative Moment About CL (CCW) Mneg_strengt_v = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mneg_strengt_l = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mnet_service_l = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mnet_service_l = 40.62 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_service_l = 26.67 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_service_l = 24.91 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_l = 34.16 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_v = 4.9.1 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_v = 4.3 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_v = 4.3 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_v = 4.3 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_v = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_v = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{neg_strength_III} =	-28.08 k-ft/ft	Strength III Negative Moment About CL (CCW)
MacExtreme_I = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mac_Extreme_II = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mac_Extreme_II = -19.09 k-ft/ft Extreme I Negative Moment About CL (CW) Mac_Extreme_II = -19.09 k-ft/ft Service I Net Moment About Centerline of Footing Mac_extreme_II = 26.67 k-ft/ft Service II Net Moment About Centerline of Footing Mac_extremgth_II = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mac_extremgth_II = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mac_extremgth_II = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing Mac_extremgth_II = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mac_extremgth_V= -6.43 k-ft/ft Strength V Net Moment About Centerline of Footing Mac_extremgth_V= -5.43 k-ft/ft Strength V Net Moment About Centerline of Footing Mac_extremgth_V= -5.102 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{neg_strength_IV} =	-28.63 k-ft/ft	Strength IV Negative Moment About CL (CCW)
Mnet_Extreme_III = -19.09 k-ft/ft Extreme II Negative Moment About CL (CW) Mnet_service_I = 40.62 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_service_I = 26.67 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_service_I = 24.67 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_strength_I = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_I = 24.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_I = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_I = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_V = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_V = 51.02 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_V = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{neg_strength_V} =	-28.08 k-ft/ft	Strength V Negative Moment About CL (CCW)
Mnet_service_i = 40.62 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_service_i = 26.67 k-ft/ft Service I Net Moment About Centerline of Footing Mnet_service_i = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_i = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_i = 24.91 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_i = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_i = -6.43 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_i v= -6.43 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_v = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strengti_v = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{neg_Extreme_I} =	-19.09 k-ft/ft	Extreme I Negative Moment About CL (CW)
Mnet_service_I = 26.67 k-ft/ft Service II Net Moment About Centerline of Footing Mnet_strength_I = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_I = 24.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_I = 14.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_V = -6.43 k-ft/ft Strength IIN Net Moment About Centerline of Footing Mnet_strength_V = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_V = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_V = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{neg_Extreme_II} =	-19.09 k-ft/ft	Extreme II Negative Moment About CL (CW)
Mnet_strength_i = 34.16 k-ft/ft Strength I Net Moment About Centerline of Footing Mnet_strength_i = 24.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_i = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_i = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_i = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_i = 51.02 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_i = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{net_service_I} =		-
Mnet_strength_l = 24.91 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_l = 14.57 k-ft/ft Strength II Net Moment About Centerline of Footing Mnet_strength_l = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_V = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_V = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_V = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{net_service_} =	26.67 k-ft/ft	Service II Net Moment About Centerline of Footing
Mnet_strength_lif = 14.57 k-ft/ft Strength III Net Moment About Centerline of Footing Mnet_strength_V = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_V = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_V = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_V = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{net_strength_I} =	34.16 k-ft/ft	Strength I Net Moment About Centerline of Footing
Mnet_strength_V = -6.43 k-ft/ft Strength IV Net Moment About Centerline of Footing Mnet_strength_V = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing Mnet_strength_V = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{net_strength_} =	24.91 k-ft/ft	Strength II Net Moment About Centerline of Footing
M _{net_strength_v} = 45.80 k-ft/ft Strength V Net Moment About Centerline of Footing M _{net_streme_l} = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{net_strength_II} =	14.57 k-ft/ft	Strength III Net Moment About Centerline of Footing
M _{net_Extreme_I} = 51.02 k-ft/ft Extreme I Net Moment About Centerline of Footing		M _{net_strength_N} =		
		$M_{net_strength_v} =$		
M _{net_Extreme_J} = 8.81 k-ft/ft <i>Extreme II Net Moment About Centerline of Footing</i>		M _{net_Extreme_I} =		
		M _{net_Extreme_I} =	8.81 k-ft/ft	Extreme II Net Moment About Centerline of Footing

Overturning Calculations: Service Limit State:

Resultant Location & Crack Length (No Cracking Assumed, Moment about Footing CL)

в =	12.00 ft
M _{total} =	40.62 k-ft/ft
F _v =	40.04 kips/ft
F _h =	5.714 kips/ft
e = M/F =	101 ft

Width of Wall (Toe to Heel Dimension) Total Moment About CL Vertical Load Lateral Load Distance from CL to Resultant Force Intersection

If e <= B/6 Full Compression

Extreme Limit State:

Resultant Location & Crack Length (No Cracking Assumed, Moment about Footing CL)

в =	12.00 ft	Width of Wall (Toe to Heel Dimension)
M _{total} =	51.02 k-ft/ft	Total Moment About CL
F _v =	37.62 kips/ft	Vertical Load
F _h =	5.082 kips/ft	Lateral Load
$e = M_{total}/F_v =$	1.36 ft	Distance from CL to Resultant Force Intersection

If e <= B/6 Full Compression

Strength Limit State:

Resultant Location & Crack Length (No Cracking Assumed, Moment about 0,0 (toe))

Maximum Vertical Load

в =	12.00 ft	Width of Wall (Toe to Heel Dimension)
M _{total} =	45.80 k-ft/ft	Total Moment About Toe
F _v =	52.46 kips/ft	Vertical Load
F _h =	9.258 kips/ft	Lateral Load
$e = M_{tota}/F_v =$	0.87 ft	Distance from CL to Resultant Force Intersection

If e <= B/6 Full Compression

*Overall stability and slope stability are included in the geotechnical calculations

Bearing Pressure Calculations:

Service Limit State:

$q_{applied} = \frac{\Sigma F_{v}}{A} \pm \frac{M_{net} * y}{I}$	F _{v_positive} = q _{a∎ow} =	40.04 kips/ft 19.80 ksf
$M_{net} = \Sigma F_v * e$	Ø _b =	0.45
$I = \frac{B^3}{12}$	q _{max} =	4.02 ksf
12	Ø _b *q _{allow} =	8.91 ksf

Nominal Bearing Capacity (per Geotechnical Calculations) Resistance Factor for Bearing Maximum Bearing Pressure

Allowable Bearing Pressure Foundation OK for Bearing at Service Limit State

Extreme Limit State:

$q_{applied} = \frac{\Sigma F_v}{A} \pm \frac{M_{net} * y}{I}$	F _{v_positive} =	37.62 kips/ft
$q_{applied} = \frac{1}{A} \pm \frac{1}{I}$	q _{allow} =	19.80 ksf
$M_{net} = \Sigma F_v * e$	Ø _b =	0.45
$I = \frac{B^3}{12}$	q _{max} =	4.05 ksf
12	Ø _b *q _{a∎ow} =	8.91 ksf
		GOOD

Strength Limit State:

$q_{applied} = \frac{\Sigma F_v}{A} \pm \frac{M_{net} * y}{I}$	F _{v_positive} =	52.46 kips/ft
$q_{applied} = \frac{1}{A} \pm \frac{1}{I}$	q _{allow} =	19.80 ksf
$M_{net} = \Sigma F_v * e$	Ø _b =	0.45
$I = \frac{B^3}{12}$	q _{max} =	5.12 ksf
12	Ø _b *q _{a∎ow} =	8.91 ksf
		GOOD

Maximum Vertical Load Nominal Bearing Capacity (per Geotechnical Calculations) Resistance Factor for Bearing

Maximum Bearing Pressure Allowable Bearing Pressure Foundation OK for Bearing at Extreme Limit State

Maximum Vertical Load Nominal Bearing Capacity (per Geotechnical Calculations) Resistance Factor for Bearing

 $q_{max} = \frac{\Sigma F_v}{B - 2e}$ Maximum Bearing Pressure Allowable Bearing Pressure Foundation OK for Bearing at Strength Limit State

тос 3.0 Abutment Calcs_Sum Abt CL $q_{max} = \frac{\Sigma F_v}{B - 2e}$

 $q_{max} = \frac{\Sigma F_v}{B - 2e}$

Sliding Calculations: Cohesionless Soil per Geotechnical Data

Service Limit State:				
	F _h =	5.714 kips/ft	Lateral Load	
	Ø _f =	35.0 deg	Friction angle	
	μ =	0.47	Coefficient of friction	$\mu = tan \phi_f$
	Ø _t =	0.8	Resistance Factor for Sliding	
	C =	1.00	Concrete Cast Against Soil	
	$F_v = V =$	40.04 kips/ft	Force Normal to Base (Vertical Load)	
	R _t =	18.97 kips/ft	Nominal Sliding Resistance Between Soil and Foundation	$R_t = C * V * tan \phi_j$
	$Ø_t R_t =$	14.23 kips/ft	Factor of Safety using coefficient of friction from Geotech	
	If Ø _t R _t ≥ F _h	GOOD	Foundation OK Against Sliding at Service Limit State	
Extreme Limit State:				
	F _h =	5.082 kips/ft	Lateral Load	
	Ø _f =	35.0 deg	Friction angle	
	μ =	0.47	Coefficient of friction	$\mu = tan \phi_f$
	$\emptyset_t =$	0.8	Resistance Factor for Sliding	
	C =	1.00	Concrete Cast Against Soil	
	$F_v = V =$	37.62 kips/ft	Force Normal to Base (Vertical Load)	
	R _t =	17.82 kips/ft	Nominal Sliding Resistance Between Soil and Foundation	$R_t = C * V * tan \emptyset$
	$Ø_t R_t =$	13.37 kips/ft	Factor of Safety using coefficient of friction from Geotech	
	If Ø _t R _t ≥ F _h	GOOD	Foundation OK Against Sliding at Extreme Limit State	
trength Limit State:				
	F _h =	9.258 kips/ft	Lateral Load	
	Ø _f =	35.0 deg	Friction angle	
	μ =	0.47	Coefficient of friction	$\mu = tan \emptyset_f$
	Ø _t =	0.8	Resistance Factor for Sliding	
	C =	1.00	Concrete Cast Against Soil	
	$F_v = V =$	52.46 kips/ft	Force Normal to Base (Vertical Load)	
	R _t =	24.86 kips/ft	Nominal Sliding Resistance Between Soil and Foundation	$R_t = C * V * tan \emptyset$
	$\emptyset_t R_t =$	18.64 kips/ft	Factor of Safety using coefficient of friction from Geotech	

Abutment Wall Check: Worst-Case Limit State Loads and Reactions Used Properties of Abutment:

•		
t _{bw} =	6.00 ft	Thickness of Abutment
H _{bw} =	8.50 ft	Height of Abutment
d =	69.00 in	Distance from Extreme Compression Fiber to CL of Tension Reinforcement (3" Cover)
fc =	4.50 ksi	Compressive Strength of Concrete
β =	0.83	ACI 318-14 Table 22.2.2.4.3
$\lambda =$	1.00	Normalweight Concrete per ACI 318-14 Table 19.2.4.2
A _s =	0.44 in ²	Area of #6 bar
f _y =	60.00 ksi	
s =	12.00 in	Spacing of Vertical bars
Ø _m =	0.9	AASHTO Section 5.5.4.2 for Tension-Controlled Reinforced Sections
Ø _v =	0.9	AASHTO Section 5.5.4.2 for Shear in Reinforced Concrete Sections
$\rho_b = 0.85^*\beta^*f'c/f_y^*(87/(87+f_y)) =$	0.053	Balanced Percentage of Steel
ρ _{max} =	0.033	Maximum Percentage of Steel
ρ _{min} =	0.003	Minimum Percentage of Steel
As _{min} =	0.406 in ² /ft	Minimum Area of Steel Required (AASHTO Eq. 5.10.6-1) $A_{s_min} = \frac{1.3 * b * h}{2 * (b + h) * F_v}$
$A_{s_min} < A_s =$	GOOD	· · y
a =	0.58 in	Depth of Equivalent Rectangular Stress Block $a = \frac{A_s * f_y}{0.85 * f_c' * b_w}$
M _u =	51.02 k-ft/ft	LRFD Moment Applied to Abutment Wall (Taken at Wall CL)
V _u =	11.71 k/ft	LRFD Shear Applied to Abutment Wall
ØM _n =	136.05 k-ft/ft	Allowable Moment Capacity of Abutment Wall $\phi M_n = \phi * A_s * f_y * \left(d - \frac{a}{2}\right)$
IF ØM _n ≥ M _u	GOOD	$\varphi n_n = \varphi \cdot n_s \cdot y \cdot (\alpha - 2)$
ØV _c =	100.0 k/ft	Allowable Shear Capacity of Back Wall
IF ØV _c ≥ V _u	GOOD	
ØV _n =	28.51 k/ft	Allowable Shear Friction (ACI 318-14 EQ. 22.5.5.1)
IF $ØV_n \Rightarrow V_u$	GOOD	Reinforcing Capable of Resisting Shear at Abutment Interface

#6 vertical bars at 12" oc. Each Face OK

Abutment Footing Check:

Check:		
b _f =	12.00 ft	Footing Width
$t_f =$	2.00 ft	Thickness of Footing
d =	21.00 in	Distance from Extreme Compression Fiber to CL of Tension Reinforcement (3" Cover)
ťc =	4.50 ksi	Compressive Strength of Concrete
β =	0.83	ACI 318-14 Table 22.2.2.4.3
λ =	1.00	Normalweight Concrete per ACI 318-14 Table 19.2.4.2
A _s =	0.44 in ²	Area of #6 bar
f _y =	60.00 ksi	
s =	12.00 in	Spacing of Horizontal Bars
Ø _m =	0.9	AASHTO Section 5.5.4.2 for Tension-Controlled Reinforced Sections
Ø _v =	0.9	AASHTO Section 5.5.4.2 for Shear in Reinforced Concrete Sections
μ =	0.60	Coefficient of friction per ACI 318 Table 22.9.4.2
$\rho_{b} = 0.85^{*}\beta^{*}f'c/f_{y}^{*}(87/(87+f_{y})) =$	0.053	Balanced Percentage of Steel
p _{max} =	0.033	Maximum Percentage of Steel
ρ _{min} =	0.003	Minimum Percentage of Steel 1.3 * b * h
A _{s min} =	0.223 in ² /ft	Minimum Percentage of Steel Minimum Area of Steel Required (AASHTO Eq. 5.10.6-1) $A_{s_min} = \frac{1.3 * b * h}{2 * (b + h) * F_{y}}$
$A_{s_{min}} < A_{s}$	GOOD	
		$A_s * f_y$
a =	0.58 in	Depth of Equivalent Rectangular Stress Block $a = \frac{A_s * f_y}{0.85 * f_c' * b_w}$
M _u =	18.07 k-ft/ft	LRFD Moment Applied at Footing
V _u =	5.12 k/ft	LRFD Shear Applied at Footing
ØM _n =	41.01 k-ft/ft	Allowable Moment Capacity of Footing $\phi M_n = \phi * A_s * f_y * \left(d - \frac{a}{2}\right)$
IF ØM _n ≥ M _u	GOOD	$\psi_{M_n} = \psi * A_s * j_y * \left(u - \frac{1}{2}\right)$
ØV _c =	30.4 k/ft	Allowable Shear Capacity of Footing $\phi V_c = \phi * 2 * \lambda * \sqrt{f'_c} * b * d$
IF ØV _c ≥ V _u	GOOD	
ØV _n =	14.26 k/ft	Allowable Shear Friction (ACI 318-14 EQ. 22.5.5.1) $ØV_n = \phi * \mu * A_{vf} * f_v$
IF $ØV_n => V_u$	GOOD	Reinforcing Capable of Resisting Shear at Abutment Interface

#6 bars at 12" oc. Top and Bottom Longitudinal and #6 Bars at 12"oc. Transverse OK

SUBJECT: Klamath River Renewal Corporation

Daggett Road Bridge at Iron Gate Reservoir Daggett Road Bridge Abutment and Yreka Waterline Support Calculations BY: KNH/GAC CHK'D BY: _____ DATE: 10/15/2021 PROJECT NO.: 21-067

MPF = 1.00 (2 Lanes)

0

Purpose

Design of connections between bridge superstructure and abutments with superstructure loads provided by Acrow.

Information: Loads

Loads Provided by Acrow:

Load Factors (Per AASHTO LRFD)

coad ractors	(FEI AASITIO END)								
	HL-93		EV-2		DC	DW	ws	WL	
LIMIT STATE	u	IM	LL	IM	U.C.	UW	W5	WL	EQ
Strength I	1.75	33%			1.25	1.50			-
Strength II	1.35	33%	1.35	33%	1.25	1.50	•	•	•
Strength III				•	1.25	1.50	1.00		
Strength V	1.35	33%	$\left \mathbf{x} \right $		1.25	1.50	1.00	1.00	
Service I	1.00	33%			1.00	1.00	1.00	1.00	
Extreme Event I			12		1.00	1.00		•	1.00
Extreme Event II	0.50	33%	•		1.00	1.00	•		•

ACROW PANEL BRIDGE - REACTIONS

ALL REACTIONS ARE PER PER CORNER OF BRIDGE EXCEPT WIND

NOTE: - All values are in kips (1,000 lbs)

- Multiple Presence Factor is included

- Eccentricity is included
 - Dynamic Load Allowance is not included

STRENGTH I REACTIONS:

LOADS	1 Lane HL-93				
DC	246				
DW Epoxy	70				
HL-93 Truck	131				
HL-93 Lane	157				
TOTAL	604				
Braking (longitudinal)	34				

STRENGTH II REACTIONS:

LOADS	1 Lane P5
DC	246
DW Epoxy	70
P5 Truck	24
TOTAL	340

STRENGTH III REACTIONS:

LOADS	
DC	246
DW Epoxy	70
TOTAL	316
Transverse Wind	73

STRENGTH V REACTIONS:

LOADS	1 Lane HL-93				
DC	246				
DW Epoxy	70				
HL-93 Truck	101				
HL-93 Lane	121				
TOTAL	538				
Braking (longitudinal)	27				
Transverse Wind	73				
Wind on Live Load	13				

EXTREME EVENT I REACTIONS:

LOADS	
DC	197
DW Epoxy	47
Total	244
Seismic	62

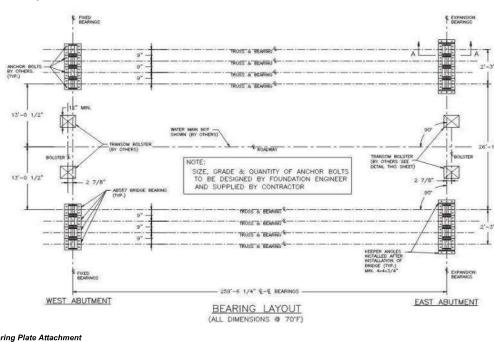
SERVICE I REACTIONS:

LOADS	1 Lane HL-93			
DC	197			
DW Epoxy	47			
HL-93 Truck	75			
HL-93 Lane	90			
TOTAL	409			
Braking (longitudinal)	20			
Transverse Wind	73			
Wind on Live Load	13			

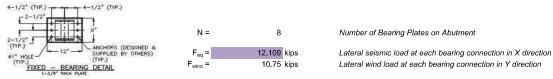
P _{dead} =	244 kips
A _s =	0.254
P _{eq_min} =	61.9 kips
R =	0.80
F _{eq} =	77.5 kips
F _{wind} =	86 kips

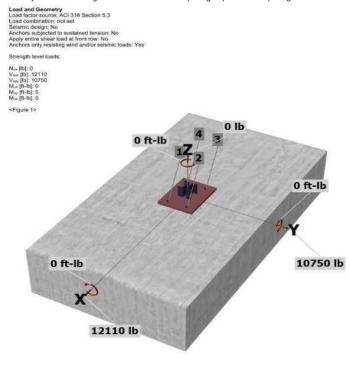
Dead Load Reaction from Bridge Superstructure

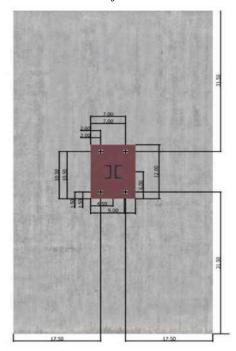
Peak seismic ground accceleration coefficient modified by short-period site factor Minimum design connection force for single-span bridges per AASHTO Section 3.10.9.1


Response Modification Factor for Connections (AASHTO Table 3.10.7.1-2)

Lateral seismic load at each abutment


Lateral wind load at each abutment


Calculations: Bridge Superstructure Attachment to Abutment Bearing Plate Information Provided by Acrow:


Fixed End Connection: Bearing Plate Attachment

Wind load controls perpendicular to bridge span (Y direction) and seismic load controls parallel to bridge span (X direction). The LRFD factored bridge reactions are assumed to be equal at each be location (8 total) so the reaction at each abutment is divided by the number of connections. The base plate is assumed to act rigidly, equally distributing the shear loads between anchors. An arbitra was used for the following anchor calculations, however, the analysis is unaffected by the profile selection. Although the Acrow bearing plate can accommodate (6) anchors, a single plate with (4) a was analyzed based on edge distance and minimum spacing requirements. Spacing between anchors across abutment has been considered in the following anchor calculations, however, the analysis is unaffected by the profile selection.

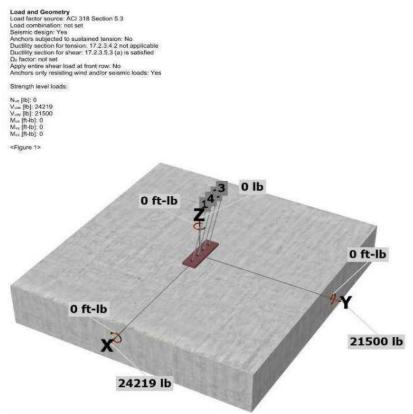
Anchor

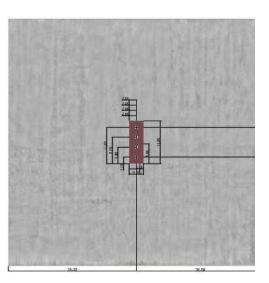
3. Resulting Anchor Forces Tension load Shear load x

Shear load v

Shear load combined

	N	Nua (Ib)	Vun	(lb)	Var	y (lb)	(A)	$\sqrt{(V_{000})^2+(V_{000})^2}$	/ _{uoy})² (lb)
1		0.0		27.5		87.5		4048.3	
2		0.0		27.5		87.5		4048.3	
3 4		0.0 0.0		27.5 27.5		87.5 87.5		4048.3	
Sum		0.0	24/32	10.0	2012	750.0		16193.0	
Maximum o	concrete compri concrete compri	ession strain (% ession stress (p	»): 0.00			Figure 3	> (74	03
Resultant of Eccentricity Eccentricity	y of resultant ter y of resultant sh	ce (lb): 0 nsion forces in x nsion forces in y ear forces in x-r	α-axis, e'n₁ (inch) (-axis, e'n₁ (inch) axis, e'ν₁ (inch): axis, e'ν₁ (inch):): 0.00 0.00			(XV D1	¥ ⊙2
V _{ar} (lb)	\$praw	h <u>or in Shear (</u>	1217.50td		aarc¢Vsa (lb)	_			
21090	1.0	0.65	0.68	9322					
			hor in Shear (S	Sec. 17.5.2)					
		edge in y-dire	<i>ction:</i> c _{at} 15 (Eq. 17.5.)	2.2a & Fo 17	5.2.2b)				
l _e (in)	de (in)	Le Le	Pe (psi)	Car (in)	V _{ty} (it	b)			
8.00	1.000	1.00	4500	21.00	58100	0	0		
			(Sec. 17.3.1 &)				A.C. 1994	- 44	- Andrews
Ave (in ²) 1728.00	Aveo (in ²) 1984.50	Per.v 1.000	₽ _{ett.v} 1.000	1.000	9/h.v 1,146		V _{2y} (lb) 58100	¢ 0.70	ØVctay (lb 40571
1120.00	1004.00	1.000	1,000	1.000	1,140			0.10	40071
		edge in x-dire			(C				
$v_{22} = \min p$ l_{α} (in)	da (in)	Ar oCer ", Bharrol Ja	car ^{1.6} (Eq. 17.5.) <i>f</i> 'e (psi)	2.28 & EQ. 17 Gat (in)	(15.2.20) Vt+ (11	51			
8.00	1.000	1.00	4500	16.00	38639		<u>.</u>		
100 1 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Ave / Avea) Place	Peav Pav PavVas	(Sec. 17.3.1 &	Eq. 17.5.2.1b))				
Ave (in ²)	Avec (in ²)	Pac,v	Weav	Yev	4hv		V14 (lb)	ø	ØVetgr (Ib
960.00	1152.00	1.000	0.919	1.000	1.000		38639	0.70	20708
Shear par	allel to edge in	n x-direction:							
			Cat ¹⁵] (Eq. 17.5.)	2.2a & Eq. 17	(.5.2.2b)				
& (in)	d# (in)	20	Fe (psi)	Car (in)	Vby (Ib)				
8.00	1.000	1.00	4500	16.00	38639				
$\rho V_{chys} = \phi (2$ $A_{ve} (in^2)$	2)(Ave/Avoo) Vec. Avoo (in²)	V POEV POV POV Posv	by (Sec. 17.3.1, Weaty	17.5.2.1(c) & V _{c.V}	Eq. 17.5.2.1b) <i>Vhy</i>		V _{by} (lb)	ø	¢W _{cbyx} (lb)
960.00	1152.00	1.000	1.000	1.000	1.000		38639	0.70	45079
Shear nara	illel to edge in	u direction:			5 2 2h)				
			ar ¹⁵] (Eq. 17.5.2	.2a & Eq. 17.					
V _{2*} = min 7(<i>l_e</i> (in)	le / da} ^{e 2} √da∂a√t da (in)	fcCat ¹⁵ ; 9λa√fcC λa	f'c (psi)	car (in)	Vox (Ib)				
V _{ter} = min 7(<i>l_e</i> (in) 8.00	le / d _a } ^{e 2} √d _a 2₀√t d _a (in) 1.000	P _c Car ¹³ ; 9λ ₃ √P _c C λ ₈ 1.00	fc (psi) 4500	c _{er} (in) 17.50	V _{bx} (lb) 44198	-			
$V_{cos} = \min[7($ $l_{e} (in)$ 8.00 $\phi V_{cbay} = \phi (2)$	$\frac{ J_0 / d_0 ^{0.2} \sqrt{d_0 \bar{e}_0} \sqrt{l}}{d_0} \frac{ J_0 / d_0 \bar{e}_0}{\sqrt{l}} \frac$	$\frac{\lambda_{e}}{1.00}$	f'c (psi) 4500 /as (Sec. 17.3.1,	c _{er} (in) 17.50 17.5.2.1(c) &	Vox (lb) 44198 Eq. 17.5.2.1b))	V. and		
V _{ter} = min 7(<i>l_e</i> (in) 8.00	le / d _a } ^{e 2} √d _a 2₀√t d _a (in) 1.000	P _c Car ¹³ ; 9λ ₃ √P _c C λ ₈ 1.00	fc (psi) 4500	c _{er} (in) 17.50	V _{bx} (lb) 44198)	V _{2x} (lb) 44198	¢	<i>∳V⊲</i> tay (lb) 69309
$V_{che} = \min[7($ $l_{+}(in)$ 8.00 $\phi V_{chay} = \phi (2$ $A_{Ve}(in^{2})$ 1476.00	J _a / d _a) ^{β2} √d _a ∂ _a √t d _a (in) 1.000 2)(A _W / A _{W0}) Ψ _{ac} A _{W0} (in ²) 1378.13	Focur ¹³ ; 92 ₀ √Foc 2 ₀ 1.00 _V <i>Y</i> _{05,V} <i>Y</i> _{5,V} <i>V</i> _{5,V} <i>Y</i> _{05,V} 1.000	Fe (psi) 4500 /ms (Sec. 17.3.1, Ψed.v 1.000	c _{rr} (in) 17.50 17.5.2.1(c) & $\psi_{e,V}$ 1.000	Vox (lb) 44198 Eq. 17.5.2.1b) Vh.v)			
$V_{cx} = \min[7(l_{e} (in))]$ B.00 $\beta V_{ctop} = \phi (2 A_{vc} (in^2))$ 1476.00 10. Concret	(l _e / d ₃) ⁸² √d ₀ / 2 ₃ ×d ₀ / 2 ₃	$\frac{\lambda_{ee}}{\lambda_{ee}} = \frac{\lambda_{ee} \sqrt{r_{ee}}}{r_{ee}}$ $\frac{\lambda_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\lambda_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\gamma_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\gamma_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\lambda_{ee}}{r_{ee}}$	Fc (psi) 4500 Asso γeat, v 1.000 or in Shear (Second Vector Vect	c _{ert} (in) 17.50 17.5.2.1(c) & $\Psi_{c,V}$ 1.000 c. 17.5.3) $P_{co,Ne}W_{co,Ne}N_{be}$	Vox (lb) 44198 Eq. 17.5.2.1b) <i>Yhv</i> 1.046 ; Kcp(Ave / Aseo)) Voc.N Voc	44198 _N Y _{EN} Y _{GI} NNo[0.70 (Sec. 17.3.1	69309
$V_{cx} = \min[7(l_{e} (in))]$ 8.00 $\phi V_{ctay} = \phi (2 A_{Ve} (in^{2}))]$ 1476.00 10. Concre $\phi V_{avg} = \phi \min_{K_{cta}}$	(Je / ds) ^{9 2} \ds ds ds ds (in) 1.000 2)(Avc / Avco) V'sc Avco (in ²) 1378.13 te Pryout Stre n kcpNag ; kcpNag Avco (in ²)	$f_{oCar}^{1.5}$; $9\lambda_{o}\sqrt{f_{oC}}$ λ_{o} 1.00 $Y_{oc,V}$ $Y_{oc,V}$ 1.000 ength of Ancheo $h_{o} = \phi \min[k_{co}(A, A_{Mu0}(in^{2}))]$	fc (psi) 4500 /ns (Sec. 17.3.1, Ψed.v) 1.000 or in Shear (Sec. 17.3.1, Ψed.v) nucl Assoc) Ψec.Na Ψ Ψed.tkc	с _{ят} (in) 17.50 17.5.2.1(c) & Ус.∨ 1.000 с. 17.5.3) ^{(cd. No Усо. No Nac Ус. No}	Vox (ib) 44198 Eq. 17.5.2.1b) <i>Y'h.V</i> 1.046 ; <i>kap</i> (<i>Am</i> / <i>Am</i> o <i>Y'anM</i>))Voc.N Voc.	44198 _N V _{GN} V _{GD} NNb[Nbs (lb)	0.70 (Sec. 17.3.1 N _a (lb)	69309
$V_{cer} = \min[7(\frac{1}{4}, (in))]$ 8.00 $\phi V_{ctay} = \phi(2)$ $A_{Vec} (in^2)$ 1476.00 10. Concree $\phi V_{cpg} = \phi \min[1, 1]$	(l _e / d ₃) ⁸² √d ₀ / 2 ₃ ×d ₀ / 2 ₃	$\frac{\lambda_{ee}}{\lambda_{ee}} = \frac{\lambda_{ee} \sqrt{r_{ee}}}{r_{ee}}$ $\frac{\lambda_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\lambda_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\gamma_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\gamma_{ee}}{r_{ee}} = \frac{\lambda_{ee}}{r_{ee}}$ $\frac{\lambda_{ee}}{r_{ee}}$	Fc (psi) 4500 Asso γeat, v 1.000 or in Shear (Second Vector Vect	c _{ert} (in) 17.50 17.5.2.1(c) & $\Psi_{c,V}$ 1.000 c. 17.5.3) $P_{co,Ne}W_{co,Ne}N_{be}$	Vox (lb) 44198 Eq. 17.5.2.1b) <i>Yhv</i> 1.046 ; Kcp(Ave / Aseo))Voc.N Voc.	44198 _N Y _{EN} Y _{GI} NNo[0.70 (Sec. 17.3.1	69309
$V_{cw} = \min[7(l_{e} (in))]$ 8.00 $\beta V_{ctay} = \phi (2$ $A_{Vc} (in^{2})]$ 1476.00 10. Concree $\phi V_{cost} = \phi \min[K_{tst}]$ 2.0	$\begin{array}{c} (l_e / d_s)^{0.2} \sqrt{d_e \tilde{c}_s} \sqrt{l} \\ \frac{d_e (in)}{1.000} \\ (l_e / A_{Vec}) Y_{ec} \\ A_{Vec} / A_{Vec}) Y_{ec} \\ A_{Vec} (in^2) \\ 1378.13 \\ \end{array}$	$r_{oCe^{1.5}}$; $9\lambda_o \sqrt{r_{cC}}$ λ_o 1.00 $\sqrt{r_{oC}}\sqrt{r_{cV}}\sqrt{r_{cV}}\sqrt{r_{oV}}$ $\sqrt{r_{oC}}\sqrt{r_{oV}}\sqrt{r_{oV}}$ 1.000 ingth of Anchoo $r_{ol} = \phi \min[k_{oo}(A, A_{bloo}(in^2)$ 494.11	Fe (psi) 4500 γar (Sec. 17.3.1, Yacv 1.000 or in Shear (Sec. Yac/Asso)Yac/Asso) Yacr/Ma 1.000 1.000	<u>сегт (in)</u> 17.50 17.5.2.1(c) & <u>Ус.</u> 1.000 <u>с.17.5.3</u> <u>саль Усальные</u> 1.000	Vor (b) 44198 Eq. 17.5.2.1b) <i>Y'h.v</i> 1.046 ; <i>kre</i> (<i>Are</i> / <i>Are</i> <i>Y</i> 'enva 1.000))Voc.N Voc.	44198 _N Ψ _{c.N} Ψ _{cp.16} N _b N _{bit} (lb) 20581	0.70 (Sec. 17.3.1 N _a (lb)	69309
$V_{ce} = \min[7(\frac{l_e (in)}{8.00} + \frac{l_e (in)}{8.00} + \frac{l_e (in^2)}{1476.00} + \frac{l_e (in^2)}{1476.00} + \frac{l_e (in^2)}{1476.00} + \frac{l_e (in^2)}{2.0} + l_e$	(Je / ds) ^{9 2} \ds ds ds ds (in) 1.000 2)(Avc / Avco) V'sc Avco (in ²) 1378.13 te Pryout Stre n kcpNag ; kcpNag Avco (in ²)	$f_{oCar}^{1.5}$; $9\lambda_{o}\sqrt{f_{oC}}$ λ_{o} 1.00 $Y_{oc,V}$ $Y_{oc,V}$ 1.000 ength of Ancheo $h_{o} = \phi \min[k_{co}(A, A_{Mu0}(in^{2}))]$	$\frac{f_{c}(psi)}{4500} \\ \frac{4500}{c_{B}} (Sec. 17.3.1, \frac{y'_{ed,V}}{1.000} \\ \frac{y'_{ed,V}}{1.000} \\ \frac{y'_{ed,Na}}{V'_{ed,Na}} \frac{y'_{ed,Na}}{V'_{ed,Na}} \\ \frac{y'_{ed,Na}}{V_{ed,Na}} \\ \frac{y'_{ed,Na}}{V'_{ed,Na}} \\ \frac{y'_{ed,Na}}{V'_{ed$	с _{ят} (in) 17.50 17.5.2.1(c) & Ус.∨ 1.000 с. 17.5.3) ^{(cd. No Усо. No Nac Ус. No}	Vox (ib) 44198 Eq. 17.5.2.1b) <i>Y'h.V</i> 1.046 ; <i>kap</i> (<i>Am</i> / <i>Am</i> o <i>Y'anM</i>)) V _{oc.N} V _{od.} 1	44198 _N V _{GN} V _{GD} NNb[Nbs (lb)	0.70 (Sec. 17.3.1 <i>N</i> _a (lb) 35418	
$V_{ce} = \min[7(\frac{l_e (in)}{8.00} + \frac{l_e (in)}{8.00} + \frac{l_e (in^2)}{1476.00} + \frac{l_e (in^2)}{1476.00} + \frac{l_e (in^2)}{1476.00} + \frac{l_e (in^2)}{2.0} + l_e$	<i>J</i> _e / <i>d_s</i> ^β ² √ <i>d_s²√<i>d</i> <i>d_s</i>(in) <i>1</i>.000 <i>B</i>/(<i>A</i>₁,<i>c</i>/A),<i>c</i>₀) <i>Y</i>_{5c} <i>A</i>₁,<i>c</i>₀) <i>Y</i>_{5c} <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>C</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i></i>	$\begin{array}{c} \lambda_{m} \\ \lambda_{m} \\ \lambda_{m} \\ \frac{\lambda_{m}}{1.00} \\ \gamma_{m} \Psi_{m}^{*} \Psi_{m}^{*} \sqrt{\Psi_{m}^{*}} \sqrt{\Psi_{m}^{$	$\frac{f_{c}(psi)}{4500} \\ \frac{4500}{c_{B}} (Sec. 17.3.1, \frac{y'_{ed,V}}{1.000} \\ \frac{y'_{ed,V}}{1.000} \\ \frac{y'_{ed,Na}}{V'_{ed,Na}} \frac{y'_{ed,Na}}{V'_{ed,Na}} \\ \frac{y'_{ed,Na}}{V_{ed,Na}} \\ \frac{y'_{ed,Na}}{V'_{ed,Na}} \\ \frac{y'_{ed,Na}}{V'_{ed$	<u>сегт (in)</u> 17.50 17.5.2.1(c) & <u>V_{CV}</u> 1.000 с. 17.5.3 <u>V_{60,N0} Nuc;</u> <u>V_{60,N0} Nuc;</u> <u>V_{60,N0}</u> 1.000 <u>V₆₀</u>	Vor (lb) 44198 Eq. 17.5.2.1b) <i>Ψh</i> _N ν 1.046 ; k _{t0} (Ane / Aneo <i>Ψ</i> _{00,N} 1.000 <i>Ψ</i> _{00,N}) } V _{oc.N} V _{od} ;) Nb (lb)	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₂ (lb) 35418 ¢	69309
$V_{cor} = \min[7(l_{e} (in)])$ 8.00 $\phi V_{ctay} = \phi (2$ $A_{VC} (in^{2})$ 1476.00 10. Concres $\phi V_{corr} = \phi \min[k_{cta}]$ 2.0	<i>J</i> _e / <i>d_s</i> ^β ² √ <i>d_s²√<i>d</i> <i>d_s</i>(in) <i>1</i>.000 <i>B</i>/(<i>A</i>₁,<i>c</i>/A),<i>c</i>₀) <i>Y</i>_{5c} <i>A</i>₁,<i>c</i>₀) <i>Y</i>_{5c} <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>X</i>₁,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>C</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i> <i>A</i>₁,<i>c</i>₀,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i>,<i>G</i></i>	$\begin{array}{c} \lambda_{m} \\ \lambda_{m} \\ \lambda_{m} \\ \frac{\lambda_{m}}{1.00} \\ \gamma_{m} \Psi_{m}^{*} \Psi_{m}^{*} \sqrt{\Psi_{m}^{*}} \sqrt{\Psi_{m}^{$	$\frac{f_{c}(psi)}{4500} \\ \frac{4500}{c_{B}} (Sec. 17.3.1, \frac{y'_{ed,V}}{1.000} \\ \frac{y'_{ed,V}}{1.000} \\ \frac{y'_{ed,Na}}{V'_{ed,Na}} \frac{y'_{ed,Na}}{V'_{ed,Na}} \\ \frac{y'_{ed,Na}}{V_{ed,Na}} \\ \frac{y'_{ed,Na}}{V'_{ed,Na}} \\ \frac{y'_{ed,Na}}{V'_{ed$	<u>сегт (in)</u> 17.50 17.5.2.1(c) & <u>V_{CV}</u> 1.000 с. 17.5.3 <u>V_{60,N0} Nuc;</u> <u>V_{60,N0} Nuc;</u> <u>V_{60,N0}</u> 1.000 <u>V₆₀</u>	Vor (lb) 44198 Eq. 17.5.2.1b) <i>Ψh</i> _N ν 1.046 ; k _{t0} (Ane / Aneo <i>Ψ</i> _{00,N} 1.000 <i>Ψ</i> _{00,N}) } V _{oc.N} V _{od} ;) Nb (lb)	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₂ (lb) 35418 ¢	69309
$V_{2x} = \min[7(\frac{1}{k_{c}(n)} + \frac{1}{k_{c}(n)})]$ 8.00 $\frac{1}{k_{c}(n)} = \phi(\frac{1}{k_{c}(n^{2})} + \frac{1}{1476.00})]$ 1476.00 10. Concress $\frac{10}{k_{cm}} = \phi(\frac{1}{k_{cm}} + \frac{1}{k_{cm}})]$ 18.00.00 $\frac{10}{49585}$ 11. Results	<i>J_e / d_aβ²Nd_a∂_a</i> √ <i>I</i> <i>d_a</i> (in) 1.000 <i>D</i> (<i>A</i> _W , <i>A</i> _{W0}) <i>F</i> _{5c} <i>A</i> _{W0} (in ²) 1378.13 te Pryout Stre <i>A</i> _{N0} (in ²) 850.31 <i>A</i> _{N00} (in ²) 1296.00	$\begin{array}{c} \lambda_{e} \\ \lambda_{e} \\ \hline \lambda$	Fe (psi) 4500 fax (Sec. 17.3.1, Vect/ 1.000 Print Vect/ 1.000 print Shear (Sec. Na) / Assoc) Vect/Na 1.000 Vect/Na 1.000 Vect/ 0.992	$\frac{c_{st}(n)}{17.50}$ 17.50 17.5.2.1(c) & $\frac{y'_{CV}}{1.000}$ c.17.5.3) $\frac{y'_{CV}}{y'_{cs,NR}}$ 1.000 $\frac{y'_{cs,NR}}{1.000}$ 1.000	Vor (lb) 44198 Eq. 17.5.2.1b) <i>Ψh</i> _N ν 1.046 ; k _{t0} (Ane / Aneo <i>Ψ</i> _{00,N} 1.000 <i>Ψ</i> _{00,N}) } V _{oc.N} V _{od} ;) Nb (lb)	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₂ (lb) 35418 ¢	69309
$V_{2x} = \min[7(\frac{L}{p_{c}(n)} - \frac{L}{p_{c}(n)})]$ $\frac{R}{8.00}$ $\frac{R}{p_{c}(ny)} = \phi(\frac{R}{p_{c}(n^{2})} - \frac{R}{p_{c}(n^{2})})]$ $\frac{R}{1476.00}$ $\frac{R}{p_{c}(n^{2})} = \phi(\frac{R}{p_{c}(n^{2})} - \frac{R}{p_{c}(n^{2})})]$ $\frac{R}{p_{c}(n^{2})} = \phi(\frac{R}{p_{c}(n^{2})} - \frac{R}{p_{c}(n^{2})})]$ $\frac{R}{p_{c}(n^{2})} = \frac{R}{p_{c}(n^{2})}$ $\frac{R}{p_{c}(n^{2})} = \frac{R}{p_{c}(n^{2})}$	<i>J_e / d_aβ²Nd_a∂_a</i> √ <i>I</i> <i>d_a</i> (in) 1.000 <i>D</i> (<i>A</i> _W , <i>A</i> _{W0}) <i>F</i> _{5c} <i>A</i> _{W0} (in ²) 1378.13 te Pryout Stre <i>A</i> _{N0} (in ²) 850.31 <i>A</i> _{N00} (in ²) 1296.00	² c ₀ a ¹⁵ ; 9λ ₀ √f ₂ c ₀ ³ c ₀ 1.00 y Ψ _{ecc} Ψ _t , y Ψ _t , y ⁴ y _{ecc} 1.000 equal of Anchos equal of Anchos equal in k ₀ (A. A _{M0} (in ²) 494.11 <u>Ψ'_{ecc}</u> 1.000 equal in k ₀ (A. equal in)	Pe (psi) 4500 fax (Sec. 17.3.1, Var(v) Var(v) 1.000 or in Shear (Sec. Na / Asso) Vac.Na P Var(Na Na P) Var(Na Na P) Var(Na Na P) Var(Na Na P) Var(Na P) Var	$\frac{c_{st}(n)}{17.50}$ 17.5.2.1(c) & $\frac{Y_{CV}}{1.000}$ c.17.5.3) $\frac{V_{ctra}}{V_{ctra}} \frac{Y_{ctra}}{V_{ctra}}$ 1.000 $\frac{V_{CN}}{1.000}$	Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i> _N v 1.046 ; kup(Ano / Anon <i>Y</i> _{can} n 1.000)) // v _{ac.N} V _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N}	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₅ (b) 35418 ¢ 0.70	69309 & Eq. 17.5.3.1b
$V_{zx} = \min[7(\frac{1}{k_{c}(n)} + \frac{1}{k_{c}(n)} + \frac{1}{k_{$	<i>J_e / d_aβ²Nd_a∂_aNt d_a (in) 1.000 2)(A_V / A_{V00}) <i>F₈₀</i> A_{V00} (in²) 1378.13 te Pryout Stre A_{N00} (in²) 850.31 A_{N00} (in²) 1296.00</i>	φ _c c _e ^{1,5} ; 9λ _e v{r _c c, λ _e 1.00 v Ψ _{ecc} v Ψ _c , v Ψ _c , v 1.000 v Ψ _{ecc} v 1.000 ngth of Anchor Asso (n ²) 494.11 Ψ' _{ecc} n 1.000	Pe (psi) 4500 hs (Sec. 17.3.1, Vector 1.000 prin Shear (Sec. nu / Accol V Vector 1.000 Vector 1.000 Vector 0.992 Proces (Sec. D.7) d, Vector	Cert (in) 17:50 17:52:1(c) & YEW 1.000 c.17:53) Setter Wassenbarg Yew 1.000 Verse 1.000 Verse 1.000 Verse 1.000 Verse 1.000 Verse Design Streng	Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i> _N v 1.046 ; kup(Ano / Anon <i>Y</i> _{can} n 1.000) // oc.N Voc.N // oc.N Voc.N // Soc.N Voc.N Voc.N // Soc.N Voc.N Voc.N // Soc.N Voc.N Voc.N // Soc.N Voc.N	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₀ (b) 35418 Ø 0.70 State	69309 & Eq. 17.5.3.1b
$V_{2x} = \min[7(\frac{1}{k}, \frac{1}{(n)} + \frac{1}{k})] = 0$ $\frac{1}{k} = 0$	<i>J_e / d_aβ²Nd_a∂_aNt d_a (in) 1.000 2)(A_V / A_{V00}) <i>F₈₀</i> A_{V00} (in²) 1378.13 te Pryout Stre A_{N00} (in²) 850.31 A_{N00} (in²) 1296.00</i>	² c ₀ a ¹⁵ ; 9λ ₀ √f ₂ c ₀ ³ c ₀ 1.00 y Ψ _{ecc} Ψ _t , y Ψ _b , y Ψ _{ecc} 1.000 equal to Anchos equal to Anchos equa to Anchos equal to Anchos equal to Anchos e	Pr (psi) 4500 fax (Sec. 17.3.1, Vracv Vracv 1.000 pr in Shear (Sec. Nar / Assoc) Vrac/Nar Vrac/Nar Vrac/Nar Vec/Nar 0.992 prces (Sec. D.7) d, Vec (Ib)	$\frac{c_{st}(n)}{17.50}$ 17.5.2.1(c) & $\frac{Y_{CV}}{1.000}$ c.17.5.3) $\frac{V_{ctra}}{V_{ctra}} \frac{Y_{ctra}}{V_{ctra}}$ 1.000 $\frac{V_{CN}}{1.000}$	Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i> _N v 1.046 ; kup(Ano / Anon <i>Y</i> _{can} n 1.000)) // v _{ac.N} V _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N} // v _{ac.N}	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₅ (b) 35418 ¢ 0.70	69309 & Eq. 17.5.3.1b
$V_{zx} = \min[7(\frac{1}{k}, \frac{1}{(n)} + \frac{1}{k}, \frac{1}{(n)} + \frac{1}{k}, \frac{1}{(n)} + \frac{1}{k}, \frac{1}{k$	<i>IJe / da)^{B 2}√da∂a√l</i> <i>ds</i> (in) 1.000 <i>El (Ave / Avoc (in²)</i> 1378.13 te Pryout Stre <i>Avoc (in²)</i> 1378.13 te Pryout Stre <i>Avoc (in²)</i> 850.31 <i>Avoc (in²)</i> 1296.00	φ _c <t< td=""><td>$\frac{F_{e} \text{ (psi)}}{4500}$ $\frac{4500}{\text{ns} (\text{Sec. 17.3.1}, \$V_{etcl}\$)}{1.000}$ prin Shear (Sec. 17.3.1, \$V_{etcl}\$)}{1.000} $\frac{V_{etcl}}{V_{etcl}}$ $\frac{V_{etcl}}{1.000}$ $\frac{V_{etcl}}{0.992}$ prces (Sec. D.7) d, V_{etc} (lb) 1</td><td>Cert (in) 17:52.1(c) & YE,V 1.000 c.17.5.3) SetRe Van Marc Vecre 1.000 Vecre 1.000 Vecre 1.000 Vecre 1.000 Vecre 1.000 Vecre 22 Design Streng 9322 20708</td><td>Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i>_Nv 1.046 ; kup(Ano / Anon <i>Y</i>_{can}n 1.000</td><td>) // V_{bC.N} V_{bd.} // N_b (lb) 35334 Ratio 0.43 0.26 0.58</td><td>44198 _N Y_{c.N} Y_{cp.48}N₀ <u>N_{bit} (lb)</u> 20581 N_{c0} (lb)</td><td>0.70 (Sec. 17.3.1 <i>N</i>₀ (lb) 35418 Ø 0.70 Stath Pass Pass Pass Pass</td><td>69309 & Eq. 17.5.3.1b</td></t<>	$\frac{F_{e} \text{ (psi)}}{4500}$ $\frac{4500}{\text{ns} (\text{Sec. 17.3.1}, V_{etcl})}{1.000}$ prin Shear (Sec. 17.3.1 , \$V_{etcl}\$)}{1.000} $\frac{V_{etcl}}{V_{etcl}}$ $\frac{V_{etcl}}{1.000}$ $\frac{V_{etcl}}{0.992}$ prces (Sec. D.7) d, V_{etc} (lb) 1	Cert (in) 17:52.1(c) & YE,V 1.000 c.17.5.3) SetRe Van Marc Vecre 1.000 Vecre 1.000 Vecre 1.000 Vecre 1.000 Vecre 1.000 Vecre 22 Design Streng 9322 20708	Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i> _N v 1.046 ; kup(Ano / Anon <i>Y</i> _{can} n 1.000) // V _{bC.N} V _{bd.} // N _b (lb) 35334 Ratio 0.43 0.26 0.58	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₀ (lb) 35418 Ø 0.70 Stath Pass Pass Pass Pass	69309 & Eq. 17.5.3.1b
V _{ax} = min[7(<i>l</i> , <i>l</i> , (in) 8.00 <i>W</i> _{chay} = φ(2) A _{2x} (in ²) 1476.00 10. Concret <i>W</i> _{cay} = φ mi <i>k</i> _{ax} 2.0 1800.00 <i>φV</i> _{cay} (b) 19.855 11. Results 11. Interact Shear T Concrett I Concrett I Concrett I Concrett	Je / d ₂) ⁶ 2√d ₂ ∂ ₂ √d d ₆ (in) 1.000 2)(A ₁ √, A ₁ ∞) Y _{5c} A ₁ ∞ (in ²) 1378.13 te Pryout Stre A ₁ ∞ (in ²) 850.31 A ₁ ∞ (in ²) 1296.00	φ φ	Pr (psi) 4500 fax (Sec. 17.3.1, Vrat/v Vrat/v 1.000 pr in Shear (Sec. Na/ Asac) Vrat/Na/ 1.000 Vrat/Na/ Vrat/Na/ 0.992 Vress (Sec. D.7) dr. Vise (Ib)	Cart (in) 17.5.2 (ic) & Yew 1.000 c.17.5.3 Yew folder Yew 1.000 Yew yew 1.000	Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i> _N v 1.046 ; kup(Ano / Anon <i>Y</i> _{can} n 1.000) <i>W</i> _{6CN} <i>V</i> _{6d} <i>N</i> ₆ (lb) 35334 Ratio 0.43 0.26 0.12	44198 _N Y _{c.N} Y _{cp.48} N ₀ <u>N_{bit} (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 N. (b) 35418 Ø 0.70 Stati Pass Pass Pass Pass Pass	69309 & Eq. 17.5.3.1b
V _{2x} = min[7(<i>k</i> (in) 8.00 <i>W</i> _{cbay} = φ (2) 4.00 <i>W</i> _{cbay} = φ (2) 4.00 <i>W</i> _{cbay} = φ (2) 4.00 <i>W</i> _{cbay} = φ (2) <i>M</i> _{cbay} = φ (2)	(<i>i</i> , <i>i</i> , <i>d</i> ₃) ^{6,2} √ <i>d</i> ₆ <i>Z</i> ₆ √ <i>i</i> <i>d</i> ₆ (in) 1.000 2)(<i>A</i> te: <i>i A</i> teo; <i>i</i> (<i>n</i> ²) 1378.13 te Proout Stree <i>A</i> teo; (<i>in</i> ²) 1378.13 te A teo; (<i>in</i> ²) 850.31 <i>A</i> teo; (<i>in</i> ²) 1296.00 i i i i i i i i i i	² c ₀ a ¹⁵ ; 9λ _a √f _c c, <u>λ_a</u> 1.00 y Ψ _{ecc} Ψ _t , y Ψ _t , y Ψ _t , y <u>Ψ_{ecc}</u> 1.000 equal of Anchos rand Shear Fo Factored Load 494.11 <u>Ψ_{ec.}</u> 1.000 equal for the second secon	Pe (pai) 4500 fax (Sec. 17.3.1, Vector Vector 1.000 or in Shear (Sec. Nat / Assoc) Vector Vector Vector 0.992 orces (Sec. D.7) d, Vector	Cart (in) 17.5.21 (c) & Yey 1.000 c.17.5.3) Yew 1.000 vere Yew 1.000 Yew Yew 1.000 Yew Yew Yew Yew 1.000	Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i> _N v 1.046 ; kup(Ano / Anon <i>Y</i> _{can} n 1.000	No (lb) 35334 0.43 0.26 0.12 0.09	44198 _N Y _{c.N} Y _{cp.48} N ₆ <u>N₆₀ (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₂ (lb) 35418 Ø 0.70 Staht Pass Pass Pass Pass Pass Pass	69309 & Eq. 17.5.3.1b
V _{2x} = min[7(<i>l</i> , (in) 8.00 <i>φ</i> / _{chap} = φ (2 A _{2x} (in ²) 1476.00 10. Concret <i>φ</i> / _{chap} = φ mi <i>k_{ax}</i> 2.0 10. Concret <i>φ</i> / _{chap} = φ mi <i>k_{ax}</i> 2.0 10. Concret <i>φ</i> / _{chap} (b) 11. Results 11. Interaci Shear T Concrett T Concrett II Concrett	<i>ije / d₂j⁰ ≥ \\d₂d₂² \\d₂d₂² \\d₂d₂² \\d₂d₂² \\d₂d₂² \\d₂d₂d₂² \\d₂d₂d₂d₁² \\d₂d₁d₂d₁² \\d₁d₂d₂d₁² \\d₁d₂d₂d₁² \\d₁d₂d₂d₁² \\d₁d₂d₂d₁² \\d₁d₂d₂d₁² \\d₁d₂d₂d₁² \\d₁d₂d₂d₁² \\d₁d₁d₂d₁² \\d₁d₁d₂d₁² \\d₁d₁d₂d₁² \\d₁d₁d₁d₁d₁d₁d₁d₁d₁d₁</i>	φ φ	Pe (psi) 4500 fax (Sec. 17.3.1, Vect/v Vect/v 1.000 or in Shear (Sec. Na/ Asso) Vector Vector Vector 0.992 orces (Sec. D.7) d, Ves (lb)	Cart (in) 17.5.2 (ic) & Yew 1.000 c.17.5.3 Yew folder Yew 1.000 Yew yew 1.000	Vor (B), 44198 Eq. 17.5.2.1b) <i>Yh</i> _N v 1.046 ; kup(Ano / Anon <i>Y</i> _{can} n 1.000) <i>W</i> _{6CN} <i>V</i> _{6d} <i>N</i> ₆ (lb) 35334 Ratio 0.43 0.26 0.12	44198 _N Y _{c.N} Y _{cp.48} N ₆ <u>N₆₀ (lb)</u> 20581 N _{c0} (lb)	0.70 (Sec. 17.3.1 <i>N</i> ₂ (lb) 35418 Ø 0.70 Staht Pass Pass Pass Pass Pass Pass	69309 & Eq. 17.5.3.1b


Expansion End Connection: Keeper Angle Attachment



Number of Keeper Angles on Abutment

Lateral seismic load at each keeper angle in X direction Lateral wind load at each keeper angle in Y direction

Wind load controls perpendicular to bridge span (Y direction) and seismic load controls parallel to bridge span (X direction). The LRFD factored bridge reactions are assumed to be equal at each ke location (4 total) so the reaction at each abutment is divided by the number of connections. The angle is assumed to act rigidly, equally distributing the shear loads between anchors. A single angle anchors was analyzed.

3. Resulting Anchor Forces

Anchor	Tension load, N.u (Ib)	Shear load x. Vuex (lb)	Shear load y, Vuiy (lb)	Shear load combined, $\sqrt{(V_{ubs})^2+(V_{uby})^2}$ (lb)
1	0.0	6054.8	6450.0	8846.6
2	0.0	6054.8	5016.7	7863.0
3	0.0	6054.8	4300.0	7426.3
4	0.0	6054.8	5733.3	8338.5
Sum	0.0	24219.0	21500.0	32474.5
Maximum conc Resultant tensis Resultant comp Eccentricity of r Eccentricity of r	rete compression strain (%): 0. rete compression stress (psi): (on force (b): 0 ression force (b): 0 resultant tension forces in x-axi resultant tension forces in x-axi resultant shear forces in x-axi resultant shear forces in y-axis,) s, e'w (inch): 0.00 s, e'w (inch): 0.00 e'w (inch): 0.25	<figure 3=""></figure>	○3 ○2

02 Y XQ4 01

Vaa (lb)	- shown	ø	City, and	Prove W Mars	Waa (ID)			
21090	1.0	0.65	0.68	9322	· · · · ·			
9. Concrete	e Breakout Str	ength of Anc	hor in Shear (S	ec. 17.5.2)				
Shear perp	endicular to e	dge in y-dire	tion:					
$V_{0y} = \min[7($	10/do)02/dotatt	coarts; 92. VFo	Car ^{1.5} (Eq. 17.5.2	2a & Eq. 17.5.2	2b)			
In (in)	d _a (in)	A.	f'c (psi)	car (in)	Vey (lb)			
8.00	1.000	1.00	4500	36.00	130407			
$\delta V_{cogy} = \phi (A$	No. / Aves) Por v P.	www.WevtheVoy	(Sec. 17.3.1 & E	q. 17.5.2.1b)				
	Avco (in2)	Pocy	Post	Pay	Pas	Vey (lb)	a di	¢Vcopr (lb)
Ave (in ²)	NANCO (INT.)	3-00.V						
4050.00 Shear perp /ar = min[7(/a (in)	5832.00 endicular to e	0.991 dge in x-dire	0.883	1.000 2a & Eq. 17.5.2 Cat (in) 42.00	1.000 2.2b) V _{is} (lb) 164332	130407	0.70	55483
4050.00 Shear perp V _{lax} = min[7(<i>I</i> _{ii} (in) 8.00 φV _{cuv} =φ (A	5832.00 pendicular to e l₀/d₀) ²² √d₀∂₀√f d₀ (in) 1.000 v₀/Av∞)Ψ _{ett} √Ψ ₀	0.991 dge in x-direc \hat{z}_{a}^{15} , $9\hat{z}_{a}\hat{\psi}_{ca}^{15}$ \hat{z}_{a} 1.00 $v\Psi_{b}vV_{ca}$ (Sec.	0.883 ction: cr ¹⁵ (Eq. 17.5.2 <i>P</i> _i (psi) 4500 17.3.1 & Eq. 17	2a & Eq. 17.5.2 car (in) 42.00 5.2.1a)	2.2b) Vis (lb) 164332	130407		55483
4050.00 Shear perp Var = min[7(Ir (in) 8.00 PV (nr = p (A) Ave (in ²)	5832.00 endicular to e l₀/d₀) ²² √d₀∂₀√f d₀ (in) 1.000	0.991 dge in x-direc (cca1 ⁵ : 92a¥Fa 2a 1.00	0.883 ction: co ¹⁵ [(Eq. 17.5.2 <i>F</i> c (psi) 4500	2a & Eq. 17.52 Car (in) 42.00	2.2b) V _{ine} (lb)	130407	0.70 ¢W _{cbx} (lb) 57282	55483
4050.00 Shear perp Vax = min[7(la (in) 8.00 pV ray =pt (Ar Area (in ²) 4536.00 Shear para Vax = min[7(5832.00 bendicular to e le/d_yla2\d_d_s.w/r d_s(in) 1.000 wc/Avea)VrecvVe Avea (in ²) 7938.00 lifel to edge in le/d_s) ^{0.2} \d_s. ² \d	0.991 dge in x-direc _{cCas} ¹⁵ : 9½ ₀ √f _{cd} ² 1.00 _v \V ₅ vV _{5x} (Sec. <u>V_{co}v</u> 0.871 y-direction: _{cCas} ¹³ ; 9½ ₀ √f _{cd}	0.883 ction: 2a ¹⁵ (Eq. 17.5.2 <i>F</i> ₄ (psi) 4500 17.3.1 & Eq. 17. <i>Y</i> ₆ , 1.000 2a ¹⁵ (Eq. 17.5.2	2a & Eq. 17.5.2 car (in) 42.00 5.2.1a) γ_{h_V} 1.000 .2a & Eq. 17.5.2	2.2b) Vie (lb) 164332 Vie (lb) 164332 2.2b)	-	Notex (ib)	55483
4050.00 Shear perp V _{ax} = min[7(<i>l_k</i> (in) 8.00 <i>φV</i> _{rav} = <i>φ</i> (A) A _{vc} (in ²) 4536.00 Shear para	5832.00 bendicular to e lc/d_j ²² √d_s/s√f d_s (in) 1.000 wc/Avm)VectvYn Avco (in ²) 7938.00 lilel to edge in	0.991 dge in x-direct (cost 5, 920 VFct Xa 1.00 VFa VVct (Sec. <u>Yest</u> 0.871 y-direction:	0.883 clion: cen ¹⁵ [(Eq. 17.5.2 <i>Te</i> (p8i) 4500 17.3.1 & Eq. 17. <i>V_{EV}</i> 1.000	2a & Eq. 17.5.2 car (in) 42.00 5.2.1a) <u>Y'ny</u> 1.000	2.2b) V _{frs} (lb) 164332 V _{frs} (lb) 164332	-	Notex (ib)	55483
4050.00 Shear perp $V_{lax} = min]7($ $h_{c}(in)$ 8.00 $\phi V_{cax} = \phi(A, A_{cax}(in^{2}), A_{cax}(in^{$	5832.00 bendicular to e le/ds/2 ³ √ds/2 ³ √ds/2 ³ √d ds (in) 1.000 Mex/Ann)PetryPa Awa (in ²) 7938.00 llel to edge in le/ds/2 ³ √ds/2 ³ √d ds/2 ³ √ds/2 ³ √d 1.000	0.991 dge in x-direc (c_s) ¹⁵ , 92, 4/fet 2, 1.00 v V ₂ vVex (Sec. Vex, v 0.871 y-direction: (c_s) ¹⁵ , 92, 4/fet 2, 1.00 1.00	0.883 ction: r_{e} (psi) 4500 17.3.1 & Eq. 17. $\frac{V_{e_{v}}}{1.000}$ r_{e} (psi) 4500 1.000	2a & Eq. 17.5.2 c _{at} (in) 42.00 5.2.1a) Y _{R,V} 1.000 2a & Eq. 17.5.2 c _{at} (in) 36.00	2.2b) Visc (lb) 164332 Visc (lb) 164332 2.2b) Visc (lb) 164332 164332 164332	-	Notex (ib)	55483
4050.00 Shear perp $V_{lac} = min]7($ $l_{l}(in)$ 8.00 $PV_{cav} = \phi(A, A_{vac}(in^2))$ 4536.00 Shear para $V_{lac} = min]7($ $l_{e}(in)$ 8.00	5832.00 bendicular to e le/ds/2×/ds/a×/ ds (in) 1.000 Mex/Ann/Pet/Pet/ Area (in?) 7938.00 llel to edge in le/ds/2×/ds/a×/ ds (in) 1.000	0.991 dge in x-direc (c_s) ¹⁵ , 92, 4/fet 2, 1.00 v V ₂ vVex (Sec. Vex, v 0.871 y-direction: (c_s) ¹⁵ , 92, 4/fet 2, 1.00 1.00	0.883 ction: $2e^{35}$ (Eq. 17.5.2 F_{c} (psi) 4500 17.3.1 & Eq. 17. $\frac{V_{Cv}}{V_{Cv}}$ 1.000 $2e^{35}$ (Eq. 17.5.2 F_{c} (psi)	2a & Eq. 17.5.2 c _{at} (in) 42.00 5.2.1a) Y _{R,V} 1.000 2a & Eq. 17.5.2 c _{at} (in) 36.00	2.2b) Visc (lb) 164332 Visc (lb) 164332 2.2b) Visc (lb) 164332 164332 164332	-	Notex (ib)	55483 ∳V.cogy (lb)

I. (in)	d _e (in)	A.a	Te (psi)	Car (in)	Voy (ID)		
8.00	1.000	1.00	4500	33.00	114451		
$\phi V_{chs} = \phi(2)$	(Ave/Aveo) Fortv	Per Phy Vey (Se	ac. 17.3.1, 17.5.2	2.1(c) & Eq. 17.5	i.2.1a)		
Ave (in ²)	Asto (in ²)	Pedv	Vev	$\Psi_{n,V}$	Voy (lb)	45	¢Vctw (lb)
3564.00	4900.50	1.000	1.000	1.000	114451	0.70	116532

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{exp} = \phi_1$	min kcpNrg ; kcpNrg	$= \phi \min[k_{cp}(A_{Na}$	/ ANNO) V'ec. No Vo	an Vep. NoNes ; Kep	(Ane / Anes) Yes.N	West N West West N West	(Sec. 17.3.1 & Eq. 17.5.3.1b
k _æ	Ane (in ²)	ANHO (in ²)	Ped Na	Vec.No	Pronition	N _{tes} (lb)	N _P (lb)
2.0	694.17	494.11	1.000	0.959	1.000	20581	27732

Ane (in ²)	Anew (in ²)	$\Psi_{\mathrm{ex},N}$	$\Psi_{od,N}$	$\Psi_{a,n}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ø	
1620.00	1296.00	0.974	1.000	1.000	1.000	35334	43040	0.70	_

¢V_{4µg} (lb) 38825

-

Shear	Factored Load, Vim (Ib)	Design Strength, øVn (lb)	Ratio	Status
Steel	8847	9322	0.95	Pass (Governs)
T Concrete breakout y*	21500	55483	0.39	Pass
T Concrete breakout x+	24219	57282	0.42	Pass
Concrete breakout y+	24219	126785	0.19	Pass
Concrete breakout x+	6450	116532	0.06	Pass
Concrete breakout, combined	1 5	5 7	0.57	Pass
Prvout	32385	38825	0.83	Pass

SET-XP w/ 1"Ø F1554 Gr. 36 with hef = 12.000 inch meets the selected design criteria.

KERd McMILLEN JACOBS ASSOCIATES PROJECT SHEET Daggett Wridge, Pipe Pipe Reafcon SUBJECT DATE GAF BY CHECKED PROJECT NO Reactions @ Pipe Support Brace Pead Load · Pipe (empty) 495 × +3 (11×2×3/4/2)(10') = 1,942# · Steel Saddle and Web 495 #143 (3/8/12×15)(3,4') = 26 # (web) + 495#/43 (15/12)(15')(2,75') = 28# (saddle plate) + 495 #/43 (4)(3/8/2) . 40(,5) = 12# (stitleners) · Bottom Plate & side Plates 495 */43 (1/12 6/12) [(2×6,16')+3,5'] = 326# · B-Deck (Verco) 3,0 psf[(6,16)(2) + 3,5](10') = 474 # o Water 62.4 # (11 (2) (10') = 19:60 # Fy, = Fy= 2,384 # 2 = 4,768#

McMILLEN PROJECT SHEET bggett Bridge JACOBS SUBJECT DATE CHECKED PROJECT NO. combined tension & shear in bolts Fu= 120 Hsi A325 Bolts $\left(\frac{R_{uT}}{\Phi_{t}R_{nt}}\right) + \left(\frac{R_{uV}}{\Phi_{V}R_{nV}}\right) \leq 1.0$ 3/8 \$ Bolts $R_{\rm uT} = 1.0(3,354^{*}) = 3.354^{\#}$ \$t Rint = .75 (.75) (120 Ko;)(1+(3/6)) = 7,450# 1 threads Ruv = 1.0(1,603") = 1,663 Øv Ruv = ,75(.4×120Ks1×2×17(3/3)2) = 7,950 # unity Check $\left(\frac{3,354}{7,450}\right)^2 + \left(\frac{1,663}{7,950}\right)^2 = .24 << 1.0$: 318 Bolts OK

KIRC McMILLEN PROJECT SHEET **JACOBS** ASSOCIATES SUBJECT DATE GAC BY CHECKED PROJECT NO. $f_{B} = \frac{My}{I} = \frac{6,055,000 \text{ in } \# (12,50)}{4,201 \text{ in } \#}$ Note: Moment associated W/self wt of Pipe + H2O ignored 18,016 psi < .6(g) 5 : No problem w/ bending noment @ concrete stemwall # 1-0"+ # Note 17 (4) #5 borg EA STDE OF Pipe Penetration Note 1; Assume 1-0" Tributary width each side of Pipe

PROJECT SHEET ust Block C JACUBS ASSOCIATES SUBJECT DATE BY CHECKED PROJECT NO Kin width Thrust Block EL 2342,50 PA = 360457 (Tr(24)) D=24" = 162,770 Ppossile n, TITAN EL 2337.90 12' Assume 1) concrete block resists the overturning moment 2) Axial Load (Longitudinal) is resisted by frictional forces around the pipe (soil sarrounding pipe) Also resisted by "passive" pressure at Block Try block 10×12×12 Kp= 1+5/1130° = 3.0 wt= 150pcf(10')(12 ×12') = 216,000 # Ppassive = 1/2 (120por) 3.0 (10) (10) = 180,000 Pacting= 162,770# (80,000 > 102,770 # . No problem w/ sliding

PROJECT McMILLEN SHEET **JACOBS** ASSOCIATES SUBJECT DATE BY CHECKED PROJECT NO check of ing ZMD Moting = 162,770 (3,1') = 504,587 # # Mq. ghty = 150pef (10 × 12×12×12/2) = 1,296,000 AF.# MR > MOT : OR Determine Resultant Location Pp Vw E PCA) 10' 12 D Resulant 12' $\overline{\chi} = \frac{M_R - M_OT}{4F_V}$ = 1,296,000- 504,587 = 3,66' = outside the Kern. 216,000 For evaluation of bearing pressure, assume $\overline{X} = 3.66'-ft$

0 McMILLEN PROJECT SHEET JACO SUBJECT DATE BY CHECKED PROJECT NO. 3,66 (3') = 11' 1. $\frac{1}{2}$ $\frac{(11')(10')}{2}(10')=216,000$ $\frac{10adi w due}{per Geolech}$ $\frac{10adi w due}{per Geolech}$ $\frac{10adi w due}{per Geolech}$ $\frac{10adi w due}{per Geolech}$ $\frac{10adi w due}{peolech}$ $\frac{10adi w due}{peolech}$ short term loading due to suge per geolech 6/24/22 11-1:

PROJECT Paggett Road Brick SUBJECT Wind Culcs SHEET 10 McMILLEN **JACOBS** ASSOCIATES DATE BY GAL. CHECKED PROJECT NO Wind Loading ASCE 7-16, Een 26.10-1 9=,00256 (K=XK=XKd XKe)(V2) Velocity Pressure Byposive Where KZ= \$,85 KET= 1.0 Topographic Factor KA = Ø.95 Wind Directionality Factor Ground Elevation Factor Ke = 1.0 Velocity = 115 mph Qz=,00256(,85)(1.0X.95X1.0X115) = 27psf Mote: 27 psf is the total wind pressure acting on the shrout. It would be logical to divide by two to obtain the windword and leeword pressures, However, to be conservative, it is decided to use 27 psp acting on each of the (3) surfaces (top, Left, Right)

PROJECT Daggett Road Bridge 11/1 SHEET McMILLEN SUBJECT PIPE Shroug DATE BY GAC CHECKED PROJECT NO. Determine' Design of Shroud assembly Given i - Assumed wind load Trib Wall width = 10-0" 27 psf windword U= 1120+1.65+,5W 27 psf leeward 27 psf uplift U= 1.20 + 1.0W+ .5,5 - Show: 40 pop Solution: 1 = 5-9 6 = 2" 20psf $z_{x} = \frac{bh^{2}}{4} = \frac{6''(1)}{4}$ = 1.50 m3 Wind Load = 27. pof (10) = 270 plf QMn > Mul Wu= 1:0(27,popX10') = 270 p!f Mu= Wu (L*X (2) = 279pif (5.75) = 9,463 ft.#

Paggett Road Bridge Pipe Shroud McMILLEN JACOBS 3 12 PROJECT SHEET SUBJECT DATE GAd BY CHECKED PROJECT NO Mu= 4,463 ft. # (12in) = 53,56 (in 1/25 QMn= Q(FyXZX) = ,9(50,000)(1.50in3) = 67,500 in# 67,500 > 53,561 ". use 1" x16" Vertical plates

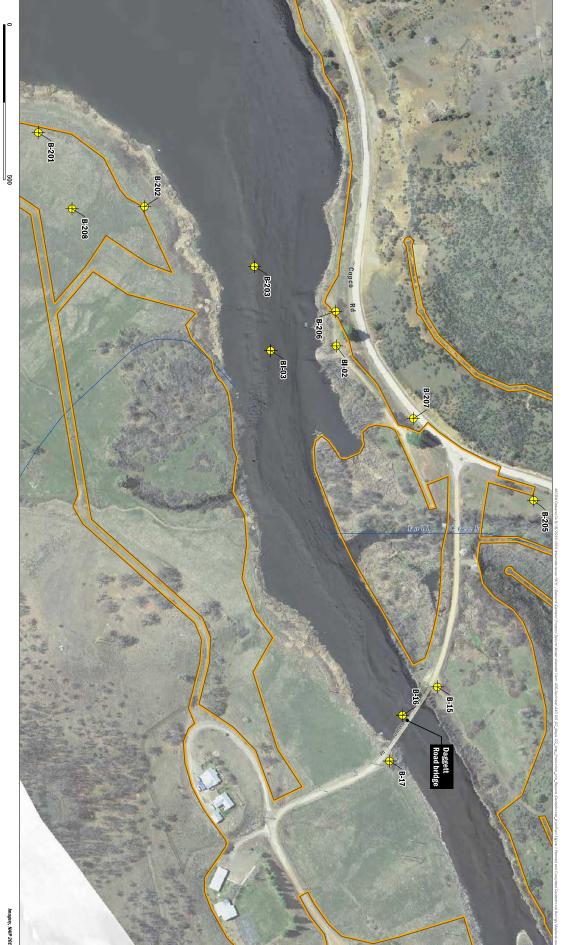
Daggett Road Brilge SHEET 2014 13 MCMILLEN JACOBS ASSOCIATES PROJECT Pipe Shroud SUBJECT DATE BY GAL CHECKED PROJECT NO. section Modulus for 6005162-54 Fyy= Ø.180 in 4 from SSMA Manual Maximum span= 3-4" Spacing of stud (Horiz) = 2'-0" 14 gage steel plate FC-Jy trib width t 1'-0" (assume) L=3'-4" ? - Try making the stude non-composite with the 14 gage steel plate $W = 4 \cdot qp_{5}f(2') = 40 p_{1}f$ $M = WL^{2} = \frac{80p_{1}f(3.33)^{2}}{8} = 110 \cdot ff \cdot ff$ = 1,320 in. 165 $f_b = \frac{M}{5} = \frac{M_Y}{F_{yy}} = \frac{1,320 \text{ in } 16s (1.62 \cdot 1/2)}{9.18 \text{ in } 4} =$ ps: 5,940 psi < fy .: ok , use 6005162-54@24 0r

SHEET 4 H PROJECT MCMILLEN **JACOBS** ASSOCIATES SUBJECT DATE BY CHECKED PROJECT NO SEISNIC ANHORS 3/4 wall FV verennine. FV contact whether strap is needed FH point at saddle to restain pipe. Defermine: $F_{p=0.4-(a_{p})S_{p}W_{p}}(1+2\frac{3}{h})$ $R_{p/T_{p}}$ where: ap= 2,5 h=p Rip=6.0 Ip= 1,50 505=,594 wp=495 \$ (Tr)(2)(3/4/12) + 62.4 \$ (Tr(2)) H20 Steel = 390 plf $F_{p} = \frac{4(2,5)(.594)}{60}(390 pH)$ Fu= 125ps Wp 57 plf < strength level -

\$ 15 PROJECT SHEET JACOBS SUBJECT DATE BY CHECKED PROJECT NO. FH= 57plf/14 = 41.plf Gervice level, lateral seismic force) Fv=,20(,594)(390plf)=46 plf + strength level = 46/1.q = = 33 plf (service level, vertical seismic force) -24 pipe 1.0 contact D point + 11 120° 60 1.0 X $CO560^{\circ} = \frac{X}{1.0}$ 30 1.0 $X = 1.0(\cos 60^\circ)$ 110 = \$,50 Y= 1.0 (cos 30°) & Moting @A 5.86 33plf(.86') + 41pif(.5') = 48-14.# Mrighting = 390p1f (.86') = 335 ff # MR >> Mot " No problem w/ rolling out

Appendix E Geotechnical Boring Logs

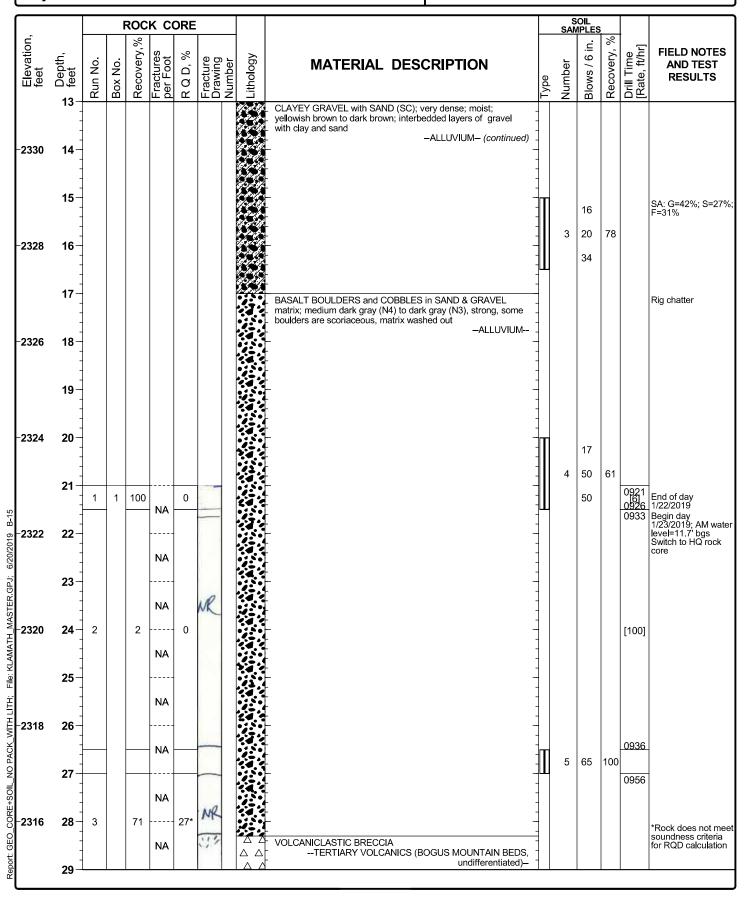
AECOM Klamath River Renewal Corporation Klamath River Renewal Project


3 Iron Gate Reservoir

Copco

ZÞ

Feet


Log of Soil and Core Boring B-15

Sheet 1 of 4

1/22/2019-1/23/209	Logged By S. Janowski	Checked By P. Respess
Solid Stem Auger, HQ-3 Rock Core	Drill Bit Size/Type diamond coring bit	Total Depth of Borehole 51.5 feet
Truck Mounted CME 75	Drilling Contractor Taber Drilling	NAVD 88 Ground Surface Elevation 2344 feet
11.7' 1/23/2019	Sampling Methods 2.5-inch ID ModCal, SPT, HQ Core Barrel	Hammer Automatic hammer; Data 140 lbs, 30-inch drop
Cement grout to ground surface	Borehole Location North end of Daggett Road Bridge	Coordinate N 2602349 E 6462482
ROCK CORE		SOIL SAMPLES
Run No. Box No. Recovery,% Fractures per Foot R Q D, % Fracture Drawing Number Lithology	MATERIAL DESCRIPTION	Type Number Blows / 6 in. Drill Time [Rate, ft/hr] ESONERY, %
	brown (10yr3/3); 20% subrounded to rounded GRAVEL to 3/4";	
		6 pp=3.0 tsf
	CLAYEY GRAVEL with SAND (SC): very dense: moist:	- 1 1-2 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	yellowish brown to dark brown; interbedded layers of gravel with clay and sand —ALLUVIUM	- con height of slope - con height of slope
		EE 2 100/1" 100
	Ţ	
	Solid Stem Auger, HQ-3 Rock Core Truck Mounted CME 75 11.7' 1/23/2019 Cement grout to ground surface ROCK CORE Bungan in N 00 N NO N <td< td=""><td>Solid Stem Auger, HQ-3 Rock Core Dyl 4-inch solid stem auger, 4-inch Solid Stem Auger, HQ-3 Rock Core Dilling 4-inch solid stem auger, 4-inch Truck Mounted CME 75 Dilling Taber Drilling Cement grout to ground surface Borehole North end of Daggett Road Bridge Cement grout to ground surface Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core <</td></td<>	Solid Stem Auger, HQ-3 Rock Core Dyl 4-inch solid stem auger, 4-inch Solid Stem Auger, HQ-3 Rock Core Dilling 4-inch solid stem auger, 4-inch Truck Mounted CME 75 Dilling Taber Drilling Cement grout to ground surface Borehole North end of Daggett Road Bridge Cement grout to ground surface Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Borehole North end of Daggett Road Bridge V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core V Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core Solid Stem Auger, HQ-2 Schock Core <

Log of Soil and Core Boring B-15

Sheet 2 of 4

Log of Soil and Core Boring B-15

Sheet 3 of 4

											SAN	OIL <u>/IPLES</u>			
Elevation, feet	65 Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing	Lithology	MATERIAL DESCRIPTION	Type	Number	Blows / 6 in.	Recovery, %	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
	29-	3	1	71	5	27*	1	,1 🛆 🕹	moderately weathered: weak: highly to intensely fractured:					[68]	
2314	30-							1 1 Z	angular clasts to 1/2" TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)–	-					
2014	-				6		1.1.	$\begin{vmatrix} \Delta \\ \Delta \end{vmatrix}$	1: 20°, J, MW, Sd, Sp, Wa, R Becomes grayish blue-green (5BG5/2); slightly weathered;	-					*Rock does not m soundness criteria
	31-							$\begin{vmatrix} \Delta \\ \Delta \end{vmatrix}$	moderately strong	_					for RQD calculatio
	-				0				-	-				<u>1000</u> 1008	
2312	32						-	$\begin{vmatrix} \Delta \\ \Delta \end{vmatrix}$	- 1: 30°, J, MW, Sd+Fe, Sp+Su, Wa, R						
	-				3			1	-	-					
	33-							$\begin{bmatrix} 1 & \Delta \\ A & \Delta \end{bmatrix}$	- 	-					
	-				1		_		-	-					
2310	34-	4		100		82			-	-				[60]	
	35-				0				-	-					
	35				0				-	-					
2308	36-								-	-					
	-				0		i i		-	-				<u>1013</u> 1017	
	37-														
	-				0				-						
2306	38-						~	$A \mid \Delta \land$	 _ ✔──Becomes light olive gray (5Y5/2); moderately weathered;	-					
	-				0				weak; highly fractured	-					
	39-	5		100		96*			1: 15°, J, MW, Fe, Su, Wa, VR	-				[75]	*Rock does not m soundness criteria
2304	40 -				1				-	-					for RQD calculation
_004					1		-		-						
	41-		2					$\frac{1}{2} \bigtriangleup 2$	- - - 2: 60°, J/Sh, MW, Fe+Mn+Sd, Su+Sp, Wa, R	-					
	-				2				 Z. 60, J/Sh, MW, FerMin+Su, Su+Sp, Wa, R ✓ Becomes gravish blue-green (5BG5/2); slightly weathered 1: 20°, J, MW, No, No, Wa-St, VR 					<u>1021</u> 1024	
2302	42							$\begin{vmatrix} \Delta \\ 1 \end{vmatrix} \begin{vmatrix} \Delta \\ \Delta \end{vmatrix}$	Becomes moderately fractured						
	-				1				-						
	43-						1		-						
	-	-			0		r		- - -						
2300	44 -	6		100		72	-		- - -	-				[43]	
					0			$ \Delta $	-	4		1	1	1	

Log of Soil and Core Boring B-15

Sheet 4 of 4

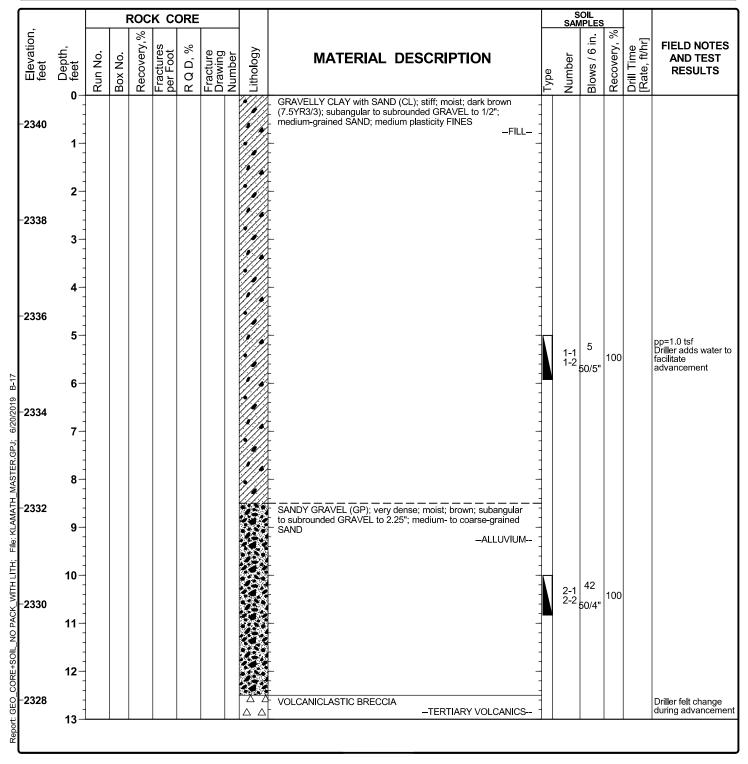
			F	ROC	кс	ORE						S SAN	OIL /IPLES	5		
Elevation, feet	– Depth, – 5	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing	Number	Lithology	MATERIAL DESCRIPTION	Type	Number	Blows / 6 in.	Recovery, %	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-2298	46 	6	2	100	4	72	-70	1 M M		slightly weathered; weak to very weak; highly fractured; angular					1031	
	47 –	-			0			M M		- 					1035	UCS = 1546 psi
-2296	48- - -	-			1			1		1: 20°, J, MW, No, No, Wa, R	-					
-2294	49	7		100	2	94				2. 13 , J, N-VN, SUTSI, SU-FA, FI, N-SN	-				[43]	
2234	50- - - 51-				2			м			-					
-2292	- - 52 -	-								TOTAL DEPTH = 51.5 FEET Grout mix: 30 gallons of water, six 47# bags of cement, no bentonite	-				1042	
-15	53- - -									- 	-					
ER.GPJ; 6/20/2019 B-15 - 000000 - 000000000000000000000000000	54- - - -									- 	-					
TH_MASTER.GP	55 - - - 56 -	-														
1; File: KLAMA1	57-	- - - -								- - - - - -						
ACK WITH LITH	58- - -	•								- 						
RE+SOIL_NO P,	59 — - -	-									-					
Report: GEO_CORE+SOIL_NO PACK_WITH LITH; File: KLAMATH_MAST B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B827 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87 B87	60	-									-					

Log of Soil and Core Boring B-16

Sheet 1 of 2

Date(s) Drilled		1/12/	2019)						Logged By	P. R	espes	5			Che	ecked	Ву	S	Janow	vski
Drilling Method		Rota	ry W	ash,	HQ-3	Rock	(Cor	e		Drill Bit Size/Type		8-inch ng bit	tricone, 3 3	3/4-inch	i diamond	Tota of E	al Dep Ioreho	th le	24.	5 feet	
Drill Rig Type		Barg	e Mo	ounte	ed CN	1E-45	i			Drilling Contractor	Tab	er Drill	ing			Sur	/D 88 face E	levat	ion	2319	
Groundw Level		12 fe								Sampling Methods			ore Barrel			Dat	а	140	bs, :		h drop
Borehole Backfill		Bent surfa		e cen	nent	grout	t to g	rou	nd	Borehole Location	12' (brid		tream of Da	aggett l	Road	Coordinate N 2602237 E 6462573					
			F	ROC	кс	ORE											SAN		5		
Elevation, feet	ueptn, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing	Number	Lithology				DESCI			Type	Number	Blows / 6 in.	Recovery, %	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-2318	0- 1- 2-	-								 angular clast widely-space 	extreme s up to ed natu	ely weak 1/4"-1/2 ral fractu	; fine-grained 2"; slightly fra ures; numero	matrix; ctured wi us mech SUS MOI	dark gray-black		1	3 5 15			12' of water in river at time of drilling 5" HWT casing driven to 14' (refusal Tricone to 15' and continue with HQ core High Water Circulation Return
-2316	3- - 4-	- 1	1	100	0	100		M M M M		- - - Becomes - strong; sli - Broken m 	ghtly fi	actured	slightly weath ; multi-colore	iered; m d clasts เ	oderately up to 2"					1024 [90] 1025	(WCR)
-2314	5- - 6-	-			0		-	м		- - - - - -										1029	
-2312	7	2		100	0 1	100		1 M			N, No	, No, Wa	a, SR							[150]	
-2310	- - 9- - -				0			м		-										<u>1031</u> 1034	
-2308	10- - - - 11-	-			0			м		-											
-2310 -2308	- 12- -	3		100	0 	100		M M		-										[100]	

Log of Soil and Core Boring B-16


Sheet 2 of 2

											S SAN	OIL IPLES	1		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing	Lithology	MATERIAL DESCRIPTION	Type	er	Blows / 6 in.	$^{\circ}$	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-2306	13-		1						VOLCANICLASTIC BRECCIA; gray-green; moderately to						High WCR
	14-	3		100	0	100	~							<u>1037</u> 1040	
-2304	15-	•	2		0				- 					1040	
0000	16- - - - 17-	4		100	1	100	_		– – – 1: 30°, J, N, No, No, PI-Wa, SR –					[150]	
-2302	- - 18-				0		r		-						
-2300	19- -				0				- - - - -					<u>1042</u> 1045	
	20- - - 21-				0				-						
- 2298	21-	5		96	0	96			- - - - -					[75]	
Report: GEO_CORE+SOL_NO PACK_WITH LITH; Flie: KLAMATH_MASTER.GPJ; 6/20/2019 B-16 6667 567 56877 56877 56877<	23-				0 				- - - - - -						
KLAMA I H_MAX	24- -				NA		NR		- - - - - - - - - - - - - - - - - - -					1049	
:elii -2294 HH HH	25- 26-														
2291 NO PACK V SOIL NO PACK V	27-	•							- - - - -						
bort: GEO_CORE+	28-								- 						
Ker	29-		1		I		<u> </u>							1	1

Log of Soil and Core Boring B-17

Sheet 1 of 3

Date(s) Drilled	1/22/2019	Logged By	S. Janowski	Checked By P. Respess
Drilling Method	Solid Stem Auger, HQ-3 Rock Core	Drill Bit Size/Type	4-inch solid stem auger, 4-inch diamond coring bit	Total Depth of Borehole 41.5 feet
Drill Rig Type	Truck Mounted CME 75	Drilling Contractor	Taber Drilling	NAVD 88 Ground Surface Elevation 2341 feet
Groundwater Level	Not encountered before HQ rock coring	Sampling Methods	2.5-inch ID ModCal, SPT, HQ Core Barrel	Hammer Automatic hammer; Data 140 lbs, 30-inch drop
Borehole Backfill	Cement grout to ground surface	Borehole Location	South end of Daggett Road Bridge	Coordinate N 2602195 E 6462721

Log of Soil and Core Boring B-17

Sheet 2 of 3

			F	ROC	кс	ORE					SAN	SOIL MPLES			
Elevation, feet	L Depth, ⊢ feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Type	Number	Blows / 6 in.	~	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-2326	13- - - 14- -								weathered; moderately strong; slightly fractured; angular clasts to 1/2" in fine matrix TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)– (continued) -						
	15- -		1		0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- - -	-	3	50/4"	100	1110	Switch to HQ core
	16-	1		100		100	101		- - 	-				[45] 1112	
-2324	- 17				0				- - 	-				1147	
-2322	- 18- - -				0				-	-					UCS = 2130 psi
-2322	19- -	2		100	0	100				-				[75]	
-2320	20				0				- 						
	21 - -		-		0				- 	-				<u>1151</u> 1216	
-107/07/07/07/07/07/07/07/07/07/07/07/07/0	22 - -				0				- 	-					
2316 -2312 -2314 -2316 -2314 -2314 -2314 -2314	23-				1		1		Very weak 1: 20°, J, VN, CI+Sd, Sp, PI, S-SR						
M HIMMHI HIMMHI -2316	24	3		100	2	84	1		Weak	-				[100]	
	25 –				0		N		-	-					
HIM 2314	26	-	_		0			$\triangle \Delta$		-				<u>1219</u> 1223	
KE+SUIL NC	27 – - -	4		100	0	100				-				[76]	
00 00 00 00 00 00 00 00 00 00 00 00 00	28 - - -				0				- · · · · · · · · · · · · · · · · · · ·	-				[75]	
Yet	29-	L	I	1	I	1		1				I			

Log of Soil and Core Boring B-17

Sheet 3 of 3

			F	ROC	K C	ORE					SAN	OIL /IPLES	1		
Elevation, feet	− Depth, – 66	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Type	Number	Blows / 6 in.	Recovery, %	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-2310	30- 31-	4	2	100	0	100			weathered; moderately strong; slightly fractured; angular clasts to 1/2" in fine matrix TERTIARY VOLCANICS (BOGUS MOUNTAIN BEDS, undifferentiated)- (continued)					[75]	
-2308	32 - 33 -		-		0		M		 Coarser clasts to 2" - 					<u>1227</u> 1231	
-2306	34- - - - - - - - - - - - - - - - - - -	5		100	1	86	A,		- - - - - - - - - - - - - -					[100]	
- 2304	36- 	· · · ·			0		M		- grooves) ─ }Abundant mechanical fractures					<u>1234</u> 1239	
STER.GPJ; 6/20/2019 B	38 - - - - - - - - - - - - - - - - - - -	6		100	0 0 0	100	M		- · · · · · · · · · · · · · · · · · · ·					[75]	
TH; File: KLAMATH_MAS	40- - - 41-				0		M							1243	UCS = 2985 psi
Report: GEO_CORE+SOIL_NO PACK_WITH LITH; File: KLAMATH_MASTER.GPJ; 6/20/2019 B-17 96675 6 6 6 6 6 7 6 7	42- 								TOTAL DEPTH = 41.5 FEET Grout mix: 20 gallons of water, five 47# bags of cement, no bentonite						
Report: GEO_CORE -2296	44									-					