PROPOSED COFFERDAM STAGING, SEE NOTE 4:

A. CONSTRUCT UPTREAM COFFERDAM TO ISOLATE DAM B MODIFICATIONS CONSTRUCTION AREA. MAINTAIN FLOW TO THE CITY OF YEREA INLET FOR THE DURATION OF CONSTRUCTION.

B. CONSTRUCTION WITH UPTREAM COFFERDAM CONSTRUCTION, INSTALL FLOW BYPASS PIPE TO PASS THE UPSTREAM DAM STARVATION STREAM. INSTALL CLEARING AND GRADING LIMITS, PROJECT WORK BOUNDARIES, AND CLEARING AND GRADING LIMITS.

C. PERFORM PRESSURE OPERATIONS PER SPECIFICATION 02-050, THEN DEWATER CONSTRUCTION AREA FOR THE DAM B BASEMENT, CLEAN UP AND BARRIER AROUND STAGING AREA. TREATING WASTE BY AN APPROVED METHOD IN ACCORDANCE WITH THE CONTRACTOR'S GSP PRIOR TO DISCHARGE.

D. AFTER CONSTRUCTION IS COMPLETE AND THE CONSTRUCTION AREA IS READY TO RECEIVE CREEK FLOWS AGAIN, SAFELY BEACH AND REMOVE UPTREAM COFFERDAM AND ALLOW CONSTRUCTION AREA TO REHABILITATE. LASTLY, REMOVE FLOW BYPASS PIPE.
Sheet Key Notes:

A. Demolish and remove existing flume, supply line, and storage shed, and install new flume, supply line, and storage shed with Type C materials and concrete foundation.

B. Demolish and remove existing upper raceway walls and slab.

C. Demolish and replace existing raceway walls and slab with new raceway walls and slab.

D. Demolish existing concrete walls.

E. Demolish existing raceway walls and slab.

F. Demolish existing concrete raceway walls and slab.

Information is available for the existing pipe.
Sheet Notes:

1. The existing concrete slab, where indicated, shall be retained and protected during construction and no means of construction equipment (i.e., the concrete pad shall be allowed) construction equipment shall access this area from outside the existing pad.

Sheet Key Notes:

- A. Demolish and remove concrete walls down to existing slab.
- B. Demolish and remove sills, walkway grating, supports, guardrails, and ladders.
- C. Demolish concrete outlet structure walls, slab, and piping.
- D. Demolish adjacent raceway slab to the extents shown.
- E. Protect existing conc slab burn back 6" to 8" below surface.
- F. Demolish and remove building and conc (gutter) grating.
- G. Demolish existing slab locally for construction of sump, sump box, wet well, and valve box. demolish only to the extents shown.
- H. Demolish buried PVC piping from existing concrete sumps, flow to existing lower raceway pipe. No piping is information is available for the buried pipe.
- I. Demolish existing concrete sidewalk.
- J. Remove existing trees, as required for construction. Not all trees removal required. Documentation not required. See specific location at 23-30 for details on tree removal within construction limits.
Sheet Key Notes:

A. DEMOLISH AND REMOVE DAM WALL, COMPLETE DAM FOOTING, AND EROSION WALL AT LOCATION OF INFERIOR STRUCTURE.

B. PREPARE WALL, WALKWAYS, HOUSING WALL, AND EROSION WALL.

C. REMOVE EXISTING TREE, AS REQUIRED FOR CONSTRUCTION. NOT ALL TREE REMOVAL REQUIRED. SEE DOCUMENTED HAYE. SEE SPECIFICATION 3D.1.00 FOR DETAILS ON TREE REMOVAL WITHIN CONSTRUCTION LIMITS.
CROWDER (FRONT VIEW)

CROWDER (UNDERSIDE VIEW)

SHEET NOTES:
1. SET MECHANICAL DRAWINGS FOR PROPOSED MODIFICATIONS TO IRON CROWDER FOLLOWING CONDITION.

SHEET KEY NOTES:
A. SALVAGE AND RELOCATE MECHANICAL FISH CROWDER FROM IRON GATE FISH HATCHERY.
B. CUT 34" OFF LOWER GUIDES PRIOR TO RELOCATION. TOTAL LENGTH OF GUIDES SHALL BE 67 3/4" AFTER DEMO.
C. DEMO 1/2" LOWER BRACE PRIOR TO RELOCATION.
D. DEMO 1/2" LOWER BRACE PRIOR TO RELOCATION.

SCALE: NTS

KLAMATH RIVER RENEWAL CORPORATION
FALL CREEK FISH HATCHERY
IRON GATE HATCHERY
CROWDER MODIFICATION

DESIGNED: TELLISON
DRAWN: O. JOHNSTON
CHECKED: T. O'CONNOR
PROJECT DATE: UNDATED

D602

McMILLEN JACOBS ASSOCIATES
KLAMATH RIVER RENEWAL CORPORATION
GENERAL PROJECT NOTES:

1. ELEVATIONS GIVEN ARE TO FINISH GRADE UNLESS OTHERWISE SHOWN.
2. SLOPE UNKNOWNS BETWEEN CONTROLS AND SPOT ELEVATIONS SHOWN.
3. GEOTECHNICAL INFORMATION WAS NOT PREPARED SPECIFICALLY FOR THE FALL CREEK FISH HATCHERY PROJECT, HOWEVER, TWO BORES WERE COMPLETED BY Aneteka Geotechnics at the locations shown in Figures 8-12 and 8-14. RESULTS ARE PROVIDED AS AN ATTACHMENT TO THE SPECIFICATIONS.
4. CONTRACTOR SHALL REPLACE ALL EXISTING SURFACES, UTILITIES, BUILDINGS, AND FOUNDATIONS IMPACTED BY CONSTRUCTION, WHICH ARE NOT INDICATED TO BE DISLOTTED.
5. CONTRACTOR SHALL REMOVE ALL CONSTRUCTION WITHIN THE WORK BOUNDARIES DEFINED FOR THIS PROJECT AS SHOWN. THIS INCLUDES, BUT IS NOT LIMITED TO, DUG OUT SOIL, MULCH, AND EXCAVATED EROSION CONTROL MEASURES, EXCAVATED MATERIAL, BACKFILL MATERIAL, AND FILL MATERIAL.
6. SEE SPECIFICATION SS 20 GG FOR AGGRAVATING MATERIAL TYPES.

GENERAL CONSTRUCTION NOTES:

1. ALL MATERIALS PURCHASED OR FOR THE PROJECT MUST MEET THE MINIMUM REQUIREMENTS OF THE APPROPRIATE AGENCIES. AT THE REQUEST OF THE PROJECT MANAGER ON THE DESIGN ENGINEER, CONTRACTOR SHALL FURNISH PROOFS THAT ALL MATERIALS INSTALLED ON THE PROJECT MUST MEET THE SPECIFICATION REQUIREMENTS SET FOR IN THE PROJECT SPECIFICATIONS.
2. ANY DEVIATION FROM THE APPROVED PLANS AND SPECIFICATIONS MUST HAVE DESIGN ENGINEER AND OWNER APPROVAL IN WRITING PRIOR TO CONSTRUCTION.
3. ALL DISTURBED SURFACES SHALL BE RETURNED TO ORIGINAL OR BETTER CONDITIONS.

GENERAL YARD PIPING AND UTILITY NOTES:

1. EXIST BASE MAP MAY CONTAIN ERRORS. CONTRACTOR TO VERIFY LOCATION OF EXIST PIPES, STRUCTURES, AND OTHER UTILITIES PRIOR TO THE START OF CONSTRUCTION ON THE SUBMITTAL OF SHOP DRAWINGS.
2. EXIST PIPES LOCATION ARE UNKNOWN. CONTRACTOR SHALL STAND OFF ALL EXISTING PIPING SYSTEMS AS APPROVED BY THE ENGINEER.
3. CONTRACTOR SHALL PROTECT ALL EXISTING UTILITIES TO REMAIN.
4. THE CONTRACTOR SHALL CONTACT THE UTILITY AGENCIES FOR FIELD LOCATION OF UTILITIES AT LEAST 48 HOURS PRIOR TO START OF CONSTRUCTION.
5. SHORING, SCREENING, OR SUMP LINING OF APPROPRIATE EQUIPMENT IS USED TO INDICATE EXISTING CONDITIONS OR TO BE EMERGENCY PROPOSED IMPROVEMENTS FOR EXISTING CONDITIONS AS PRESENTED (LINES) IN THE DRAWINGS. REFER TO CONTENT OF EACH ITEM FOR LINES.
6. FOR EXISTING PIPES PROVIDE A MINIMUM OF 24 INCHES OVER TOP OF ALL PIPES/PIPING UNLESS OTHERWISE INDICATED OR SPECIFIED.
7. ELEVATIONS SHOULD BE TO THE NEAREST ONE INCH OF PIPE, UNLESS OTHERWISE NOTED.
8. STRAIGHT SLOPS SHALL BE MARKED BETWEEN PIPES SHOWN OR SPECIFIED.
9. THE CONTRACTOR SHALL INSTALL ALL VALVES, HOSES, FITTINGS, AND VALVES TO THE SHOWN GAGES UNLESS OTHERWISE SHOWN OR SPECIFIED.
10. ALL PIPE TRENCHING AND BACKFILL SHALL BE IN ACCORDANCE WITH THE CONTRACT.
11. ALL RIDING CONDITIONS ARE TO OUTSIDE CARRIER OR BUILDING STAY WALL UNLESS OTHERWISE NOTED.
12. FOR PIPING NEEDS STRUCTURES AND POND INFILTRATION NON-MECHANICAL DRAWINGS.
13. THE CONTRACTOR SHALL PROVIDE PIPE PENETRATIONS FOR MECHANICAL HOISTS MADE TO MATCH ALL PIPES PENETRATIONS NON-MECHANICAL, UNLESS SHOWN OTHERWISE.
14. THE CONTRACTOR SHALL PROVIDE TRANSITION COUPLINGS AT ALL YARD PIPE JOINTS WHERE THERE IS A MATERIAL CHANGE, UNLESS NOTED OTHERWISE.
15. NON-THRUST RIGGERS FOR STALL OOS SHALL BE PLACED ON ALL BENDS AND TIES FOR ALL EXISTING PIPE AS REQUIRED IN DRAWINGS.
16. ALL SLEEVES COUPLED ON YARD PIPE ARE UNRESTRICTED, UNLESS NOTED OTHERWISE.
VENT CLEANOUT TO GRADE

SCALE: 1 IN = 1 FT

NOTES:
1. PIPE UNIMPROVED AREA TOP SHALL BE 6" ABOVE GRADE.
2. SEE PLAN FOR SECTION AND INLET ELEVATION. PIPE AND FITTINGS SHALL BE OF THE SAME MATERIAL AS THE MAIN DRAIN INLET.

EXTERIOR TRENCH DRAIN SYSTEM

SCALE: 1 IN = 1 FT

NOTES:
1. TRENCH DRAIN SHALL BE SLOPED AT 6" FOR EVERY 100 FT.
2. TRENCH DRAIN SHALL BE PROTECTED (3" OD) PVC SLIP-ON 10خلاياصللD-500 EX 00100) PVC-630 PSL. AND SHALL BE GUARDED BY STAINLESS STEEL COVER. CHANNEL DRAIN PORTION SHALL BE CONSTRUCTED OF CONCRETE.
3. TRENCH DRAIN SHALL BE SWITZER-DRANA HD 100, OR APPROVED EQUAL.
4. AT TERMINALS, TRENCH DRAIN SHALL HAVE PIPE-END CONNECTION INSTALLED PER MANUFACTURER'S RECOMMENDATIONS.
5. IN AREAS WHERE THE TRENCH DRAIN PASSES THROUGH CONCRETE SLABS AT DIGITAL, TRENCH DRAIN AND CONCRETE RIVER TO BE CAST WITH THE SLAB.
Storm Water System Coordinates

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>209045.02</td>
<td>640203.34</td>
<td>2490.41</td>
<td>45° WIDE</td>
<td></td>
</tr>
<tr>
<td>209045.01</td>
<td>640203.34</td>
<td>2490.41</td>
<td>45° WIDE</td>
<td></td>
</tr>
<tr>
<td>209045.02</td>
<td>640203.34</td>
<td>2490.41</td>
<td>45° WIDE</td>
<td></td>
</tr>
<tr>
<td>209045.01</td>
<td>640203.34</td>
<td>2490.41</td>
<td>45° WIDE</td>
<td></td>
</tr>
</tbody>
</table>

C-Building Supply Piping Coordinates (See Sheet C-14)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

Drain Piping Coordinates (See Sheet C-15)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

C-Building Supply Piping Coordinates (See Sheet C-14)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

C-322W Reel Area Supply Piping Coordinates (See Sheet C-14)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

C-294W Reel Area Supply Piping Coordinates (See Sheet C-14)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

C-Building Reel Area Supply Piping Coordinates (See Sheet C-14)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

Setting Point Drain Piping Coordinates (See Sheet C-15)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

Adult Holding Supply Piping Coordinates (See Sheet C-15)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

Waste Drain Piping Coordinates (See Sheet C-15)

<table>
<thead>
<tr>
<th>STA</th>
<th>NORthing</th>
<th>EASTing</th>
<th>Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.00</td>
<td>289045.01</td>
<td>640395.20</td>
<td>2490.41</td>
<td>45° WIDE</td>
</tr>
</tbody>
</table>

General Notes:

1. **PIPING COORDINATES** are shown for horizontal and vertical measurement.
2. **ADULT HOLDING SUPPLY PIPING** coordinates are shown for bifurcation and extension.
3. **WASTE DRAIN PIPING** coordinates are shown for horizontal and vertical measurement.
4. **Set points for horizontal and vertical measurement are located at the center of each fitting in the horizontal plane.**

Sheet Notes:

3. **PIPING COORDINATES** are shown for horizontal and vertical measurement.
4. **ADULT HOLDING SUPPLY PIPING** coordinates are shown for bifurcation and extension.
5. **WASTE DRAIN PIPING** coordinates are shown for horizontal and vertical measurement.
6. **Set points for horizontal and vertical measurement are located at the center of each fitting in the horizontal plane.**

Design: D. Luman

Drawn: J. Lanning

Checked: B. Auer

Project Date: November 2000