Kiewit Infrastructure West Co. Klamath River Renewal Project Geotechnical Data Report

APPENDIX J

Preliminary Services Borrow Source Site Investigation

(Pages J-1 to J-376)

August 6, 2020

Mr. Nick Drury Kiewit Infrastructure West Co. 4650 Business Center Drive Fairfield, California USA, 94534 Knight Piésold KRRP Project Office 4650 Business Center Drive Fairfield, California USA, 94534 www.knightpiesold.com

Dear Nick,

RE: Klamath River Renewal Project – Summary of Onsite Borrow Source Site Investigation – DRAFT Rev B

1.0 INTRODUCTION

The Klamath River Renewal Project (KRRP) underwent a Value Engineering (VE) Phase prior to moving the progressive design forward to the 90% design milestone. As part of the VE phase Knight Piésold (KP) completed an onsite assessment of potential borrow sources at each of the four dam sites. The proposed borrow sources were outlined in KP Work Plan 'VA20-00737'. This borrow source VE focused to identify possible erosion protection and some granular fill onsite borrow sources and was limited to surficial investigations with no subsurface excavations. The purpose of this letter is to summarize the site investigation findings including an approximate material classification at each site, and provide an estimated potential borrow source volume.

The site investigation was completed by two KP representatives between May 5 and May 8, 2020. Each of the evaluated borrow areas was visually assessed for material type and particle size. To supplement the visual and hand field particle size measurements, photogrammetry analysis was used to assist in the classification the material gradation within the borrow sources. Photographs were taken with 10-inch scaleballs placed on accessible talus and rock piles and were sent to Split Engineering for analysis. Finer grained soils sent for photogrammetry analysis were photographed with a ruler or tape measure as a scale. Relative hardness (strength) of the potential erosion protection materials encountered were obtained using a Schmidt rebound hammer. Erosion protection material samples were obtained at each potential borrow site in 5-gallon buckets. Samples of granular fill were obtained at each potential site in 1-gallon plastic bags. These samples were taken to the KP laboratory for additional testing.

Steep slopes, boulder fields with large voids and loose surface ground prohibited safe access in some potential site borrow areas. In these cases, an attempt was made to capture the general area with photographs and visually classify the material.

A summary of the sample inventory is presented in Appendix A - Table A.1. The samples were sent to KP's geotechnical laboratory in Denver, Colorado to coordinate with laboratories in the area for the following tests:

- Point Load ASTM D5731
- Micro-Deval ASTM D6928
- Magnesium Sulphate Soundness ASTM C88
- Specific Gravity and Absorption ASTM D6473

- X-Ray Diffraction (XRD)
- Modified Acid Base Accounting (ABA)
- Synthetic Precipitate Leaching Procedure (SPLP) EPA 1312
- Particle Size Analysis (PSA) ASTM D6913

Field Schmidt rebound hammer test values are summarized and presented in Appendix A - Table A.2. A summary of the approximate coordinates that bound each of the borrow sources investigated is included in Table A.3. A catalog of borrow assessment site visit photographs are presented in Appendix B.

2.0 POTENTIAL BORROW SOURCES FOR EROSION PROTECTION AND GRANULAR FILL

The following sections describe each of the assessed potential borrow sites. The boundaries of the potential borrow sources are denoted for each project location and borrow area on the respective area Figures below. The sites are classified as either a potential source for 'Erosion Protection Material' or 'Granular Fill'. Some borrow site locations are subdivided where the available material type and particle size differs significantly. Due to smaller gradations of clean rock found at some potential erosion protection borrow sites, and similarities between smaller particle size erosion protection, and desired bedding, the bedding materials were considered when assessing the erosion protection sites.

2.1 IRON GATE WORKER'S ACCOMMODATION AREA

The Iron Gate Worker's Accommodation borrow site is located on the right bank of the Klamath River approximately 1,000 ft downstream the Iron Gate dam. The material on the cut face to the north of the workers accommodation was the primary focus of the investigation, as shown in Figure 2.1, and comprised a potential granular fill potential source, with some limited erosion protection material present adjacent to a rock outcrop.

Granular fill potential source

- Observed gradation of the two Sub-Areas identified:
 - Sub-area 1: ~10% 2-ft minus material, ~35% 1-ft minus material, ~30% 6-inch minus material, ~20% sand, <5% minus No. 200 (plastic fines), approximately 590 yd² based on aerial imaging.
 - Sub-area 2: Rock outcrop and limited talus present. Not a significant source of erosion protection material by volume. Basalt, moderately weathered, angular, strong to very strong, breaks with moderate to hard strikes with rock hammer, Schmidt Hammer strength values ranging from 12 to 41 ksi with no apparent sulfide mineralization.
- Approximately 2 ft of finer material exists on the lower 10 ft of exposed slope face of both Sub-Areas.
 A Split-NET gradation analysis of this material is presented in Appendix C Figure C1. Results indicated a D₈₅ = 1.4", D₅₀ = 0.31" and D₁₅ = 0.03".
- Granular Fill sample IGW-GF1 was obtained along the toe of the slope for sieve analysis and soil classification. Results indicate clayey gravel and sand, highly plastic, which generally agrees with the Split-NET analysis. Results are presented in Section 3.2 and Appendix E.
- Erosion Protection sample IGWA-EP1 was obtained for laboratory testing but was not tested as this area was deemed not an adequate source of erosion protection.
- Road surfacing material generally 1.5 inch minus consisting of silty gravel with sand.
 - Approximate surface area and thickness of 1,100 yd², 0.1 ft, respectively.

Based on the results of the field assessment, there is potential for Sub-Area 1 to be processed to produce granular fill. The hillside would have to be mined further into the slope to generate larger quantities. There does not appear to be any surficial infrastructure or property boundary impediments to accomplishing this. This area is not considered an adequate source of erosion protection material.

Figure 2.1 Iron Gate Worker's Accommodation Potential Borrow Source

2.2 IRON GATE LAKEVIEW ROAD

The Iron Gate Lakeview Road borrow site is located adjacent to Lakeview Road, approximately 1,100 ft east of Lakeview Bridge as shown in Figure 2.2. The material primarily comprised smaller class erosion protection, or possibly bedding material.

Erosion protection potential source

- Basalt, slightly weathered, angular, very strong, difficult to break with rock hammer, Schmidt hammer strength values ranging from 16 to 33 ksi with no apparent sulfide mineralization.
- Very little organics are apparent, almost zero vegetation is in area.
- Observed Gradation: <1% 4-foot minus material, ~10% 2-ft minus, ~25% 1-ft minus, ~40% 6-inch minus, ~25% 3-inch minus.
- Three Split-NET gradation analyses were completed and are presented in Appendix C Figures C.2, C.3, and C.4. Results indicated a $D_{85} = 13.7$ ", $D_{50} = 7.1$ " and $D_{15} = 1.2$ "; a $D_{85} = 8.5$ ", $D_{50} = 3.25$ " and $D_{15} = 0.46$ "; and $D_{85} = 21.3$ ", $D_{50} = 4.1$ " and $D_{15} = 0.1$ ".
- Granular Fill sample LV-GF1 was obtained for sieve analysis and soil classification. Sample was taken from the existing lakeview road wearing course and shoulder. Results indicate a sand and gravel with trace silt. Results are presented in Section 3.2 and Appendix E.
- Erosion Protection sample IGLV-1 was obtained for laboratory testing. Results are presented in Section 3.1 and Appendix D.

- Borrow source surface area approximately 825 yd² based on aerial imaging.
- Assume excavation invert will be limited to the adjacent ditch line of road to avoid allowing water to pool.

Based on the results of the field assessment, the assessed area is appropriate for smaller size erosion protection or bedding material. The dashed area located to the east of the main borrow source may be suitable for use as granular fill, however a gradation of the material is difficult to estimate from a visual assessment without trenching or probing.

Figure 2.2 Iron Gate Lakeview Road Potential Borrow Source

2.3 IRON GATE DAM DOWNSTREAM FACE

The Iron Gate Dam Downstream Face has existing Erosion Protection placed from the dam crest to the fish hatchery at the dam toe. The dam face was sub-divided into three separate sub-areas based on the apparent surface erosion protection particle size, as shown on Figure 2.3.

Erosion protection potential source

- Basalt is slightly weathered, angular, very strong, and difficult to break with rock hammer; Schmidt hammer strength values range from 35 to 39 ksi with no apparent sulfide mineralization.
- Observed gradation of the three sub-areas assessed on the downstream face:
 - Sub-area 1: $D_{50} = \sim 28^{\circ}$, $D_{85} = 40^{\circ}$, approximately 2,980 yd² based on aerial imaging. Split-NET gradation analysis was completed and is presented in C.5. Results indicated a $D_{85} = 36^{\circ}$, $D_{50} = 18^{\circ}$ and $D_{15} = 3.4^{\circ}$.
 - Sub-area 2: $D_{50} = \sim 20^{\circ}$, approximately 1,950 yd² based on aerial imaging. Split-NET gradation analysis was completed and is presented in C.6. Results indicated a $D_{85} = 26^{\circ}$, $D_{50} = 12^{\circ}$ and $D_{15} = 1.4^{\circ}$, which were smaller than the observed average gradation.

- Sub-area 3: $D_{50} = \sim 9^{\circ}$, $D_{85} = 12^{\circ}$, $D_{15} = 3^{\circ}$ approximately 5,900 yd² based on aerial imaging. Split-NET gradation analysis was completed and is presented in C.7. Results indicated a $D_{85} = 10^{\circ}$, $D_{50} = 3.5^{\circ}$ and $D_{15} = 0.4^{\circ}$, which are smaller than the field observed average gradation.
- Erosion Protection sample IGDDS-1 was obtained for laboratory testing across lower half of embankment surface. Results are presented in Section 3.1 and Appendix D.
- The downstream dam face has a minimum erosion protection thickness of 5 ft, as per historic as-built drawing 5407-A-111.

The observed material quality and durability within all 3 sub-areas of the downstream shell are similar, however the material size varies across each sub-area. Sub-area 1 had the largest material, followed by Sub-areas 2, then Sub-area 3. Based field assessment results, this site can be used as a source for Erosion Protection of varying sizes.

Figure 2.3 Iron Gate Downstream Dam Face

2.4 COPCO NO. 1 ACCESS ROAD

The Copco No. 1 Access Road potential borrow source is located along the existing Copco No. 1 right bank access road and along the proposed future road alignment shown on drawing C2510. The access road construction will produce a surplus material, of which some is expected to be used as source of erosion protection or granular fill. This investigation, however, was limited to surface observations and was unable to ascertain the gradation and material type of the proposed bulk excavation. Two areas that had visible erosion protection material on surface were investigated, as shown on Figure 2.4.

Erosion protection potential source

- Fine-grained basalt, some vesicular, angular, lightly weathered, very strong, breaks with hard strikes from rock hammer, Schmidt hammer strength values ranging from 19 to 33 ksi with no apparent sulfide mineralization.
- Observed gradation of two Sub-areas assessed on the Copco No. 1 Access Road:
 - Sub-area 1: $D_{50} = \sim 15^{\circ}$, <10% 3-inch minus material, approximately 365 yd² based on aerial imaging.
 - Sub-area 2: Not considered an adequate source. Localized erosion protection material available.
- Two Split-NET gradation analyses were completed in Sub-area 1 and are presented in Appendix C -Figures C.8, and C.9. Results indicated a $D_{85} = 18^{\circ}$, $D_{50} = 9^{\circ}$ and $D_{15} = 1.6^{\circ}$, and a $D_{85} = 15^{\circ}$, $D_{50} = 7^{\circ}$ and $D_{15} = 1.8^{\circ}$, respectively, which are smaller than the field observed average gradation.
- Erosion Protection sample CRBR-1 obtained for laboratory testing in Sub-area 1. Results are presented in Section 3.1 and Appendix D.

Figure 2.4 Copco No. 1 Access Road Potential Borrow Source

Based on the results of the investigation, Sub-area 1 may be an acceptable source of small size Erosion Protection, Riverbed, or Bedding Material. The surface material at Sub-area 2 does not have adequate coverage of large sized rocks to be a reliable borrow source.

2.5 COPCO NO. 1 VILLAGE

Copco No. 1 Village potential borrow source is located the north of the Copco No. 1 Dam Right Abutment and lies adjacent to an existing historic borrow source, as shown in Figure 2.5. The material was assessed as a potential source of granular fill.

Granular fill potential source

- USCS, SC, 1 to $\frac{1}{2}$ " minus, silty sand and gravel. Two Split-NET gradation analyses were completed and are presented in Figures C.10, and C.11 in Appendix C. Results indicated a $D_{85} = 0.9$ ", $D_{50} = 0.2$ " and $D_{15} = 0.03$ ", and a $D_{85} = 0.6$ ", $D_{50} = 0.2$ " and $D_{15} = 0.03$ ", respectively.
- Granular Fill sample C1V-1 obtained for sieve analysis and soil classification. Results indicate a silty gravel with some sand, which agrees well with the Spilt-Net Analysis shown on Figure C.10. Results are presented in Section 3.2 and Appendix E.
- Approximately 2,070 yd² based on aerial imaging.

Area may be possible source for finer grained granular fill.

Figure 2.5 Copco No. 1 Village Potential Borrow Source

2.6 COPCO NO. 2 DOWNSTREAM RIGHT BANK

The Copco No. 2 downstream right bank potential borrow source is a talus slope located approximately 250 ft downstream of the Copco No. 2 diversion dam, as shown on Figure 2.6. The talus comprises erosion protection material.

Erosion protection potential source

- Fine-grained basalt, some vesicular, angular, slightly weathered, very strong, difficult to break with rock hammer, Schmidt hammer strength values ranging from 25 to 42 ksi with no apparent sulfide mineralization.
- Observed gradation: D₅₀ value ~ 48 inches, 20% 7-ft minus, 20% 5-ft minus ft, 50% 4-ft minus, 10% 1-ft minus.

- In the areas denoted by the orange boundaries in Figure 2.6, the D₅₀ was observed to be smaller, approximately 32" to 36".
- Two Split-NET gradation analyses were completed and are presented in Appendix C Figures C.12, and C.13. Results indicated a $D_{85} = 46$ ", $D_{50} = 32$ " and $D_{15} = 14$ ", and a $D_{85} = 44$ ", $D_{50} = 28$ " and $D_{15} = 5$ ", respectively. The results of the analysis are suspected to be smaller than the field observed gradations due to the inability to place both scaling balls in the photograph to account for depth of field.
- Erosion Protection sample C2DSR-1 obtained for laboratory testing. Results are presented in Section 3.1 and Appendix D.
- No Granular Fill samples obtained at this site.
- Approximately 3,000 yd² based on aerial imaging.

The material found within the right bank talus pile is among the largest onsite sized boulders available and is appropriate for the large erosion protection sizes specified at the Copco No. 1 and No. 2 locations.

Figure 2.6 Copco No. 2 Downstream Right Bank Potential Borrow Source

2.7 COPCO NO. 2 DOWNSTREAM LEFT BANK

The Copco No. 2 downstream left bank potential borrow source is a talus slope located approximately 300 ft downstream of the Copco No. 2 diversion dam, as shown on Figure 2.7. The talus comprises erosion protection material.

Erosion protection potential source

• Fine-grained basalt, some vesicular, angular, slightly weathered, very strong, difficult to break with rock hammer, Schmidt hammer strength values ranging from 23 to 25 ksi with no apparent sulfide mineralization.

- Observed Gradation: $D_{50} = 40^{\circ}$, general material is 6-ft minus.
- Two Split-NET gradation analyses were completed and are presented in Appendix C -Figure C.14 and C.15. Results indicated a $D_{85} = 44$ ", $D_{50} = 28$ ", and $D_{15} = 15$ ", and a $D_{85} = 60$ ", $D_{50} = 33$ ", and $D_{15} = 7.5$ ", respectively. The two photographs are of the same area but at different setback distances. Figure C.15 photograph was taken further back, and the results were closer to the field observed gradation.
- Erosion Protection sample C2LB-1 was obtained for laboratory testing. Results are presented in Section 3.1 and Appendix D.
- No Granular Fill samples was obtained at this site.
- Approximately 1,940 square yards based on aerial imaging.

The material found within the talus pile on the left bank is among the largest sized boulders available onsite and is appropriate for the large erosion protection classes specified at the Copco No. 2 location.

Figure 2.7 Copco No. 2 Downstream Left Bank Potential Borrow Source

2.8 COPCO NO. 2 WOOD-STAVE PENSTOCK

The Copco No. 2 Wood-Stave Penstock is located to the south of the Wood-Stave Penstock and Tunnel #2 Inlet Portal along the Copco No. 2 Water Conveyance system. The area has possibly been previously used as borrow source or material storage site. The area was divided into three distinct materials, as shown in Figure 2.8.

Granular fill potential source

- Three distinct materials, working west to east:
 - Sub-area 1: USCS, GC, 3-inch minus brown, clayey gravel with sand, occasional cobbles, approximately 990 yd² based on aerial imaging. A Split-NET gradation analysis was completed and is presented in C.16. Results indicated a $D_{85} = 1.25$ ", $D_{50} = 0.2$ " and $D_{15} = 0.01$ ".

- o Sub-area 2: USCS, GP, grey sandy gravel, approximately 230 yd² based on aerial imaging.
- Sub-area 3: USCS, GP, 6-inch minus, 75-80% passing 3-inch screen, 50% > 1.5 inches, 20% passing 1-inch screen, approximately 240 yd² based on aerial imaging. A Split-NET gradation analysis of Sub-Area 3 is presented in Appendix C Figure C.17. Results indicate a D₈₅ = 3.5", D₅₀ = 1.2" and D₁₅ = 0.14".
- Granular Fill samples C2WP-1, C2WP-2 AND C2WP-3 was obtained for sieve analysis and soil classification. Results indicate C2WP-1 is a clayey gravel with some sand, highly plastic, and both C2WP2 and C2WP-3 are gravel, which all agrees well with the Split-Net Analysis. Results are presented in Section 3.2 and Appendix E.
- The coarse material in Sub-area 2 and 3, as shown in Figure 2.9, appear to be remnants of processed material that was stockpiled in this area. Without further excavation into the slope the confirmed depth of this coarse material was limited to 2 ft.

Figure 2.8 Copco No. 2 Wood-Stave Penstock Potential Borrow Source

Figure 2.9 Wood-Stave Penstock Sub-Area 3 Coarse Granular Fill

2.9 J.C. BOYLE DOWNSTREAM OF DAM

The area directly downstream of the J.C. Boyle was assessed for possible sources of erosion protection material. Five distinct sub-areas were investigated, as shown in Figure 2.10.

Erosion protection potential source

- Coarse-grained basalt, some vesicular, angular, lightly weathered, very strong, difficult to break with most specimens requiring multiple blows from rock hammer, Schmidt hammer strength values ranging from 15 to 34 ksi with no apparent sulfide mineralization.
- Observed gradations for the five Sub-areas assessed downstream of the J.C. Boyle dam:
 - Sub-area 1: $D_{50} = -9$ ", $D_{max} = -3$ ft, -35% passing 6" screen, -20% waste, approximately 850 yd². Two Split-NET gradation analyses were completed and are presented in Appendix C - Figure C.18 and C.19. Results indicated a $D_{85} = 12$ ", $D_{50} = 2.4$ " and $D_{15} = 0.03$ ", and a $D_{85} = 26$ ", $D_{50} = 8.4$ " and $D_{15} = 0.03$ ", respectively.
 - Sub-area 2: $D_{50} = 24$ ", approximately 250 yd². A Split-NET gradation analysis was completed and is presented in Figure C.20, in Appendix C. Results indicated a $D_{85} = 33$ ", $D_{50} = 19$ " and $D_{15} = 4$ ".
 - Sub-area 3: not a significant source of material.
 - Sub-area 4: not a significant source, localized piles of approximately $D_{50} = 36$ " material (see Figure 2.11).
 - o Sub-area 5: $D_{50} = 24$ ", $D_{max} = 48$ ", approximately 2,020 yd² based on aerial imaging.
- Erosion Protection sample JCBEP-1 obtained for laboratory testing.
- No Granular Fill samples obtained at this site.

• The downstream dam face (Sub-area 1) has a minimum erosion protection thickness of 2 ft, as per historic as-built drawing AA 78084.

Figure 2.10 J.C. Boyle Downstream of Dam Potential Borrow Source

Figure 2.11 Sub-area 4 Downstream, Left Slope coarse particles are scattered and bedded

2.10 J.C. BOYLE FOREBAY

The granular surfacing material at the J.C. Boyle Forebay access road and parking area was identified as a possible granular fill source for the access road realignment. The areas shown in Figure 2.12 were assessed.

Potential granular fill source

- Road course and parking lot generally 1-inch nominal with trace cobbles and boulders, zero to low plasticity, silty sand, and gravel, black in color when moistened. A Split-NET gradation analysis was completed and is presented in Appendix C Figure C.21. Results indicated a D₈₅ = 0.75", D₅₀ = 0.2" and D₁₅ = 0.02".
- Approximately 0.2 ft in depth within gravel surfacing.
- Material adjacent to road covered areas, gravel with sand, 10-20% cobbles, low to medium plasticity, likely oxidized native material, reddish brown in color when moistened. Material with similar properties exists in access roads below road surfacing gravel (See Figure 2.13).
- Road surfacing area is approximately 2,800 square yards based on aerial imaging, however due to limited thickness of the pavement, there is limited salvageable road coarse material.
- No samples were obtained in this area.

Figure 2.12 J.C. Boyle Forebay Potential Borrow Source

Figure 2.13 Evidence of little to no gravel surfacing along access roads. Coarse fraction in subgrade include cobble to boulder sized particles

2.11 J.C. BOYLE POWERHOUSE

The material adjacent to the J.C. Boyle Powerhouse and Penstocks was assessed to determine if any significant volume of areas of possible granular fill or erosion protection materials were present. The area was sub-divided based on material type, as shown in Figure 2.14.

Potential granular fill source

- Sub-area 1: Variable material, typically clayey sand, and gravel to clayey gravel with sand, 1-foot minus with boulders and cobbles. Localized concentrated cobble to boulder sized particles present on surface adjacent to road (see JCB Powerhouse Photo 11 in Appendix B). Localized pile was analyzed using Split-NET, as shown in Appendix C Figure C.22. Results indicated a D₈₅ = 14", D₅₀ = 8." and D₁₅ = 1.5".
- Sub-area 2: Road surfacing gravel nominal size nominal 1-inch; grey sandy gravel; 0.05 to 0.1 ft. in thickness, approximately 3,700 yd², however due to limited thickness of the pavement, there is limited salvageable road coarse material. A Split-NET analysis was complete on the road material, as shown in Appendix C Figure C.23, however the large cobbles in the top of created unrepresentative results.

Figure 2.14 J.C. Boyle Powerhouse

Figure 2.15 J.C. Boyle Powerhouse Road Surfacing Material

3.0 LABORATORY RESULTS

3.1 EROSION PROTECTION

A series of standard laboratory testing was completed to help determine the suitability of the various erosion protection potential borrow sources. The tests focused on the durability, strength, clay content and geochemistry and are discussed in the sections below.

3.1.1 DURABILITY AND STRENGTH TESTING

Durability and Strength testing was completed by Advance Terra Testing and Kumar and Associates in Denver Colorado. Tests were completed to compare the potential borrow source material with the recommended durability and strength limits for erosion protection material, as provided in the National Cooperative Highway Research Program Report 568 (NCHRP, 2006), which are as follows:

- Specific Gravity > 2.50
- Absorption < 1% (average)
- Magnesium Sulphate Soundess < 17.5% Loss
- Micro-Deval (for riverine applications) < 20% Loss

Results from the laboratory testing are summarized below in Table 3.1 and are presented in Appendices D1, D2 and D3.

Sample Location and Testing ID	Correlated UCS from Micro-Deval Point Load (% Loss) (ksi) ¹		Magnesium Sulphate Soundness (% Loss)	Apparent Specific Gravity ²	Absorption ² (%)	
	ASTIVI D5731	ASTIVI DO920	ASTIVI COO	ASTIVI D0473	ASTIVI D0473	
Face (IGDDS)	8 – 48 (Avg = 27)	8.3	0.15	2.80	0.31	
Iron Gate Lakeview Road (IGLV)	2 – 34 (Avg = 21)	15.7	3.19	2.81	0.74	
Copco No. 1 Access Road (CRBR)	25 – 41 (Avg = 33)	10.6	0.86	2.81	0.69	
Copco No. 2 Downstream	6 – 42	31.3	34.3	0.00	0.02	
Right Bank (C2DSR)	(Avg = 31)	55.3	55.7	2.83	0.63	
Copco No. 2 Downstream Left bank (C2LB)	15 – 23 (Avg = 17)	12.7	1.02	2.76	1.60	
J.C. Boyle Downstream of Dam (JCBEP)	7 – 48 (Avg = 33)	16.1	2.65	2.67	0.73	

Table 3.1 Erosion Protection Material Durability and Strength Laboratory Testing Results

NOTES:

- 1. UCS VALUES CALCULATED USING BIENIAWSKI (1975) CORRECTED POINT LOAD STRENGTH INDEX (I_{S(50)}) CORRELATION. ALL TESTS INCLUDED IN RANGE, SEE TABLE A.4 FOR A FULL SUMMARY OF RESULTS. AVERAGE VALUES REPORTED IN TABLE REMOVE THE TWO HIGHEST AND TWO LOWEST VALUES COLLECTED FROM THE POINT LOAD TESTS PER SAMPLE LOCATION.
- 2. SIX SPECIMENS WERE TESTED PER SAMPLE LOCATION, THE HIGHEST AND LOWEST VALUES WERE REMOVED TO CALCULATE THE PRESENTED AVERAGES. SEE TABLE A.5 FOR FURTHER DETAILS.

In general, the erosion protection material tested meets all recommendations except for two samples, which are discussed below. The correlated UCS strengths based on the point load tests varied greatly, which is

typical. The averages do not account for the different failure modes reported in Table A.4 and in Appendix D1. Without unconfined compressive tests to correlated results or a larger testing sample base, these values should be considered approximate and only used for classifying the rock mass, which is considered to be 'Strong' rock based on the test results. The Schmidt hammer predicted strengths on the PLT samples were found to be typically higher than the actual results.

Unacceptable degradation was reported in the first sample sent for magnesium sulphate soundness and micro-deval testing for Copco No. 2 Downstream Right Bank, so a second test was completed, which confirmed the results. It is suspected this sample is not representative of the durable basalt observed in this location. The observed durability is supported by the results of the point load, specific gravity, and absorption tests completed on other specimens from the same location. Pumice and other altered rocks with excessive voids and vugs exist within the talus slopes and it is assumed one of these rocks of lesser quality was used for the durability tests. Operators will have to avoid the lower quality rocks when selecting pieces for erosion protection. To ensure the borrow source is acceptable, additional testing should be completed on more representative samples of the basalt once the contractor has access to the site.

The average absorption on the Copco No. 2 Left Bank is higher than the recommended 1%. According to the NCHRP report, however, other jurisdictions suggest an absorption up to 2% is acceptable. The higher absorption may also be caused by similar issues with altered basalt and the presence of vugs in some rocks, which based on photographs occur on the left bank, similar to the right bank. Given the results of the other tests and the low consequence environment, and the possibility of a lower quality sample, this material is deemed acceptable for use. Lower quality rocks will have to be avoided when selecting erosion protection material from this borrow source. Additional testing should be considered on better representative samples once the contractor has access to the site.

3.1.2 X-RAY DEFRACTION ANALYSIS

XRD tests were completed by The Mineral Lab, in Golden Colorado, on samples from each of the six erosion protection potential borrow sources. The results are provided in Appendix D4. The XRD tests determined the clay content in each sample and the breakdown of different types of clay. The primary concern for clay content is smecite clay, which in high concentrations can indicate a propensity for the erosion protection to degrade.

All samples had less than 1% clay content, and a smectite specific content ranging from 0 to 0.2%. This low presence of clay and smectite in the samples is not a concern for rock degradation.

3.1.3 GEOCHEMICAL TESTING

The six erosion protection potential borrow sources samples were tested to determine if the proposed material has adverse geochemical constituents for in-water placement. The samples were tested at ACZ Laboratories in Steamboat Springs, Colorado. Testing included Modified Acid Base Accounting and the Synthetic Precipitate Leaching Procedure (SPLP) (EPA 1312). SPLP was used to determine if the samples were A) acid generating, and B) if the samples leached metals of concern that could potentially affect the use of the material.

Results of the laboratory test are included in Appendix D5. The laboratory testing concluded that none of the samples were acid generating and in fact had excess neutralization potential indicating that the samples will not readily leach metals. The SPLP leachate analyses support this with pHs ranging from 7.97-8.89, indicating readily soluble neutralizing minerals. There was a small amount of aluminum leached from all the

samples in the milligram per liter range (low of 0.58 mg/L with a high of 1.48 mg/L). However, at the pHs measured in the SPLP leachates the aluminum is in particulate not dissolved form, as dissolved aluminum only occurs at these concentrations at pH less than 4. No other metals or metalloids were present in the leachates at levels of concern.

3.2 **GRANULAR FILL**

PSA and Atterberg limits tests for overburden grab samples taken from each of the granular fill potential borrow sources were completed by KP in Elko, Nevada. The results are presented in Appendix E1 and are summarized in Table 4.3. The PSA results have been compared below on Figure 3.1 through Figure 3.3 to the relevant project granular fill material types as shown on Drawing G0050. The project material types that the samples are interpreted to fall within the gradation limits of, or close to, are summarized in Table 4.3 and discussed in Section 4.2.

Figure 3.1 Granular Fill PSA Results Compared to Pipe Zone, Structural Fill and Select Fill

Figure 3.2 Granular Fill PSA Results Compared to General Fill

Figure 3.3 Granular Fill PSA Results Compared to Bedding Material

Knight Piésold

4.0 CONCLUSIONS

4.1 EROSION PROTECTION AND BEDDING MATERIAL

A summary of the potential erosion protection, and bedding material identified onsite at the investigated potential borrow sources is included below in Table 4.1. The table includes an approximate gradation of the material, surficial area of the source and an assumed depth of material. The following assumptions were used to determine the depth of each of the sources:

- Iron Gate Downstream Face: Historic construction drawings (5407-A-111).
- Iron Gate Lakeview Road: Assumed invert excavation limit equal to ditch adjacent to road.
- Copco No. 1 Access Road: Visual assessment.
- Copco No. 2 Downstream Right Bank: Visual assessment.
- Copco No. 2 Downstream Left Bank: Visual assessment.
- J.C. Boyle Downstream Dam Sub-area 1: Historic construction drawings (AA 78084) and historic photographs.
- J.C. Boyle Downstream Dam Sub-areas 2 and 5: Visual Assessment.

The approximate gradations in Table 4.1 were selected based on the observed and field measured particle sizes. Split-NET results were considered when selecting a representative gradation, however, were in general found to produce smaller gradations than what was observed in the field, and therefore the results were not taken verbatim.

The suitability of the erosion protection material at the borrow sites has mostly been validated through laboratory testing. Some additional testing is required at Copco No. 2 Downstream Right and Left Bank, as discussed in Section 3.1.1 to clarify some abnormal results.

Borrow Source	Approximate Gradation	Surface Area (yd²) ¹	Assumed Depth (yd)	Expected Volume (CY)
Iron Gate Dam Downstream Face Sub-area 1 Figure 2.3	D ₅₀ = 28" D ₈₅ = 40"	2,980	1.67	4,400 - 4,800
Iron Gate Dam Downstream Face Sub-area 2 Figure 2.3	D ₅₀ = 20"	1,950	1.67	2,900 - 3,200
Iron Gate Dam Downstream Face Sub-area 3 Figure 2.3	$D_{15} = 3"$ $D_{50} = 9"$ $D_{85} = 12"$	5,900	1.67	9,000 - 9,800
Iron Gate Lakeview Road Figure 2.2	$D_{15} = 1"$ $D_{50} = 6"$ $D_{85} = 14"$	825	2 – 4	1,600 – 3,200
Copco No. 1 Access Road Sub-area 1 Figure 2.4	$D_{15} = 3"$ $D_{50} = 15"$ $D_{85} = 28"$	365	0.5 – 2	200 – 700
Copco No. 2 Downstream Right Bank Figure 2.6	$D_{15} = 36"$ $D_{50} = 48"$ $D_{85} = 72"$	3,000	2-5	9,000 - 18,000 ²
Copco No. 2 Downstream Left Bank Figure 2.7	$D_{15} = 12"$ $D_{50} = 40"$ $D_{85} = 60"$	1,940	1 – 3	$2,000 - 6,000^2$
J.C. Boyle Downstream of Dam Sub-area 1 Figure 2.10	$D_{15} = 1"$ $D_{50} = 9"$ $D_{85} = 20"$	850	0.5 – 2	500 – 1,500
J.C. Boyle Downstream of Dam Sub-area 2 Figure 2.10	$ \begin{array}{r} D_{15} = 8" \\ D_{50} = 24" \\ D_{85} = 36 \end{array} $	250	0.5 – 1.5	150 - 400
J.C. Boyle Downstream of Dam Sub-area 5 Figure 2.10	$D_{50} = 24$ "	2,020	0.5 – 1.5	1,000 – 1,500

Table 4.1 Identified Erosion Protection Borrow Sources Summary

NOTES:

1. SURFACE AREAS CALCULATED THROUGH GOOGLE EARTH PROJECTIONS.

2. TO ACHIEVE THE UPPER VOLUME ESTIMATIONS OF CERTAIN SIZE MATERIAL THE CONTRACTOR MAY NEED TO EXCAVATE FURTHER DOWNSTREAM INTO ADJACENT TALUS PILES.

Table 4.2 presents a summary of the required erosion protection, riverbed and bedding material volumes required at each of the dam sites. All bedding material may require some site processing to achieve the proper gradation. Some of the smaller class erosion protection may require site processing. The 'Adequate Source Volume' commentary considers the source material gradation, the required gradation of fill, and the lower bound volumes to conclude if there is adequate borrow material volumes present to fulfill the design volume requirements.

Та	bl	4	2
10	IN IN		

Erosion Protection Requirements by Dam Site

Material Type	Design D₅₀ (in)	Neat Line Required Volume (CY)	Anticipated Borrow Source	Adequate Source Volume
J.C. Boyle				
Erosion Protection - E7a	D ₅₀ = 9	630	JCB Downstream Dam Sub-Area 2 JCB Downstream Dam Sub-Area 5	Yes
Bedding – E8		630	JCB Downstream Dam Sub-Area 1 JCB Downstream Dam Sub-Area 5	Yes
Bedding – E6		200	JCB Downstream Dam Sub-Area 1 with site processing	Yes
Copco No. 1				
Erosion Protection – E7	$D_{50} = 60$	1,190	Copco No. 2 Downstream Right Bank	Yes ¹
Copco No. 2				
Riverbed Material ²		3,640	Copco No. 2 Downstream Right Bank Copco 1 Access Road Sub-Area 1	Yes ¹
Erosion Protection – E7	D ₅₀ = 21	1,190	Copco No. 2 Downstream Right Bank Copco No. 2 Downstream Left Bank	Yes ¹
Erosion Protection – E7	D ₅₀ = 42	2,120	Copco No. 2 Downstream Left Bank	Yes ¹
Bedding – E8		600	Iron Gate Downstream Dam	Yes
Iron Gate				
Erosion Protection – E7a ³	D ₅₀ = 9	2,450	IG DS Dam Face Sub-Area 2 IG DS Dam Face Sub-Area 3	Yes
Erosion Protection – E7b ³	D ₅₀ = 21	2,450	IG DS Dam Face Sub-Area 1	Yes
Bedding – E6		500	Iron Gate Lake View Road IG DS Dam Face Sub-Area 3 with site processing	Yes

NOTES

1. PENDING EXPANSION OF WORK LIMITS FROM 60% DESIGN.

2. SEE DRAWING C3234 FOR A DESCRIPTION OF RIVERBED MATERIAL. MATERIAL NOT LIMITED TO BE SOURCED FROM THE ANTICIPATED BORROW SOURCES LISTED IN THE TABLE. MAY ALSO COME FROM OTHER SOURCES NOT CONSIDERED IN THIS LETTER.

3. VOLUME ONLY INCLUDES EROSION PROTECTION TO BE PLACED ON NATIVE GROUND AND EXCLUDES EROSION PROTECTION PLACED IN DISPOSAL SITES.

4.2 **GRANULAR FILL**

A summary of the granular fill potential borrow source is presented below in Table 4.3. Possible fill types are based on the gradation plots shown in Section 3.2. Material types that may be possible with some processing are denoted in the table, however, it is at the contractor's discretion if processing material is a viable option. The values in Table 4.3 should be considered preliminary and approximate. The site investigation was limited to surficial investigations only and without the ability to complete more extensive subsurface investigations at each of the borrow sources, the information collected is considered high level and may not be representative of the entire borrow source.

The following assumptions were used to determine the area and depth of each of the sources:

- Iron Gate Downstream Workers Accommodation: Assumed based on geometry of slope.
- Copco No. 1 Village: Assumed based on geometry of area and an assumed excavation cut of 1.5H:1V.

- Wood-Stave Penstock Sub-area 1: Modelled volume, as shown on drawing C3300.
- Wood-Stave Penstock Sub-area 2 and 3: Visual Assessment.
- J.C. Boyle Forebay Area: Visual Assessment.
- J.C. Boyle Powerhouse Area Sub-area 1: Assume minimal excavation will occur on steep slopes. Due to the large footprint and variability in surficial material, assume only 50% of area is viable borrow material.
- J.C. Boyle Powerhouse Area Sub-area 2: Visual Assessment.

Note that the sample from Lakeview road is not reported below as it was sourced from the road wearing course and shoulder, which is not expected to be a borrow source.

Borrow sources selected for inspection were based on direction from Kiewit. The granular fill sites selected for inspection represent a limited number of the potential borrow sources on site and does not include other areas that have been investigated for separate geotechnical site investigations. Additional sites could be investigated if material types and quantities required for the project are not covered by the materials in Table 4.3 below.

Table 4.3	Identified Granular Fill Potential Borrow Sources Summary
-----------	---

Borrow Source	Visual USCS Description	PSA Results ¹	Surface Area (yd²)²	Assumed Depth (yd)	Expected Volume (CY)	Possible Fill Types
Iron Gate Dam Workers Accommodation Sub-area 1 & 2 Figure 2.1	Boulders and Cobbles, some Gravel and Sand, trace fines	IGWA-GF1 G: 40% S: 35% F: 25% PL: 25 LL: 59	590	0.67 - 1	400 - 600	E2* E3* E4* E9
Copco No. 1 Village Figure 2.5	Silty Sand and gravel	C1V-1 G: 56% S: 20% F: 24% PL: 30 LL: 34	2,070	3 - 6	6,000 – 12,000	E2* E4* E9
Copco No. 2 Wood-Stave Penstock Sub- area 1 Figure 2.8	Clayey Gravel, some Sand, trace Cobbles	C2WP-1 G: 62% S: 15% F: 23% PL: 21 LL: 52	990	volume based on modelled excavation on C3300	2,860	E4* E9
Copco No. 2 Wood-Stave Penstock Sub- area 2 Figure 2.8	Sandy Gravel	C2WP-2 G: 99% S: 1% F: 0%	230	0.5 – 1	120 – 230	E6 E9
Copco No. 2 Wood-Stave Penstock Sub- area 3 Figure 2.8	Sandy Gravel	C2WP-3 G: 100% S: 0% F: 0%	240	0.5 – 1	120 – 240	E6 E9
J.C. Boyle Forebay Area Figure 2.12	Silty Sand and Gravel	-	2,800	0.2	560	E2+ E3+ E4+ E9+
J.C. Boyle Powerhouse Sub-area 1	Clayey Gravel, some Sand	JCBP-GF2 +3": 26% G: 47% S: 14% F: 13% PL: 20 LL: 33	3,500	0.5 - 1	1,750 – 3,500	E4* E9
J.C. Boyle Powerhouse Sub-area 2	Gravel	JCBP-GF1 G: 91% S: 8% F: 1% PL: NP LL: NP	3,700	0.05 – 0.1	190 – 370	E6 E9

NOTES:

1. PARTICLE SIZE ANALYSIS (PSA) LIMITED TO 3-INCH MINUS MATERIAL.

2. SURFACE AREAS CALCULATED THROUGH GOOGLE EARTH PROJECTIONS.

3. ** DENOTES FILL WOULD REQUIRE PROCESSING TO ACHIEVE GRADATION LIMITS.

4. '+' DENOTES POSSIBLE FILL TYPE BASED ON VISUAL DESCRIPTION.

4.3 SCOPE OF REPORTING AND FUTURE WORK

The scope of this site investigation was to determine if there were surficial borrow sources close to the dam sites that could produce the material required for the project, primarily the erosion protection material. The

site investigation was not intended to fully quantify the potential borrow areas and this summary does not address subsurface in situ material. Ground disturbance was limited to collection of free and loose material at the surface either by hand. Topographical data was not collected other than obtaining GPS coordinates while sampling. The estimates provided are based on visual observations, aerial imaging and historic drawings and photographs, and the accuracy of the presented gradations and volumes must reflect these limitations. KP recommends that narrow and focused investigations be conducted within the actual potential borrow sources Kiewit is proposing to use. This will increase confidence for volumes and gradations available at each site. KP has not assessed the feasibility of each site beyond establishing the material type and approximate gradation. Borrow source access, cultural resources and slope stability concerns were not considered in this analysis.

5.0 CLOSURE

We trust the information contained herein meets your needs at this time. Please contact any of the undersigned if you have any questions or comments.

Yours truly, Knight Piésold	
Prepared: For: E	Curg Afra Brad Hill Prepared: Curg Afra For: Samuel Bush
Reviewed:	Cory Vos Reviewed: Morman Bishop
	Approval that this document adheres to the Knight Plesold Quality System:
Attachments:	
Appendix A	Report Tables
Appendix B	Site Photographs
Appendix C	Split-NET Analysis Results
Appendix D	Erosion Protection Laboratory Results
Appendix E	Granular Fill Particle Size Analysis and Atterberg Limit Laboratory Results

References:

Google Earth, 2020. Imagery taken from Google Earth Pro, https://earth.google.com.

National Cooperative Highway Research Program (NCHRP) 2006, *Report 568 Riprap Design Criteria, Recommended Specifications and Quality Control,* Transportation Research Board, Washington, D.C.

Copy To:

Erik Esparza, Gary Jara

APPENDIX A

Report Tables

(Tables A.1 to A.5)

KIEWIT INFRASTRUCTURE WEST CO. KLAMATH RIVER RENEWAL PROJECT

ONSITE BORROW SOURCE SITE INVESTIGATION SAMPLE SUMMARY

								Pfifit Aug/06/20 14:38:22		
Location	Sample ID	Sample	Potential	Sample Type	No. of Biocos	Approx.	PLT	Notos		
Location	Sample ID	Erosion	Granular	Sample Type	NO. OF FIECES	Weight, Ibs	Samples	NOICS		
				J.C. Boyle						
Downstream of Dam	JCBEP-1	х		EP	4	230	3	Sampled from Sub-Area 2		
Powerhouse Area	JCBP-GF1		x	SD	2	12	-	Sampled from Sub-Area 1		
Powerhouse Area	JCBP-GF2		х	LD	1	40	-	Sampled from Sub-Area 2		
				Copco No. 1						
Access Road	CRBR-1	х		EP	4	230	3	Sampled from Sub-Area 1		
Copco Village	C1V-1		х	SD	3	20				
	Copco No. 2									
Downstream Right Bank	C2DSR-1	х		EP	4	230	3			
Downstream Left Bank	C2LB-1	х		EP	4	230	3			
Wood-Stave Pennstock	C2WP-1		x	SD	3	20	-	Brown overburden Sampled from Sub- Area 1		
Wood-Stave Pennstock	C2WP-2		х	LD	1	40	-	Grey 1 inch minus Sampled from Sub- Area 2		
Wood-Stave Pennstock	C2WP-3		x	LD	1	40	-	Brown 3 inch minus Sampled from Sub-Area 3		
				Iron Gate						
Dam Downstream Face	IGDDS-1	Х		EP	4	230	3	Sampled from Sub-Areas 1 and 2		
Lakeview Road	LV-GF1		x	LD	1	40	-	Sampled from road surface		
Lakeview Road	IGLV-1	х		EP	4	230	3	Sampled from west area		
Worker's Accommodation Area	IGW-GF1		x	LD	1	40	-	Sampled from Sub-Area 1		
Worker's Accommodation Area	IGWA-EP1	x		EP	4	230	3	Sampled from Sub-Area 2		
TOTAL					41	1862	21			

\\knightpiesold.local\VA-Prj\$1\03\00640\01\A\Correspondence\7_Letter\2020\VA20-01037 - VE Onsite Borrow Source S\Rev B\Appendix A\{On Site Material Investigation Tables.xlsx]Table A1

NOTES:

SD: BAG SAMPLE

 B
 036AUG'20
 ISSUED WITHLETTER VA20-01037
 BH
 CAV

 REV
 DATE
 DESCRIPTION
 PREP'D
 RVW'D

KIEWIT INFRASTRUCTURE WEST CO. KLAMATH RIVER RENEWAL PROJECT

ONSITE BORROW SOURCE SITE INVESTIGATION SCHMIDT HAMMER SUMMARY

Print Aug/06/20 14:38:								
Location	ion Schmidt Hammer Readings (R)		eadings	Average R	Bulk Specific Gravitv ¹	UCS² (MPa)	UCS (ksi)	Notes
					J.C. Boy	le		
	52	52	56	53	2.67	168	24	Readings taken on boulders in field
Downstream of Dam	58	58	56	57	2.67	207	30	Readings taken on boulders in field
	58	58	60	59	2.67	231	34	Readings taken on boulders in field
Downstream of Dam	48	52	50	50	2.67	143	21	Readings taken on PLT sample JCB-1
	50	54	52	52	2.67	159	23	Readings taken on PLT sample JCB-2
	46	45	45	45	2.61	104	15	Readings taken on PLT sample JCB-3
		•	•	•	Copco No	o. 1	•	· · · · · · · · · · · · · · · · · · ·
	45	46	46	46	2.81	130	19	Readings taken on boulders in field
	50	53	52	52	2.81	182	26	Readings taken on boulders in field
Right Bank Road-	55	60	52	56	2.81	228	33	Readings taken on boulders in field
	54	56	50	53	2.78	185	27	Readings taken on PLT sample CRBR-1
• • • • • • • • • • • • • • • • • • • •	50	52	60	54	2.81	204	30	Readings taken on PLT sample CRBR-2
	52	52	50	51	2.81	172	25	Readings taken on PLT sample CRBR-3
					Copco No	o. 2		
	49	50	54	51	2.83	174	25	Readings taken on boulders in field
	54	54	60	56	2.83	230	33	Readings taken on boulders in field
Right Bank	50	52	54	52	2.83	184	27	Readings taken on boulders in field
Downstream	52	51	56	53	2.83	195	28	Readings taken on PLT sample C2DSR-1
	52	51	54	52	2.80	182	26	Readings taken on PLT sample C2DSR-2
	60	58	61	60	2.83	288	42	Readings taken on PLT sample C2DSR-3
	48	48	55	50	2.76	157	23	Readings taken on boulders in field
	52	54	48	51	2.76	166	24	Readings taken on boulders in field
Left Bank Downstream	48	54	50	51	2.76	166	24	Readings taken on boulders in field
	55	60	58	58	2.49	172	25	Readings taken on PLT sample C2LB-1
	48	52	50	50	2.76	157	23	Readings taken on PLT sample C2LB-2
	48	50	56	51	2.79	166	24	Readings taken on PLT sample C2LB-3
	50	EE	57	57	Iron Ga	041	25	Poodings taken en boulders in field
	59 55	55	57 61	57	2.80	241	35	Readings taken on boulders in field
	55	50	57	50	2.00	204	37	Readings taken on boulders in field
	01	00	57	59	2.00	209		Readings taken on PLT sample IGDDS-1. Results
Downstream Face	62	58	66	62	2.80	318	46	from PLT suggest strength is too high, will discount readings
	62	66	66	65	2.76	359	52	from PLT suggest strength is too high, will discount
	62	68	68	66	2.80	398	58	Readings taken on PLT sample IGDDS-3. Results from PLT suggest strength is too high, will discount
	52	51	50	51	2 81	172	25	readings Readings taken on boulders in field
	56	59	58	57	2.81	241	35	Readings taken on boulders in field
	59	61	54	57	2.81	241	35	Readings taken on boulders in field
Lakeview Road	58	56	54	56	2.70	206	30	Readings taken on PLT sample IGLV-1
	52	58	55	55	2.81	215	31	Readings taken on PLT sample IGLV-2
	57	61	66	61	2.81	301	44	Readings taken on PLT sample IGLV-3
	54	58	56	56	2.80 ³	228	33	Readings taken on boulders in field
	44	46	41	43	2.80 ³	110	16	Readings taken on boulders in field
Workers	40	40	41	40	2.80 ³	93	13	Readings taken on boulders in field
Accommodation Area	41	43	46	43	2.80 ³	110	16	Readings taken on PLT sample IGW-1
	33	34	32	36	2.80 ³	75	11	Readings taken on PLT sample IGW-2
	53	53	50	52	2.80 ³	182	26	Readings taken on PLT sample IGW-3
\\knightpiesold.local\VA-Pri\$\1	1\03\00640\01\/	A\Corresponden	ce\7 Letter\202	0\VA20-01037 - V	E Onsite Borrow Se	ource SI\Rev B\An	nendix A\[On Site	Material Investigation Tables xIsx1Table A2

NOTES:

1. ROCK SPECIFIC GRAVITIES ARE BASED ON AVERAGE VALUES PRESENTED IN TABLE 3.1, EXCEPT WHERE A SPECIFIC GRAVITY RESULT IS AVAILABLE FOR A PLT SAMPLE.

2. UCS VALUES CALCULATED USING BARTON ET AL. (1974) REBOUND NUMBER AND SPECIFIC GRAVITY CORRELATIONS.

В	036AUG'20	ISSUED WITH LETTER VA20-01037	BH	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

KIEWIT INFRASTRUCTURE WEST CO. KLAMATH RIVER RENEWAL PROJECT

ONSITE BORROW SOURCE SITE INVESTIGATION APPROXIMATE LOCATIONS OF POTENTIAL BORROW SOURCES

Print Aug/06/20 14:38:22 Approximate Coordinates¹ **KRRP** Site **Borrow Source Location** Easting (m)³ Northing (m)³ 4,663,768 578,560 Downstream of Dam 578,479 4,663,895 576,909 4,660,758 J.C. Boyle Powerhouse Area 576,735 4,660,551 577,477 4,661,017 Forebay Area 577,615 4,660,968 554,895 4,647,654 Right Bank Access Road 554,969 4,647,702 Copco No. 1 4,647,886 554,951 Copco No. 1 Village 554,970 4,647,839 554,587 4,647,744 Downstream Right Bank 554,647 4,647,714 554,602 4,647,642 Copco No. 2 Downstream Left Bank 554,540 4,647,595 553,628 4,647,420 Wood-Stave Penstock 553,622 4,647,446 4.642,682 546,702 Dam Downstream Face 546,690 4,642,644 4,642,152 546,511 Iron Gate Lakeview Road 546,649 4,642,174 546,391 4,642,438 Workers Accommodation Area 546,458 4,642,453

\\knightpiesold.local\VA-Prj\$\1\03\00640\01\A\Correspondence\7_Letter\2020\VA20-01037 - VE Onsite Borrow Source SI\Rev B\Appendix A\[On Site Material Investigation Tables.xlsx]Table A3

NOTES:

1. COORDINATES TAKEN FROM GOOGLE EARTH BASED ON BORROW SOURCE LOCATION FIGURES PRESENTED IN VA20-00737.

2. UTM ZONE 10 T

В	036AUG'20	ISSUED WITH LETTER VA20-01037	BH	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

KIEWIT INFRASTRUCTURE WEST CO. KLAMATH RIVER RENEWAL PROJECT

ONSITE BORROW SOURCE SITE INVESTIGATION SUMMARY OF POINT LOAD TESTING RESULTS

						Direction of		Corrected	Correlated	Print Aug/06/20 14:38:22										
Sample Location	Specimen	Schmidt Hammer Rebound	Laboratory Specific Gravity ¹	Approximate Compressive Strength (ksi)²	Test	Load with Respect to Fracture	Failure Mode	Point Load Strength Index I _{s(50)} (psi)	Unconfined Compressive Strength ³ (ksi)	Unconfined Compressive Strength ⁴ (ksi)										
					PLT-11	Normal	Substance	1953	48											
	PLT1	62	2.80	46	PLT-12	Normal	Substance	1146	30											
			2.00		PLT-13	Normal	Combination	1574	39	_										
					PLT-14	Normal	Combination	659	17											
IGDDS	PLT2	65	2.76	52	PLT-21	Parallel	Combination	1217	32	27										
			-	-	PLT-22	Parallel	Combination	1192	31											
					PLT-31	Parallel	Combination	702	18											
	PLT3	66	2.80	58	PLT-32	Parallel	Combination	481	12											
					PLT-33	Parallel	Combination	297	8											
					PLT-11	Normal	Substance	527	16											
	PLT1	56	2.70	30	PLT-12	Parallel	Combination	234	6											
					PLT-13	Parallel	Combination	76	2											
					PLT-21	Normal	Combination	1120	26											
IGLV					PLT-22	Normal	Substance	494	13	21										
	PLT2	55	2.81	31	PLT-23	Normal	Combination	292	7											
					PLT-24	Normal	Combination	1177	31											
					PLT-25	Normal	Combination	1285	34											
	PLT3	61	2.81	44	PLT-31	N/A	Substance	1174	32											
	PI T1	53	2 78	27	PLT-32	N/A Normal	Substance	1128	29											
		- 55	55	2.70	21	PLT-21	Normal	Combination	1622	36										
					PLT-22	Normal	Combination	1424	33											
		54			PLT-23	Normal	Substance	1256	32											
CRBR	PLT2		2.81	27	PLT-24	Parallel	Combination	1234	32	33										
					PL1-25 PLT-26	Parallel	Combination	1398	34											
					PLT-27	Parallel	Combination	1694	41											
					PLT-28	Parallel	Combination	1340	33											
	PLT1	53	53	53	53	53	53	53	53	53					PLT-11	Normal	Substance	1681	41	
											2.83	28	PLT-12	Normal	Combination	763	18	-		
										PLT-13	Normal	Combination	1615	42	-					
					PLT-14	Normal	Combination	1631	40											
C2DSR	PLT2	52	52	52	52				PLT-21	Normal	Combination	289	7	- 31						
						2.80	26	PLT-22	Normal	Combination	244	6	_							
					PLT-23	Normal	Combination	791	20											
					PLT-31	Normal	Combination	1673	38											
	PLT3	60	2.83	42	PLT-32	Normal	Combination	1112	27											
					PLT-33	Normal	Combination	1540	41											
					PLT-11	Normal	Combination	595	16											
	PLT1	58	2.49	25	PLT-12	Normal	Combination	683	18											
					PLI-13	Normal	Combination	742	20											
					PLI-14	Normal	Combination	646	17											
C2LB	PLT2	50	2.76	23	PL1-21	Parallel	Combination	815	21	17										
					PLI-22	Parallel	Combination	766	18											
					PLI-31	Normal	Combination	688	18											
	PLT3	51	2.76	24	PL1-32	Normal	Combination	000	15											
					PL1-33	Normal	Combination	803 655	23											
		 			PL1-34 PLT-11	Normal	Combination	1887	48											
	0.7	50	0.07	<u>.</u>	PLT-12	Normal	Combination	1660	38											
	PLT1	50	2.67	21	PLT-13	Normal	Substance	1632	39											
					PLT-14	Normal	Substance	1434	36											
JCBEP					PLT-21	Normal	Combination	1706	36	33										
	PLT2	52	2.67	23	PLT-22	Normal	Substance	1266	28											
					PLT-24	Parallel	Fracture	1117	23											
	PLT3	45	2.61	15	PLT-31	Parallel	Fracture	332	7											
					PLT-32	Normal	Combination	995	21											

NOTES:

1. ROCK SPECIFIC GRAVITIES ARE BASED ON AVERAGE VALUES PRESENTED IN TABLE 3.1, EXCEPT WHERE A SPECIFIC GRAVITY RESULT IS AVAILABLE FOR A PLT SAMPLE.

2. UCS VALUES CALCULATED USING BARTON ET AL. (1974) REBOUND NUMBER AND SPECIFIC GRAVITY CORRELATIONS.

3. UCS VALUES CALCULATED USING BIENIAWSKI (1975) CORRECTED POINT LOAD STRENGTH INDEX ($I_{S(50)}$) CORRELATION.

4. AVERAGE UCS VALUES DO NOT INCLUDE THE TWO HIGHEST AND TWO LOWEST VALUES REPORTED FOR A SAMPLE LOCATION.

В	036AUG'20	ISSUED WITH LETTER VA20-01037	BH	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

KIEWIT INFRASTRUCTURE WEST CO. KLAMATH RIVER RENEWAL PROJECT

ONSITE BORROW SOURCE SITE INVESTIGATION SUMMARY OF SPECIFIC GRAVITY AND ABSORPTION RESULTS

Print Aug/06/20 14:38:22

Erosion Protection Sample	Parameter (Unit)	Sample ID ^{1,2}							Average of All Samples	Adjusted Average (Without Highest and Lowest	
		Α	В	С	D	E	PLT-1	PLT-2	PLT-3		Values)
JCBEP-1	Absorption (%)	0.41	0.42	1.81	1.24	0.37	-	-	0.84	0.85	0.73
	Specific Gravity	2.657	2.66	2.721	2.728	2.659	-	-	2.611	2.69	2.67
CRBR-1	Absorption (%)	0.91	1.04	0.39	0.42	0.71	0.71	-	-	0.70	0.69
	Specific Gravity	2.868	2.858	2.783	2.749	2.831	2.777	-	-	2.81	2.81
C2DSR-1	Absorption (%)	0.14	0.73	2.15	0.51	0.64	-	0.64	-	0.83	0.63
	Specific Gravity	2.82	2.843	2.809	2.837	2.845	-	2.796	-	2.83	2.83
C2LB-1	Absorption (%)	0.71	1.57	1.24	0.71	2.86	2.86	-	-	1.66	1.60
	Specific Gravity	2.795	2.793	2.804	2.779	2.681	2.491	-	-	2.72	2.76
IGDDS-1	Absorption (%)	0.25	0.24	0.31	0.20	0.43	-	0.43	-	0.29	0.31
	Specific Gravity	2.805	2.797	2.794	2.801	2.796	-	2.765	-	2.80	2.80
IGLV-1	Absorption (%)	0.26	0.62	0.39	0.30	1.66	1.66	-	-	0.82	0.74
	Specific Gravity	2.813	2.831	2.793	2.793	2.823	2.698	-	-	2.79	2.81

\knightpiesold.local\VA-Prj\$\1\03\00640\01\A\Correspondence\7_Letter\2020\VA20-01037 - VE Onsite Borrow Source SI\Rev B\Appendix A\[On Site Material Investigation Tables.xlsx]Table A5

NOTES:

1. HIGHEST AND LOWEST VALUES FOR EACH SAMPLE LOCATION HAVE BEEN HIGHLIGHTED GREY

2. SAMPLE ID PER ATT TESTING LABORATORY REPORT PRESENTED IN APPENDIX D2.

В	036AUG'20	ISSUED WITH LETTER VA20-01037	NWR	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

APPENDIX B

Site Photographs

(Pages B-1 to B-94)

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT J.C. BOYLE DAM-DOWNSTREAM

Photo No. 1.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, spillway, photo facing north.	

Photo No. 2. Date: May 6, 2020

Description: J.C. Boyle Dam – Downstream, spillway, photo facing north.

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT J.C. BOYLE DAM-DOWNSTREAM

Photo No. 3.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, photo facing north.	

Photo No. 4.
Date: May 6, 2020
Description: J.C. Boyle Dam – Downstream, photo facing southeast.

Photo No. 5.		
Date: May 6, 2020	*	
Description: J.C. Boyle Dam – Downstream, photo facing northeast.		

Photo No. 6.	
Date: May 6, 2020	
Description:	
Downstream, spillway.	
photo facing east.	

Photo No. 7.	
Date: May 6, 2020	
Description:	
J.C. Boyle Dam –	
Downstream, spillway,	
photo facing east.	
	The second s

Photo No. 8.
Date: May 6, 2020
Description
J.C. Boyle Dam –
Downstream, spillway,
photo facing east.

Photo No. 9.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, spillway, photo facing east.	

Photo No. 10. Date: May 6, 2020 Description: J.C. Boyle Dam –

J.C. Boyle Dam – Downstream, spillway, photo facing east.

Photo No. 11.		
Date: May 6, 2020	A REAL PROPERTY AND A REAL PARTY AND A REA	
Description: J.C. Boyle Dam – Downstream, spillway, photo facing east.		

Photo No. 12.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, spillway, photo facing east.	

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT

J.C. BOYLE DAM-DOWNSTREAM

Photo No. 13.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, photo facing east.	

Photo No. 14.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, photo of workplan figure.	

Knight Piesold

Iron Gate:

Dam Downstream Face – Erosion Protection Material (PacifiCorp Property)

- Lakeview Road Erosion Protection Material (PacifiCorp Property) 4 Worke
- ation Area Granular Fill Material (PacifiCorp Property)

Photo No. 15.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, photo facing south.	

Photo No. 16.
Date: May 6, 2020
Description: J.C. Boyle Dam – Downstream, photo facing west.

Photo No. 17.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, photo facing west.	

Photo No. 18.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, photo facing east.	

Date: May 6, 2020 Description: J.C. Boyle Dam – Downstream, photo facing north.
Description: J.C. Boyle Dam – Downstream, photo facing north.
J.C. Boyle Dam – Downstream, photo facing north.
facing north.
and a state of the

Photo No. 20.
Date: May 6, 2020
Description:
J.C. Boyle Dam – Downstream.

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT

J.C. BOYLE DAM-DOWNSTREAM

Photo No. 21.	
Date: May 6, 2020	AT A SHARE AND
Description: J.C. Boyle Dam – Downstream, photo facing north.	

Photo No. 22. Date: May 6, 2020 Description: J.C. Boyle Dam – Downstream, photo facing east.

Photo No. 23.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, photo facing east.	

Photo No. 24.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream.	

Photo No. 25.	the state of the second s
Date: May 6, 2020	
Description:	
J.C. Boyle Dam –	
Downstream.	
	the second se
	and the second
	A CARLES AND A CAR

Photo No. 26.
Date: May 6, 2020
Description:
Downstream, photo
facing north.

Photo No. 27.	
Date: May 6, 2020	
Description: J.C. Boyle Dam – Downstream, tape measure for scale.	

Photo No. 28. Date: May 6, 2020 Description: J.C. Boyle Dam – Downstream, photo facing north.

Photo No. 1.	
Date: May 6, 2020	and an and the second second
Description: J.C. Boyle Bridge, photo facing west.	

Photo No. 2. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing east.

Photo No. 3.	
Date: May 6, 2020	The American American
Description: J.C. Boyle Bridge, photo facing northwest.	

Photo No. 4. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing north.

Photo No. 5.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing norhtwest.	
	There are a second and the

Photo No. 7.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing northeast.	

Photo No. 8. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing northwest.

Photo No. 9.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo acing south.	

Photo No. 10. Date: May 6, 2020 Description:

J.C. Boyle Bridge, photo facing north.

Photo No. 11.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, old timber abutment.	

Photo No. 13.	
Date: May 6, 2020	
	A STREET OF SHORE AND AND A
Description:	
J.C. Boyle Bridge, photo	
facing west.	
	Sanda and the second states of the second states of the second states of the second states of the second states

Photo No. 14. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing northwest.

Photo No. 15.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing northwest.	

Photo No. 16.	
Date: May 6, 2020	
Description:	
J.C. Boyle Bridge.	

Photo No. 17.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing northwest.	

Photo No. 18. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing northwest.

Photo No. 19.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing northwest.	

Photo No. 20. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing northwest.

Photo No. 21.	
Date: May 6, 2020	LAN AND CONTRACTOR
Description: J.C. Boyle Bridge, photo facing west.	

Photo No. 22. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing west.

Photo No. 23.	
Date: May 6, 2020	
Description:	
J.C. Boyle Bridge.	
	and the second of the second o

Photo No. 24. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing southwest.

Photo No. 25.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing southwest.	

Photo No. 26. Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing southwest.	

Photo No. 27.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing west.	

Photo No. 28. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing west.

KLAMATH RIVER RENEWAL PROJECT J.C. BOYLE BRIDGE

Photo No. 29.	
Date: May 6, 2020	
Description: J.C. Boyle Bridge, photo facing northeast.	

Photo No. 31.	
Date: May 6, 2020	A Contraction of the second
Description: J.C. Boyle Bridge, old timber abutment.	

Photo No. 32. Date: May 6, 2020 Description: J.C. Boyle Bridge, photo facing northeast.

Photo No. 33.	
Date: May 6, 2020	The state of the second
Description: J.C. Boyle Bridge, photo facing northwest.	

Photo No. 34.
Date: May 6, 2020
Description: J.C. Boyle Bridge.

Photo No. 35.	
Date: May 6, 2020	
Description:	
J.C. Boyle Bridge, photo	
facing northwest.	
	HI SA BOORDO
	and the second

Photo No. 1.	
Date: May 6, 2020	
Description: J.C. Boyle Powerhouse, photo facing east.	

Photo No. 2. Date: May 6, 2020 Description: J.C. Boyle Powerhouse, photo facing southwest.

Photo No. 3.	the second of the second of the second se
Date: May 6, 2020	
Description: J.C. Boyle Powerhouse, photo facing northeast.	

Photo No. 4.
Date: May 6, 2020
Description: J.C. Boyle Powerhouse, photo facing east.

Photo No. 5.	
Date: May 6, 2020	
Description: J.C. Boyle Powerhouse, photo facing west.	

Photo No. 6.
Date: May 6, 2020
Description: J.C. Boyle Powerhouse, photo facing east.

Photo No. 7.	
Date: May 6, 2020	
Description: J.C. Boyle Powerhouse,	

Photo No. 8. Date: May 6, 2020 Description: J.C. Boyle Powerhouse, road wearing course, tape measure for scale.

Photo No. 9.	1 - Shall you want to be a start of the
Date: May 6, 2020	The second and the second of the
Description:	
J.C. Boyle Powerhouse,	
berm at side of road, tape	
measure for scale.	

Photo No. 10.					
Date:	May 6, 2020				

Description: J.C. Boyle Powerhouse, slope north of road, tape measure for scale.

Photo No. 11.	State of the second
Date: May 6, 2020	
Description:	
J.C. Boyle Powerhouse,	
toe of slope north of road.	
	The second s

Photo No. 12. Date: May 6, 2020

Duit	may	0, 202	•		
Description:					

J.C. Boyle Powerhouse, toe of slope north of road, photo facing west.

PHOTOGRAPHIC RECORD

KLAMATH RIVER RENEWAL PROJECT J.C. BOYLE POWERHOUSE

Photo No. 13.	
Date: May 6, 2020	
Description:	
J.C. Boyle Powerhouse,	
parking area.	
	ALL AND A REAL AND A

Photo No. 14.	
Date: May 6, 2020	
Description: J.C. Boyle Powerhouse, parking area.	

	1
Date: May 6, 2020	
Description:	Second Second
photo facing northeast.	
	N
manner & J	

Photo No. 16. Date: May 6, 2020 Description: J.C. Boyle Powerhouse,

sample of berm north of road.

Photo No. 17.	
Date: May 6, 2020	
Description: J.C. Boyle Powerhouse, sample of road wearing course.	

Photo No. 18. Date: May 6, 2020 Description: J.C. Boyle Powerhouse, photo facing east.

Photo No. 19.	
Date: May 6, 2020	
Description:	
J.C. Boyle Powerhouse,	
slope north of road.	
	ANTERNA AREA AND AND AND AND AND AND AND AND AND AN

Photo No. 20. Date: May 6, 2020 Description: J.C. Boyle Powerhouse, photo facing northeast.

Photo No. 21.	
Date: May 6, 2020	
Description:	
J.C. Boyle Powerhouse,	
photo facing northeast.	
	A CONTRACTOR OF THE PARTY OF TH
	IN FROM PERSONNEL
	Name of the state

Photo No. 22.	
Date: May 6, 2020	
	
J.C. Boyle Powerhouse, photo facing east.	

Photo No. 1.	
Date: May 5, 2020	A AND PERMIT
Description:	
Copco 1 Right Bank road – Zone 1	

Photo No. 2. Date: May 5, 2020 Description: Copco 1 Right Bank road – Zone 1

Photo No. 3.	
Date: May 5, 2020	
Description:	
Copco 1 Right Bank road	

Photo No. 4.	
Date: May 5, 2020	
Description:	
Copco 1 Right Bank road	

Photo No. 5.	1
Date: May 5, 2020	
Description:	
Copco 1 Right Bank road – Zone 2	

Photo No. 6.	
Date: May 5, 2020	
Description: Copco 1 Right Bank road – Zone 2	

Photo No. 7.		Harrison Mar Harrison
Date: May 5, 2020		
Description:		1 Martin Part
Copco 1 Right Bank road – Zone 2	AUS	
		ST SEC

Photo No. 8.	
Date: May 5, 2020	
Description:	
Copco 1 Right Bank road – Zone 2, toe of slope	

Photo No. 9.	
Date: May 5, 2020	
Description:	
Copco 1 Right Bank	
road	
	A CONTRACT AND A CONTRACT

Date: May 5, 2020
Description:
Copco 1 Right Bank road

Photo No. 11.	
Date: May 5, 2020	
Description:	
Copco 1 Right Bank road – Schmidt hammer testing	

Photo No. 12.

Date: May 5, 2020

Description:

Copco 1 Right Bank road – Point Load Testing (PLT) samples

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT COPCO 1 VILLAGE

Photo No. 1.	
Date: May 5, 2020	
Description:	administrated a second
Copco 1 Village facing NE	

Photo No. 2.	
Date: May 5, 2020	
Description:	
Conco 1 Village	
Copeo i village	
	and the second
	Land and the state of the state
	and the second sec

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT COPCO 1 VILLAGE

Photo No. 3.	
Date: May 5, 2020	
Description:	
Copco 1 Village	
the state of the s	
No	

Photo No. 1.	
Date: May 5, 2020	
Description:	
Copco 2, Right Bank Downstream	

Photo No. 2. Date: May 5, 2020 Description: Copco 2, Right Bank Downstream

Photo No. 3.	
Date: May 5, 2020	
Description:	
Copco 2, Right Bank Downstream	

Photo No. 4.	
Date: May 5, 2020	
Description:	
Copco 2, Right Bank Downstream	

Photo No. 5.	
Date: May 5, 2020	
Description:	
Copco 2, Right Bank Downstream	

Photo No. 6. Date: May 5, 2020 Description:

Copco 2, Right Bank Downstream – facing WNW

Photo No. 7.	Security and the second second
Date: May 5, 2020	
Description:	
Copco 2, Right Bank Downstream	

Photo No. 8. Date: May 5, 2020 Description: Copco 2, Right Bank Downstream – PLT sample 1

Photo No. 9.	
Date: May 5, 2020	
Description:	
Copco 2, Right Bank Downstream – PLT sample 2	

Date: May 5, 2020 Description: Copco 2, Right Bank Downstream – PLT sample 3

Photo No. 10.

Photo No. 11.	
Date: May 5, 2020	
	COPCO ROAD NO.2 RULL BANK DOWNSTRAM
Description:	Point Load Tests
Copco 2, Right Bank Downstream – All 3 PLT samples	T, Z, IS P, Z, DSR-PIES P, Z

Photo No. 1.	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Date: May 5, 2020	
Description:	
Copco 2, Left Bank Downstream – PLT sample 1	

Photo No. 2. Date: May 5, 2020 Description: Copco 2, Left Bank Downstream – PLT sample 2

Photo No. 3.	in the second se
Date: May 5, 2020	
Description:	
Copco 2, Left Bank Downstream – PLT sample 3	COLORET, 3 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1

Photo No. 4. Date: May 5, 2020 Description: Copco 2, Left Bank Downstream – PLT samples 1-3

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT

COPCO 2 WOOD-STAVE PENSTOCK

Date: May 5, 2020 Description: Copco 2 wood-stave Penstock – Zone 1	Photo No. 1.		
Description: Copco 2 wood-stave Penstock – Zone 1	Date: May 5, 2020		
Copco 2 wood-stave Penstock – Zone 1	Description:	the second	A CONTRACT OF
Penstock – Zone 1	Copco 2 wood-stave		
	Penstock – Zone 1		

Photo No. 3.	していていていていていてい
Date: May 5, 2020	
Description:	
Copco 2 wood-stave	
Penstock – Zone 3	

Photo No. 4.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave Penstock - Overview	

Photo No. 5.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave Penstock	

Photo No. 6.	
Date: May 5, 2020	
Description:	
Copco 2 wood-stave Penstock – Zone 2	

Photo No. 7.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave	A CONTRACT OF A
Penstock	

Photo No. 8. Date: May 7, 2020 Description: Copco 2 wood-stave Penstock – above Zone 1 looking west

Photo No. 9.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave	
Penstock	

Photo No. 10.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave	
Penstock -	
panorama	

Photo No.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave Penstock	

Photo No. 11.
Date: May 7, 2020
Description:
Copco 2 wood-stave Penstock – facing east

Photo No. 12.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave Penstock – facing west across upper part of Zone 1	1
	1

Photo No. 13.	
Date: May 7, 2020	
Description:	And the second sec
Copco 2 wood-stave Penstock	

Photo No. 14.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave	
Penstock	

Photo No. 15.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave Penstock	

PHOTOGRAPHIC RECORD

KLAMATH RIVER RENEWAL PROJECT COPCO 2 WOOD-STAVE PENSTOCK

Photo No. 16.	
Date: May 7, 2020	
Description:	
Copco 2 wood-stave Penstock - panorama	

Photo No. 1.	
Date: May 4, 2020	
Description:	States and the states
Iron Gate DS Dam Shell – center of embankment	

Photo No. 2.
Date: May 4, 2020
Description:
Iron Gate DS Dam Shell

The Short are with the short of the
TOLE TOLE DE TRANSFE
the state of the second second

Photo No. 4. Date: May 4, 2020

Description:

Iron Gate DS Dam Shell – west groin area

Photo No. 5.	4	
Date: May 4, 2020	A STATE AND A	
Description:	CONTRACTOR OF	
Iron Gate DS Dam Shell – entrance road access		

Photo No. 6.	
Date: May 4, 2020	
Description:	
Iron Gate DS Dam Shell – facing north onto embankment downstream face	

Photo No. 7.	
Date: May 4, 2020	
Description:	5/4/20
Iron Gate DS Dam	IGDAS-3
Shell – PLT sample	PLT
	Contraction and a second se
	3 4 5 6 0 are 7 8 9 10 1

Photo No. 8.	
Date: May 4, 2020	
Description:	
Iron Gate DS Dam Shell – PLT sample	

Photo No. 9.	and the second sec
Date: May 4, 2020	
Description:	
Iron Gate DS Dam Shell – PLT sample	S/4/20 TGDDS-1 PLT PLT CDDDS CDDS CDDS CDDS CDDS CDDS CDDS CD

Photo No. 10. Date: May 7, 2020 Description: Iron Gate DS Dam Shell – along crest facing east

Photo No. 11.	
Date: May 7, 2020	
	Carlos and a second sec
Description:	Monitoria and And And
Iron Gate DS Dam Shell	

Photo No. 12.	
Date: May 7, 2020	
Description:	
Iron Gate DS Dam Shell	

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT IRON GATE DS DAM SHELL

Photo No. 13.	
Date: May 7, 2020	and the second
Description:	
Iron Gate DS Dam Shell – facing downstream	

Photo No. 14. Date: May 7, 2020 Description: Iron Gate DS Dam Shell – Embankment crest looking west

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT IRON GATE DS DAM SHELL

Photo No. 15.	
Date: May 7, 2020	
Description:	
Iron Gate DS Dam Shell – facing west along crest	

Photo No. 16.	
Date: May 7, 2020	
Description:	
Iron Gate DS Dam Shell	

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT IRON GATE DS DAM SHELL

Photo No. 17.	
Date: May 7, 2020	
Description:	
Iron Gate DS Dam	
Shell – Zone 3,	
facing east	

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT IRON GATE-LAKEVIEW ROAD

Photo No. 1.	
Date: May 4, 2020	
Description: Iron Gate – Lakeview Road PLT sample.	

Photo No. 2. Date: May 4, 2020 Description: Iron Gate – Lakeview Road PLT sample.

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT IRON GATE-LAKEVIEW ROAD

Photo No. 3.	and the second se
Date: May 4, 2020	
Description: Iron Gate – Lakeview Road PLT sample.	
	R=61
	IGLV-3
	and the second and the

Photo No. 4. Date: May 4, 2020

Description: Iron Gate – Lakeview Road Erosion Protection samples.

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Date: May 4, 2020 Description: Iron Gate Workers Accommodation Area, facing north.	Photo No. 1.	
Description: Iron Gate Workers Accommodation Area, facing north.	Date: May 4, 2020	
	Description: Iron Gate Workers Accommodation Area, facing north.	

Photo No. 2. Date: May 4, 2020 Description: Iron Gate Workers Accommodation Area, facing east.

PHOTOGRAPHIC RECORD KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 3.	
Date: May 4, 2020	
Description: Iron Gate Workers Accommodation Area, material at toe of slope.	

Photo No. 4.	
Date: May 4, 2020	
Description:	
Iron Gate Workers	
Accommodation Area	
erosion protection	
samples.	

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 5.	A Martin and a second s
Date: May 4, 2020	
Description: Iron Gate Workers Accommodation Area, obtaining Schmidt Hammer reading.	

Photo No. 6. Date: May 4, 2020 Description: Iron Gate Workers Accommodation Area PLT sample.

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 8.	
Date: May 4, 2020	
Description: Iron Gate Workers Accommodation Area PLT sample.	

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 9.	
Date: May 4, 2020	
Description: Iron Gate Workers Accommodation Area PLT sample.	

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 11.	
Date: May 7, 2020	
Description: Iron Gate Workers Accommodation Area, road wearing course.	

Photo No. 12.

Date: May 7, 2020

Description: Iron Gate Workers Accommodation Area, face of slope.

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 13.		
Date: May 7, 2020	2	
	A Calo	
Description:		
Accommodation Area.		
facing north.		
		and the second
		A De State
		Real Contraction
		STATISTICS AND AND

Photo No. 14. Date: May 7, 2020 Description: Iron Gate Workers Accommodation Area, facing north.

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 15.	A A A A A A A A A A A A A A A A A A A
Date: May 7, 2020	Type When We are
Description: Iron Gate Workers Accommodation Area, face of slope.	I Roh GATE Workers Accounterman ARCA 5 17/2020

Photo No. 16. Date: May 7, 2020 Description:

Iron Gate Workers Accommodation Area, facing east.

KLAMATH RIVER RENEWAL PROJECT IRON GATE WORKERS ACCOMMODATION AREA

Photo No. 17.	
Date: May 7, 2020	
Description: Iron Gate Workers Accommodation Area, facing west.	

Photo No. 18.

Date: May 7, 2020

Description: Iron Gate Workers Accommodation Area, face of slope.

Photo No. 1.	it is the second s
Date: May 6, 2020	
Description:	
Forebay road surface at entrance	

Photo No. 2.
Date: May 6, 2020
Description:
Forebay road surface at entrance

Photo No. 3.	
Date: May 6, 2020	
Description:	
Forebay road surface	

Photo No. 4.	
Date: May 6, 2020	
Description:	
Forebay entrance	

Photo No. 5.	
Date: May 6, 2020	
Description:	
Forebay road surface	

Photo No. 6.	
Date: May 6, 2020	
Description:	
Forebay area	

FOREBAY

Photo No. 7.	
Date: May 7, 2020	A State Creat
Description:	
Forebay road surface	

Photo No. 8.	
Date: May 6, 2020	
Description:	A CALL AND AND A
Forebay road surface	

Photo No. 9.	
Date: May 6, 2020	
Description:	
Forebay road surface – Dmax view	

Photo No. 11.	
Date: May 6, 2020	
Description:	
Forebay road surface –	
Northern portion of site	
access road	
	the second s
	the start of the second second
	The second s

Photo No. 12. Date: May 6, 2020 Description: Forebay road surface – exposed native soils on right side of photo

APPENDIX C

Split-NET Analysis Results

(Figures C.1 to C.23)

Size[in]	% Passing
75	100.00
50	100.00
25	100.00
15	100.00
10	100.00
8	100.00
6	100.00
4	100.00
2	93.67
1	76.83
0.75	69.19
0.5	60.10
0.38	54.11
0.25	45.18
0.19	39.64
0.08	26.91

% Passing	Size[in]
F10	0.01
F20	0.04
F30	0.10
F40	0.19
F50	0.31
F60	0.50
F70	0.77
F80	1.13
F90	1.67
Topsize (99.95%)	3.41

1. TAPE MEASURE FOR SCALE

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

Size[in]	% Passing
75	100.00
50	100.00
25	100.00
15	90.06
10	66.92
8	55.01
6	44.65
4	35.04
2	21.81
1	13.56
0.75	11.12
0.5	8.41
0.38	6.90
0.25	5.21
0.19	4.26
0.08	2.34

% Passing	Size[in]
F10	0.64
F20	1.76
F30	3.19
F40	4.95
F50	7.07
F60	8.84
F70	10.53
F80	12.46
F90	14.98
Topsize (99.95%)	22.57

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

<u></u>	a .	1
Size[in]	% Passing	
75	100.00	
50	100.00	
25	100.00	
15	98.25	
10	90.77	
8	83.61	
6	72.16	
4	56.15	
2	37.46	
1	24.75	
0.75	20.83	
0.5	16.32	Γ
0.38	13.72	
0.25	10.74	
0.19	9.01	
0.08	5.33	

% Passing	Size[in]
F10	0.22
F20	0.70
F30	1.38
F40	2.23
F50	3.25
F60	4.45
F70	5.70
F80	7.26
F90	9.73
Topsize (99.95%)	19.06

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

	-			-	
		% Passing	Size[in]		
		F10	0.02		
		F15	0.09		
		F20	0.23		
		F30	0.87		
		F40	2.24		
		F50	4.06		
		F60	6.25		
		F70	10.92		
		F80	18.59		
		F85	21.26		
		F90	24.22		
		Topsize (99.95%)	32.75		
	100				
(%)	90				
	80 70				
	60				
assing	50				
Ę					

1. SCALE BALL SIZE = 10"

2. ANALYSIS CONDUCTED BY SPLIT ENGINEERING

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

100.00 100.00

91.05

74.14

68.87 65.37

58.99

49.71 38.49

31.36

28.71

25.34

23.19

20.45

18.70

14.33

		1
ize[in]	% Passing	
75	100.00	
50	96.80	
25	68.09	
15	45.28	
10	33.75	
8	28.54	
6	23.00	
4	16.95	
2	10.06	
1	5.97	
0.75	4.80	
0.5	3.54	
0.38	2.84	
0.25	2.09	
0.19	1.68	
0.08	0.87	

% Passing	Size[in]
F10	1.98
F15	3.40
F20	4.98
F30	8.55
F40	12.63
F50	16.99
F60	21.20
F70	25.99
F80	32.05
F85	35.96
F90	40.61
Topsize (99.95%)	65.36

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

				Sizelin
				75
				50
				25
				15
				8
				6
				4
				0.75
	SE SAR			0.5
	2 A A A A	W Startin		0.38
			2	0.23
		And Albert		0.08
	Store 1		per the second particular	-
		and the second		
	South N		A Digen	1
1		Sa Master		
7 4 10 10			A AN	e S
		- Aller		
			K. 24	
	all the second		346	
		A-1 0		
	58 - J	Real Man		5
		Store A	AND	£
				2
			The state of the second	
		A 1/		
J. J.	TRANS AND PARTY	1	4	-
1 Martin Martin		A dia		

% Passing	Size[in]
F10	0.20
F15	0.41
F20	0.68
F30	1.40
F40	2.34
F50	3.48
F60	4.78
F70	6.48
F80	8.57
F85	9.69
F90	11.05
Topsize (99.95%)	18.66

% Passing 100.00 100.00

> 100.00 97.89 86.27 77.39 67.51 54.36 36.69 24.82 21.09 16.76 14.23 11.30

> > 9.57 5.84

NOTES:

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

Size[in]	% Passing
75	100.00
50	100.00
25	95.98
15	77.28
10	56.17
8	47.08
6	39.30
4	29.52
2	18.09
1	11.07
0.75	9.03
0.5	6.77
0.38	5.51
0.25	4.13
0.19	3.35
0.08	1.80

% Passing	Size[in]
F10	0.87
F20	2.31
F30	4.09
F40	6.15
F50	8.67
F60	10.82
F70	13.09
F80	15.81
F90	20.02
Topsize (99.95%)	34.58

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

Size[in]	% Passing
75	100.00
50	100.00
25	99.82
15	86.61
10	65.63
8	54.14
6	42.07
4	29.83
2	16.40
1	9.01
0.75	7.02
0.5	4.94
0.38	3.85
0.25	2.71
0.19	2.11
0.08	0 00

% Passing	Size[in]
F10	1.13
F20	2.52
F30	4.03
F40	5.62
F50	7.32
F60	9.00
F70	10.82
F80	13.07
F90	16.16
Topsize (99.95%)	25.37

1. SCALE BALL SIZE = 10"

В	06AUG'20	SSUED WITH LETTER TB		TB CAV	
REV	DATE	DESCRIPTION	PREP'D	RVW'D	

% Passing	Size[in]
F10	0.01
F15	0.03
F20	0.05
F30	0.09
F40	0.15
F50	0.22
F60	0.29
F70	0.40
F80	0.65
F85	0.85
F90	1.07
Topsize (99.95%)	1.98

1. STANDARD TAPE MEASURE FOR SCALE

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

% Passing	Size[in]
F10	0.01
F15	0.03
F20	0.04
F30	0.08
F40	0.13
F50	0.19
F60	0.26
F70	0.34
F80	0.46
F85	0.59
F90	0.88
Topsize (99 95%)	2.64

1. STANDARD TAPE MEASURE FOR SCALE

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

. I	-	140	of	376
U	-	140	UI.	510

3. DL		LARGE PARTICLE SIZES OF THE F	ROCKS	, BOT	H SCALING BALLS COULD NOT BE SHOWN IN THE PHOTOGRAPHS SENT FOR ANALYSIS. THE RESULTING ANALYSIS
THE	REFORE	APECTED TO PRODUCE AN ARTIFI		Y SIVIA	LEER PARTICLE SIZE CURVE DUE TO AN INABILITY TO DETERMINE THE DEPTH OF FIELD.
В	06AUG'20	ISSUED WITH LETTER	TB	CAV	
REV	DATE	DESCRIPTION	PREP'D	RVW'D	

1. SCALE BALL SIZE = 10" 2. ANALYSIS CONDUCTED BY SPLIT ENGINEERING

NOTES:

		二方家	21 HAR
	all desi	的中心的	Try P.
South State	A CAR	an ju a	
CONT	tire per 1	Contra a	and and
		2000	CRE K
AL.	100		
1273	Val Ste		12A
1A	11 . S.	No Aceta	1 Mart
	C.A.	ALL AND	1
	A A		11
17 1			
			1
V			
and the			13 h
			the second
2		Change -	· ·
-			A A A A A A A A A A A A A A A A A A A

Size[in]	% Passing
75	100.00
50	91.83
25	30.04
15	14.50
10	10.67
8	9.27
6	7.92
4	5.67
2	2.80
1	1.39
0.75	1.04
0.5	0.69
0.38	0.51
0.25	0.34
0.19	0.25
0.08	0.10

% Passing	Size[in]
F10	9.03
F20	19.81
F30	24.98
F40	28.85
F50	32.34
F60	35.88
F70	39.68
F80	44.02
F90	48.86
Topsize (99.95%)	58.83

REV	DATE	DESCRIPTION	PREP'D	RVW'D	
В	06AUG'20	ISSUED WITH LETTER	TB	CAV	
THE	REFORE E	EXPECTED TO PRODUCE AN ARTIF	ICIALL	Y SMA	LLER PARTICLE SIZE CURVE DUE TO AN INABILITY TO DETERMINE THE DEPTH OF FIELD.
3. D	UE TO THE	E LARGE PARTICLE SIZES OF THE F	ROCKS	, BOT	H SCALING BALLS COULD NOT BE SHOWN IN THE PHOTOGRAPHS SENT FOR ANALYSIS. THE RESULTING ANALYSI
2. A	NALYSIS C	ONDUCTED BY SPLIT ENGINEERIN	IG		

1. SCALE BALL SIZE = 10"

NOTES:

The states of th
the second state of the second state of the
Provent Provent April 200 - 10 - 10
A REAL AND ALLER
· · · · · · · · · · · · · · · · · · ·
the state of the s
the set of the second of the
STATISTICS AND A STATISTICS

Size[in]	% Passing	
75	100.00	
50	93.97	
25	47.08	
15	31.32	
10	23.41	
8	20.57	
6	18.09	
4	15.44	
2	9.59	
1	5.95	
0.75	4.88	
0.5	3.68	
0.38	3.02	
0.25	2.28	
0.19	1.86	
0.08	1.02	

% Passing	Size[in]
F10	2.13
F20	7.57
F30	14.17
F40	20.86
F50	26.54
F60	31.36
F70	35.74
F80	40.92
F90	47.21
Topsize (99.95%)	54.73

% Passing	Size[in]
F10	11.96
F20	17.03
F30	21.27
F40	25.05
F50	28.42
F60	32.15
F70	36.23
F80	40.90
F90	46.82
Topsize (99.95%)	59.07

100.00

94.25

39.87

15.75

7.22 5.23

4.12

3.58

1.46

0.58

0.40

0.23

0.16

0.09

0.06

0.02

NOTES:

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

% Passing	Size[in]
F10	4.39
F15	7.47
F20	13.16
F30	20.16
F40	26.16
F50	32.64
F60	39.26
F70	46.84
F80	55.48
F85	60.21
F90	67.31
Topsize (99.95%)	89.88
0	

1. SCALE BALL SIZE = 10"

2. ANALYSIS CONDUCTED BY SPLIT ENGINEERING

В	06AUG'20	ISSUED WITH LETTER		CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

93.79 73.82

38.04

22.20

17.01

15.71 12.68

9.31

5.48

3.23

2.59

1.90

1.52

1.11

0.89

0.46
		COR S	
1 8 m			
A ANT			
Vide as	a contraction of the second se		
Sect Miles	De la compañía de la		The second
		Charles P	
			K The A
-			
			No.
	AN IN		
		N. S. S. C.	

Size[in]	% Passing	
75	100.00	
50	100.00	
25	100.00	
15	100.00	
10	100.00	
8	100.00	
6	100.00	
4	100.00	
2	98.41	
1	77.66	
0.75	69.83	
0.5	62.42	
0.38	59.72	Г
0.25	56.11	
0.19	51.90	
0.08	40.02	

% Passing	Size[in]
F10	0.00
F15	0.01
F20	0.01
F30	0.03
F40	0.08
F50	0.17
F60	0.39
F70	0.76
F80	1.08
F85	1.26
F90	1.48
Topsize (99.95%)	2.18

1. STANDARD TAPE MEASURE FOR SCALE

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

% Passing	Size[in]
F10	0.06
F20	0.21
F30	0.45
F40	0.78
F50	1.20
F60	1.73
F70	2.29
F80	2.94
F90	4.00
Topsize (99.95%)	7.53

100.00

100.00

100.00

100.00

100.00

100.00

97.36

90.02

64.97 45.46

39.07

31.54

27.08

21.83

18.71

11.80

NOTES:

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

ze[in]	% Passing	
75	100.00	
50	100.00	
25	100.00	
15	91.41	
10	79.27	
8	73.52	
6	67.62	
4	59.01	
2	47.41	
1	39.20	
0.75	36.13	
0.5	32.21	
0.38	29.67	
0.25	26.44	
0.19	24.34	10
0.08	19.05	

% Passing	Size[in]
F10	0.01
F15	0.03
F20	0.09
F30	0.39
F40	1.07
F50	2.42
F60	4.20
F70	6.78
F80	10.27
F85	12.23
F90	14.32
Topsize (99.95%)	21.76

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

Size[in]	% Passing	
75	100.00	
50	100.00	
25	83.27	
15	60.67	
10	51.91	
8	49.51	
6	46.88	
4	42.74	
2	37.07	
1	32.01	
0.75	30.11	
0.5	27.62	
0.38	25.98	_
0.25	23.83	
0.19	22.41	
0.08	18.67	

% Passing	Size[in]
F10	0.01
F15	0.03
F20	0.11
F30	0.74
F40	2.92
F50	8.42
F60	14.68
F70	19.03
F80	23.40
F85	25.94
F90	29.26
Topsize (99.95%)	41.86

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

Size[in]	% Passing	
75	100.00	
50	100.00	
25	67.26	
15	39.01	
10	28.62	
8	25.42	
6	21.81	
4	16.33	
2	9.95	
1	6.06	
0.75	4.93	
0.5	3.68	
0.38	2.99	
0.25	2.23	
0.19	1.81	
0.08	0.97	

% Passing	Size[in]
F10	2.01
F15	3.55
F20	5.31
F30	10.78
F40	15.40
F50	18.97
F60	22.40
F70	26.04
F80	30.29
F85	32.94
F90	36.04
Topsize (99.95%)	48.90

1. SCALE BALL SIZE = 10"

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

	Sizolini	% Passing		% Passing	Sizolinl	
	512e[iii]	100.00		70 Passing		
	50	100.00		E15	0.01	
	25	100.00		F20	0.02	
	15	100.00		F30	0.08	
	10	100.00		F40	0.13	
	8	100.00		F50	0.20	
and the second	6	100.00		F60	0.29	
	4	100.00		F70	0.44	
	2	98.83		F80	0.62	
	1	91.72		F85	0.74	
	0.75	85.23		F90	0.91	
a service and a service of the servi	0.5	73.52		Topsize (99.95%)	2.29	
	0.38	66.08				
1.2 1. Y. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.25	55.91				
	0.19	48.19	100			
	0.08	30.01				
NATION NATION OF THE AND THE A			90			D85 = 0.74
			00			000 - 0.1-
			00			
			70			
PRANTING AND			8			
			ing			D50 =
			S S SO			
AND REAL AND AND AND AND A AND A AND AND AND AND			т т			
					/	/
			e l			
			30			
			20			
			10			
			0			
			0	.01	0.1	
NOTES:						
1. STANDARD TAPE MEASURE FOR SCALE						

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

Size[in]	% Passing	
75	100.00	
50	100.00	
25	100.00	
15	87.77	
10	61.07	
8	47.62	
6	35.50	
4	26.74	
2	18.44	
1	11.32	
0.75	9.25	
0.5	6.94	
0.38	5.67	
0.25	4.25	
0.19	3.46	
0.08	1.87	

% Passing	Size[in]
F10	0.84
F15	1.49
F20	2.25
F30	4.82
F40	6.83
F50	8.34
F60	9.84
F70	11.37
F80	13.17
F85	14.27
F90	15.61
Topsize (99.95%)	19.28

1. STANDARD TAPE MEASURE FOR SCALE

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

% Passing	Size[in]
F10	0.01
F15	0.02
F20	0.04
F30	0.13
F40	0.29
F50	0.54
F60	2.23
F70	3.89
F80	5.03
F85	5.73
F90	6.45
Topsize (99.95%)	8.14

1. STANDARD TAPE MEASURE FOR SCALE

2. ANALYSIS CONDUCTED BY SPLIT ENGINEERING

В	06AUG'20	ISSUED WITH LETTER	TB	CAV
REV	DATE	DESCRIPTION	PREP'D	RVW'D

100.00

100.00

100.00

100.00

100.00

99.26 86.90

70.98 59.18

57.19

55.04 48.72

43.64

38.11

34.29

25.01

APPENDIX D

Erosion Protection Laboratory Results

- Appendix D1 Specific Gravity and Absorption Results
- Appendix D2 Micro-Deval and Magnesium Sulphate Soundness Results
- Appendix D3 Point Load Test Results
- Appendix D4 X-Ray Diffraction Results
- Appendix D5 Geochemical Results

APPENDIX D1

Specific Gravity and Absorption Results

(Pages D1-1 to D1-65)

PRIVILEGED AND CONFIDENTIAL

Point Load Strength Index

ADVANCED TERRA TESTING

			JOB NO.	2061-159
PROJECT Kalamath River Renewal Project NO	roject		LOCATION	÷.
BORING NO.	IGDDS	IGDDS	IGDDS	IGDDS
SAMPLE NO. DATE SAMPLED	PLT-11	PLT-12	PLT-13	PLT-14
DATE TESTED TECHNICIAN ROCK TYPE	06/24/20 HN	06/24/20 HN	06/24/20 HN	06/24/20 HN
Distance Between Platens (in) - D: Minimum Specimen Width (in) - W:	1.612 2.719	1.974 3.151	1.636 2.903	1.685 3.328
Equivalent Core Diameter (in²) - De²: Minimum Failure Plane Area (in²) - A:	5.581 4.383	7.920 6.220	6.047 4.749	7.140 5.608
Maximum Load (Ibs): Uncorrected Point Load Strength Index (psi): Size Correction Factor - F: Direction of Load with Respect to Fracture: Failure Mode:	10040 1799.0 1.086 Normal Substance	7729 976.0 1.174 Normal Substance	8611 1424.0 1.105 Normal Combination	4099 574.0 1.147 Normal Combination
Corrected Point Load Strength Index (psi): Corrected Point Load Strength Index (kPa): Approximate Compressive Strength (psi):	1952.9 13464.5 44386	1146.3 7903.2 26105	1574.0 10852.4 35767	658.7 4541.3 14980
BORING NO.	IGDDS	IGDDS	IGDDS	IGDDS
SAMPLE NO. DATE SAMPLED	PLT-21	PLT-22	PLT-31	PLT-32
DATE TESTED TECHNICIAN DESCRIPTION	06/24/20 HN	06/24/20 HN	06/24/20 HN	06/24/20 HN
Distance Between Platens (in) - D:	1.843	1.580	1.497	1.608
Minimum Specimen Width (in) - W: Equivalent Core Diameter (in²) - De²: Minimum Failure Plane Area (in²) - A:	3.250 7.626 5.990	3.607 7.256 5.699	3.314 6.317 4.961	3.241 6.636 5.212
Maximum Load (lbs): Uncorrected Point Load Strength Index (psi):	7970 1045.0	7510 1035.0	3974 629.2	2826 425.8
Size Correction Factor - F: Direction of Load with Respect to Fracture: Failure Mode:	1.165 Parallel Combination	1.152 Parallel Combination	1.116 Parallel Combination	1.129 Parallel Combination
	4246.0	1191.9	702.3	480.6

ADVANCED	TERRA	TESTING
diame. a.f. or strength		

ROJECT Kalamath River Renewal I ROJECT NO. –	Project	LOCATION	8
ORING NO.	IGDDS		
AMPLE NO.	PLT-33		
ATE TESTED ECHNICIAN	06/24/20 HN		
istance Between Platens (in) - D	1.953		
inimum Specimen Width (in) - W: quivalent Core Diameter (in ²) - De ² : inimum Failure Plane Area (in ²) - A: aximum Load (lbs): ncorrected Point Load Strength Index (psi): ize Correction Factor - F: irection of Load with Respect to Fracture: ailure Mode:	2.903 7.219 5.670 1863 258.1 1.150 Parallel Combination		
orrected Point Load Strength Index (psi): orrected Point Load Strength Index (kPa): oproximate Compressive Strength (psi):	296.9 2046.7 6752		
ORING NO. EPTH AMPLE NO. ATE SAMPLED ATE TESTED ECHNICIAN ESCRIPTION			
stance Between Platens (in) - D: inimum Specimen Width (in) - W: quivalent Core Diameter (in ²) - De ² : inimum Failure Plane Area (in ²) - A: aximum Load (lbs): ncorrected Point Load Strength Index (psi): ze Correction Factor - F: irection of Load with Respect to Fracture: ailure Mode:			
orrected Point Load Strength Index (psi): orrected Point Load Strength Index (kPa): oproximate Compressive Strength (psi): OTES			

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS PLT-11, 12, 13, 14 Point Load
Anna Anna Anna Anna Anna Anna Anna Anna	Annual Borner and LG DOS Annual Borner and	Marrier Marrie	LARY MARKED CONSTRUCTION
	ELRIP MART MART LICONT	Argen Parser Barris Barris Barris Control I C-00 S Barris Control I C-00 S Bar	
NOTES			
File name:	2061159lmage_20_06_25_14_3	6_46	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. IGDDS DEPTH SAMPLE NO. PLT-11, 12, 13, 14 TEST TYPE Point Load ROCK TYPE	
HAR AND	And a substanting and the anti-field ant	unintertertertertertertertertertertertertert	TCOPI FETTI I
	CLARAT MODELLA COMPANY AND	A A A A A A A A A A A A A A A A A A A	
NOTES After	tes t		
File name:	2061159Image_20_06_25_14_37_46		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS PLT-21, 22 Point Load
CLIENT Knig JOB NO 20 PROJECT Kalamath ROJECT HO COCATION	Presedit Ariss River Renewal River Renewal Bass B	CLERK JOB NO. PROJECT NO. LOCATION	Angen Rever Barton Bart
NOTES			
File name:	2061159lmage_20_06_25_14_3	9_41	

Image Attachment

ADVANCED TERRA TESTING

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED Rock Type	IGDDS PLT-21, 22 Point Load
NOTES	There is a serie of the series	ATTER TEST	And the formation of th
NOTES			
File name:	2061159Image_20_06_26_09_40_2	21	

6

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS PLT-31, 32, 33 Point Load
	New Yorks and The And		
NOTES	2061150 Image 20 06 25 14 40 26		

ADVANCED	ERRATESTING		
CLIENT JOB NO, PROJECT PROJECT NO, LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS PLT-31, 32, 33 Point Load
5			
		And	
NOTES After	test		
File name:	2061159lmage_20_06_25_14_40_49)	

ADVANCED TERRA TESTING

CLIENT Knight Piesold			JOB NO.	2061-159
PROJECT Kalamath River Renewal Project NO	roject		LOCATION	-
	COLD	COLD	COLR	COLP
	C2LB	GZLB	CZLD	CZLD
SAMPLE NO	DIT 11	DI T.12	DI T. 13	DI T-14
DATE SAMPLED	EC1-11	FLI-12	FLI-IS	E LINIA
DATE TESTED	06/26/20	06/26/20	06/26/20	06/26/20
TECHNICIAN	HN	HN	HN	HN
ROCK TYPE	2.03	349		
Distance Between Platens (in) - D:	1.690	1.835	2.170	1.818
Vinimum Specimen Width (in) - W:	3.650	3.560	3.390	3.261
Equivalent Core Diameter (in ²) - De ² :	7.854	8.318	9.366	7.548
Vinimum Failure Plane Area (in²) - A:	6.169	6.533	7.356	5.928
Maximum Load (lbs):	3985	4782	5699	4198
Incorrected Point Load Strength Index (psi):	507.4	574.9	608.4	556.1
Size Correction Factor - F:	1.172	1.188	1.220	1.162
Direction of Load with Respect to Fracture:	Normal	Normal	Normal	Normal
ailure Mode:	Combination	Combination	Combination	Combination
Corrected Point Load Strength Index (psi):	594.8	682.7	742.1	646.2
Corrected Point Load Strength Index (kPa):	4100.8	4707.0	5116.4	4455.1
Approximate Compressive Strength (psi):	13543	15561	16962	14705
BORING NO. DEPTH	C2LB	C2LB	C2LB	C2LB
SAMPLE NO.	PLT-21	PLT-22	PLT31	PLT32
DATE SAMPLED				
DATE TESTED	06/26/20	06/26/20	06/26/20	06/26/20
TECHNICIAN	HN	HN	HN	HN
DESCRIPTION			1.00	
Distance Between Platens (in) - D:	1.778	1.286	1.840	0.897
Minimum Specimen Width (in) - W:	3.300	2.993	3.349	2.352
Equivalent Core Diameter (in ²) - De ² :	7.471	4.901	7.846	2.686
Minimum Failure Plane Area (in²) - A:	5.867	3.849	6.162	2.110
Maximum Load (lbs):	5254	3558	4604	2008
Uncorrected Point Load Strength Index (psi):	703.2	726.1	586.8	747.5
Size Correction Factor - F:	1.159	1.054	1.172	0.921
Direction of Load with Respect to Fracture:	Parallel	Parallel	Normal	Normal
Failure Mode:	Combination	Combination	Combination	Substance
Corrected Point Load Strength Index (psi):	815.2	765.5	687.7	688.3
Corrected Point Load Strength Index (kPa):	5620.4	5277.8	4741.5	4745.9
Approximate Compressive Strength (psi):	18549	17419	15659	15959
Data entry by: BFUTCH	Date:	6/27/2020		
Checked by:	Date:	61291202	0	

PRIVILEGED AND CONFIDENTIAL

Point Load Strength Index

ADVANCED TERRA TESTING

CLIENT Knight Piesold			JOB NO.	2061-159
PROJECT Kalamath River Renewal Pr PROJECT NO. –	oject		LOCATION	86.11
BORING NO.	C2LB	C2LB		
SAMPLE NO.	PLT-33	PLT-33		
DATE SAMPLED DATE TESTED TECHNICIAN ROCK TYPE	06/26/20 HN	06/26/20 HN		
Distance Between Platens (in) - D: Minimum Specimen Width (in) - W: Equivalent Core Diameter (in ²) - De ² : Minimum Failure Plane Area (in ²) - A: Maximum Load (lbs): Uncorrected Point Load Strength Index (psi): Size Correction Factor - F: Direction of Load with Respect to Fracture; Failure Mode:	1.804 3.351 7.697 6.045 5693 739.6 1.167 Normal Combination 863.1	1.269 2.495 4.031 3.166 2619 649.6 1.009 Normal Combination 655.4		
Approximate Compressive Strength (psi): BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DATE TESTED FECHNICIAN DESCRIPTION	19647	14969		
Distance Between Platens (in) - D: Vinimum Specimen Width (in) - W: Equivalent Core Diameter (in ²) - De ² : Vinimum Failure Plane Area (in ²) - A: Vaximum Load (lbs): Jncorrected Point Load Strength Index (psi): Size Correction Factor - F: Direction of Load with Respect to Fracture: Failure Mode:				
Corrected Point Load Strength Index (psi): Corrected Point Load Strength Index (kPa): Approximate Compressive Strength (psi): NOTES				_
Data entry by: BFUTCH Checked by: <u>\+M</u> File name: 2061159 Point Load AST	Date: Date: M D5731 5 view	6/27/2020 6/29/2020	0	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB PLT- 11, 12, 13, 14 Point Load
51385	AND	13 14 14 14 14 14 14 14 14 14 14	And Hitting And Hitting
CLIERT JOI NO PROJECT NO LOCATION	Anges Frances Anges Frances Basedis Niver Recovery Angel Basedis Notes How Recovery Angel Basedis How Recovery How Recov	Cleary Manager and Manager and Manager and Manager and Manager and Manager and Manager and	Angel Rases Real
NOTES			
File name:	2061159Image_20_06_27_16_47_24	4	

.

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB PLT- 11, 12, 13, 14 Point Load
	Marine Marine	AFTER TEST	
NOTES			
File name:	2061159lmage_20_06_27_16_48_38	5	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB PLT- 21, 22 Point Load
	KINT NO N	Karris Karris	ALS PIT-EL Former
1	5	4F 53 87	
NOTES			
File name:	2061159lmage_20_06_27_16_50_09)	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB PLT- 21, 22 Point Load
		AF BONNERS AND	
NOTES			
File name:	2061159lmage_20_06_27_16_50_3	34	

ADVANCED TERRA TESTING

[F			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB PLT- 31, 32, 33, 34 Point Load
	<text></text>		
NOTES			
File name:	2061159lmage_20_06_27_16_51_51		

ADVANCED TERRA TESTING

In

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB PLT- 31, 32, 33, 34 Point Load
		TIERTEST CAR	
NOTES			
File name:	l 2061159Image_20_06_27_16_52_17		

ADVANCED TERRA TESTING

CLIENT Knight Piesold			JOB NO.	2061-159
PROJECT Kalamath River Renewal Pr	oject		LOCATION	
PROJECT NO				
BORING NO.	C2DSR	C2DSR	C2DSR	C2DSR
DEPTH SAMPLE NO.	PLT-11	PLT-12	PLT-13	PLT-14
DATE SAMPLED DATE TESTED TECHNICIAN	06/26/20 HN	06/26/20 HN	06/26/20 HN	06/26/20 HN
ROCK TYPE				
Distance Between Platens (in) - D:	1.345	1.201	1.569	1.289
Minimum Specimen Width (in) - W:	3.223	3.243	3.471	3.271
Equivalent Core Diameter (in ²) - De ² :	5.519	4.959	6.934	5.368
Minimum Failure Plane Area (in²) - A:	4.335	3.895	5.446	4.216
Maximum Load (lbs):	8566	3581	9824	8135
Uncorrected Point Load Strength Index (psi):	1551.9	722.1	1416.8	1515.4
Size Correction Factor - F:	1.083	1.057	1.140	1.076
Direction of Load with Respect to Fracture:	Normal	Normal	Normal	Normal
Failure Mode:	Substance	Combination	Combination	Combination
Corrected Point Load Strength Index (psi):	1680.5	763.3	1615.0	1630.7
Corrected Point Load Strength Index (kPa):	11586.5	5263.1	11135.0	11243.3
Approximate Compressive Strength (psi):	38197	17368	36719	37073
BORING NO.	C2DSR	C2DSR	C2DSR	C2DSR
	PLT_21	PI T-22	PI T-23	PI T-31
DATE SAMDIED			12120	121 01
	06/26/20	06/26/20	06/26/20	06/26/20
TECHNICIAN	HN	HN	HN	HN
DESCRIPTION				
Distance Between Platens (in) - D:	1.210	1.879	1.535	1.354
Minimum Specimen Width (in) - W:	2.758	2.712	2.953	2.315
Equivalent Core Diameter (in ²) - De ² :	4.249	6.488	5.771	3.991
Minimum Failure Plane Area (in²) - A:	3.337	5.096	4.533	3.135
Maximum Load (lbs):	1201	1408	41/5	6634
Uncorrected Point Load Strength Index (psi):	282.6	216.9	723.4	1662.3
Size Correction Factor - F:	1.021	1.123	1.094	1.007
Direction of Load with Respect to Fracture:	Normal	Normal	Normal	Normal
Failure Mode:	Combination	Combination	Combination	Combination
Corrected Point Load Strength Index (psi):	288.5	243.6	791.3	1673.4
Corrected Point Load Strength Index (kPa):	1989.0	1679.7	5455.6	11537.7
Approximate Compressive Strength (psi):	6581	5537	17982	38231
NOTES				
Data entry by: BFUTCH	Date:	6/27/2020)	
Checked by: HN	Date:	61291702	0	
File name: 2061159_Point Load AST	M D5731_10.xlsi	n		

ADVANCED TERRA TESTING

CLIENT	Knight Piesold			JOB NO.	2061-159
PROJECT PROJECT NO.	Kalamath River Renewal Pr	oject		LOCATION	
BORING NO.		C2DSR	C2DSR		
SAMPLE NO.					
DATE SAMPLED					
DATE TESTED		06/26/20	06/26/20		
		HN			
KOOKTITE					
Distance Between	Platens (in) - D:	1.209	1.834		
Minimum Specime	en Width (in) - W: Nometer (in²) - De²:	3.214	3.000		
Equivalent Core L	Plane Area (in ²) - De^{-1} .	3 886	6 538		
Maximum Load (II	bs):	5208	10791		
Uncorrected Point	t Load Strength Index (psi):	1052.7	1296.3		
Size Correction Fa	actor - F:	1.057	1.188		
Direction of Load	with Respect to Fracture:	Normal	Normal		
Failure Mode:		Combination	Combination		
Corrected Point L	oad Strength Index (psi):	1112.2	1539.6		
Corrected Point L	oad Strength Index (kPa):	7668.2	10615.2		
Approximate Com	pressive Strength (psi):	25305	35095		
BORING NO.					
SAMPLE NO.					
DATE SAMPLED					
DATE TESTED					
TECHNICIAN					
DESCRIPTION					
Distance Betweer	n Platens (in) - D:				
Minimum Specim	en Width (in) - W:				
Equivalent Core E	Diameter (in ²) - De ² :				
Minimum Failure	Plane Area (In ²) - A:				
Maximum Load (I	DS): t Load Strength Index (psi):				
Size Correction E	actor - F				
Direction of Load	with Respect to Fracture:				
Failure Mode:					
Corrected Point L	oad Strength Index (nsi):				
Corrected Point L	oad Strength Index (kPa):				
Approximate Con	npressive Strength (psi):				
NOTES					
Data antas hur	DEUTCH	Doto	61271202	0	
Checked by:		Date: Date:	h1201002	0 0	
File name:	2061159 Point Load AST	M D5731_11.xls	m	-	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Rene 	ewal Project	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR PLT- 11, 12, 13, 14 Point Load
	Anna Anna Anna Anna Anna Anna Anna Anna	And and the C2054 Martin Marti	Cinter Bronge Bookers	C2058 PCI-12 PCI-12 PCI-12
		и полно и С 2058 сети — 2058 вали и С 2058	Citizes Based and Based an	
NOTES				
File name:	2061159Image_2	0_06_27_16_55_04		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR PLT- 11, 12, 13, 14 Point Load
NUTES			
File name:	2061159lmage_20_06_27_16_55_38		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR PLT- 21, 22, 23 Point Load
	SURVEY MARKET RANK RANK RANK RANK RANK RANK RANK RANK	KIRN BORKET BORE	Amma an Ca Day Marina Marina an Patra 21 Marina Marina an Patra 21 Marina Marina an Antara 20 Marina an An
	CERT 1.8 1.9 0 JOS NO NO 0	2058 PLT-23 Patricest	
NOTES			
File name:	2061159Image_20_06_27_16_56_32		

ADVANCED TE	RRATESTING					
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Re 	newal Project		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR PLT- 21, 22, 23 Point Load	
All and a second	1					· ·
	- C10/4 - P(T-51 - million	LLSR Ruger Pauler 2010 100 1002101 1002101 1002101 1002101 1002101 1002101 1002101 1002100 100210 1000000 1000000 100000000 1000	anna na C2 0\$ e Irri - Irri -	Current and Curren	Ange Partie Barrier Marine	
	5 6	4.8 4.9				
NOTES	in the second	AFT	ER TEST			128.1
File name:	2061159Image_	_20_06_27_16_56_56	i			

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR PLT- 31, 32, 33 Point Load
	AND THE ART AND THE AREA AND AND AND AND AND AND AND AND AND AN	Cuter Auger Fuel Cuter Auger Fuel Manager Fuel Marger Fuel Manager Fuel Marger Fuel Manager Fuel Marger Fuel Manager Fuel Marger Fuel Marger Fuel <td< td=""><td></td></td<>	
NOTES	RURAT ROUTE ARTICLE	RORIND NO C Z DJ R DEFIN SAMPLE NO PLT-93 TAS ROCK M M	
File name:	2061159lmage_20_06_27_16_58_17		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR PLT- 31, 32, 33 Point Load
	And Market PT-21 Market Market PT-21 Market Market Marke		
•	AFTER TEST		And a
NOTES			
File name:	2061159lmage_20_06_27_16_58_39		

ADVANCED TERRA TESTING

CLIENT	Knight Piesold			JOB NO.	2061-159	
	Kelemeth Diver Depended Dr	nicot				
PROJECT NO		ojeci		LUCATION		_
THOULDTHU.						_
BORING NO.		IGLV	IGLV	IGLV	IGLV	
DEPTH						
SAMPLE NO.		PLT-11	PLT-12	PLT-13	PLT-21	
DATE SAMPLED)					
DATE TESTED		06/19/20	06/19/20	06/19/20	06/19/20	
TECHNICIAN		HN	HN	HN	HN	
ROCK TYPE						
Distance Betwee	n Platens (in) - D:	1 754	1 621	1.532	1,156	
Minimum Specim	en Width (in) - W:	5.456	4.439	4.438	3.178	
Equivalent Core	Diameter (in ²) - De ² :	12.185	9.162	8.657	4.678	
Minimum Failure	Plane Area (in ²) - A:	9.570	7.196	6.799	3.674	
Maximum Load (lbs):	4960	1770	546	5022	
Uncorrected Poir	t Load Strength Index (psi):	407.0	193.2	63.1	1073.6	
Size Correction F	actor - F:	1.294	1.214	1.198	1.043	
Direction of Load	with Respect to Fracture:	Normal	Parallel	Parallel	Normal	
Failure Mode:		Substance	Combination	Combination	Combination	
Corrected Point I	_oad Strength Index (psi):	526.7	234.4	75.6	1120.0	
Corrected Point L	_oad Strength Index (kPa):	3631.7	1616.4	521.5	7722.4	
Approximate Cor	npressive Strength (psi):	12152	5356	1726	25504	
				ICL V	IGLV	
BURING NO.		IGLV	IGLV	IGEV		
		PI T-22	PI T-23	PI T-24	PI T-25	
DATE SAMPLE						
DATE TESTED	, ,	06/19/20	06/19/20	06/19/20	06/19/20	
TECHNICIAN		HN	HN	HN	HN	
DESCRIPTION						
Distance Betwee	n Platens (in) - D:	1.568	1.308	1.568	1.470	
Minimum Specim	nen Width (in) - W:	3.715	3.949	3.923	3.996	
Equivalent Core	Diameter (in²) - De²:	7.417	6.577	7.832	7.479	
Minimum Failure	Plane Area (in ²) - A:	5.825	5.165	6.151	5.874	
Maximum Load (lbs):	3167	1704	7866	8290	
Uncorrected Poir	nt Load Strength Index (psi):	427.0	259.0	1004.3	1108.5	
Size Correction F	actor - F:	1.157	1.126	1.172	1.159	
Direction of Load	with Respect to Fracture:	Normal	Normai			
Hallure Mode:		Substance	Complination	Compination	Combination	
Corrected Point	_oad Strength Index (psi):	494.2	291.8	1176.6	1285.2	
Corrected Point	_oad Strength Index (kPa):	3407.2	2011.8	8112.6	8861.2	
Approximate Cor	npressive Strength (psi):	11244	6632	26792	29245	
NOTES						
Data entry by:	BFUTCH	Date:	6/21/2020			
Checked by:		Date:		120		
File name:	2061159_Point Load ASTI	vi 05731_0.xism				

ADVANCED TERRA TESTING

CLIENT	Knight Piesold			JOB NO.	2061-159	
	20 IECT Kalamath River Renewal Project					
PROJECT NO.		0)001		Loomon		
BORING NO.	- (IGLV	IGLV			
DEPTH						
SAMPLE NO.		PLT-31	PL1-32			
DATE SAMPLED		06/40/00	06/40/20			
		UO/19/20	UU/19/20			
			THN			
ROOKTIFE						
Distance Betweer	n Platens (in) - D:	1.675	1.470			
Minimum Specim	en Width (in) - W:	4.064	3.690			
Equivalent Core [Diameter (in²) - De²:	8.667	6.906			
Minimum Failure	Plane Area (in ²) - A:	6.807	5.424			
Maximum Load (I	bs):	8487	6841			
Uncorrected Poin	t Load Strength Index (psi):	979.2	990.6			
Size Correction F	actor - F:	1.199 N/A	1.139 N/A			
Direction of Load	with Respect to Fracture.	N/A Substance	N/A Substance			
Failure wode:		Substance	Substance			
Corrected Point L	oad Strength Index (psi):	1173.6	1128.1			
Corrected Point L	oad Strength Index (kPa):	8092.0	7778.2			
Approximate Con	pressive Strength (psi):	26775	25649			
DATE SAMPLED	,					
DATE TESTED						
TECHNICIAN						
DESCRIPTION						
Distance Betwee	n Platens (in) - D:					
Minimum Specim	ien Width (in) - W:					
Equivalent Core I	Diameter (III ⁻) - De ⁻ . Diano Aroa (in ²) - A:					
Maximum Load (
Uncorrected Poin	t Load Strength Index (psi):					
Size Correction F	actor - F:					
Direction of Load	with Respect to Fracture:					
Failure Mode:	-					
	and Okenestly Index (ast)					
Corrected Point L	oad Strength Index (psi):					
Approvimete Con	noressive Strength (nei)					
NOTES	nprosono odongar (pol).					
Data entry by:	BFUTCH	Date:	6/21/202	0		
Checked by:	2061150 Doint Lood AST	Date: M D5731 4 view		-		
IIr lie name:	ZUDITOS FUILLOAD AST					

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-11 Point Load
1.	<text></text>	ADRING NO. IC.LL MARLE NO. PLT-11 EST POINT Laad LOCK 13 14 15 15 15 15 15 15 15 15 15 15	
NOTES			
File name:	2061159lmage_20_06_21_19_46_51		

ADVANCED TE	RRATESTING					
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Ren 	ewal Project		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-11 Point Load	
		CLENT K JOB NO, PROJECT N PROJECT NO LOCATION	Anght Piesold 2061-159 ath River Ranewat ES ROC	A-9 NING NO. IC.LL TH - IPLE NO. PLT-11 Point Le X 15		
NOTES						
File name:	2061159lmage_2	0_06_21_19_48_4	2			

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-12 Point Load
		Kugen Piesola 201199 Arnab River Renewasi Banab River Renewasi Anada Riv	
NOTES			• • • •
File name:	2061159Image_20_06_21_19_46_03		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-12 Point Load
	FG PI	LV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	CERNY Kright Pisadi JOB NO. 2081-19 PROJECT RAJANAN River Renewal PROJECT NO. LOCATION	DOMINIS INO IC.LV DEPTH - SAMPLE NO. PLT-12 TEST Primi Loss ROCK J	
NOTES			
File name:	2061159lmage_20_06_21_19_49_17		

12

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-13 Point Load
1:		LIENT ROJECT NO. OCATION RAJECT NO. OCATION RULECT RULECT RU	ACCV ACT-13 Point Lood
NOTES File name:	2061159Image_20_06_21_19_45	5_39	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-13 Point Load	
	<text></text>	ANG NO. TGLV TH ARLE NO. PLT-13 Point Load CK		
NOTES				
File name:	L 2061159lmage_20_06_21_19_49_50			

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Pro	ject	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-21 Point Load
	CLENT JOB NO. PROJECT NO. LOCATION	Knight Pissold 2061-159 Kalamath River Renewal	ARING NO. ICLV ARING NO. ICLV DEPTH - BAMPLE NO. PLT-21 TEST POINT Load ROCK	
NOTES				
File name:	2061159Image_20_06_2	I_19_45_05		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-21 Point Load
	KIENT MIGHT PA DO HO PROJECT IN DO HO PROJECT IN DO HO PROJECT IN DO HO	AND	
NOTES			
File name:	2061159lmage_20_06_21_19_	_51_38	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-21 Point Load	
NOTES	<image/>	NO. ICLV NO. PLT-21 Point Lood		
NOTES				
File name:	2061159lmage_20_06_21_19_55_02			

Image Attachment

1

ADVANCED T	ERRA TESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal 	Project	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-22 Point Load
		Taccu Para Para Para Para Para Para Para Para	BORING NO. TLGT BORING NO. TLGT DEPTH - SAMPLE NO. PLT-22 TEST ROCK 37	
NOTES				
File name:	2061159Image_20_06	6_21_19_44_12		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-22 Point Load	
		ANIGH Pasoid 201159 Ismaith River Renewsit	A-9 TLGV PLT-22 Point Lood		
NOTES					
File name:	2061159lmage_20_06_21_19	_52_11			

AD THITCED IT	Entity resting			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-22 Point Load	
	CLIENT Noise JOB NO. Noise PROJECT NO. Noise PROJECT NO. Noise PROJECT NO. Noise PROJECT NO. Noise	LU LIC BORING NO. ILG V DEPTH - MAIL SAMPLE NO. PLT-22 TEST ROCK U U U U U U U U U U U U U		
NOTES				10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
File name:	2061159lmage_20_06_21_19_55_28			

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-23 Point Load
		TARAPA ALARA AND AND AND AND AND AND AND AND AND AN	
NOTES			
File name:	2061159lmage_20_06_21_19_4	43_46	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-23 Point Load
		ALAR BACAR BACAR BARNER	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-24 Point Load
		AND	
NOTES	,		
File name:	2061159Image_20_06_21_19_	_53_23	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-24 Point Load
NOTES	CLIENT NO.ECT RO.ECT NO. COLATION	AT 24 AT 24 AT 24 AT 24 BORING NO. T.C. L.V. DEPTH - SAMPLE NO. PLT - 24 Point Load ROCK 19	
File name:	 2061159Image_20_06_21_19_57_19		

Image Attachment

BORING NO. IGLV CLIENT **Knight Piesold** JOB NO. 2061-159 DEPTH SAMPLE NO. PLT-25 Kalamath River Renewal Project PROJECT Point Load TEST TYPE PROJECT NO. -----**ROCK TYPE** LOCATION ---TGLV PLT-25 1.1-2.1-3.1-4.1-5...... Lauter TGLV BORING NO. ight Piesold CLIENT DEPTH 2061-159 PLT-25 JOB NO. SAMPLE NO. PROJECT Point Load TEST PROJECT NO. ROCK LOCATION ONT NOTES 2061159__lmage_20_06_21_19_44_39 File name:

Image Attachment

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-25 Point Load
	Tin t	Image: Present Image: P	
NOTES			
File name:	' 2061159lmage_20_06_21_19_54	04	

ADVANCED IT	ANATESTING				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Pro 	pject	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-25 Point Load	
		T Aright Pleased 2011152 Kalamath River Renewal ION	BORING NO. TC.LV CEPTH SAMPLE NO. PLT - 25 TEST ROCK 20		
NOTES					
File name:	2061159lmage_20_06_2	1_19_57_49		_	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORIN DEPTI SAMP TEST ROCK	NG NO. H PLE NO. TYPE (TYPE	IGLV PLT-31 Point Load
		TON.	DRING NO. T.G. L EPTH MMPLE NO. PLT- EST DCK 11	V 31 Point Load
5				
NOTES				
File name:	L	47_28		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renew 	wal Project	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-31 Point Load
		LIENT ROJECT NO. OCATION	4.8 4.9 4.8 4.9 4.8 A.9 A.9 A.9 A.9 A.9 A.9 A.9 A.9	
NOTES				
File name:	2061159Image_20_	_06_21_19_50_25		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-32 Point Load
	<text></text>	A-9 BORING NO. IG LV DEPTH - SAMPLE NO. PLT-32 TEST POINT LA ROCK	
NOTES			
File name:	2061159lmage_20_06_21_19_50_59		

ADVANCED TERRA TESTING

CLIENT	Knight Piesold			JOB NO.	2061-159	٦
PROJECT PROJECT NO.	Kalamath River Renewal Pro	oject		LOCATION		
BORING NO.		CRBR	CRBR	CRBR	CRBR	
SAMPLE NO.		PLT-11	PLT-21	PLT-22	PLT-23	
DATE SAMPLED DATE TESTED TECHNICIAN	,	06/26/20 HN	06/26/20 HN	06/26/20 HN	06/26/20 HN	
ROCK TYPE						
Distance Betwee Minimum Specim	n Platens (in) - D: een Width (in) - W:	1.485 3.105	1.065 2.340	1.115 2.839	1.855 2.801	
Equivalent Core	Diameter (in ²) - De ² :	5.871	3.173	4.030	6.616	
Minimum Failure	Plane Area (in ²) - A:	4.611	2.492	3.165	5.196	
Maximum Load (lbs)	7421	5382	5688	7367	
Uncorrected Poir	nt Load Strength Index (psi):	1264.0	1696.2	1411.4	1113.6	
Size Correction F	actor - F:	1.098	0.956	1.009	1.128	
Direction of Load	with Respect to Fracture:	Normal	Normal	Normal	Normal	
Failure Mode:		Substance	Combination	Combination	Substance	
Corrected Point L	_oad Strength Index (psi):	1387.9	1621.6	1423.9	1256.0	
Corrected Point L	_oad Strength Index (kPa):	9569.2	11180.4	9817.4	8660.0	
Approximate Cor	mpressive Strength (psi):	31539	37323	32523	28548	_
BORING NO.		CRBR	CRBR	CRBR	CRBR	
SAMPLE NO.	、 、	PLT-24	PLT-25	PLT-26	PLT-27	
DATE SAMPLEL	,	06/26/20	06/26/20	06/26/20	06/26/20	
		U0/20/20		HN	HN	
DESCRIPTION						
Distance Betwee	n Platens (in) - D:	1.800	1.026	1.549	1.620	_
Minimum Specim	nen Width (in) - W:	3.050	2.838	2.619	2.588	
Equivalent Core	Diameter (in ²) - De ² :	6.990	3.707	5.165	5.338	
Minimum Failure	Plane Area (in ²) - A:	5.490	2.912	4.057	4.193	
Maximum Load (lbs):	7553	4175	6769	8415	
Uncorrected Poir	nt Load Strength Index (psi):	1080.6	1126.2	1310.5	1576.3	
Size Correction F	Factor - F:	1.142	0.990	1.067	1.075	
Direction of Load	I with Respect to Fracture:	Parallel	Parallel	Parallel	Parallel	
Failure Mode:		Combination	Combination	Combination	Combination	
Corrected Point	Load Strength Index (psi):	1234.0	1115.0	1398.0	1694.1	
Corrected Point	Load Strength Index (kPa):	8508.0	7687.9	9638.9	11680.5	
Approximate Con	mpressive Strength (psi):	28058	25526	31793	38516	_
INUTES						
Data entry by:	BFUTCH	Date:	6/27/2020)		
Checked by:	_HN	Date:	6129120	20		
File name:	2061159Point Load AST	M D5731_6.xlsm	,1=			

ADVANCED TERRA TESTING

CLIENT Knight Piesold			JOB NO.	2061-159	
PROJECT Kalamath River Renewal Pr PROJECT NO	oject		LOCATION		
BORING NO.	CRBR				
SAMPLE NO.	PLT-28				
DATE TESTED	06/26/20				
TECHNICIAN	HN				
ROCK TYPE					
Distance Between Platens (in) - D:	1.799				
Minimum Specimen Width (in) - W:	2.552				
Equivalent Core Diameter (in ²) - De ² :	5.840				
Minimum Failure Plane Area (III-) - A. Maximum Load (Ibs):	7142				
Uncorrected Point Load Strength Index (psi):	1221.7				
Size Correction Factor - F:	1.097				
Direction of Load with Respect to Fracture:	Parallel				
Failure Mode:	Combination				
Corrected Point Load Strength Index (psi):	1340.1				
Corrected Point Load Strength Index (kPa):	9239.8				
Approximate Compressive Strength (psi):	30454				
DEPTH					
SAMPLE NO.					
DATE SAMPLED					
DATE TESTED					
TECHNICIAN					
DESCRIPTION					
Distance Between Platens (in) - D:					
Minimum Specimen Width (in) - W:					
Equivalent Core Diameter (in ²) - De ² :					
Minimum Failure Plane Area (In*) - A:					
Uncorrected Point Load Strength Index (psi):					
Size Correction Factor - E:					
Direction of Load with Respect to Fracture:					
Failure Mode:					
Corrected Point Load Strength Index (psi):					
Corrected Point Load Strength Index (kPa):					
Approximate Compressive Strength (psi):					
NOTES					
Data entry by: BFUTCH	Date:	6/27/202	0		
Checked by:	Date:				
File name: 2061159 Point Load AST	M D5731_7.xlsm				

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR PLT- 11 Point Load
	CLIENT JOS NO PROJECT HO LOCATION	Andrew Prisonell 2011 129 The River Ramanan River Ramanan Rive	
NOTES			
File name:	2061159Image_20_06_27_16_	.43_35	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR PLT- 11 Point Load
		Arter test	
NOTES			
File name:	I 2061159Image_20_06_27_16_4	3_53	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR PLT- 21, 22, 23, 24, 25, 26, 27, 28 Point Load
1			
	And		
NOTES			
File name:	2061159lmage_20_06_27_16_45_5	i6	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR PLT- 21, 22, 23, 24, 25, 26, 27, 28 Point Load
		ALL	
NOTES			
File name:	2061159lmage_20_06_27_16_46_21		

ADVANCED TERRA TESTING

CLIENT Knight Piesold			JOB NO.	2061-159
PROJECT Kalamath River Renewal P	roject		LOCATION	
BORING NO.	JCBEP	JCBEP	JCBEP	JCBEP
DEPTH				
SAMPLE NO.	PLI-11	PL1-12	PL1-13	PL1-14
DATE TESTED	06/26/20	06/26/20	06/26/20	06/26/20
TECHNICIAN	HN	HN	HN	HN
ROCK TYPE				
Dictance Between Platens (in) - D:	1 950	1 260	1.426	1.919
Minimum Specimen Width (in) - W:	2.683	2.605	2.628	2.568
Equivalent Core Diameter (in ²) - De ² :	6.661	4.179	4.772	6.275
Minimum Failure Plane Area (in ²) - A:	5.232	3.282	3.748	4.928
Maximum Load (lbs):	11126	6821	7431	8073
Uncorrected Point Load Strength Index (psi):	1670.3	1632.1	1557.4	1286.6
Size Correction Factor - F:	1.130	1.017	1.048	1.115
Direction of Load with Respect to Fracture:	Normal	Normal	Normal	Normal
Failure Mode:	Combination	Combination	Substance	Substance
Corrected Point Load Strength Index (psi):	1886.8	1660.0	1632.1	1434.0
Corrected Point Load Strength Index (kPa):	13009.0	11445.6	11252.9	9887.1
Approximate Compressive Strength (psi):	42887	37884	37153	32587
DODING NO		ICRED	ICREP	ICBEP
	JODEF	JOBEL	JODEI	JOBEI
	PI T-21	PI T-22	PLT-23	PLT-24
DATE SAMPLED				
DATE TESTED	06/26/20	06/26/20	06/26/20	06/26/20
TECHNICIAN	HN	HN	HN	HN
DESCRIPTION				
Distance Between Platens (in) - D	0.902	0.998	0.916	0.856
Minimum Specimen Width (in) - W:	2.090	2.085	2.635	2.115
Equivalent Core Diameter (in ²) - De ² :	2.400	2.649	3.073	2.305
Minimum Failure Plane Area (in ²) - A:	1.885	2.081	2.414	1.810
Maximum Load (lbs):	4560	4571	4099	2894
Uncorrected Point Load Strength Index (psi):	1899.9	1725.1	1333.7	1255.4
Size Correction Factor - F:	0.898	0.918	0.949	0.890
Direction of Load with Respect to Fracture:	Normal	Normal	Normal	Parallel
Failure Mode:	Combination	Combination	Substance	Fracture
Corrected Point Load Strength Index (psi):	1705.8	1583.7	1265.9	1116.9
Corrected Point Load Strength Index (kPa):	11760.9	10919.1	8728.0	7701.0
Approximate Compressive Strength (psi):	39781	36743	29173	26108
NOTES				
Data entry by: BFUTCH	Date:	6/27/202	0	
Checked by:	Date:	61291202	20	
File name: 2061159_Point Load AST	M D5731_8.xlsm)		

ADVANCED TERRA TESTING

CLIENT	Knight Piesold			JOB NO.	2061-159	
PROJECT PROJECT NO.	Kalamath River Renewal Pro	oject		LOCATION		
BORING NO.		JCBEP	JCBEP			
DEPTH SAMPLE NO.		PLT-31	PLT-32			
DATE SAMPLED)	06/26/20	06/26/20			
TECHNICIAN ROCK TYPE		HN	HN			
Distance Betwee	n Platens (in) - D:	0.906	0.901			
Equivalant Care	Diameter (in ²) - De^{2}	2.030	2.882			
Minimum Eailure	Plane Area $(in^2) - \Delta^2$	1 894	2.002			
Maximum Load (lihe).	890	3064			
Uncorrected Poir	nt Load Strength Index (psi):	369.2	1063.1			
Size Correction F	actor - F:	0.899	0.936			
Direction of Load	with Respect to Fracture:	Parallel	Normal			
Failure Mode:		Fracture	Combination			
Corrected Point I	_oad Strength Index (psi):	331.8	994.6			
Corrected Point I	_oad Strength Index (kPa):	2287.7	6857.4			
Approximate Cor	mpressive Strength (psi):	7736	22984			
BORING NO.						
DEPTH						
SAMPLE NO.						
DATE SAMPLED)					
DATE TESTED						
TECHNICIAN						
DESCRIPTION						
Distance Betwee	n Platens (in) - D:					
Minimum Specin	nen Width (in) - W:					
Equivalent Core	Diameter (in²) - De²:					
Minimum Failure	Plane Area (in²) - A:					
Maximum Load (lbs):					
Uncorrected Poin	nt Load Strength Index (psi):					
Size Correction F	Factor - F:					
Direction of Load	I with Respect to Fracture:					
allure Mode:						
Corrected Point	Load Strength Index (psi):					
Corrected Point	Load Strength Index (kPa):					
Approximate Co	mpressive Strength (psi):					
NOTES						
Data entry by:	BFUTCH	Date	: 6/27/202	0		
Checked by:	HN_	Date	6129120	20		
File name:	2061159Point Load AST	M D5731_9.xlsr	n .			

Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP PLT-11, 12, 13, 14 Point Load
2061159Image_20_06_27_16_3	38_36	
	Knight Piesold 2061-159 Kalamath River Renewal Project 2001159_lmage_20_06_27_16_5	Knight Piesold 2061-159 Kalamath River Renewal Project

ADVANCED TERRA TESTING

F

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP PLT- 21, 22, 23, 24 Point Load
S		21 Junior Participation Participation	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE
CLERY AN JOB NO PROJECT RUMAN LOCKIDON	Agen Freedall BORING HO (3 C 8) BRISING BROWN HO (3 C 8) BRISING BROWN HO (7 C 7) HERT HOCK HOCK	Lanar Malacr Malacr Malacr Malacr Malacr	Magner Franker Mit 19 The The Annual The The Annual The The Annual The The Annual The The Annual The The Annual The The The The The The The The The The
	LURAT Nught Presente JOB NO PROJECT Research River Review DROJECT NO LOCATION	DAINO NO. 318 (PTN WARLE NO. P(T-24 ST Peter Loss OCK -	
NOTES			
File name:	2061159lmage_20_06_27_16_41_00		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP PLT- 21, 22, 23, 24 Point Load
	<text></text>	and 316 Martin All All All All All All All All All Al	
NOTES			
File name:	2061159Image_20_06_27_16_41_28		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP PLT- 31, 32 Point Load
	P		
		C. F. State Contraction	
	CLIENT Right Presents BORING NO J78 JOB NO BUS-119 DEPTH - PROJECT NAISONAL REVER REMOVE SAMPLE NO PLT - 31 REGARCT NO TEST PHINE Laws LOCATION ROX	CLEMT Regist Press PROJECT REMOVED TO PROJECT RO LOCATION	AND DEFTM JOINT JE DEFTM JOINT JE TEAT THIN LOAD ROCK
NOTES			
File name:	2061159lmage_20_06_27_16_42_13		

ADVANCED TERRA TESTING

F

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP PLT- 31, 32 Point Load
		Tanata Sanata	
	CLEAT KANAN PARAN BIDANG 40 JrB	CLIENT Regel Proced	Pomo 219
NOTES	200 HO DOTASS DEFT - SAMPLE HO P(T-3) PROJECT KO. TEST POINT Land ROCK KO. TEST	JOS NO. 2057-19 PROJECT Kalenath-Row Reveal USCATION	GERMA D D/T-3t TIST Parmilant NOCK
File name:	2061159image_20_06_27_16_42_33		

APPENDIX D2

Micro-Deval and Magnesium Sulphate Soundness Results

(Pages D2-1 to D2-73)

Specific Gravity of Rock ASTM D6473

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION DATE TESTED TECHNICIAN	Knight Piesold 2061-160 HN/BF 44029		BORING DEPTH SAMPL DATE S ROCKT	g no. E no. Sampled Ype	JCBEP-1 	
		Test Data				
Sample ID: Mass of Saturated Surface D Mass of Dry Sample (g): Apparent Mass of Sample in Specific Gravity Oven Dry Ba Specific Gravity Saturated Su	ry Sample (g): Water (g): sis: ırface Dry Basis:	A 2637.0 2626.3 1638.5 2.630 2.641	B 2775.1 2763.5 1725.3 2.632 2.643	C 2506.3 2461.8 1557.5 2.595 2.642	D 1027.1 1014.5 642.8 2.640 2.673	E 3139.3 3127.8 1952.3 2.635 2.645
Apparent Specific Gravity: Density (lbs/ft³): Density (kg/m³): Apparent Density (lbs/ft³): Apparent Density (kg/m³):		2.659 164.1 2629 165.9 2657	2.662 164.3 2631 166.1 2660	2.722 161.9 2593 169.9 2721	2.729 164.7 2639 170.3 2728	2.661 164.4 2634 166.0 2659
Absorption (%) Apparent Specific Gravity at 2	20°C:	0.41 2.657	0.42 2.660	1.81 2.721	1.24 2.728	0.37 2.659
		Data Summar	у			
Average Specific Gravity Ove Average Specific Gravity Sat Average Apparent Specific G	en Dry Basis: urated Surface Dry Basis: iravity:	2.626 2.649 2.687				
Average Density (lbs/ft³): Average Density (kg/m³): Average Apparent Density (II Average Apparent Density (k	os/ft³): g/m³):	163.9 2625 167.6 2685				
Average Absorption (%) Average Apparent Specific G	iravity at 20°C:	0.85 2.685				
NOTES						
Data entry by: BFUTCH Checked by:	Rock Specific Gravity AS	Date: Date: 05TM D6473_0	7/17/2020 _ <u>7/20/20</u> .xlsm	220		

ADVANCED T	ERRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 A Absorbtion
NOTES		So So <td< td=""><td>53 54 80 NG NO. JCBEP - 1 H HO. A Absorbtion</td><td></td></td<>	53 54 80 NG NO. JCBEP - 1 H HO. A Absorbtion	
File name:	2061160lmage	_20_07_16_12_10_59		

ADVAIVCED	ERRA LESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 B Absorbtion
90 15 00	10,20,30,40	CLIENT Knight Pleadd JOB NO. 2061-160 PROJECT PROJECT NO. LOCATION	64 10 20 30 40 50 60 BORING NO. JCBEP. (DEPTH. SAMPLE NO. B TEST Absorbtion ROCK 2	6 6 6 7 6 8 70 80 90 17 0 10 20 3
NOTES				
File name:	2061160Imag	e_20_07_16_12_11_45		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 C Absorbtion
4 7		CLIENT Knight Piesold JOB NO. 2061-160 PROJECT PROJECT NO. LOCATION	5 2 5 3 10 2 0 3 0 4 0 5 0 6 0 DEPTH SAMPLE NO. C TEST Absorbtion ROCK	5 4 5 5 5 6 70 80 90 1400 10 20 30
NOTES		- Chine and		
File name:	2061160Imag	e_20_07_16_12_12_18		

ADVANCED	ERRATESTING		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 D Absorbtion
80 90	5 9 5 6 1 6 2 1500 10 20 30 40 50 60 70 4 CLIENT Knight Piesold JOB NO. 2061-160 PROJECT PROJECT NO. LOCATION	63 BIO 90 100 10 20 BORING NO. DEPTH SAMPLE NO. TEST A ROCK	5 4 6 5 6 30 40 50 60 70 JCBEP -1 D bsorbtion
State of the second			
NOTES			
NOTES			
File name:	2061160Image_20_07_16_12_13_09		

1

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 E Absorbtion
4 7 90 1200 10	4 9 50 51 51 20 30 40 50 60 70 80 90 10 20 CLIENT Knight Piesold BORINO N DEPTH BORINO N DEPTH JOB NO. 2061-160 DEPTH SAMPLE N DEPTH PROJECT SAMPLE N DEATON TEST LOCATION ROCK ROCK	2 513 514 30 40 50 50 70 80 9 10. JCBEP 1 40. E Absorbtion	515 516 517 1 1400 10 20 30 40 50 50
NOTES			
File name:	2061160Image_20_07_16_12_13_48		

ADVANCED	0411001140		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 A Absorbtion
3,90	7 419 50 5 1200 10 20 30 40 50 60 70 60 90 CLIENT Knight Pieso JOB NO. 2001-160 PROJECT PROJECT NO.	1 5 2 5 3 13 00 10 20 30 40 50 id BORING NO JCBEP - DEPTH SAMPLE NO A TEST Absorbtion	5 4 5 5 5 80 70 80 90 1400 10 20 1
	LICATION	ROCK	
NOTES			
File name:	2061160Image_20_07_17_13_18_34		

no vraveso ra				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 B Absorbtion
5 8 70 80 9		6 1 6 2 6 3 50 60 70 80 90 100 CLIENT Knight Plesoid JOB NO. 2051-160 PROJECT PROJECT NO. LOCATION	64 10 20 30 40 BORING NO. DEPTH SAMPLE NO. TEST Abu ROCK 2	B corbtion
NOTES				
File name:	2061160Image_20_0	07_17_13_19_30		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 C Absorbtion
517	518 519 70 80 90 1501 10 20 30 40 CLIENT K JOB NO PROJECT PROJECT NO LOCATION	511 612 613 6 50 60 70 80 90 10 20 hight Pissold BORING NO JCBEP - 2061-160 DEPTH SAMPLE NO. C TEST Absorbtion ROCK	40 50 50 70 80 90
NOTES			
File name:	2061160lmage_20_07_17_13_2	1_01	

ADVARCED	CIGATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP-1 D Absorbtion
B 80 90	5 9 5 5 5 1500 10 20	CLIENT Knight Plesold JOB NO. 2061-160 PROJECT PROJECT NO. LOCATION	BORING NO. DEPTH SAMPLE NO. TEST ROCK	514 615 6 30 40 50 60 70 JCBEP - 1 D Absorbtion
NOTES				
NUTES				
File name:	2061160lmag	e_20_07_17_13_20_04		

Specific Gravity of Rock ASTM D6473

CLIENTKnight PiesoldJOB NO.2061-160PROJECTPROJECT NOLOCATIONDATE TESTEDHN/BFTECHNICIAN44029		BORING DEPTH SAMPL DATE S ROCKT	G NO. E NO. SAMPLED YPE	CRBR-1 	
	Test Data				
Sample ID: Mass of Saturated Surface Dry Sample (g): Mass of Dry Sample (g): Apparent Mass of Sample in Water (g): Specific Gravity Oven Dry Basis: Specific Gravity Saturated Surface Dry Basis: Apparent Specific Gravity: Density (lbs/ft ³): Density (lbs/ft ³): Apparent Density (lbs/ft ³): Apparent Density (lbs/ft ³): Apparent Density (kg/m ³):	A 3099.5 3071.5 2001.2 2.797 2.822 2.870 174.5 2795 179.1 2868	B 3598.9 3562.0 2316.7 2.778 2.807 2.860 173.3 2777 178.5 2859	C 1111.3 1107.0 709.5 2.755 2.766 2.785 171.9 2754 173.8 2784	D 3685.4 3670.0 2336.1 2.720 2.731 2.751 169.7 2719 171.7 2750	E 1249.8 1241.0 802.9 2.777 2.797 2.833 173.3 2776 176.8 2831
Absorption (%) Apparent Specific Gravity at 20°C:	0.91	1.04 2.858	0.39 2.783	0.42	2.831
	Data Summar	у			
Average Specific Gravity Oven Dry Basis: Average Specific Gravity Saturated Surface Dry Basi Average Apparent Specific Gravity:	2.765 s: 2.785 2.820				0
Average Density (lbs/ft³): Average Density (kg/m³): Average Apparent Density (lbs/ft³): Average Apparent Density (kg/m³):	172.6 2764 176.0 2818				
Average Absorption (%) Average Apparent Specific Gravity at 20°C:	0.69 2.818				
NOTES					
Data entry by: BFUTCH Checked by: <u>H</u> M File name: 2061160Rock Specific Gravity	Date: Date: ASTM D6473_1.	7/17/2020 7/29/2 .xlsm	220		

ADVANCED 10	ERRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	B D S T R	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 A Absorbtion
NOTES	10 20 30 40 50 50 70 80 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	51 52 53 90 10 20 30 40 5 PORING NO. DEPTH SAMPLE NO. ROCK CRB8-1 Absorbtion ROCK		
File name:	2061160Image_20_07_1	6_11_25_15		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 B Absorbtion	
			6 40 50 60 70 8 80806 80 0 000 101710 308712 80 0 101710 308712 80 0 101710 308712 80 0 101710 308712 80 0 101710 1017000 10000000000		
NUTES					
File name:	2061160Image_20_07_16_11_2	27_14			

ADVANCED IL	INIA TESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 C Absorbtion
4 7 3 90 12	415 20 10 20 30 4 JOE PRO PRO LOI	4 9 5 0 5 10 5 0 6 0 7 0 8 0 9 0 ENT Knight Piesold 3 NO. 2061-160 DJECT OJECT NO. CATION	1 5 2 5 1300 10 20 30 40 BORING NO. CRBR DEPTH SAMPLE NO. C TEST Absorbtion ROCK 8	
NOTES	P. S.			the state of the s
File name:	2061160lmage	e_20_07_16_11_27_49		

ADVANCED	ERRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 D Absorbtion
90 1500 10	611 6 20 30 40 50 50 70	2 6 3 6 4 80 90 600 10 20 30 4 CLIENT Knight Pissold JOB NO. 2001-380 PROJECT PROJECT NO. LOCATION	6 5 6 6 0 50 60 70 80 90 BORING NO. CRER -1 DEPTH SAMPLE NO. D TEST Absorbtion ROCK	617 618 17.10 10 10 10 10 10 10 10 10 10 10 10 10 1
2			R	
		SREE 19	-4-11	AR A
NOTES			+	2/
File name:	I	_07_16_11_29_00		

ADVANCED I	RRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 A Absorbtion
47 90.1209	4 9 50 60 20 30 40 50 60	0 5 1 5 2 70 80 90 100 10 20 3 CLIENT Knight Plesold JOB NO 2001-100 3 PROJECT PROJECT NO LOCATION 2001-100 3	53 54 040 50 50 70 80 DEPTH SAMPLE NO TEST ROCK	5 5 5 6 5 7 90 1400 10 20 30 40 50
			PA	
NOTES				
File name:	2061160lmage_20_	_07_17_13_27_34		

ADVANCED	ERRA TESTING		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 B Absorbtion
		6 2 6 3 6 4 60 7 0 80 80 80 80 80 80 80 80 80 80 80 80 8	
NOTES			
File name:	2061160lmage_20_07_17_13_34_1	10	

ADVANCED	ERRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 D Absorbtion
6 <u>3040</u>	7 58 59 50 60 70 80 90 1500 10 20	CLIENT Knight Piesold JOB NO. 2061-160 PROJECT PROJECT HO. LOCATION	BORING NO DEPTH SAMPLE NO. TEST AD ROCK	4 6 5 6 6 6 30 40 50 60 70 80 90 17 ccBR - 1 0 sorbtion
			~	
NOTES				
File name:	2061160lmage_20_07_^	17_13_35_14		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR-1 E Absorbtion
30 40	2 2 2 2 2 9 50 50 70 80 90 700 10 20 30 40 CLIENT Knight Plesold BORING JOB NO. 2001-160 DEPTH PROJECT SAMPLI FROJECT NO. TEST LOCATION ROCK 10 20	20 50 60 70 8 NO CRBR-1 NO E Absorbtion	311 32 3 90 000 10 20 30
NOTES			
File name:	2061160lmage_20_07_17_14_52_57		

7

CLIENTKnight PiesoldJOB NO.2061-160PROJECTPROJECT NOLOCATIONDATE TESTEDHN/BFTECHNICIAN44029	Knight Piesold D. 2061-160 CT CT NO. ION IESTED HN/BF IICIAN 44029		g no. E no. Ampled Ype	C2DSR-1 	
	Test Data				
Sample ID: Mass of Saturated Surface Dry Sample (g): Mass of Dry Sample (g): Apparent Mass of Sample in Water (g): Specific Gravity Oven Dry Basis: Specific Gravity Saturated Surface Dry Basis: Apparent Specific Gravity:	A 3511.0 3506.2 2263.8 2.811 2.815 2.822	B 3708.5 3681.6 2387.7 2.787 2.808 2.845	C 2019.8 1977.2 1273.8 2.650 2.708 2.811	D 2991.0 2975.8 1927.7 2.799 2.813 2.839	E 1766.6 1755.4 1138.8 2.796 2.814 2.847
Density (lbs/ft³): Density (kg/m³): Apparent Density (lbs/ft³): Apparent Density (kg/m³): Absorption (%) Apparent Specific Gravity at 20°C:	175.4 2810 176.1 2821 0.14 2.820	173.9 2786 177.5 2844 0.73 2.843	165.4 2649 175.4 2810 2.15 2.809	174.6 2797 177.2 2838 0.51 2.837	174.5 2795 177.6 2845 0.64 2.845
)ata Summar	/			
Average Specific Gravity Oven Dry Basis: Average Specific Gravity Saturated Surface Dry Basis: Average Apparent Specific Gravity: Average Density (lbs/ft³): Average Density (kg/m³): Average Apparent Density (lbs/ft³): Average Apparent Density (kg/m³): Average Apparent Density (kg/m³):	2.769 2.791 2.833 172.8 2767 176.8 2831 0.83 2.831				
Data entry by: BFUTCH	Date:	7/17/2020			

ADVANCED	ERRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 A Absorbtion
	4 9 5 0 0 40 50 50 70	5 1 5 2 80 90 1300 10 20 30 4 JOB NO. 2051-160 PROJECT PROJECT NO. LOCATION	5 3 5 4 5 5 0 5 0 6 0 7 0 8 0 9 0 14 BORING NO. C205R - 1 DEPTH BAMPLE NO. A TEST Absorbtion ROCK 20	5 6 5 7 60 7 10 20 30 40 50 60 7
K. Maria		N		
		A'	- 840 W	
NOTES				
File name:	2061160Imag	e_20_07_16_12_05_50		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 B Absorbtion
518		CLIENT JOB NO PROJECT PROJECT NO. LOCATION	NO. 20 30 40 50 60	
NOTES				
File name:	2061160lmage_2	20_07_16_12_06_19		

AD THICLD IT	child i contro		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 C Absorbtion
5 9 1500 10	513 61 62 63 20 30 40 50 60 70 80 90 18:00 1 CLIENT Knight Plesold JOB NO. 2061-160 2061-160 PROJECT PROJECT NO. LOCATION 2061-160	64 65 BORING NO. C2DSR-1 DEPTH SAMPLE NO. C TEST Absorbtion ROCK 3	6 6 7 6 70 80 90 1700 10 20
	Canse Canse		
NOTES			
File name:	2061160lmage_20_07_16_12_09_55		

AUVAINGED LERRA LESTING						
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. C DEPTH SAMPLE NO. C TEST TYPE A ROCK TYPE	2DSR-1) bsorbtion			
	to 20 30 40 50 60 70 80 90 10 10 20	3.0 5.3 5.0 2. C2DSR-1 0. D Assorbtion 12 C				
File name:	2061160lmage_20_07_16_12_08_04					

ADTAILED IT				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 A Absorbtion
4.7	4 9 5 0 20 30 40 50 60 7	0 80 90 1300 10 20 CLIENT Knight Piscold JOB NO 2061-160 PROJECT NO. LOCATION	5 3 5 4 30 40 50 60 70 80 90 BORING NO. C206R- 9 DEPTH SAMPLE NO. A TEST Absorbtion ROCK 19	5 5' '5 6' '5 7' ' 1000 10 20 30 40 50 60
			abore	2
NOTES				
File name:	2061160lmage_20	_07_17_13_39_26		

ADVANCED	ERRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 B Absorbtion
5.6	517 518 519 40 50 60 70 80 90 150	LLENT Knight Piecold JOR NO 201-100 PROJECT PROJECT NO. LOCATION	6.2 6.3 6 70 8.0 9.0 10 2.0 BORING NO. C209R -/ 0 0 2.0 BORING NO. C209R -/ 0 0 10 2.0 BORING NO. C209R -/ 0 0 10 2.0 BORING NO. C209R -/ 0	4 6 5 6 6 30 40 50 50 70 80 90 1
			P. Jan	
NOTES				
File name:	2061160Image_20_	07_17_13_39_53		

ADVANCEDIT	INNA TESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 C Absorbtion
2,90	7 12 00 10 20 30 40 50 60 CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	50 51 70 80 90 1300 1 Knight Piesold 2061-160	512 5 10 20 30 40 BORING NO. DEPTH SAMPLE NO. TEST AL ROCK 12	3 5 4 5 5 50 60 70 30 90 1400 C2DSR-1 C osorbtion
NOTES				
File name:	2061160Image_20_07_17_13	<u>40_25</u>		

ADVAILED II				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 D Absorbtion
57	58 51 70 80 90 15	SF 61 0 10 2:0 3:0 4:0 5:0 6:0 CLIENT Knight Pleaold 2061-100 PROJECT PROJECT PROJECT NO. LOCATION	R 2 6 3 6 7.0 6 40 1600 10 20 BORING NO. C2DBR~1 DEPTH SAMPLE NO. D TEST Absorbtion ROCK	4 6 5 6 6 30 40 50 60 70 80 9
NOTES				
File name:	2061160lma			

ADVAILCED	RRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR-1 E Absorbtion
3 5 90. 800	3 7 3 8 0 20 30 40 50 60 70 CLIENT KO JOB NO. PROJECT PROJECT NO. LOCATION	3 9 4 0 8 0 9 0 10 00 10 2,0 3 sight Piesold BORING NO. DEPTH SAMPLE NO. TEST ROCK 3 3 3 3 3 3	4.1 4.2 0.40,50,60,7 C2DSR-1 E Absorbtion	
NOTES				1 . · ·
File name:	2061160lmage_20_07_17_	_14_54_03		

Specific Gravity of Rock ASTM D6473

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION DATE TESTED TECHNICIAN	Knight Piesold 2061-160 HN/BF 44029		BORING DEPTH SAMPLI DATE S ROCKT	è no. E no. Ampled Ype	C2LB-1 	
		Test Data				
Sample ID: Mass of Saturated Surface Dry Mass of Dry Sample (g): Apparent Mass of Sample in W	Sample (g): /ater (g):	A 3324.0 3300.7 2120.6	B 3406.1 3353.5 2153.7	C 2014.0 1989.4 1280.5	D 3773.0 3746.3 2398.9	E 1218.2 1184.3 742.8
Specific Gravity Oven Dry Basis Specific Gravity Saturated Surf Apparent Specific Gravity:	s: ace Dry Basis:	2.743 2.762 2.797	2.678 2.720 2.795	2.712 2.746 2.806	2.726 2.746 2.780	2.491 2.562 2.682
Density (lbs/ft³): Density (kg/m³): Apparent Density (lbs/ft³): Apparent Density (kg/m³):		171.2 2741 174.5 2796	167.1 2676 174.4 2794	169.2 2711 175.1 2805	170.1 2725 173.5 2779	155.4 2490 167.4 2681
Absorption (%) Apparent Specific Gravity at 20	°C:	0.71 2.795	1.57 2.793	1.24 2.804	0.71 2.779	2.86 2.681
	D	ata Summar	/			
Average Specific Gravity Oven Average Specific Gravity Satur Average Apparent Specific Gra	Dry Basis: ated Surface Dry Basis: avity:	2.670 2.707 2.772				
Average Density (lbs/ft³): Average Density (kg/m³): Average Apparent Density (lbs. Average Apparent Density (kg/	/ft³): m³):	166.6 2669 173.0 2771				
Average Absorption (%) Average Apparent Specific Gra	avity at 20°C:	1.42 2.770				
NOTES						
Data entry by: BFUTCH Checked by: <u>H</u> A/ File name: 2061160_F	Rock Specific Gravity AS	Date: Date: TM D6473_3.	7/17/2020 <u>7/23/ 2<</u> xlsm	2		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB-1 A Absorbtion
4 7 90 100 10	49 50 51 1 20 30 40 50 60 70 80 90 1300 CLIENT Knight Presold JOB NO. 201180 PROJECT PROJECT NO LOCATION	5.2 5.3 5.4 10 20 30 3 60 7.0 80 BORING HOT 7.8 = 1 DEPTH SAMPLE NO A TEST Absorbtion ROCK	5 5 5 6 5 7 90 1400 10 20 30 40 50
NOTES			
File name:	2061160Image_20_07_16_11_14_	38	

CLIENT	Knight Piesold		BORING NO.	C2LB-1
JOB NO. PROJECT	2061-160		SAMPLE NO.	в
PROJECT NO.			TEST TYPE	Absorbtion
LOCATION			ROCK TYPE	
Amilia and		62 63 64	65 66	012 68
70 80 80	1900 10 20 30 40 50 60	7.0 8.0 9.0 16.00 1.0 2.0 3	0 40 50 60 70 80	9.0 1700 10 20 30 4
		JOB NO. 2061-190	DEPTH	
		PROJECT NO	TEST Absorbtion	
		LOCATION	-	<u>en</u> 1-
		- Notice to construct the second second	A DECEMBER OF THE OWNER	
		A Part of the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		A BARA		
-				1.00
	- Ar			
		455		
1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			S. Ya	
1. 22 3. 24		and the second second		
1. 1. 1. 1	Contraction		All distance	
1212-1-2				
	Procession of the second		and the	
	VISA			
	A CONTRACTOR			
			AL ASSALL THE REAL	and the second second
0.200		AND	J.C.a.	and the second second
	The second second second	Com	and the second	
NOTES				
File name:	2061160lmage_20_07	7_16_11_20_21		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORI DEP SAMI TEST ROC	NG NO. C2LB-1 TH PLE NO. C TYPE Absorb K TYPE	tion
90 1200	4 9 5 0 10 20 30 40 50 60 70 CLIENT Kon JOB NO. PROJECT PROJECT NO. LOCATION	51 52 5 8:0 9:0 10 2:0 3:0 4:0 pht Piesoid BORING NO. C2LB 061-160 DEPTH SAMPLE NO. C TEST Absorbti ROCK 18	3 5 4 5 50 60 70 80 90	5 5 6 1400 10 20 30 40
				and the second second
NOTES				
File name:	I 2061160Image_20_07_2	6_11_21_52		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING N DEPTH SAMPLE N TEST TYP ROCK TYP	10. C: 10. D E Al PE	2LB-1 bsorbtion	
5 9		6 2 63 70 80 90 1000 10 2 GLIENT Kolghe Plexols 261.160 261.160 PROJECT NO. LOCATION 201.160 201.160	6 4 6 5 6 7 6 6 DORING NG. CAR 1 DEFTH BANFLE HG. D TEST ADSORD TO TO TO TO TO TO TO TO TO TO			
NOTES						
File name:	2061160Image	20_07_16_11_24_1	3			

1				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB-1 B Absorbtion
5 8 70 80 9	5 9 10 20 30 40 50 cue yos pro toc	612 63 60 70 80 90 00 80 201160 2011 10 2011 10 2011 10 10 10 10 10 10 10 10 10 10	F 4 6 5 6 10 20 30 40 50 60,170 0 ВОВИНО, №С C2LB-{ 0 0 70 0 ВОВИНО, №С С2LB-{ 0 0 70 0 ВОВИНО, №С В 0 10 10 10 10 ТЕВТ Арасонносто 10 10 10 10 10 КОСК 10 10 10 10 10 10 10 10	
NOTES				
File name:	2061160lmage_20	_07_17_13_44_13		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB-1 C Absorbtion
NOTES		CLENT KINGIN Piesold JOB NO 2001-150 PROJECT PIOJECT NO LOCATION	SORING NO. BORING NO. CZLB - 1 DEPTH SAMPLE NO. C TEST Absorbtion ROCK	
File name:	2061160lma	ge_20_07_17_13_44_45		

ADVANCED TE	RRA TESTING		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB-1 D Absorbtion
	CLENT Kright Pleadid BORING MG NG MG Dol 100 Dol 100 NG MG Dol 100	1 40 50 60 70 30 40 50 60 70 D Absorbtion	
NOTES			
File name:	2061160lmage_20_07_17_13_45_29		

CLIENT	Knight Piesold	BORING NO.	C2LB-1
JOB NO.	2061-160		-
PROJECT		SAMPLE NU.	
PROJECT NO.			Absorbtion
LOCATION		RUCKITPE	
210 310	216 217 28 29 40 50 60 70 80 90 10 20 30 40 CLIENT Knight Plesoid BORING NO JOB NO. 2061-160 DEPTH PROJECT SAMPLE NO. SAMPLE NO. SAMPLE NO. SAMPLE NO.	5 0 H 0 7 0 8 0 C2LB-1	311 312 31; 90 600 10 20 30 4
	PROJECT NO TEST	Abscrittion	
	LOCATION ROCK	CATT	
	and the second second	-	
	A standard	State States	at a first a first
		il an with	the state of the s
		Stand State	A PARTY AND A PART
		at - MA	the second second second
	and the second sec		and the second second
	S HANCALON TO THE		
		they are	
		The second second	
	Prover and a second sec		
	No. S. C.		
*	and the second states	and the second	and the second sec
	and the second sec		and the second second
	A second	Carl Start Starting	
100	and the second second	S. S. S.	A President and the second
		1 X	and the second second
	and the second		A MARCHINE STATE
		State State	- All 51 19 Hours
NOTES			
File name:	2061160 Image 20 07 17 14 54 47		
	2001100iiiiage_20_01_11_11_01_11		

Specific Gravity of Rock ASTM D6473

ADVANCED TERRA TESTING

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION DATE TESTED TECHNICIAN	Knight Piesold 2061-160 HN/BF 44029		BORING DEPTH SAMPLI DATE S ROCKT	B NO. E NO. AMPLED YPE	IGDDS-1 	
		Test Data				
Sample ID: Mass of Saturated Surface Dr Mass of Dry Sample (g): Apparent Mass of Sample in V	y Sample (g): Vater (g):	A 3594.9 3586.1 2308.5	B 2858.3 2851.5 1832.7	C 3806.4 3794.8 2437.7	D 3258.6 3252.0 2091.6	E 1392.6 1386.7 891.0
Specific Gravity Oven Dry Bas Specific Gravity Saturated Sur Apparent Specific Gravity:	sis: face Dry Basis:	2.788 2.795 2.807	2.780 2.787 2.799	2.773 2.781 2.796	2.787 2.792 2.802	2.765 2.776 2.797
Density (lbs/ft³): Density (kg/m³): Apparent Density (lbs/ft³): Apparent Density (kg/m³):		174.0 2786 175.2 2806	173.5 2779 174.7 2797	173.0 2771 174.5 2795	173.9 2785 174.9 2801	172.5 2763 174.6 2796
Absorption (%) Apparent Specific Gravity at 2	0°C:	0.25 2.805	0.24 2.797	0.31 2.794	0.20 2.801	0.43 2.796
	C	ata Summary	/			
Average Specific Gravity Ove Average Specific Gravity Satu Average Apparent Specific Gr	n Dry Basis: irated Surface Dry Basis: ravity:	2.778 2.786 2.800				
Average Density (lbs/ft³): Average Density (kg/m³): Average Apparent Density (lb Average Apparent Density (kg	s/ft³): j/m³):	173.4 2777 174.7 2799				
Average Absorption (%) Average Apparent Specific G	ravity at 20°C:	0.28 2.799				
NOTES						
Data entry by: Checked by: File name: BFUTCH 2061160_	Rock Specific Gravity AS	Date: Date: TM D6473_4.	7/17/2020 7/20 xlsm	2		

ADVANCED II	MATLOTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS-1 A Absorbtion
	20 30 40 50 60 70 CLIENT JOB NO. PROJEC PROJEC LOCATIC	B0 90 10 10 2 Raight Piesold 201160	2 3 3 40 50 50 70 80 BORING NO. 10005 - 1 DEPTH BAMPLE NO A TEST Absorbtion ROCK	
	A.C.			
NOTES				
File name:	2061160Image_20	0_07_16_11_40_29		

CLIENT	Knight Piesold		BORING NO.	IGDDS-1
PROJECT	2061-160		SAMPLE NO.	D
PROJECT NO.			TEST TYPE	Absorbtion
LOCATION			ROCK TYPE	
8 5	9 5 6 1	62 63 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 615 616	and an el su
80 90 1	100 10 20 30 40 50	CLIENT Knight Piesold BC	3:0 4:0 5:0 6:0 7:0 B	Particular 17 100 1. 10 2.0 3.0 4
		JOB NO. 2061-160 DE	IPTH D	
1200		PROJECT NO. TE	ST Absorbillon	Contraction of the
Cash-		LOCATION	n CAT	4-
		and the second second		
5	Statement Party Party	CONTRACTOR AND ADD. MANAGEMENT	Contraction of the local division of the loc	and and the second s
		A SPACE AND	and set to the	
	A STREET			
	ALC: CONT		adding to the second	
	All and a	a sub a subscription		
		X parts		
	Construction of the second			
11-11-5	Care	R. Start		and the second se
	C 2 MG	A DECEMBER OF		
	C. State		20 Martin	and the second
	The second		And a set	
1. CET-	1 states			
	No. 1			
1.19103				
		and the second of		
NOTES				
Lile nome:	2061160 Image 3	0 07 16 12 04 26		
File name:	2001100_IIIIaye_2	v_vi_i0_i2_04_20		

Ľ

ADVANCED TE	RRATESTING		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS-1 B Absorbtion
16171111 58 10 7/0 80	CLENT Knight Plesold BORING NO. JOB NO. 2061-160 DEPTH PROJECT SAMPLE NO PROJECT NO. TEST LOCATION ROCK	3 6 4 3 6 4 10 20 30 40 iGDD5 - 1 B Absorbtion	65 60 70 80 90 1700 in
NOTES			
File name:	2061160Image_20_07_17_13_50_28		

ADVANCED	ERRA LESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS-1 C Absorbtion
NOTES		CLIENT Knight Piesold JOB NO 2061-180 PROJECT PROJECT NO. LOCATION	513 514 30 40 50 60 70 80 DEPTH SAMPLE NO. C TEST Absorbtion ROCK J	
File name:	2061160Image_2	0_07_17_13_50_54		

.

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS-1 D Absorbtion
518 1.70 80	90, 190, 10, 20, 30, 40, 50 PROJECT LOCATION	62 63 60 70 80 90 10 10 Knight Piesold BORIN 2061-180 DEPTH SAMP NO. TEST N ROCK	6 4 65 1 20 30 40 50 10 NO 10DD - (4 LE NO. D Absorbtion	
		A Contraction of the second se		
NOTES				
File name:	2061160lmage_20_07_1	7_13_51_18		

PLOTAILED II	CINITA LESTING						1
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 			BORING NO DEPTH SAMPLE NO TEST TYPE ROCK TYPI	D. IGE D. E E Abs E	DDS-1 sorbtion	
315	3F 10 20 30 40	CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	319 80 90 10 00 Knight Piesold 2061-160	410 411 0 20 30 40 DEPTH SAMPLE NO. TEST ROCK	IGODS-1 E Absorbtion	2' ' 4'3' 70, 80, 90, 110	4
NOTES	会场的	6	2	1			
File name:	2061160Image	e_20_07_17_1	4_56_45				

Specific Gravity of Rock ASTM D6473

CLIENT Kn JOB NO. 200 PROJECT PROJECT NO LOCATION DATE TESTED HN TECHNICIAN 44	ight Piesold 61-160 I/BF 029		BORING DEPTH SAMPLI DATE S ROCKT	6 NO. E NO. AMPLED YPE	IGLV-1 	
		Test Data				
Sample ID: Mass of Saturated Surface Dry Sa Mass of Dry Sample (g): Apparent Mass of Sample in Wate	mple (g): r (g):	A 3277.9 3269.4 2107.9	B 1973.8 1961.6 1269.1	C 3244.3 3231.6 2075.5	D 1655.5 1650.6 1060.1	E 2361.6 2323.1 1500.6
Specific Gravity Oven Dry Basis: Specific Gravity Saturated Surface Apparent Specific Gravity:	Dry Basis:	2.794 2.802 2.815	2.784 2.801 2.833	2.765 2.776 2.795	2.772 2.780 2.795	2.698 2.743 2.824
Density (lbs/ft³): Density (kg/m³): Apparent Density (lbs/ft³): Apparent Density (kg/m³):		174.4 2793 175.6 2813	173.7 2782 176.8 2831	172.5 2764 174.4 2794	173.0 2771 174.4 2794	168.4 2697 176.2 2823
Absorption (%) Apparent Specific Gravity at 20°C:		0.26 2.813	0.62 2.831	0.39 2.793	0.30 2.793	1.66 2.823
	D	ata Summary				
Average Specific Gravity Oven Dr Average Specific Gravity Saturate Average Apparent Specific Gravity	y Basis: d Surface Dry Basis: /:	2.763 2.780 2.812				
Average Density (lbs/ft³): Average Density (kg/m³): Average Apparent Density (lbs/ft³) Average Apparent Density (kg/m³)	:	172.4 2761 175.5 2811				
Average Absorption (%) Average Apparent Specific Gravity	∕ at 20°C:	0.65 2.811				
NOTES						
Data entry by: BFUTCH Checked by: ↓↓√ File name: 2061160Roc	k Specific Gravity AS	Date: Date: _ TM D6473_5.x	7/17/2020 <u>7/7 º/7</u> Ism	010		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 A Absorbtion
4 7) 90 1200	4 9 5 0 10 2/0 30 40 50 60 70 80 5 CLIENT Knight Piesold JOB NO. 2081-160 PROJECT PROJECT NO. LOCATION	51 52 53 90 1300 10 20 30 40 50 60 BORING NO. IGLV - 1 DEPTH SAMPLE NO. A TEST Absorbtion ROCK B	54 56 70 80 90 1400 10 20
NOTES			
File name:	I 2061160Image_20_07_16_11_04	_09	

ADVANCED I	RRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 B Absorbtion
9 9 10 20	61 30 40 50 6	6 2 6 3 6 0 7/0 8 0 90 90 10 20 CLIENT Knight Plesold B JOB NO. 2061-160 D PROJECT S PROJECT NO. T LOCATION R	4 615 30 40 50 60 7 30 40 50 60 7 000 00 10 10 10 10 10 000 00 1	6676 676 6776 607 60 60 60 70 10 20 -1
		Calley	8	
NOTES				
File name:	2061160lmage	20_07_16_11_05_40		

ADVANCED				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 C Absorbtion
4 7 90 1200 1		51 512 513 90 1300 10 20 30 40 5 arm Knight Plaxadd 80 arm Knight	1 5 4 5 5 0 60 70 80 90 м ине но. Юлу-1 те ине но. с и ленотолого к	5 6 5 7 5 4 10 20 30 40 50 60 70
NOTES				
File name:	2061160Image_20_07_	16_11_06_15		

rio mitero n				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 D Absorbtion
5.0 60 7	5 8 5 9 5 5 9 5 5 5 6 5 5 6 5 6 5 6 5 6 5 6	61 62 40 50 60 70 80 90 CLIENT Knight Piesold JOB NO 2001-160 PROJECT PROJECT NO. LOCATION	6 3 6 4 6 3 6 4 10 20 30 BORING NO. DEPTH BAMPLE NO. TEST A ROCK B	65 66 7 40 50 60 70 80 90 1700 IGLV -1 D beorbtion
		RON		
NOTES				
File name:	2061160lmage_20_07_	_16_11_07_02		

Image Attachment PRIVILEGED AND CONFIDENTIAL **ADVANCED** TERRA TESTING BORING NO. IGLV-1 Knight Piesold CLIENT 2061-160 DEPTH JOB NO. SAMPLE NO. Α PROJECT ___ TEST TYPE Absorbtion PROJECT NO. _--ROCK TYPE LOCATION ___ 417 419 50 51 52 53 54 55 10 20 30 40 50 60 70 80 90 1400 40 50 60 70 80 90 1300 90 1200 10 3,0 2|0 0 IGLV - 1 BORING NO CLIENT Knight Presold DEPTH 2061-160 JOB NO SAMPLE NO PROJECT TEST Absorbtion PROJECTINO ROCK LOCATION (n) NOTES 2061160 lmage 20 07 17 13 53 23 File name:

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 		BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 B Absorbtion
80 90	9 10 20 30 4	CLIENT Knight Piesold JOB NO. 2061-160 PROJECT PROJECT NO. LOCATION	3 614 10 20 30 40 BORING NO. DEPTH SAMPLE NO. TEST AU ROCK 23	615 616 617 50 60 70 80 90 1700 IGLV - 1 B assorbtion
NOTES			E HOY	
File name:	2061160lmage_;	20_07_17_13_53_46		

ADVANCED II	IRRA IEDIINO		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 C Absorbtion
NOTES	CLIENT MAY DO NO TO TO PROJECT PROJECT TO T	53 54 55 50 50 70 80 90 10 10 10 10 10 10 10 10 10 10 10 10 10 1	
File name:	2061160Image_20_07_17_13_54_30		

ADVANCED TE	ERRA TESTING		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 D Absorbtion
	CLIENT Knight Piesold BORH JOB NO. 2011-160 DEPT PROJECT NO. TEST LOCATION ROCK	6 3 6 4 6 50 90 10 20 30 40 50 NG NO. IGLY -1 H LE NO B Absorbtion	
NOTES			
File name:	2061160lmage_20_07_17_13_55_0	2	

ADVANCED TERRA TESTING				
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-160 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV-1 E Absorbtion	
3.0 60 7.0	31 32 33 34 80 90 800 10 20 30 40 50 60 7 CLIENT Knight Piesold JOS NO. 2051-160 PROJECT NO. LOCATION	BORING NO. DEPTH SAMPLE NO. TEST ROCK Absorbtion	3 7 3 8 3 30 40 50 60 70 80 90	
NOTES				
File name:	 2061160Image_20_07_17_14_57_32			

7

Specific Gravity and Absorption for Erosion Control PRIVILEGED AND CONFIDENTIAL ASTM D6473

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION DATE TESTED TECHNICIAN	Knight Piesold 2061-159 Kalamath Rive 6/25-27/2020 HN	r Renewal Proje	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED ROCKTYPE	JCBEP PLT-3 	
		Test	Data		
Sample ID: Mass of Saturated Surface Mass of Dry Sample (g): Apparent Mass of Sample Absorption (%): Bulk Specific Gravity: Bulk Density (pcf):	e Dry Sample (g): in Water (g):	1 780.7 774.2 484.2 0.84 2.61 162.9			
Bulk Density (kg/m ³)		2611			
		Data Su	ummary		
Average Absorption (%): Average Bulk Spefic Grav Average Bulk Density (pcf Average Bulk Density (kg/	ty:): m³):	0.84 2.61 162.9 2611			
NOTES					
Data entry by: BFUTC Checked by: HN File name: 206115	H 9 Absorption AS	Date: 	6/27/2020 <u>6/29/201</u> 0		

Specific Gravity and Absorption for Erosion Control PRIVILEGED AND CONFIDENTIAL ASTM D6473

CLIENT Knig JOB NO. 2061 PROJECT Kala PROJECT NO LOCATION DATE TESTED 6/25 TECHNICIAN HN	ht Piesold -159 math River Renewal Proje -27/2020	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED ROCKTYPE	CRBR PLT-1 	
	Test	Data		
Sample ID: Mass of Saturated Surface Dry Sa Mass of Dry Sample (g): Apparent Mass of Sample in Wate	mple (g): 1249.8 1241.0 er (g): 802.9			
Absorption (%): Bulk Specific Gravity:	0.71 2.78			
Bulk Density (pcf): Bulk Density (kg/m³)	173.3 2777			
	Data Si	ummary		
Average Absorption (%): Average Bulk Spefic Gravity: Average Bulk Density (pcf):	0.71 2.78 173.3			
NOTES				
Data entry by: BFUTCH Checked by: HM	Date: Date:	6/27/2020 6 1 7 91 707 0		

Specific Gravity and Absorption for Erosion Control PRIVILEGED AND CONFIDENTIAL ASTM D6473

CLIENT Knight Piesold JOB NO. 2061-159 PROJECT Kalamath Rive PROJECT NO LOCATION DATE TESTED 6/25-27/2020 TECHNICIAN HN	er Renewal Proje	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED ROCKTYPE	C2DSR PLT-2 	
	Test	Data		
Sample ID: Mass of Saturated Surface Dry Sample (g): Mass of Dry Sample (g): Apparent Mass of Sample in Water (g):	1 1766.6 1755.4 1138.8			
Absorption (%): Bulk Specific Gravity:	2.80			
Bulk Density (pcf): Bulk Density (kg/m³)	174.5 2796			
	Data Su	Immary		
Average Absorption (%): Average Bulk Spefic Gravity:	0.64 2.80			
Average Bulk Density (pcf): Average Bulk Density (kg/m³):	174.5 2796			
NOTES				
Data entry by: BFUTCH Checked by: <u>HN</u> Eile name: 2061159 Absorption A	Date: Date: Date:	6/27/2020 6/2 <i>4/7020</i>		

Specific Gravity and Absorption for Erosion Control PRIVILEGED AND CONFIDENTIAL ASTM D6473

CLIENT Kn JOB NO. 200 PROJECT Ka PROJECT NO LOCATION DATE TESTED 6/2 TECHNICIAN HN	ight Piesold 61-159 Iamath River Renewal Proje 25-27/2020	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED ROCKTYPE	C2LB PLT-1 	
	Test	Data		
Sample ID: Mass of Saturated Surface Dry S Mass of Dry Sample (g): Apparent Mass of Sample in Wa Absorption (%): Bulk Specific Gravity:	Sample (g): 1218.2 1184.3 Iter (g): 742.8 2.86 2.49			
Bulk Density (pcf): Bulk Density (kg/m³)	155.4 2491			
	Data Su	ımmary		
Average Absorption (%): Average Bulk Spefic Gravity:	2.86 2.49			
Average Bulk Density (bcl). Average Bulk Density (kg/m³):	2491			
NOTES				
Data entry by: BFUTCH Checked by: 14/	Date: Date: Date:	6/27/2020 6/29/2020		

Sample ID: Mass of Saturated Surface Dr				
Sample ID: Mass of Saturated Surface Dr		Test	Data	
Mass of Dry Sample (g): Apparent Mass of Sample in V	y Sample (g): Water (g):	1 1392.6 1386.7 891.0		
Absorption (%): Bulk Specific Gravity:		0.43 2.76		
Bulk Density (pcf): Bulk Density (kg/m³)		172.5 2765		
		Data S	ummary	
Average Absorption (%): Average Bulk Spefic Gravity: Average Bulk Density (pcf): Average Bulk Density (kg/m³):	:	0.43 2.76 172.5 2765		
NOTES				
Data entry by: BFUTCH Checked by: LA		Date: Date:	6/27/2020 612912020	

Specific Gravity and Absorption for erosion Control PRIVILEGED AND CONFIDENTIAL ASTM D6473

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION DATE TESTED TECHNICIAN	Knight Piesold 2061-159 Kalamath Rive 6/25-27/2020 HN	r Renewal Proje	BORING NO. DEPTH SAMPLE NO. DATE SAMPLED ROCKTYPE	IGLV PLT-1 	
		Test	Data		
Sample ID: Mass of Saturated Surface D Mass of Dry Sample (g): Apparent Mass of Sample in Absorption (%): Bulk Specific Gravity: Bulk Density (pcf): Bulk Density (kg/m³)	ery Sample (g): Water (g):	1 2361.6 2323.1 1500.6 1.66 2.70 168.4 2698			
		2000			
		Data Si	Immary		
Average Absorption (%): Average Bulk Spefic Gravity: Average Bulk Density (pcf): Average Bulk Density (kg/m ^a):	1.66 2.70 168.4 2698			
NOTES					
Data entry by: BFUTCH Checked by: <u>HN</u> File name: 2061159	Absorption A	Date: Date: STM C97_5.xlsm	6/27/2020 6/29/2020		

ADVANCED	CRRATESTING			
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal 	Project	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	JCBEP PLT-3 Specific Gravity
		CLERNT JOB NO PROJECT PROJECT NO LOCATION Kalamatik River Ramara ROBLING ACATON COCATION RAFTER TEN AFFTER TEN	ACREP ALTJ Benefite Grands	
NOTES				
File name:	2061159Image_20_0	6_27_16_32_43		,

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Ren 	ewal Project	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	CRBR PLT-1 Specific Gravity	
			AND REST		
NOTES					
File name:	2061159Image_2	20_06_27_16_33_44			

ADVANCED T	ERRA TESTING		
CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2DSR PLT-2 Specific Gravity
. /			
	LUBRI MORECT RO LUCATION	Regis Frendt Bolloo BO Ellina Bolt 186 Octow Ratered Row Research Status Color Boll 200 Research Hold Status Status	
NOTES		AFTER TEST	
NOTES			
File name:	2061159lmage_20_06_27_16_34_2	4	

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	C2LB PLT-1 Specific Gravity
NOTES			
File name:	2061159Image_20_06_27_16_35_16		

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Project 	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGDDS PLT-2 Specific Gravity
	<image/> <text></text>	SRING NO EATH MARPLENO EST OCK IEST	
NOTES			
File name:	2061159lmage_20_06_27_16_35_56		

CIENT Kinght Piesold BORING NO. ILU PROJECT KO. COCATION COCATION	no material					
NTES	CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Knight Piesold 2061-159 Kalamath River Renewal Proje 	ect	BORING NO. DEPTH SAMPLE NO. TEST TYPE ROCK TYPE	IGLV PLT-1 Specific Gravity	
NOTES			алитичиницинициницинициницинициницинициницин	PLE NO PLE NO PL		
File name: 2061159_Image_20_06_27_16_36_26	NOTES	2061159Image_20_06_27_	_16_36_26			

APPENDIX D3

Point Load Test Results

(Pages D3-1 to D3-9)

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 1 SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: Knight Piesold/KLAMATH RIVER RENEWAL PROJECT DATE RECEIVED: 06-01-2020

DAM SITE	SAMPLE LOCATION	DATE TESTED	MICRO-DEVAL GRADING A % LOSS	MAGNESIUM SULFATE SOUNDNESS WEIGHTED % LOSS	SOIL OR BEDROCK TYPE
JC BOYLE	DOWNSTREAM OF DAM ID#JCBEP-1	06-02-2020	16.1	2.65	-1 1/2" TO #4 PROCESSED FROM COBBLES
COPCO #1	ACCESS ROAD ID#CRBR-1	06-02-2020	10.6	0.86	-1 1/2" TO #4 PROCESSED FROM COBBLES
CODCO #2	DOWNSTREAM RIGHT BANK ID#C2D5R-1	06-02-2020	31.3	34.3	-1 1/2" TO #4 PROCESSED FROM COBBLES
COPCO #2	DOWNSTREAM LEFT BANK ID#C2LB-1	06-02-2020	12.7	1.02	-1 1/2" TO #4 PROCESSED FROM COBBLES
	DAM DOWNSTREAM FACE ID#1GDDS-1	06-02-2020	8.3	0.15	-1 1/2" TO #4 PROCESSED FROM COBBLES
IRON GATE	LAKEVIEW ROAD ID#IGLV-1	06-02-2020	15.7	3.19	-1 1/2" TO #4 PROCESSED FROM COBBLES
					1 OF 1

P.O. #12670

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 1 SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: Knight Piesold/KLAMATH RIVER RENEWAL PROJECT DATE RECEIVED: 06-01-2020

DAM SITE	SAMPLE LOCATION	DATE TESTED	MICRO-DEVAL GRADING A % LOSS	MAGNESIUM SULFATE SOUNDNESS WEIGHTED % LOSS	SOIL OR BEDROCK TYPE
COPCO #2	DOWNSTREAM RIGHT BANK ID#C2DSR-1	07-15-2020	55.3	55.68	-1 1/2" TO #4 PROCESSED FROM COBBLES

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 2SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: J.C. BOYLE - DOWNSTREAM OF DAM - ID#JCBEP-1 DATE RECEIVED: 06-02-2020

MAGNEIUM SULFATE SOUNDESS TEST OF COARSE AGGREGATE						
Sieve Size	Grading of Original Sample %	Weight of Fractions Before Test, g.	Percentage Passing Designated Sieve After Test	Weighted Percentage Loss		
1 1/2" to 3"	18.6	-				
3/4" TO 1 1/2"	54.9	1550.2	2.4	1.32		
No. 4 TO 3/4"	17.3	1011.3	7.7	1.33		
-No. 4	9.2	-				
Totals	100.0			2.65		

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 3SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: COPCO #1 - ACCESS ROAD - ID#CRBR-1 DATE RECEIVED: 06-02-2020

MAGNEIUM SULFATE SOUNDESS TEST OF COARSE AGGREGATE						
Sieve Size	Grading of Original Sample %	Weight of Fractions Before Test, g.	Percentage Passing Designated Sieve After Test	Weighted Percentage Loss		
1 1/2" to 3"	22.0	-				
3/4" TO 1 1/2"	54.4	1567.1	0.22	0.12		
No. 4 TO 3/4"	16.6	1009.4	2.20	0.37		
-No. 4	7.0	-				
Totals	100.0			0.86		

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 4SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: COPCO #2 - DOWNSTREAM RIGHT BANK - ID#C2D5R-1 DATE RECEIVED: 06-02-2020

MAGNEIUM SULFATE SOUNDESS TEST OF COARSE AGGREGATE						
Sieve Size	Grading of Original Sample %	Weight of Fractions Before Test, g.	Percentage Passing Designated Sieve After Test	Weighted Percentage Loss		
1 1/2" to 3"	0	_				
3/4" TO 1 1/2"	49.1	1548.9	43.0	21.11		
No. 4 TO 3/4"	27.3	1004.1	48.3	13.19		
-No. 4	23.6	-				
Totals	100.0			34.3		

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 2SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: COPCO #3 - DOWNSTREAM RIGHT BANK - ID#C2DSR-1 DATE RECEIVED: 07-15-2020

MAGNEIUM SULFATE SOUNDESS TEST OF COARSE AGGREGATE						
Sieve Size	Grading of Original Sample %	Weight of Fractions Before Test, g.	Percentage Passing Designated Sieve After Test	Weighted Percentage Loss		
1 1/2" to 3"	0	_				
3/4" TO 1 1/2"	49	1557.4	71.2	34.88		
No. 4 TO 3/4"	28	910.3	74.3	20.80		
-No. 4	23	-				
Totals	100.0			55.68		

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 5SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: COPCO #2 - DOWNSTREAM LEFT BANK - ID#C2LB-1 DATE RECEIVED: 06-02-2020

MAGNEIUM SULFATE SOUNDESS TEST OF COARSE AGGREGATE						
Sieve Size	Grading of Original Sample %	Weight of Fractions Before Test, g.	Percentage Passing Designated Sieve After Test	Weighted Percentage Loss		
1 1/2" to 3"	0	_				
3/4" TO 1 1/2"	47.3	1562.0	0.3	0.14		
No. 4 TO 3/4"	44.3	1009.8	1.98	0.88		
-No. 4	8.4	-				
Totals	100.0			1.02		

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 6SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: IRON GATE - DAM DOWNSTREAM FACE - ID#1GDDS-1 DATE RECEIVED: 06-02-2020

MAGNEIUM SULFATE SOUNDESS TEST OF COARSE AGGREGATE								
Sieve Size	Grading of Original Sample %	Weight of Fractions Before Test, g.	Percentage Passing Designated Sieve After Test	Weighted Percentage Loss				
1 1/2" to 3"	45.0	_						
3/4" TO 1 1/2"	23.8	1548.1	0.14	0.03				
No. 4 TO 3/4"	20.2	1003.8	0.61	0.12				
-No. 4	11.0	-						
Totals	100.0			0.15				

Office Locations: Denver (HQ), Parker, Colorado Springs, Fort Collins, Glenwood Springs and Summit County, Colorado

TABLE 7SUMMARY OF LABORATORY TEST RESULTS

PROJECT NO.: 20-1-212 (VA-103-00640/01) PROJECT NAME: IRON GATE - LAKEVIEW ROAD - ID#IGLV-1 DATE RECEIVED: 06-02-2020

MAGNEIUM SULFATE SOUNDESS TEST OF COARSE AGGREGATE								
Sieve Size	Grading of Original Sample %	Weight of Fractions Before Test, g.	Percentage Passing Designated Sieve After Test	Weighted Percentage Loss				
1 1/2" to 3"	0	_						
3/4" TO 1 1/2"	55.1	1553.7	1.9	1.05				
No. 4 TO 3/4"	37.6	1012.1	5.7	2.14				
-No. 4	7.3	-						
Totals	100.0			3.19				

APPENDIX D4

X-Ray Diffraction Results

(Pages D4-1 to D4-7)

June 17, 2020 Lab no. 220136

Ms. Jane Bruce Knight Piesold and Co. 5030 Nome Street, Unit A Denver, Colorado 80239

Dear Ms. Bruce:

Enclosed are the x-ray diffraction (XRD) analytical results for six "VA103-00640/01 Klamath" samples received last week with PO# 12673. This report will be mailed and emailed to you.

The samples were crushed to -1/4" size before analysis. A representative portion of each crushed sample was ground to approximately -400 mesh in a steel swing mill, packed into a well-type plastic holder and then scanned with the diffractometer over the range, $3-61^{\circ} 2\theta$ using Cu-K α radiation. The results of the scans are summarized as approximate mineral weight percent concentrations on the enclosed table labeled, "Bulk XRD Results." Estimates of mineral concentrations were made using our XRF-determined elemental compositions, the relative peak areas on the XRD scans and comparison to XRD data for mineral standards. The detection limit for an average mineral in these samples is ~1-3% and the analytical reproducibility is approximately equal to the square root of the amount. "Unidentified" accounts for that portion of the XRD scan which could not be resolved and a "?" indicates doubt in both mineral identification and amount.

Each sample was subjected to a size separation procedure based on Stokes' Law to concentrate the clay-size (-2µm) fraction for XRD analysis. A representative portion of each crushed sample was blended with distilled water and 10 ml of 5% Calgon solution to disaggregate the sample without reducing grain size. Each mixture was brought up to volume in a 1000 ml graduated cylinder, allowed to settle for 19.5 hrs and then 20 ml of the material suspended above the 300 ml mark in the cylinder were drawn into a pre-weighed beaker. The material was dried at ~75°C and the weight of the clay-size material determined. The table labeled, "Clay Size Separation Results" lists the weight percent -2µm particles concentrated by this procedure. These figures should not be interpreted as the total weight percent of clay minerals in a sample but as the weight percent of -2µm material concentrated by this procedure.

J. Bruce Knight Piesold and Co. Page 2 June 17, 2020 Lab no. 220136

Each remaining suspension was siphoned off for XRD analysis of the clay-size fraction. A portion of each suspension was drawn onto a cellulose acetate filter and then the deposited material was rolled onto a glass disk forming an "oriented mount." The oriented mounts were scanned over the range, $2-62^{\circ} 2\theta$ using Cu-K α radiation, treated with glycol and then re-scanned over the range, $2-22^{\circ}$. The table labeled, "XRD Results for -2µm Fraction" summarizes the results of these scans as approximate mineral weight percent concentrations. Estimates of mineral concentrations were made using the relative peak areas on the XRD scans and comparison to the scan of the bulk samples. Detection limits and reproducibility are similar to those for the bulk sample.

Thank you for the opportunity to be of service to Knight Piesold.

Knight Piesold and Co. Bulk XRD Results for "VA103-00640/01 Klamath" Samples (PO# 12673) Page 1 of 2

June 17, 2020 Lab no. 220136

		ŀ	Approx. Wt 🤉	%
Mineral Name	Chemical Formula	JCBEP-1	CRBR-1	C2DSR-1
Plagioclase feldspar	(Na,Ca)Al(Si,Al)₃O ₈	75	63	68
Clinopyroxene	Ca(Mg,Fe,Al,Ti)(Si,Al) ₂ O ₆	10	21	17
Olivine	(Mg,Fe) ₂ SiO ₄	_	13	8
Quartz	SiO ₂	_	_	<5
K-feldspar	KAISi₃O ₈	10	—	_
Smectite	(Ca,Na) _x (Al,Mg,Fe) ₄ (Si,Al) ₈ O ₂₀ (OH,F) ₄ •nH ₂ O	_	_ (5	9 _
Apatite	Ca ₅ (PO ₄ ,CO ₃) ₃ (OH,F,Cl)	_	_	<1?
Ilmenite	FeTiO ₃	—	_	_
Hematite	Fe ₂ O ₃		7 -	_
Magnetite	(Fe,Mg,Zn,Cu,Ni)(Fe,Al,Cr) ₂ O ₄	<3?		_
"Unidentified"	?	<5	<5	<5

Lab

Initial

Date _____

Knight Piesold and Co. Bulk XRD Results for "VA103-00640/01 Klamath" Samples (PO# 12673) Page 2 of 2

June 17, 2020 Lab no. 220136

			Approx. Wt 🤉	%
Mineral Name	Chemical Formula	C2LB-1	IGDSS-1	IGLV-1
Plagioclase feldspar	(Na,Ca)Al(Si,Al)₃O ₈	60	58	62
Clinopyroxene	Ca(Mg,Fe,Al,Ti)(Si,Al) ₂ O ₆	28	15	15
Olivine	(Mg,Fe) ₂ SiO ₄	8	_	_
Quartz	SiO ₂	_	5	<5
K-feldspar	KAISi₃O ₈	_	8	5
Smectite	(Ca,Na) _x (Al,Mg,Fe) ₄ (Si,Al) ₈ O ₂₀ (OH,F) ₄ •nH ₂ O	_	<10	<10
Apatite	Ca ₅ (PO ₄ ,CO ₃) ₃ (OH,F,CI)	_	_	_
Ilmenite	FeTiO ₃	<2	_	_
Hematite	Fe ₂ O ₃		<3	<3
Magnetite	(Fe,Mg,Zn,Cu,Ni)(Fe,Al,Cr) ₂ O ₄	- 11	<3?	<3?
"Unidentified"	?	<5	<5	<5

Lab

Initial

Date _____

Knight Piesold and Co. June 15, 2020 Clay Size Separation Results for "VA103-00640/01 Klamath" Samples (PO# 12673)

Lab no. 220136

Sample	Weight % -2µm Material Concentrated
JCBEP-1	0.80
CRBR-1	0.03
C2DSR-1	0.18
C2LB-1	0.07
IGDSS-1	0.29
IGLV-1	0.08
The	

Initial .

Date

Knight Piesold and Co. XRD Results for Clay-Size Fractions of "VA103-00640/01 Klamath" Samples PO# 12673 Page 1 of 2

June 17, 2020 Lab no. 220136

			Approx. Wt 🤋	%
Mineral Name	Chemical Formula	JCBEP-1	CRBR-1	C2DSR-1
Plagioclase feldspar	(Na,Ca)Al(Si,Al)₃O ₈	76	>90	56
Clinopyroxene	Ca(Mg,Fe,Al,Ti)(Si,Al) ₂ O ₆	_	<5	_
Quartz	SiO ₂	_	_	_
K-feldspar	KAISi₃O ₈			_
Smectite	(Ca,Na) _x (Al,Mg,Fe) ₄ (Si,Al) ₈ O ₂₀ (OH,F) ₄ •nH ₂ O	22	_	41
Hematite	Fe ₂ O ₃		- E	0 –
"Unidentified"	?	<5	<5	<5
	INC			

Lab

Initial

Date

Knight Piesold and Co. XRD Results for Clay-Size Fractions of "VA103-00640/01 Klamath" Samples PO# 12673 Page 2 of 2

June 17, 2020 Lab no. 220136

			Approx.Wt 🖇	6
Mineral Name	Chemical Formula	C2LB-1	IGDSS-1	IGLV-1
Plagioclase feldspar	(Na,Ca)Al(Si,Al) ₃ O ₈	>90	70	74
Clinopyroxene	Ca(Mg,Fe,Al,Ti)(Si,Al) ₂ O ₆		<5	<5
Quartz	SiO ₂	_	5	<5
K-feldspar	KAISi ₃ O ₈	_	<3	_
Smectite	(Ca,Na) _x (Al,Mg,Fe) ₄ (Si,Al) ₈ O ₂₀ (OH,F) ₄ •nH ₂ O	<5	15	17
Hematite	Fe ₂ O ₃	_	<3 🤇	9 –
"Unidentified"	?	<5	<5	<5
	INC			

Lab

Initial

Date

APPENDIX D5

Geochemical Results

(Pages D5-1 to D5-56)

Analytical Report

June 29, 2020

Report to: Cynthia Parnow Knight Piesold and Co. 1999 Broadway, Suite 900 Denver, CO 80202

cc: Cory Vos

Project ID: 12672 ACZ Project ID: L59593

Cynthia Parnow:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on June 11, 2020. This project has been assigned to ACZs project number, L59593. Please reference this number in all future inquiries.

Bill to:

Corv Vos

Knight Piesold and Co.

#1400-750 West Pender Street Vancouver. BC Canada V6C 2T8.

All analyses were performed according to ACZ^S Quality Assurance Plan. The enclosed results relate only to the samples received under L59593. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ^S current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after July 29, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ is stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Max janicele

Max Janicek has reviewed and approved this report.

Case Narrative

June 29, 2020

Project ID: 12672 ACZ Project ID: L59593

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 6 miscellaneous samples from Knight Piesold and Co. on June 11, 2020. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ is computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L59593. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both the ACZ invoice and the analytical reports. These samples were analyzed for inorganic, organic parameters. The individual methods are referenced on both the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

The below is from WG499928 Qualifier: N1 Applies to: L59593-01/TOTAL DISSOLVED SOLIDS L59593-02/TOTAL DISSOLVED SOLIDS L59593-03/TOTAL DISSOLVED SOLIDS L59593-04/TOTAL DISSOLVED SOLIDS L59593-06/TOTAL DISSOLVED SOLIDS

On 6/24/20 the time and date was not recorded for coming out of the 180[°] oven. It was believed to have been in the 180[°] oven for at least one hour and pulled out of the oven when the oven was within range, 178-182[°]. The associated quality controls and all associated samples were passing and attained a constant weight.

Project ID:	12672
Sample ID:	JCBEP-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-01** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD (1312- DI)	SM4500-CN I		-		*				06/23/20 12:15	ttg
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)				*				06/21/20 14:19	ttg
Total Hot Plate Digestion	M3010A ICP-MS								06/18/20 9:10	mfm
Total Hot Plate Digestion	M3010A ICP								06/23/20 11:49	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.58			mg/L	0.05	0.3	06/24/20 8:48	jlw
Antimony (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0004	0.002	06/22/20 15:38	bsu
Arsenic (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0002	0.001	06/22/20 15:38	bsu
Barium (1312)	M6010D ICP	1		U	*	mg/L	0.007	0.04	06/24/20 8:48	jlw
Beryllium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00008	0.0003	06/22/20 15:38	bsu
Cadmium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00005	0.0003	06/22/20 15:38	bsu
Calcium (1312)	M6010D ICP	1	2.8		*	mg/L	0.1	0.5	06/24/20 8:48	jlw
Chromium (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 8:48	jlw
Copper (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 8:48	jlw
Iron (1312)	M6010D ICP	1	0.25		*	mg/L	0.06	0.2	06/24/20 8:48	jlw
Lead (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:38	bsu
Magnesium (1312)	M6010D ICP	1	1.5		*	mg/L	0.2	1	06/24/20 8:48	jlw
Manganese (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 8:48	jlw
Mercury (1312)	M7470A CVAA	1		U	*	mg/L	0.0002	0.001	06/18/20 17:12	slm
Nickel (1312)	M6010D ICP	1		U	*	mg/L	0.008	0.04	06/24/20 8:48	jlw
Potassium (1312)	M6010D ICP	1	0.8	В	*	mg/L	0.2	1	06/24/20 8:48	jlw
Selenium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0003	06/22/20 15:38	bsu
Silver (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.03	06/24/20 8:48	jlw
Sodium (1312)	M6010D ICP	1	2.0		*	mg/L	0.2	1	06/24/20 8:48	jlw
Thallium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:38	bsu
Zinc (1312)	M6010D ICP	1		U	*	mg/L	0.02	0.05	06/24/20 8:48	jlw

Project ID:	12672
Sample ID:	JCBEP-1

Inorganic Analytical Results

ACZ Sample ID:	L59593-01
Date Sampled:	06/11/20 00:00
Date Received:	06/11/20
Sample Matrix:	Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4			U		t CaCO3/Kt	0.31	3.1	06/29/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		17.0			t CaCO3/Kt	1	5	06/29/20 0:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		17.0			t CaCO3/Kt			06/29/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	1.7		*	%	0.1	0.5	06/16/20 12:46	qcm
pH, (1312)	M9045D/M9040C									
рН		1	9.3			units	0.1	0.1	06/17/20 0:00	llr
Temperature		1	21.9			С	0.1	0.1	06/17/20 0:00	llr
Sulfur Forms	M600/2-78-054 3.2.4-MOE)								
Sulfur HCI Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Organic Residual		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Pyritic Sulfide		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Sulfate		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Total		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Total Sulfur minus Sulfate		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Soil Preparation										

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				06/12/20 16:45	jms
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3				*				06/15/20 15:15	qcm
Synthetic Precip. Leaching Procedure	M1312								06/16/20 14:27	llr
Synthetic Precip. Leaching Procedure	M1312, DI Water		7.97						06/17/20 10:38	qcm

Project ID: 12672 Sample ID: JCBEP-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-01** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM2320B - Titration									
Bicarbonate as CaCO3		1	11.4	В	*	mg/L	2	20	06/18/20 0:00	jck
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Total Alkalinity		1	11.8	В	*	mg/L	2	20	06/18/20 0:00	jck
Chloride (1312 DI)	SM4500CI-E	1		U	*	mg/L	0.5	2	06/18/20 11:24	ttg
Cyanide, WAD (1312- DI)	SM4500-CN I,E- Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	06/23/20 17:17	ttg
Fluoride (1312 DI)	SM4500F-C	1	0.2	В	*	mg/L	0.1	0.4	06/23/20 11:44	еер
Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	1	0.09	В	*	mg/L	0.02	0.1	06/17/20 22:45	pjb
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	1		U	*	mg/L	0.05	0.2	06/19/20 11:35	mss2
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	1	0.09		*	mg/L	0.01	0.05	06/24/20 11:29	rbt
Residue, Filterable (TDS) @180C (1312)	SM2540C	1	30	В	*	mg/L	20	40	06/23/20 10:58	еер
Sulfate (1312 DI)	SM4500 SO4-D	1		U	*	mg/L	20	50	06/24/20 9:49	mlh

Arizona license number: AZ0102

Project ID:	12672
Sample ID:	CRBR-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-02** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD (1312- DI)	SM4500-CN I		-		*				06/23/20 12:45	ttg
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)				*				06/21/20 14:52	ttg
Total Hot Plate Digestion	M3010A ICP-MS								06/18/20 9:10	mfm
Total Hot Plate Digestion	M3010A ICP								06/23/20 12:23	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	1.48			mg/L	0.05	0.3	06/24/20 8:52	jlw
Antimony (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0004	0.002	06/22/20 15:43	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.0006	В	*	mg/L	0.0002	0.001	06/22/20 15:43	bsu
Barium (1312)	M6010D ICP	1		U	*	mg/L	0.007	0.04	06/24/20 8:52	jlw
Beryllium (1312)	M6020B ICP-MS	1	0.00009	В	*	mg/L	0.00008	0.0003	06/22/20 15:43	bsu
Cadmium (1312)	M6020B ICP-MS	1	0.00007	В	*	mg/L	0.00005	0.0003	06/22/20 15:43	bsu
Calcium (1312)	M6010D ICP	1	2.4		*	mg/L	0.1	0.5	06/24/20 8:52	jlw
Chromium (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 8:52	jlw
Copper (1312)	M6010D ICP	1	0.02	В	*	mg/L	0.01	0.05	06/24/20 8:52	jlw
Iron (1312)	M6010D ICP	1	0.28		*	mg/L	0.06	0.2	06/24/20 8:52	jlw
Lead (1312)	M6020B ICP-MS	1	0.0004	В	*	mg/L	0.0001	0.0005	06/22/20 15:43	bsu
Magnesium (1312)	M6010D ICP	1	0.6	В	*	mg/L	0.2	1	06/24/20 8:52	jlw
Manganese (1312)	M6010D ICP	1	0.02	В	*	mg/L	0.01	0.05	06/24/20 8:52	jlw
Mercury (1312)	M7470A CVAA	1		U	*	mg/L	0.0002	0.001	06/18/20 17:13	slm
Nickel (1312)	M6010D ICP	1		U	*	mg/L	0.008	0.04	06/24/20 8:52	jlw
Potassium (1312)	M6010D ICP	1	0.7	В	*	mg/L	0.2	1	06/24/20 8:52	jlw
Selenium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0003	06/22/20 15:43	bsu
Silver (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.03	06/24/20 8:52	jlw
Sodium (1312)	M6010D ICP	1	1.9		*	mg/L	0.2	1	06/24/20 8:52	jlw
Thallium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:43	bsu
Zinc (1312)	M6010D ICP	1		U	*	mg/L	0.02	0.05	06/24/20 8:52	jlw

Project ID: 12672 Sample ID: CRBR-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-02** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		0.31	В		t CaCO3/Kt	0.31	3.1	06/29/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		22.0			t CaCO3/Kt	1	5	06/29/20 0:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		21.7			t CaCO3/Kt			06/29/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	2.2		*	%	0.1	0.5	06/16/20 12:57	′ qcm
pH, (1312)	M9045D/M9040C									
рН		1	9.1			units	0.1	0.1	06/17/20 0:00	llr
Temperature		1	21.7			С	0.1	0.1	06/17/20 0:00	llr
Sulfur Forms	M600/2-78-054 3.2.4-MO	D								
Sulfur HCI Residue		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Organic Residual		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Pyritic Sulfide		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Sulfate		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Total		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Total Sulfur minus Sulfate		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				06/12/20 16:57	7 jms
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3				*				06/15/20 15:24	4 qcm
Synthetic Precip. Leaching Procedure	M1312								06/16/20 17:47	7 llr
Synthetic Precip. Leaching Procedure	M1312, DI Water		8.01						06/17/20 11:06	6 qcm

Project ID: 12672 Sample ID: CRBR-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-02** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM2320B - Titration									
Bicarbonate as CaCO3		1	6.1	В	*	mg/L	2	20	06/18/20 0:00	jck
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Total Alkalinity		1	6.1	В	*	mg/L	2	20	06/18/20 0:00	jck
Chloride (1312 DI)	SM4500CI-E	1		U	*	mg/L	0.5	2	06/18/20 11:24	ttg
Cyanide, WAD (1312- DI)	SM4500-CN I,E- Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	06/23/20 17:19	ttg
Fluoride (1312 DI)	SM4500F-C	1		U	*	mg/L	0.1	0.4	06/23/20 11:55	еер
Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	1		U	*	mg/L	0.02	0.1	06/17/20 22:47	pjb
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	1		U	*	mg/L	0.05	0.2	06/19/20 11:38	mss2
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	1	0.19		*	mg/L	0.01	0.05	06/24/20 11:31	rbt
Residue, Filterable (TDS) @180C (1312)	SM2540C	1	28	В	*	mg/L	20	40	06/23/20 11:03	еер
Sulfate (1312 DI)	SM4500 SO4-D	1		U	*	mg/L	20	50	06/24/20 10:21	mlh

Arizona license number: AZ0102

Project ID:	12672
Sample ID:	C2DSR-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-03** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD (1312- DI)	SM4500-CN I		-		*				06/23/20 13:00	ttg
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)				*				06/21/20 15:09	ttg
Total Hot Plate Digestion	M3010A ICP-MS								06/18/20 9:10	mfm
Total Hot Plate Digestion	M3010A ICP								06/23/20 13:32	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.61			mg/L	0.05	0.3	06/24/20 9:00	jlw
Antimony (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0004	0.002	06/22/20 15:47	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.0017		*	mg/L	0.0002	0.001	06/22/20 15:47	bsu
Barium (1312)	M6010D ICP	1		U	*	mg/L	0.007	0.04	06/24/20 9:00	jlw
Beryllium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00008	0.0003	06/22/20 15:47	bsu
Cadmium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00005	0.0003	06/22/20 15:47	bsu
Calcium (1312)	M6010D ICP	1	6.2		*	mg/L	0.1	0.5	06/24/20 9:00	jlw
Chromium (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:00	jlw
Copper (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:00	jlw
Iron (1312)	M6010D ICP	1	0.34		*	mg/L	0.06	0.2	06/24/20 9:00	jlw
Lead (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:47	bsu
Magnesium (1312)	M6010D ICP	1	1.0		*	mg/L	0.2	1	06/24/20 9:00	jlw
Manganese (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:00	jlw
Mercury (1312)	M7470A CVAA	1		U	*	mg/L	0.0002	0.001	06/18/20 17:15	slm
Nickel (1312)	M6010D ICP	1		U	*	mg/L	0.008	0.04	06/24/20 9:00	jlw
Potassium (1312)	M6010D ICP	1	0.7	В	*	mg/L	0.2	1	06/24/20 9:00	jlw
Selenium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0003	06/22/20 15:47	bsu
Silver (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.03	06/24/20 9:00	jlw
Sodium (1312)	M6010D ICP	1	1.5		*	mg/L	0.2	1	06/24/20 9:00	jlw
Thallium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:47	bsu
Zinc (1312)	M6010D ICP	1		U	*	mg/L	0.02	0.05	06/24/20 9:00	jlw

Project ID:	12672
Sample ID:	C2DSR-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-03** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		0.31	В		t CaCO3/Kt	0.31	3.1	06/29/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		40.0			t CaCO3/Kt	1	5	06/29/20 0:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		39.7			t CaCO3/Kt			06/29/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	4.0		*	%	0.1	0.5	06/16/20 13:00	qcm
pH, (1312)	M9045D/M9040C									
рН		1	9.5			units	0.1	0.1	06/17/20 0:00	llr
Temperature		1	21.9			С	0.1	0.1	06/17/20 0:00	llr
Sulfur Forms	M600/2-78-054 3.2.4-M0	DD								
Sulfur HCI Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Organic Residual		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Pyritic Sulfide		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Sulfate		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Total		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Total Sulfur minus Sulfate		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				06/12/20 17:10	jms
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3				*				06/15/20 15:33	qcm
Synthetic Precip. Leaching Procedure	M1312								06/16/20 20:01	llr
Synthetic Precip. Leaching Procedure	M1312, DI Water		8.89		*				06/17/20 11:20	qcm

Project ID:	12672
Sample ID:	C2DSR-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-03** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM2320B - Titration									
Bicarbonate as CaCO3		1	17.2	В	*	mg/L	2	20	06/18/20 0:00	jck
Carbonate as CaCO3		1	4.3	В	*	mg/L	2	20	06/18/20 0:00	jck
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Total Alkalinity		1	21.5		*	mg/L	2	20	06/18/20 0:00	jck
Chloride (1312 DI)	SM4500CI-E	1		U	*	mg/L	0.5	2	06/18/20 11:24	ttg
Cyanide, WAD (1312- DI)	SM4500-CN I,E- Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	06/23/20 17:20	ttg
Fluoride (1312 DI)	SM4500F-C	1		U	*	mg/L	0.1	0.4	06/23/20 11:58	еер
Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	1	0.05	В	*	mg/L	0.02	0.1	06/17/20 22:50	pjb
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	1		U	*	mg/L	0.05	0.2	06/19/20 11:41	mss2
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	1	0.02	В	*	mg/L	0.01	0.05	06/24/20 11:33	rbt
Residue, Filterable (TDS) @180C (1312)	SM2540C	1	36	В	*	mg/L	20	40	06/23/20 11:06	еер
Sulfate (1312 DI)	SM4500 SO4-D	1		U	*	mg/L	20	50	06/24/20 10:38	mlh

Arizona license number: AZ0102

Project ID:	12672
Sample ID:	C2LB-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-04** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD (1312- DI)	SM4500-CN I		-		*				06/23/20 13:30	ttg
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)				*				06/21/20 15:25	ttg
Total Hot Plate Digestion	M3010A ICP								06/23/20 14:07	kja
Total Hot Plate Digestion	M3010A ICP-MS								06/18/20 9:10	mfm
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	1.43			mg/L	0.05	0.3	06/24/20 9:04	jlw
Antimony (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0004	0.002	06/22/20 15:49	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.0004	В	*	mg/L	0.0002	0.001	06/22/20 15:49	bsu
Barium (1312)	M6010D ICP	1		U	*	mg/L	0.007	0.04	06/24/20 9:04	jlw
Beryllium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00008	0.0003	06/22/20 15:49	bsu
Cadmium (1312)	M6020B ICP-MS	1	0.00005	В	*	mg/L	0.00005	0.0003	06/22/20 15:49	bsu
Calcium (1312)	M6010D ICP	1	1.6		*	mg/L	0.1	0.5	06/24/20 9:04	jlw
Chromium (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:04	jlw
Copper (1312)	M6010D ICP	1	0.01	В	*	mg/L	0.01	0.05	06/24/20 9:04	jlw
Iron (1312)	M6010D ICP	1	0.32		*	mg/L	0.06	0.2	06/24/20 9:04	jlw
Lead (1312)	M6020B ICP-MS	1	0.0002	В	*	mg/L	0.0001	0.0005	06/22/20 15:49	bsu
Magnesium (1312)	M6010D ICP	1	0.4	В	*	mg/L	0.2	1	06/24/20 9:04	jlw
Manganese (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:04	jlw
Mercury (1312)	M7470A CVAA	1		U	*	mg/L	0.0002	0.001	06/18/20 17:16	slm
Nickel (1312)	M6010D ICP	1		U	*	mg/L	0.008	0.04	06/24/20 9:04	jlw
Potassium (1312)	M6010D ICP	1	1.4		*	mg/L	0.2	1	06/24/20 9:04	jlw
Selenium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0003	06/22/20 15:49	bsu
Silver (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.03	06/24/20 9:04	jlw
Sodium (1312)	M6010D ICP	1	1.2		*	mg/L	0.2	1	06/24/20 9:04	jlw
Thallium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:49	bsu
Zinc (1312)	M6010D ICP	1		U	*	mg/L	0.02	0.05	06/24/20 9:04	jlw

Project ID:	12672
Sample ID:	C2LB-1

Inorganic Analytical Results

ACZ Sample ID:	L59593-04
Date Sampled:	06/11/20 00:00
Date Received:	06/11/20
Sample Matrix:	Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		0.31	В		t CaCO3/Kt	0.31	3.1	06/29/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		23.0			t CaCO3/Kt	1	5	06/29/20 0:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		22.7			t CaCO3/Kt			06/29/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	2.3		*	%	0.1	0.5	06/16/20 13:04	qcm
pH, (1312)	M9045D/M9040C									
рН		1	9.3			units	0.1	0.1	06/17/20 0:00	llr
Temperature		1	21.8			С	0.1	0.1	06/17/20 0:00	llr
Sulfur Forms	M600/2-78-054 3.2.4-MO	D								
Sulfur HCI Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Organic Residual		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Pyritic Sulfide		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Sulfate		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Total		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Total Sulfur minus Sulfate		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				06/12/20 17:22	jms
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3				*				06/15/20 15:42	qcm
Synthetic Precip. Leaching Procedure	M1312								06/16/20 21:07	llr
Synthetic Precip. Leaching Procedure	M1312, DI Water		8.68						06/17/20 11:33	qcm

Project ID:	12672
Sample ID:	C2LB-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-04** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM2320B - Titration									
Bicarbonate as CaCO3		1	8.0	В	*	mg/L	2	20	06/18/20 0:00	jck
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Total Alkalinity		1	8.7	В	*	mg/L	2	20	06/18/20 0:00	jck
Chloride (1312 DI)	SM4500CI-E	1		U	*	mg/L	0.5	2	06/18/20 11:24	ttg
Cyanide, WAD (1312- DI)	SM4500-CN I,E- Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	06/23/20 17:22	ttg
Fluoride (1312 DI)	SM4500F-C	1		U	*	mg/L	0.1	0.4	06/23/20 12:03	eep
Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	1	0.03	В	*	mg/L	0.02	0.1	06/17/20 22:51	pjb
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	1		U	*	mg/L	0.05	0.2	06/19/20 11:43	mss2
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	1	0.23		*	mg/L	0.01	0.05	06/24/20 11:34	rbt
Residue, Filterable (TDS) @180C (1312)	SM2540C	1	30	В	*	mg/L	20	40	06/23/20 11:09	еер
Sulfate (1312 DI)	SM4500 SO4-D	1		U	*	mg/L	20	50	06/24/20 10:54	mlh

Arizona license number: AZ0102

Project ID:	12672
Sample ID:	IGDSS-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-05** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD (1312- DI)	SM4500-CN I		-		*				06/23/20 13:45	ttg
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)				*				06/21/20 15:58	ttg
Total Hot Plate Digestion	M3010A ICP-MS								06/18/20 9:10	mfm
Total Hot Plate Digestion	M3010A ICP								06/23/20 14:41	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.90			mg/L	0.05	0.3	06/24/20 9:08	jlw
Antimony (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0004	0.002	06/22/20 15:56	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.0008	В	*	mg/L	0.0002	0.001	06/22/20 15:56	bsu
Barium (1312)	M6010D ICP	1		U	*	mg/L	0.007	0.04	06/24/20 9:08	jlw
Beryllium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00008	0.0003	06/22/20 15:56	bsu
Cadmium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00005	0.0003	06/22/20 15:56	bsu
Calcium (1312)	M6010D ICP	1	1.8		*	mg/L	0.1	0.5	06/24/20 9:08	jlw
Chromium (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:08	jlw
Copper (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:08	jlw
Iron (1312)	M6010D ICP	1	0.32		*	mg/L	0.06	0.2	06/24/20 9:08	jlw
Lead (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:56	bsu
Magnesium (1312)	M6010D ICP	1	0.5	В	*	mg/L	0.2	1	06/24/20 9:08	jlw
Manganese (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:08	jlw
Mercury (1312)	M7470A CVAA	1		U	*	mg/L	0.0002	0.001	06/18/20 17:17	slm
Nickel (1312)	M6010D ICP	1		U	*	mg/L	0.008	0.04	06/24/20 9:08	jlw
Potassium (1312)	M6010D ICP	1	0.4	В	*	mg/L	0.2	1	06/24/20 9:08	jlw
Selenium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0003	06/22/20 15:56	bsu
Silver (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.03	06/24/20 9:08	jlw
Sodium (1312)	M6010D ICP	1	2.2		*	mg/L	0.2	1	06/24/20 9:08	jlw
Thallium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:56	bsu
Zinc (1312)	M6010D ICP	1		U	*	mg/L	0.02	0.05	06/24/20 9:08	jlw

Project ID:	12672
Sample ID:	IGDSS-1

Inorganic Analytical Results

ACZ Sample ID:	L59593-05
Date Sampled:	06/11/20 00:00
Date Received:	06/11/20
Sample Matrix:	Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		0.63	В		t CaCO3/Kt	0.31	3.1	06/29/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		18.0			t CaCO3/Kt	1	5	06/29/20 0:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		17.4			t CaCO3/Kt			06/29/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	1.8		*	%	0.1	0.5	06/16/20 13:07	qcm
pH, (1312)	M9045D/M9040C									
рН		1	9.4			units	0.1	0.1	06/17/20 0:00	llr
Temperature		1	21.7			С	0.1	0.1	06/17/20 0:00	llr
Sulfur Forms	M600/2-78-054 3.2.4-MO	D								
Sulfur HCI Residue		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Organic Residual		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Pyritic Sulfide		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Sulfate		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Total		1	0.02	В	*	%	0.01	0.1	06/17/20 0:00	llr
Total Sulfur minus Sulfate		1	0.01	В	*	%	0.01	0.1	06/17/20 0:00	llr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees	USDA No. 1, 1972				*				06/12/20 17:35	ims

Parameter	EPA Method	Dilution	Result	Quai	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				06/12/20 17:35	jms
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3				*				06/15/20 15:51	qcm
Synthetic Precip. Leaching Procedure	M1312								06/16/20 22:14	llr
Synthetic Precip. Leaching Procedure	M1312, DI Water		8.71						06/17/20 11:47	qcm

Project ID:	12672
Sample ID:	IGDSS-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-05** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM2320B - Titration									
Bicarbonate as CaCO3		1	8.9	В	*	mg/L	2	20	06/18/20 0:00	jck
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Total Alkalinity		1	10.2	В	*	mg/L	2	20	06/18/20 0:00	jck
Chloride (1312 DI)	SM4500CI-E	1		U	*	mg/L	0.5	2	06/18/20 11:24	ttg
Cyanide, WAD (1312- DI)	SM4500-CN I,E- Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	06/23/20 17:22	ttg
Fluoride (1312 DI)	SM4500F-C	1		U	*	mg/L	0.1	0.4	06/23/20 12:06	еер
Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	1		U	*	mg/L	0.02	0.1	06/17/20 22:52	pjb
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	1		U	*	mg/L	0.05	0.2	06/19/20 11:44	mss2
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	1	0.03	В	*	mg/L	0.01	0.05	06/24/20 11:36	rbt
Residue, Filterable (TDS) @180C (1312)	SM2540C	1	28	В	*	mg/L	20	40	06/23/20 11:12	еер
Sulfate (1312 DI)	SM4500 SO4-D	1		U	*	mg/L	20	50	06/24/20 11:10	mlh

Arizona license number: AZ0102

Project ID:	12672
Sample ID:	IGLV-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-06** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Cyanide, WAD (1312- DI)	SM4500-CN I		-		*				06/23/20 14:00	ttg
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)				*				06/21/20 16:15	ttg
Total Hot Plate Digestion	M3010A ICP-MS								06/18/20 9:10	mfm
Total Hot Plate Digestion	M3010A ICP								06/23/20 15:16	kja
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum (1312)	M6010D ICP	1	0.89			mg/L	0.05	0.3	06/24/20 9:16	jlw
Antimony (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0004	0.002	06/22/20 15:58	bsu
Arsenic (1312)	M6020B ICP-MS	1	0.0003	В	*	mg/L	0.0002	0.001	06/22/20 15:58	bsu
Barium (1312)	M6010D ICP	1		U	*	mg/L	0.007	0.04	06/24/20 9:16	jlw
Beryllium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00008	0.0003	06/22/20 15:58	bsu
Cadmium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.00005	0.0003	06/22/20 15:58	bsu
Calcium (1312)	M6010D ICP	1	1.6		*	mg/L	0.1	0.5	06/24/20 9:16	jlw
Chromium (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:16	jlw
Copper (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:16	jlw
Iron (1312)	M6010D ICP	1	0.29		*	mg/L	0.06	0.2	06/24/20 9:16	jlw
Lead (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:58	bsu
Magnesium (1312)	M6010D ICP	1	0.3	В	*	mg/L	0.2	1	06/24/20 9:16	jlw
Manganese (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.05	06/24/20 9:16	jlw
Mercury (1312)	M7470A CVAA	1		U	*	mg/L	0.0002	0.001	06/18/20 17:18	slm
Nickel (1312)	M6010D ICP	1		U	*	mg/L	0.008	0.04	06/24/20 9:16	jlw
Potassium (1312)	M6010D ICP	1		U	*	mg/L	0.2	1	06/24/20 9:16	jlw
Selenium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0003	06/22/20 15:58	bsu
Silver (1312)	M6010D ICP	1		U	*	mg/L	0.01	0.03	06/24/20 9:16	jlw
Sodium (1312)	M6010D ICP	1	1.8		*	mg/L	0.2	1	06/24/20 9:16	jlw
Thallium (1312)	M6020B ICP-MS	1		U	*	mg/L	0.0001	0.0005	06/22/20 15:58	bsu
Zinc (1312)	M6010D ICP	1		U	*	ma/L	0.02	0.05	06/24/20 9:16	ilw

Project ID:	12672
Sample ID:	IGLV-1

Inorganic Analytical Results

ACZ Sample ID:	L59593-06
Date Sampled:	06/11/20 00:00
Date Received:	06/11/20
Sample Matrix:	Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4			U		t CaCO3/Kt	0.31	3.1	06/29/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 1.3		17.0			t CaCO3/Kt	1	5	06/29/20 0:00	calc
Acid-Base Potential (calc on Sulfur total)	M600/2-78-054 1.3		17.0			t CaCO3/Kt			06/29/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 3.2.3	1	1.7		*	%	0.1	0.5	06/16/20 13:11	qcm
pH, (1312)	M9045D/M9040C									
рН		1	9.4			units	0.1	0.1	06/17/20 0:00	llr
Temperature		1	21.8			С	0.1	0.1	06/17/20 0:00	llr
Sulfur Forms	M600/2-78-054 3.2.4-MOE)								
Sulfur HCI Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur HNO3 Residue		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Organic Residual		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Pyritic Sulfide		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Sulfate		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Sulfur Total		1		U	*	%	0.01	0.1	06/17/20 0:00	llr
Total Sulfur minus Sulfate		1		U	*	%	0.01	0.1	06/17/20 0:00	llr

Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				06/12/20 17:47	jms
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3				*				06/15/20 16:00	qcm
Synthetic Precip. Leaching Procedure	M1312								06/16/20 23:21	llr
Synthetic Precip. Leaching Procedure	M1312, DI Water		8.57						06/17/20 12:01	qcm

Project ID:	12672
Sample ID:	IGLV-1

Inorganic Analytical Results

ACZ Sample ID: **L59593-06** Date Sampled: 06/11/20 00:00 Date Received: 06/11/20 Sample Matrix: Soil

Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Alkalinity (1312 DI)	SM2320B - Titration									
Bicarbonate as CaCO3		1	24.1		*	mg/L	2	20	06/18/20 0:00	jck
Carbonate as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Hydroxide as CaCO3		1		U	*	mg/L	2	20	06/18/20 0:00	jck
Total Alkalinity		1	24.4		*	mg/L	2	20	06/18/20 0:00	jck
Chloride (1312 DI)	SM4500CI-E	1		U	*	mg/L	0.5	2	06/18/20 11:24	ttg
Cyanide, WAD (1312- DI)	SM4500-CN I,E- Colorimetric w/ distillation	0.5		U	*	mg/L	0.003	0.01	06/23/20 17:25	ttg
Fluoride (1312 DI)	SM4500F-C	1		U	*	mg/L	0.1	0.4	06/23/20 12:09	еер
Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	1		U	*	mg/L	0.02	0.1	06/17/20 22:53	pjb
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	1		U	*	mg/L	0.05	0.2	06/19/20 11:46	mss2
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	1	0.02	В	*	mg/L	0.01	0.05	06/24/20 11:39	rbt
Residue, Filterable (TDS) @180C (1312)	SM2540C	1	26	В	*	mg/L	20	40	06/23/20 11:15	еер
Sulfate (1312 DI)	SM4500 SO4-D	1		U	*	mg/L	20	50	06/24/20 11:27	mlh

Arizona license number: AZ0102

Inorganic Reference

Report H	leader	Explan	ations

Report Header	Explanations		
Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit unle	ess omitted or eq	ual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the manufa	acturers certifica	ite of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA term "m	inimum level".	
QC	True Value of the Control Sample or the amount added to the S	pike	
Rec	Recovered amount of the true value or spike added, in % (except	pt for LCSS, mg/	Kg)
RPD	Relative Percent Difference, calculation used for Duplicate QC T	ypes	
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of interest		
OC Sample Tyr	2015		
AS	Analytical Spike (Post Digestion)	I CSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Dunlicate	I FR	Laboratory Fortified Blank
CCB	Continuing Calibration Blank		Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard		Laboratory Fortified Matrix Dunlicate
PUP	Sample Duplicate		Laboratory Reagent Blank
ICB	Initial Calibration Blank	LIND MS	Matrix Snike
ICV	Initial Calibration Verification standard	MS	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Pren Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW/	Pren Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	POV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	י עט י וחפ	Serial Dilution
20377		SDL	Serial Dilution
QC Sample Typ	be Explanations		
QC Sample Typ Blanks	be Explanations Verifies that there is no or minimal con	tamination in the	prep method or calibration procedure.
QC Sample Typ Blanks Control San	be Explanations Verifies that there is no or minimal con Nerifies the accuracy of the method, in	tamination in the cluding the prep	prep method or calibration procedure. procedure.
QC Sample Typ Blanks Control San Duplicates	De Explanations Verifies that there is no or minimal con Nerifies the accuracy of the method, in Verifies the precision of the instrument	tamination in the cluding the prep and/or method.	prep method or calibration procedure. procedure.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti	be Explanations Verifies that there is no or minimal con Noterifies the accuracy of the method, in Verifies the precision of the instrument fied Matrix Determines sample matrix interference	tamination in the cluding the prep and/or method. es, if any.	prep method or calibration procedure. procedure.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard	be Explanations verifies that there is no or minimal con nples Verifies the accuracy of the method, in verifies the precision of the instrument ified Matrix Determines sample matrix interference Verifies the validity of the calibration.	tamination in the cluding the prep and/or method. es, if any.	prep method or calibration procedure. procedure.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers	be Explanations verifies that there is no or minimal com nples Verifies the accuracy of the method, in Verifies the precision of the instrument ified Matrix Determines sample matrix interference Verifies the validity of the calibration.	tamination in the cluding the prep and/or method. es, if any.	prep method or calibration procedure. procedure.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B	be Explanations where the precision of the method, in Verifies the accuracy of the method, in Verifies the precision of the instrument Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC	tamination in the cluding the prep and/or method. es, if any. QL. The associate	prep method or calibration procedure. procedure. ed value is an estimated quantity.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H	be Explanations Imples Verifies that there is no or minimal complete Imples Verifies the accuracy of the method, in Verifies the precision of the instrument Imples Determines sample matrix interference Verifies the validity of the calibration. Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an interference.	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti	prep method or calibration procedure. procedure. ed value is an estimated quantity. me.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L	be Explanations where the explanations verifies that there is no or minimal community where the explanations verifies the accuracy of the method, in Verifies the precision of the instrument Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negative	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold.	prep method or calibration procedure. procedure. ed value is an estimated quantity. me.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U	be Explanations weifies that there is no or minimal com nples Verifies the accuracy of the method, in Verifies the precision of the instrument ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negar The material was analyzed for, but was not detected above the laboratory	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U	be Explanations Imples Verifies that there is no or minimal complete Imples Verifies the accuracy of the method, in Verifies the precision of the instrument Imples Determines sample matrix interference Verifies the validity of the calibration. Verifies the validity of the calibration. (Qual) Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negative material was analyzed for, but was not detected above the laboratory defined negative material was analyzed for, but was not detected above the laboratory termine	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detecti	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U	be Explanations where the explanations verifies that there is no or minimal communication verifies the accuracy of the method, in Verifies the precision of the instrument verifies the precision of the instrument Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negar The material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detecti	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U U	be Explanations weifies that there is no or minimal comples Verifies the accuracy of the method, in Verifies the precision of the instrument ified Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negar The material was analyzed for, but was not detected above the laboratory defined negar The associated value is either the sample quantitation limit or the nces	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detection	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referent (1)	be Explanations Imples Verifies that there is no or minimal communication Inples Verifies the accuracy of the method, in Verifies the precision of the instrument Infied Matrix Determines sample matrix interference Verifies the validity of the calibration. Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negar The material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the meters EPA 600/4-83-020. Methods for Chemical Analysis of Water an EPA 600/8-93-100. Methods for the Determination of Inorrange	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detection d Wastes, Marcl Substances in F	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referen (1) (2) (3)	be Explanations Name Name Nerifies that there is no or minimal community Nerifies Nerifies Nerifies Nerifies Nerifies Nerifies Verifies Nerifies	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate sample detection d Wastes, Marcl Substances in E	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referent (1) (2) (3) (4)	be Explanations Verifies that there is no or minimal com nples Verifies the accuracy of the method, in Verifies the precision of the instrument Verifies the precision of the instrument ified Matrix Determines sample matrix interference Verifies the validity of the calibration. Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the nces EPA 600/4-83-020. Methods for Chemical Analysis of Water an EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Determination of Metals in	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detection d Wastes, March Substances in E Environmental S	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Gamples - Supplement I, May 1994.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referent (1) (2) (3) (4) (5)	be Explanations Verifies that there is no or minimal comples nples Verifies the accuracy of the method, in Verifies the precision of the instrument Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the The A600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste.	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detecti d Wastes, Marci Substances in E Environmental S	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
QC Sample Type Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referent (1) (2) (3) (4) (5)	be Explanations Verifies that there is no or minimal community nples Verifies the accuracy of the method, in Verifies the precision of the instrument fied Matrix Determines sample matrix interference Verifies the validity of the calibration. Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negating the material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the The associated value is either the sample quantitation limit or the A 600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-94-111. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate sample detection d Wastes, Marcl Substances in E Environmental S er.	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referent (1) (2) (3) (4) (5)	be Explanations Verifies that there is no or minimal comples nples Verifies the accuracy of the method, in Verifies the precision of the instrument of the Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negative material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the The A600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-94-111. Methods for the Determination of Inorganic EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detecti d Wastes, Marci Substances in E Environmental S er.	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Eamples - Supplement I, May 1994.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U V Method Referent (1) (2) (3) (4) (5) Comments (1)	be Explanations Verifies that there is no or minimal comples nples Verifies the accuracy of the method, in Verifies the precision of the instrument Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negative material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the The A600/R-93-100. Methods for Chemical Analysis of Water ann EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly in	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate e sample detecti d Wastes, Marcl Substances in E Environmental S er.	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Environmental Samples, August 1993.
QC Sample Type Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referent (1) (2) (3) (4) (5) Comments (1) (2)	be Explanations Verifies that there is no or minimal comples nples Verifies the accuracy of the method, in Verifies the precision of the instrument Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negative material was analyzed for, but was not detected above the IT the associated value is either the sample quantitation limit or the The A600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-94-111. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly if Soil, Sludge, and Plant matrices for Inorganic analyses are reported.	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate d Wastes, Marcl Substances in E Environmental S er.	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. n 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U Wethod Referent (1) (2) (3) (4) (5) Comments (1) (2) (3)	be Explanations Verifies that there is no or minimal community nples Verifies the accuracy of the method, in Verifies the precision of the instrument ified Matrix Determines sample matrix interference Verifies the validity of the calibration. Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the A 600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-93-100. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly if Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as reported	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate d Wastes, March Substances in E Environmental S er. f the rounded va rted on a dry we eceived" basis.	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. in 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U V Method Referent (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (5)	be Explanations Verifies that there is no or minimal comples nples Verifies the accuracy of the method, in Verifies the precision of the instrument fied Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined nega The material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the A 600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-94-111. Methods for the Determination of Inorganic EPA 600/R-94-111. Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly i Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as repo	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate sample detecti d Wastes, Marcl Substances in E Environmental S er. f the rounded va rted on a dry we eceived" basis. ualifier and/or cei	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. in 1983. Environmental Samples, August 1993. Environmental Samples, August 1993. Eamples - Supplement I, May 1994.
QC Sample Typ Blanks Control San Duplicates Spikes/Forti Standard ACZ Qualifiers B H L U V Method Referent (1) (2) (3) (4) (5) Comments (1) (2) (3) (4) (3) (4)	be Explanations Verifies that there is no or minimal comples nples Verifies the accuracy of the method, in Verifies the precision of the instrument fied Matrix Determines sample matrix interference Verifies the validity of the calibration. (Qual) Analyte concentration detected at a value between MDL and PC Analysis exceeded method hold time. pH is a field test with an in Target analyte response was below the laboratory defined negative material was analyzed for, but was not detected above the I The associated value is either the sample quantitation limit or the The associated value is either the sample quantitation of Inorganic EPA 600/R-93-100. Methods for Chemical Analysis of Water an EPA 600/R-94-111. Methods for the Determination of Metals in EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastewate QC results calculated from raw data. Results may vary slightly if Soil, Sludge, and Plant matrices for Inorganic analyses are reported on an "as read an asterisk in the "XQ" column indicates there is an extended quassociated with the result.	tamination in the cluding the prep and/or method. es, if any. QL. The associate mmediate hold ti tive threshold. level of the associate d Wastes, Marcl Substances in E Environmental S er. f the rounded va rted on a dry we eceived" basis. Jalifier and/or cei	prep method or calibration procedure. procedure. ed value is an estimated quantity. me. ciated value. on limit. in 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.

For a complete list of ACZ S Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

Knight Piesold and Co.

ACZ Project ID: L59593

Alkalinity as CaC	03		SM2320E	3 - Titration									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499681													
WG499681PBW	PBW	06/18/20 15:11				3.1	mg/L		-20	20			
WG499681LCSW1	LCSW	06/18/20 15:24	WC200615-3	820.0001		841	mg/L	103	90	110			
WG499375PBS	PBS	06/18/20 15:33				U	mg/L		-20	20			
L59593-01DUP	DUP	06/18/20 15:53			11.8	14.5	mg/L				21	20	RA
WG499681LCSW2	LCSW	06/18/20 16:54	WC200615-3	820.0001		846	mg/L	103	90	110			
Aluminum (1312)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.965	mg/L	98	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.15	0.15			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.15	0.15			
WG499376LFB1	LFB	06/24/20 8:44	II200526-3	1.0012		.951	mg/L	95	80	120			
L59593-02DUP	DUP	06/24/20 8:56			1.48	1.493	mg/L				1	20	
L59593-06MS	MS	06/24/20 9:27	II200526-3	1.0012	.89	1.855	mg/L	96	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	1.0012	.89	1.829	mg/L	94	75	125	1	20	
Antimony (1312)			M6020B	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499860													
WG499860ICV	ICV	06/22/20 14:58	MS200511-3	.02004		.01976	mg/L	99	90	110			
WG499860ICB	ICB	06/22/20 15:00				U	mg/L		-0.0012	0.0012			
WG499376PBS	PBS	06/22/20 15:34				U	mg/L		-0.0012	0.0012			
WG499376LFB2	LFB	06/22/20 15:36	MS200421-3	.01		.01066	mg/L	107	80	120			
L59593-01MS	MS	06/22/20 15:40	MS200421-3	.01	U	.01052	mg/L	105	75	125			
L59593-01MSD	MSD	06/22/20 15:42	MS200421-3	.01	U	.01057	mg/L	106	75	125	0	20	
L59593-02DUP	DUP	06/22/20 15:45			U	U	mg/L				0	20	RA
Arsenic (1312)			M6020B	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499860													
WG499860ICV	ICV	06/22/20 14:58	MS200511-3	.05		.05067	mg/L	101	90	110			
WG499860ICB	ICB	06/22/20 15:00				U	mg/L		-0.0006	0.0006			
WG499376PBS	PBS	06/22/20 15:34				U	mg/L		-0.0006	0.0006			
WG499376LFB2	LFB	06/22/20 15:36	MS200421-3	.05005		.04992	mg/L	100	80	120			
L59593-01MS	MS	06/22/20 15:40	MS200421-3	.05005	U	.05055	mg/L	101	75	125			
L59593-01MSD	MSD	06/22/20 15:42	MS200421-3	.05005	U	.04996	mg/L	100	75	125	1	20	
L59593-02DUP	DUP	06/22/20 15:45			.0006	.00046	mg/L				26	20	RA

Knight Piesold and Co.

ACZ Project ID: L59593

Barium (1312)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.951	mg/L	98	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.021	0.021			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.021	0.021			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	.5005		.4705	mg/L	94	80	120			
L59593-02DUP	DUP	06/24/20 8:56			U	U	mg/L				0	20	RA
L59593-06MS	MS	06/24/20 9:27	II200526-3	.5005	U	.4748	mg/L	95	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	.5005	U	.4688	mg/L	94	75	125	1	20	
Beryllium (1312)			M6020B	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499860													
WG499860ICV	ICV	06/22/20 14:58	MS200511-3	.05		.049887	mg/L	100	90	110			
WG499860ICB	ICB	06/22/20 15:00				.000093	mg/L		-0.00024	0.00024			
WG499376PBS	PBS	06/22/20 15:34				U	mg/L		-0.00024	0.00024			
WG499376LFB2	LFB	06/22/20 15:36	MS200421-3	.05005		.050996	mg/L	102	80	120			
L59593-01MS	MS	06/22/20 15:40	MS200421-3	.05005	U	.050992	mg/L	102	75	125			
L59593-01MSD	MSD	06/22/20 15:42	MS200421-3	.05005	U	.05118	mg/L	102	75	125	0	20	
L59593-02DUP	DUP	06/22/20 15:45			.00009	U	mg/L				200	20	RA
Cadmium (1312)			M6020B	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499860													
WG499860 WG499860ICV	ICV	06/22/20 14:58	MS200511-3	.05		.050715	mg/L	101	90	110			
WG499860 WG499860ICV WG499860ICB	ICV ICB	06/22/20 14:58 06/22/20 15:00	MS200511-3	.05		.050715 U	mg/L mg/L	101	90 -0.00015	110 0.00015			
WG499860 WG499860ICV WG499860ICB WG499376PBS	ICV ICB PBS	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34	MS200511-3	.05		.050715 U U	mg/L mg/L mg/L	101	90 -0.00015 -0.00015	110 0.00015 0.00015			
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2	ICV ICB PBS LFB	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36	MS200511-3 MS200421-3	.05 .05005		.050715 U U .048705	mg/L mg/L mg/L mg/L	101 97	90 -0.00015 -0.00015 80	110 0.00015 0.00015 120			
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS	ICV ICB PBS LFB MS	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40	MS200511-3 MS200421-3 MS200421-3	.05 .05005 .05005	U	.050715 U U .048705 .04854	mg/L mg/L mg/L mg/L	101 97 97	90 -0.00015 -0.00015 80 75	110 0.00015 0.00015 120 125			
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD	ICV ICB PBS LFB MS MSD	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42	MS200511-3 MS200421-3 MS200421-3 MS200421-3	.05 .05005 .05005 .05005	U U	.050715 U U .048705 .04854 .048833	mg/L mg/L mg/L mg/L mg/L	101 97 97 98	90 -0.00015 -0.00015 80 75 75	110 0.00015 0.00015 120 125 125	1	20	
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP	ICV ICB PBS LFB MS MSD DUP	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45	MS200511-3 MS200421-3 MS200421-3 MS200421-3	.05 .05005 .05005 .05005	U U .00007	.050715 U U .048705 .04854 .048833 .00007	mg/L mg/L mg/L mg/L mg/L mg/L	101 97 97 98	90 -0.00015 -0.00015 80 75 75	110 0.00015 0.00015 120 125 125	1 0	20 20	RA
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP Calcium (1312)	ICV ICB PBS LFB MS MSD DUP	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45	MS200511-3 MS200421-3 MS200421-3 MS200421-3 MS200421-3	.05 .05005 .05005 .05005	U U .00007	.050715 U U .048705 .04854 .048833 .00007	mg/L mg/L mg/L mg/L mg/L mg/L	101 97 97 98	90 -0.00015 -0.00015 80 75 75 75	110 0.00015 0.00015 120 125 125	1 0	20 20	RA
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP Calcium (1312) ACZ ID	ICV ICB PBS LFB MS MSD DUP	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45	MS200511-3 MS200421-3 MS200421-3 MS200421-3 MS200421-3 MS200421-3	.05 .05005 .05005 .05005 ICP QC	U U .00007 Sample	.050715 U U .048705 .04854 .048833 .00007	mg/L mg/L mg/L mg/L mg/L mg/L	101 97 97 98 Rec%	90 -0.00015 -0.00015 80 75 75 Lower	110 0.00015 0.00015 120 125 125	1 0 RPD	20 20 Limit	RA
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP Calcium (1312) ACZ ID WG500011	ICV ICB PBS LFB MS MSD DUP	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45	MS200511-3 MS200421-3 MS200421-3 MS200421-3 MS200421-3 MS200421-3	.05 .05005 .05005 .05005 ICP QC	U U .00007 Sample	.050715 U U .048705 .04854 .048833 .00007	mg/L mg/L mg/L mg/L mg/L mg/L	101 97 97 98 Rec%	90 -0.00015 -0.00015 80 75 75 75	110 0.00015 0.00015 120 125 125 125	1 0 RPD	20 20 Limit	RA Qual
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP Calcium (1312) ACZ ID WG500011 WG500011ICV	ICV ICB PBS LFB MS MSD DUP	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45 Analyzed	MS200511-3 MS200421-3 MS200421-3 MS200421-3 M6010D PCN/SCN II200616-2	.05 .05005 .05005 .05005 ICP QC 100	U U .00007 Sample	.050715 U U .048705 .04854 .048833 .00007 Found 98.26	mg/L mg/L mg/L mg/L mg/L Units	101 97 97 98 Rec% 98	90 -0.00015 -0.00015 80 75 75 Lower 90	110 0.00015 0.00015 120 125 125 125 Upper	1 0 RPD	20 20 Limit	RA Qual
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP Calcium (1312) ACZ ID WG500011 WG500011ICV WG500011ICV	ICV ICB PBS LFB MS DUP Type ICV ICB	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45 Analyzed 06/24/20 8:13 06/24/20 8:16	MS200511-3 MS200421-3 MS200421-3 MS200421-3 MS200421-3 Il200616-2	.05 .05005 .05005 .05005 ICP QC 100	U U .00007 Sample	.050715 U U .048705 .04854 .048833 .00007 Found 98.26 U	mg/L mg/L mg/L mg/L mg/L Units mg/L	101 97 97 98 Rec% 98	90 -0.00015 -0.00015 80 75 75 Lower 90 -0.3	110 0.00015 0.00015 120 125 125 125 Upper 110 0.3	1 0 RPD	20 20 Limit	RA
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP Calcium (1312) Acz ID WG500011 WG500011ICV WG500011ICV WG500011ICB WG499376PBS	ICV ICB PBS LFB MS MSD DUP Type ICV ICB PBS	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45 Analyzed 06/24/20 8:13 06/24/20 8:16 06/24/20 8:41	MS200511-3 MS200421-3 MS200421-3 MS200421-3 MG010D PCN/SCN II200616-2	.05 .05005 .05005 .05005 ICP QC 100	U U .00007 Sample	.050715 U U .048705 .04854 .048833 .00007 Found 98.26 U U	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	101 97 97 98 Rec% 98	90 -0.00015 -0.00015 80 75 75 	110 0.00015 0.00015 120 125 125 125 Upper 110 0.3 0.3	1 0 RPD	20 20 Limit	RA Qual
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-01MSD L59593-02DUP Calcium (1312) ACZ ID WG500011 WG500011ICV WG500011ICV WG500011ICV WG500011ICB WG499376PBS WG499376LFB1	ICV ICB PBS LFB MS DUP Type ICV ICB PBS LFB	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:40 06/22/20 15:42 06/22/20 15:45 Analyzed 06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44	MS200511-3 MS200421-3 MS200421-3 MS200421-3 M6010D PCN/SCN II200616-2 II200526-3	.05 .05005 .05005 .05005 ICP QC 100 67.99353	U U .00007 Sample	.050715 U U .048705 .04854 .048833 .00007 Found 98.26 U U U 66.25	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	101 97 98 Rec% 98 97	90 -0.00015 -0.00015 80 75 75 Lower 90 -0.3 -0.3 80	110 0.00015 120 125 125 125 Upper 110 0.3 0.3 120	1 0 RPD	20 20	RA Qual
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-02DUP Calcium (1312) AC2 ID WG500011 WG500011ICV WG500011ICV WG500011ICV WG499376PBS WG499376LFB1 L59593-02DUP	ICV ICB PBS LFB MS DUP Type ICV ICB PBS LFB DUP	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:42 06/22/20 15:42 06/22/20 15:45 Analyzed 06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56	MS200511-3 MS200421-3 MS200421-3 MS200421-3 M6010D PCN/SCN II200616-2 II200526-3	.05 .05005 .05005 .05005 ICP QC 100 67.99353	U U .00007 Sample 2.4	.050715 U U .048705 .04854 .048833 .00007 Found 98.26 U U 66.25 2.3	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	101 97 98 Rec% 98 97	90 -0.00015 -0.00015 80 75 75 2 b b b b b c c c c c c c c c c	110 0.00015 0.00015 120 125 125 125 Upper 110 0.3 0.3 120	1 0 RPD	20 20 Limit	RA Qual
WG499860 WG499860ICV WG499860ICB WG499376PBS WG499376LFB2 L59593-01MS L59593-02DUP Calcium (1312) ACZ ID WG500011 WG500011ICV WG500011ICV WG500011ICV WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS	ICV ICB PBS LFB MS DUP DUP Type ICV ICB PBS LFB DUP MS	06/22/20 14:58 06/22/20 15:00 06/22/20 15:34 06/22/20 15:36 06/22/20 15:42 06/22/20 15:42 06/22/20 15:45 06/22/20 15:45 06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27	MS200511-3 MS200421-3 MS200421-3 MS200421-3 M6010D PCN/SCN II200616-2 II200526-3 II200526-3	.05 .05005 .05005 .05005 ICP QC 100 67.99353 67.99353	U U .00007 Sample 2.4 1.6	.050715 U U .048705 .04854 .048833 .00007 Found 98.26 U U 66.25 2.3 69.31	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	101 97 98 Rec% 98 97	90 -0.00015 -0.00015 80 75 75 Lower 90 -0.3 -0.3 80 75	110 0.00015 0.00015 120 125 125 125 Upper 110 0.3 0.3 120 125	1 0 RPD	20 20 Limit	RA Qual

Knight Piesold and Co.

ACZ Project ID: L59593

Chloride (1312 E	DI)		SM4500	CI-E									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499621													
WG499621ICB	ICB	06/18/20 9:27				U	mg/L		-1.5	1.5			
WG499621ICV	ICV	06/18/20 9:27	WI200506-2	55.055		54.59	mg/L	99	90	110			
WG499621LFB	LFB	06/18/20 11:24	WI200327-3	30.03		30.93	mg/L	103	90	110			
WG499375PBS	PBS	06/18/20 11:24				U	mg/L		-1.5	1.5			
L59593-01DUP	DUP	06/18/20 11:24			U	U	mg/L				0	20	RA
L59593-04AS	AS	06/18/20 11:24	WI200327-3	30.03	U	31.75	mg/L	106	90	110			
Chromium (1312	2)		M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.951	mg/L	98	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.03	0.03			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.03	0.03			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	.501		.491	mg/L	98	80	120			
L59593-02DUP	DUP	06/24/20 8:56			U	U	mg/L				0	20	RA
L59593-06MS	MS	06/24/20 9:27	II200526-3	.501	U	.489	mg/L	98	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	.501	U	.486	mg/L	97	75	125	1	20	
Copper (1312)			M6010D	ICP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
		-											
WG500011	51												
WG500011 WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.931	mg/L	97	90	110			
WG500011 WG500011ICV WG500011ICB	ICV ICB	06/24/20 8:13 06/24/20 8:16	II200616-2	2		1.931 U	mg/L mg/L	97	90 -0.03	110 0.03			
WG500011 WG500011ICV WG500011ICB WG499376PBS	ICV ICB PBS	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41	II200616-2	2		1.931 U U	mg/L mg/L mg/L	97	90 -0.03 -0.03	110 0.03 0.03			
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1	ICV ICB PBS LFB	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44	II200616-2 II200526-3	2 .501		1.931 U U .491	mg/L mg/L mg/L mg/L	97 98	90 -0.03 -0.03 80	110 0.03 0.03 120			
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP	ICV ICB PBS LFB DUP	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56	II200616-2 II200526-3	2 .501	.02	1.931 U U .491 .02	mg/L mg/L mg/L mg/L	97 98	90 -0.03 -0.03 80	110 0.03 0.03 120	0	20	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS	ICV ICB PBS LFB DUP MS	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27	II200616-2 II200526-3 II200526-3	2 .501 .501	.02 U	1.931 U U .491 .02 .503	mg/L mg/L mg/L mg/L mg/L	97 98 100	90 -0.03 -0.03 80 75	110 0.03 0.03 120 125	0	20	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MSD	ICV ICB PBS LFB DUP MS MSD	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31	II200616-2 II200526-3 II200526-3 II200526-3	2 .501 .501 .501	.02 U U	1.931 U U .491 .02 .503 .495	mg/L mg/L mg/L mg/L mg/L mg/L	97 98 100 99	90 -0.03 -0.03 80 75 75	110 0.03 0.03 120 125 125	0 2	20 20	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MS L59593-06MSD	ICV ICB PBS LFB DUP MS MSD	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31	II200616-2 II200526-3 II200526-3 II200526-3 SM45000	2 .501 .501 .501 .501	.02 U U	1.931 U .491 .02 .503 .495 w/ distilla	mg/L mg/L mg/L mg/L mg/L mg/L	97 98 100 99	90 -0.03 -0.03 80 75 75	110 0.03 0.03 120 125 125	0	20 20	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MS D Cyanide, WAD (*	ICV ICB PBS LFB DUP MS MSD 1312-DI) Type	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31	II200616-2 II200526-3 II200526-3 II200526-3 SM4500- PCN/SCN	2 .501 .501 .501 .CN I,E-Col QC	.02 U U orimetric v Sample	1.931 U U .491 .02 .503 .495 W/ distilla	mg/L mg/L mg/L mg/L mg/L mg/L ation	97 98 100 99 Rec%	90 -0.03 -0.03 80 75 75 Lower	110 0.03 0.03 120 125 125	0 2 RPD	20 20 Limit	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MS Cyanide, WAD (* ACZ ID WG499983	ICV ICB PBS LFB DUP MS MSD 1312-DI)	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31	II200616-2 II200526-3 II200526-3 II200526-3 SM45000 PCN/SCN	2 .501 .501 .501 .501 .CN I,E-Col QC	.02 U U orimetric V Sample	1.931 U .491 .02 .503 .495 w/ distilla	mg/L mg/L mg/L mg/L mg/L mg/L ation	97 98 100 99 Rec%	90 -0.03 -0.03 80 75 75 75	110 0.03 0.03 120 125 125 Upper	0 2 RPD	20 20 Limit	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MSD Cyanide, WAD (* ACZ ID WG499983 WG499983ICV	ICV ICB PBS LFB DUP MS MSD 1312-DI) Type ICV	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31 Analyzed 06/23/20 15:28	II200616-2 II200526-3 II200526-3 II200526-3 SM4500- PCN/SCN WI200622-7	2 .501 .501 .501 .CN I,E-Col QC .3003	.02 U U orimetric v Sample	1.931 U .491 .02 .503 .495 W/ distilla Found	mg/L mg/L mg/L mg/L mg/L ation Units	97 98 100 99 Rec% 92	90 -0.03 -0.03 80 75 75 Lower 90	110 0.03 0.03 120 125 125 Upper	0 2 RPD	20 20 Limit	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MSD Cyanide, WAD (* ACZ ID WG499983 WG499983ICV WG499983ICB	ICV ICB PBS LFB DUP MS MSD 1312-DI) Type ICV ICB	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 9:27 06/24/20 9:31 Analyzed 06/23/20 15:28 06/23/20 15:29	II200616-2 II200526-3 II200526-3 II200526-3 SM4500- PCN/SCN WI200622-7	2 .501 .501 .501 CN I,E-Col QC .3003	.02 U U orimetric V Sample	1.931 U .491 .02 .503 .495 W/ distilla Found .2769 U	mg/L mg/L mg/L mg/L mg/L ation Units mg/L mg/L	97 98 100 99 Rec% 92	90 -0.03 -0.03 80 75 75 Lower 90 -0.003	110 0.03 0.03 120 125 125 125 Upper 110 0.003	0 2 RPD	20 20 Limit	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MS Cyanide, WAD (* ACZ ID WG499983 WG499983ICV WG499983ICB WG499983	ICV ICB PBS LFB DUP MS MSD 1312-DI) 1312-DI) Type ICV ICB	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31 Analyzed 06/23/20 15:28 06/23/20 15:29	II200616-2 II200526-3 II200526-3 II200526-3 SM45000 PCN/SCN WI200622-7	2 .501 .501 .501 CN I,E-Col QC .3003	.02 U U orimetric v Sample	1.931 U .491 .02 .503 .495 W/ distilla Found .2769 U	mg/L mg/L mg/L mg/L mg/L ation Units mg/L mg/L	97 98 100 99 Rec% 92	90 -0.03 -0.03 80 75 75 Cower 90 -0.003	110 0.03 0.03 120 125 125 Upper 110 0.003	0 2 RPD	20 20 Limit	RA
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MSD Cyanide, WAD (* ACZ ID WG499983 WG499983ICV WG499983ICB WG4999983	ICV ICB PBS LFB DUP MS MSD 1312-DI) 1312-DI) Type ICV ICB PBS	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:31 Analyzed 06/23/20 15:28 06/23/20 15:29 06/23/20 17:15	II200616-2 II200526-3 II200526-3 II200526-3 SM4500- PCN/SCN WI200622-7	2 .501 .501 .501 .CN I,E-Col QC .3003	.02 U U orimetric v Sample	1.931 U .491 .02 .503 .495 W/ distilla Found .2769 U	mg/L mg/L mg/L mg/L mg/L ation Units mg/L mg/L	97 98 100 99 Rec% 92	90 -0.03 -0.03 80 75 75 Cower 90 -0.003	110 0.03 0.03 120 125 125 Upper 110 0.003	0 2 RPD	20 20 Limit	RA Qual
WG500011 WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MSD Cyanide, WAD (* ACZ ID WG499983 WG499983ICV WG499983ICB WG499998 WG499918PBS WG499918LFB	ICV ICB PBS LFB DUP MS MSD 1312-DI)	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31 Analyzed 06/23/20 15:28 06/23/20 15:29 06/23/20 17:15 06/23/20 17:15	II200616-2 II200526-3 II200526-3 II200526-3 SM4500- PCN/SCN WI200622-7	2 .501 .501 .501 .CN I,E-Col QC .3003	.02 U U orimetric v Sample	1.931 U .491 .02 .503 .495 W/ distilla Found .2769 U U .1809	mg/L mg/L mg/L mg/L mg/L ation Units mg/L mg/L mg/L	97 98 100 99 Rec% 92	90 -0.03 -0.03 80 75 75 Lower 90 -0.003 90	110 0.03 0.03 120 125 125 Upper 110 0.003 0.003 110	0 2 RPD	20 20 Limit	RA Qual
WG500011 WG500011ICV WG500011ICV WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MS Cyanide, WAD (* ACZ ID WG499983 WG499983ICV WG499983ICB WG499998 WG499918PBS WG499918LFB WG499918LFB	ICV ICB PBS LFB DUP MS MSD 1312-DI) 1312-DI] 131	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31 Analyzed 06/23/20 15:28 06/23/20 15:29 06/23/20 17:15 06/23/20 17:16	II200616-2 II200526-3 II200526-3 II200526-3 SM4500- PCN/SCN W1200622-7 W1200622-6	2 .501 .501 .501 .CN I,E-Col QC .3003	.02 U U orimetric v Sample	1.931 U .491 .02 .503 .495 W/ distilla Found .2769 U U .1809 U	mg/L mg/L mg/L mg/L mg/L ation Units mg/L mg/L mg/L mg/L	97 98 100 99 Rec% 92 90	90 -0.03 -0.03 80 75 75 Lower 90 -0.003 90 -0.003	110 0.03 0.03 120 125 125 125 Upper 110 0.003 110 0.003	0 2 RPD	20 20 Limit	RA
WG500011 WG500011ICV WG500011ICV WG500011ICB WG499376PBS WG499376LFB1 L59593-02DUP L59593-06MS L59593-06MS Cyanide, WAD (7 ACZ ID WG499983 WG499983 WG499983 WG499983 WG499983 WG4999983 WG499918PBS WG499918PBS WG499918PBS WG499918LFB WG499375PBS L59593-01DUP	ICV ICB PBS LFB DUP MS MSD 1312-DI) 1312-DI) 1312-DI) 1312-DI) 1312-DI) 1312-DI) 1312-DI) PBS LFB PBS LFB PBS DUP	06/24/20 8:13 06/24/20 8:16 06/24/20 8:41 06/24/20 8:44 06/24/20 8:56 06/24/20 9:27 06/24/20 9:31 Analyzed 06/23/20 15:28 06/23/20 15:29 06/23/20 17:15 06/23/20 17:16 06/23/20 17:16 06/23/20 17:18	II200616-2 II200526-3 II200526-3 II200526-3 SM4500- PCN/SCN WI200622-7 WI200622-6	2 .501 .501 .501 .CN I,E-Col QC .3003	.02 U U orimetric v Sample	1.931 U .491 .02 .503 .495 W/ distilla Found .2769 U U .1809 U U	mg/L mg/L mg/L mg/L mg/L ation Units Mg/L mg/L mg/L mg/L mg/L	97 98 100 99 Rec% 92 90	90 -0.03 -0.03 80 75 75 Lower 90 -0.003 90 -0.003	110 0.03 0.03 120 125 125 125 Upper 110 0.003 110 0.003	0 2 RPD	20 20 Limit	RA

Knight Piesold and Co.

ACZ Project ID: L59593

Fluoride (1312 D	DI)		SM4500	C									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499921													
WG499921ICB	ICB	06/23/20 11:30				U	mg/L		-0.3	0.3			
WG499921LFB	LFB	06/23/20 11:37	WC200511-1	5		5.21	mg/L	104	90	110			
WG499375PBS	PBS	06/23/20 11:41				U	mg/L		-0.3	0.3			
L59593-01AS	AS	06/23/20 11:48	WC200511-1	5	.2	5.23	mg/L	101	90	110			
L59593-01DUP	DUP	06/23/20 11:51			.2	.15	mg/L				29	20	RA
Iron (1312)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.887	mg/L	94	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.18	0.18			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.18	0.18			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	1.0018		.971	mg/L	97	80	120			
L59593-02DUP	DUP	06/24/20 8:56			.28	.27	mg/L				4	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	1.0018	.29	1.254	mg/L	96	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	1.0018	.29	1.245	mg/L	95	75	125	1	20	
Lead (1312)			M6020B	ICP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499860													
WG499860ICV	ICV	06/22/20 14:58	MS200511-3	.05		.05142	mg/L	103	90	110			
WG499860ICB	ICB	06/22/20 15:00				U	mg/L		-0.0003	0.0003			
WG499376PBS	PBS	06/22/20 15:34				U	mg/L		-0.0003	0.0003			
WG499376LFB2	LFB	06/22/20 15:36	MS200421-3	.05005		.04944	mg/L	99	80	120			
L59593-01MS	MS	06/22/20 15:40	MS200421-3	.05005	U	.0491	mg/L	98	75	125			
L59593-01MSD	MSD	06/22/20 15:42	MS200421-3	.05005	U	.04985	mg/L	100	75	125	2	20	
L59593-02DUP	DUP	06/22/20 15:45			.0004	U	mg/L				200	20	RA
Magnesium (13 [,]	12)		M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	100		96.88	mg/L	97	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.6	0.6			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.6	0.6			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	49.99828		47.13	mg/L	94	80	120			
L59593-02DUP	DUP	06/24/20 8:56			.6	.61	mg/L				2	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	49.99828	.3	48.33	mg/L	96	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	49.99828	.3	47.55	mg/L	95	75	125	2	20	

Knight Piesold and Co.

ACZ Project ID: L59593

Manganese (131	2)		M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.906	mg/L	95	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.03	0.03			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.03	0.03			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	.5015		.482	mg/L	96	80	120			
L59593-02DUP	DUP	06/24/20 8:56			.02	.012	mg/L				50	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	.5015	U	.487	mg/L	97	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	.5015	U	.48	mg/L	96	75	125	1	20	
Mercury (1312)			M7470A	CVAA									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499515													
WG499515ICV	ICV	06/18/20 14:24	HG200526-2	.004995		.00493	mg/L	99	95	105			
WG499515ICB	ICB	06/18/20 14:25				U	mg/L		-0.0002	0.0002			
WG499629													
WG499376PBS	PBS	06/18/20 17:10				U	mg/L		-0.0006	0.0006			
WG499376LFB1	LFB	06/18/20 17:11	HG200608-4	.002002		.00202	mg/L	101	85	115			
L59593-02DUP	DUP	06/18/20 17:14			U	U	mg/L				0	20	RA
L59593-06MS	MS	06/18/20 17:21	HG200608-4	.002002	U	.00189	mg/L	94	85	115			
L59593-06MSD	MSD	06/18/20 17:22	HG200608-4	.002002	U	.00189	mg/L	94	85	115	0	20	
Neutralization P	otential	as CaCO3	M600/2-7	78-054 3.2.3	3								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499366													
WG499366PBS	PBS	06/16/20 12:39				U	%		-0.2	0.2			
WG499366LCSS	LCSS	06/16/20 12:42	PCN59681	4.96		5	%	101	80	120			
L59593-01MS	MS	06/16/20 12:49	SI190303-1	1	1.7	2.48	%	78	70	130			
L59593-01DUP	DUP	06/16/20 12:53			1.7	1.65	%				3	20	
Nickel (1312)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.971	mg/L	99	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.024	0.024			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.024	0.024			
WG499376LFB1	LFB	06/24/20 8:44	II200526-3	.501		.4943	mg/L	99	80	120			
L59593-02DUP	DUP	06/24/20 8:56			U	U	mg/L				0	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	.501	U	.4986	mg/L	100	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	.501	U	.5006	mg/L	100	75	125	0	20	

Knight Piesold and Co.

ACZ Project ID: L59593

Nitrate/Nitrite as	N (1312	-DI)	M353.2 -	Automated	Cadmiun	n Reduc	tion						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499568													
WG499568ICV	ICV	06/17/20 21:47	WI200514-1	2.416		2.492	mg/L	103	90	110			
WG499568ICB	ICB	06/17/20 21:48				U	mg/L		-0.02	0.02			
WG499570													
WG499570LEB	I FB	06/17/20 22:42	WI200331-15	2		2 065	ma/l	103	90	110			
WG499375PBS	PBS	06/17/20 22:42	111200001 10	2		2.000 U	mg/L	100	-0.02	0.02			
L59593-01DUP	DUP	06/17/20 22:46			.09	.106	mg/L				16	20	RA
L59593-02AS	AS	06/17/20 22:48	WI200331-15	2	U	2.094	mg/L	105	90	110			
Nitrogen, ammor	nia (131)	2-DI)	M350.1 A	Auto Salicyla	ate w/gas	diffusior	1						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499722													
WG499722ICV	ICV	06/19/20 10:00	WI200327-4	12 012		11 675	ma/L	97	90	110			
WG499722ICB	ICB	06/19/20 10:02		12.012		U	mg/L	51	-0.05	0.05			
WC400763	.05	00,10,20 10102				Ū	Ū		0.00	0.00			
WG499705		00/40/00 44:00	W/101111 2	10		0.004	ma/l	00	00	110			
WG499703LFD		06/19/20 11:32	WII9111-5	10		9.304	mg/L	93	90	0.05			
1 50503-01DLIP		06/19/20 11:34				0	mg/L		-0.05	0.05	0	20	RΔ
L59593-02AS	AS	06/19/20 11:40	WI191111-3	10	U	9.697	mg/L	97	90	110	0	20	101
				M0040C									
	T	Amelianad	NI9043D/	M9040C	0	Found	11	D = = 0/	1	11	888	1 : :+	0
	гуре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Quai
WG499870													
WG499870ICV	ICV	06/17/20 9:46	PCN59583	4.01		4	units	100	3.9	4.1			
L59593-02DUP	DUP	06/17/20 10:34			9.1	9.2	units				1	20	
Phosphorus, Tot	al (1312	-DI)	M365.1 -	Auto Ascor	bic Acid (digest)							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499950													
WG499950ICV1	ICV	06/24/20 11:22	WI200608-9	.65228		.669	mg/L	103	90	110			
WG499950ICB1	ICB	06/24/20 11:25				U	mg/L		-0.01	0.01			
WG499805PBS	PBS	06/24/20 11:26				U	mg/L		-0.01	0.01			
WG499805LFB	LFB	06/24/20 11:27	WI200619-2	.5		.487	mg/L	97	90	110			
WG499375PBS	PBS	06/24/20 11:28				U	mg/L		-0.01	0.01			
L59593-01DUP	DUP	06/24/20 11:30			.09	.159	mg/L				55	20	RA
L59593-04MS	MS	06/24/20 11:35	WI200619-2	.5	.23	.729	mg/L	100	90	110			
Potassium (1312)		M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	20		19.57	mg/L	98	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.6	0.6			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.6	0.6			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	99.96426		93.33	mg/L	93	80	120			
L59593-02DUP	DUP	06/24/20 8:56			.7	.59	mg/L				17	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	99.96426	U	93.3	mg/L	93	75	125	6	00	
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	99.96426	U	91.75	mg/L	92	75	125	2	20	

Inorganic QC _____Summary

Knight Piesold and Co.

ACZ Project ID: L59593

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Residue, Filterable (TDS) @180C (1312) SM2540C

ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499928													
WG499928PBW WG499928LCSW WG499375PBS	PBW LCSW PBS	06/23/20 10:50 06/23/20 10:52 06/23/20 10:55 06/23/20 11:01	PCN61085	1000	30	U 984 U 34	mg/L mg/L mg/L mg/l	98	-20 80 -40	20 120 40	13	10	RA
	DOI	00/23/20 11:01			50	54	ing/L				10	10	
Selenium (1312)	_		M6020B	ICP-MS		_							
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499860													
WG499860ICV	ICV	06/22/20 14:58	MS200511-3	.05		.05163	mg/L	103	90	110			
WG499860ICB	ICB	06/22/20 15:00				U	mg/L		-0.0003	0.0003			
WG499376PBS	PBS	06/22/20 15:34				U	mg/L		-0.0003	0.0003			
WG499376LFB2	LFB	06/22/20 15:36	MS200421-3	.05		.04814	mg/L	96	80	120			
L59593-01MS	MS	06/22/20 15:40	MS200421-3	.05	U	.04879	mg/L	98	75	125			
L59593-01MSD	MSD	06/22/20 15:42	MS200421-3	.05	U	.04879	mg/L	98	75	125	0	20	
L59593-02DUP	DUP	06/22/20 15:45			U	U	mg/L				0	20	RA
Silver (1312)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	1		.991	mg/L	99	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.03	0.03			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.03	0.03			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	.5		.464	mg/L	93	80	120			
L59593-02DUP	DUP	06/24/20 8:56			U	U	mg/L				0	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	.5	U	.478	mg/L	96	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	.5	U	.469	mg/L	94	75	125	2	20	
Sodium (1312)			M6010D	ICP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	100		98.73	mg/L	99	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.6	0.6			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.6	0.6			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	100.0086		95.32	mg/L	95	80	120			
L59593-02DUP	DUP	06/24/20 8:56			1.9	1.55	mg/L				20	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	100.0086	1.8	98.65	mg/L	97	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	100.0086	1.8	97.22	mg/L	95	75	125	1	20	
Sulfate (1312 DI)			SM4500	SO4-D									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500032													
WG500032PBW	PBW	06/24/20 9:00				U	mg/L		-60	60			
WG500032LCSW	LCSW	06/24/20 9:16	WC200605-2	100		96	mg/L	96	80	120			
WG499375PBS	PBS	06/24/20 9:32				U	mg/L		-60	60			
L59593-01DUP	DUP	06/24/20 10:05			U	U	mg/L				0	20	RA

Knight Piesold and Co.

ACZ Project ID: L59593

Sulfur Organic	Residua		M600/2-7	8-054 3.2	.4-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499362													
L59593-01DUP	DUP	06/17/20 14:55			U	U	%				0	20	RA
Sulfur Pyritic Su	ulfide		M600/2-7	8-054 3.2	4-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499362													
L59593-01DUP	DUP	06/17/20 14:55			U	.01	%				200	20	RA
Sulfur Sulfate			M600/2-7	8-054 3.2	4-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499362													
WG499362PBS	PBS	06/17/20 14:42				U	%		-0.03	0.03			
L59593-01DUP	DUP	06/17/20 14:55			U	U	%				0	20	RA
Sulfur Total			M600/2-7	8-054 3.2	4-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499362													
WG499362PBS	PBS	06/17/20 13:17				U	%		-0.03	0.03			
WG499362LCSS	LCSS	06/17/20 13:21	PCN60873	4.01		3.77	%	94	80	120			
L59593-01MS	MS	06/17/20 13:27	PCN60251	1.32	U	1.25	%	95	80	120			
L59593-01DUP	DUP	06/17/20 13:30			U	U	%				0	20	RA
Thallium (1312)			M6020B I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499860													
WG499860ICV	ICV	06/22/20 14:58	MS200511-3	.05		.05406	mg/L	108	90	110			
WG499860ICB	ICB	06/22/20 15:00				U	mg/L		-0.0003	0.0003			
WG499376PBS	PBS	06/22/20 15:34				U	mg/L		-0.0003	0.0003			
WG499376LFB2	LFB	06/22/20 15:36	MS200421-3	.0501		.05089	mg/L	102	80	120			
L59593-01MS	MS	06/22/20 15:40	MS200421-3	.0501	U	.05064	mg/L	101	75	125			
L59593-01MSD	MSD	06/22/20 15:42	MS200421-3	.0501	U	.05144	mg/L	103	75	125	2	20	
L59593-02DUP	DUP	06/22/20 15:45			U	U	mg/L				0	20	RA
Total Sulfur Mir	us Sulfa	ite	M600/2-7	8-054 3.2.	.4-MOD								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG499362													
WG499362PBS	PBS	06/17/20 14:42				U	%		-0.03	0.03			
L59593-01DUP	DUP	06/17/20 14:55			U	.01	%				200	20	RA

Knight Piesold and Co.

ACZ Project ID: L59593

Zinc (1312)	M6010D ICP												
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG500011													
WG500011ICV	ICV	06/24/20 8:13	II200616-2	2		1.956	mg/L	98	90	110			
WG500011ICB	ICB	06/24/20 8:16				U	mg/L		-0.06	0.06			
WG499376PBS	PBS	06/24/20 8:41				U	mg/L		-0.06	0.06			
WG499376LFB1	LFB	06/24/20 8:44	11200526-3	.50075		.503	mg/L	100	80	120			
L59593-02DUP	DUP	06/24/20 8:56			U	U	mg/L				0	20	RA
L59593-06MS	MS	06/24/20 9:27	11200526-3	.50075	U	.505	mg/L	101	75	125			
L59593-06MSD	MSD	06/24/20 9:31	11200526-3	.50075	U	.499	mg/L	100	75	125	1	20	

PRIVILEGED AND CONFIDENTIAL

(800) 334-5493

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L59593-01	WG499860	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated
		Arsenic (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Barium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Beryllium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499860	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Calcium (1312)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG499681	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499621	Chloride (1312 DI)	SM4500CI-E	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to- analysis.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Chromium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Copper (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499998	Cyanide, WAD (1312-DI)	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499921	Fluoride (1312 DI)	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG500011	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499629	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Nickel (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499570	Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499763	Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M350.1 Auto Salicylate w/gas diffusion	Q6	Sample was received above recommended temperature.
			M350.1 Auto Salicylate w/gas diffusion	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499950	Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to- analysis.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Potassium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499928	Residue, Filterable (TDS) @180C (1312)	SM2540C	N1	See Case Narrative.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540C	Z3	Sample volume yielded a residue less than 2.5 mg
	WG499860	Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Silver (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sodium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500032	Sulfate (1312 DI)	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Pyritic Sulfide	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Total	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Total Sulfur minus Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
	WG500011	Zinc (1312)	M6010D ICP	RA	sample is too low for accurate evaluation (< 10x MDL). Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

PRIVILEGED AND CONFIDENTIAL

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ Project ID: L59593

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L59593-02	WG499860	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Arsenic (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Barium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Beryllium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499860	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Calcium (1312)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG499681	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499621	Chloride (1312 DI)	SM4500CI-E	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to- analysis.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Chromium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Copper (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499998	Cyanide, WAD (1312-DI)	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499921	Fluoride (1312 DI)	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG500011	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499629	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Nickel (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499570	Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No

REPAD.15.06.05.01

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499763	Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M350.1 Auto Salicylate w/gas diffusion	Q6	Sample was received above recommended temperature.
			M350.1 Auto Salicylate w/gas diffusion	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499950	Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Potassium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499928	Residue, Filterable (TDS) @180C (1312)	SM2540C	N1	See Case Narrative.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540C	Z3	Sample volume yielded a residue less than 2.5 mg
	WG499860	Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Silver (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sodium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500032	Sulfate (1312 DI)	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Pyritic Sulfide	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Total	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Total Sulfur minus Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

PRIVILEGED AND CONFIDENTIAL

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ Project ID: L59593

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L59593-03	WG499860	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Arsenic (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Barium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Beryllium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499860	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Calcium (1312)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG499681	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499621	Chloride (1312 DI)	SM4500CI-E	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to- analysis.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Chromium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Copper (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499998	Cyanide, WAD (1312-DI)	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499921	Fluoride (1312 DI)	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG500011	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499629	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Nickel (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499570	Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No

REPAD.15.06.05.01

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499763	Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M350.1 Auto Salicylate w/gas diffusion	Q6	Sample was received above recommended temperature.
			M350.1 Auto Salicylate w/gas diffusion	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499950	Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Potassium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499928	Residue, Filterable (TDS) @180C (1312)	SM2540C	N1	See Case Narrative.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540C	Z3	Sample volume yielded a residue less than 2.5 mg
	WG499860	Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Silver (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sodium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500032	Sulfate (1312 DI)	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Pyritic Sulfide	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Total	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Total Sulfur minus Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

PRIVILEGED AND CONFIDENTIAL

(800) 334-5493

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L59593-04	WG499860	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated cample is too law for accurate evaluation (< 10x MDL)
		Arsenic (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Barium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Beryllium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499860	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Calcium (1312)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG499681	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499621	Chloride (1312 DI)	SM4500CI-E	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Chromium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Copper (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499998	Cyanide, WAD (1312-DI)	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499921	Fluoride (1312 DI)	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG500011	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499629	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Nickel (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499570	Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499763	Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M350.1 Auto Salicylate w/gas diffusion	Q6	Sample was received above recommended temperature.
			M350.1 Auto Salicylate w/gas diffusion	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499950	Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Potassium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499928	Residue, Filterable (TDS) @180C (1312)	SM2540C	N1	See Case Narrative.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540C	Z3	Sample volume yielded a residue less than 2.5 mg
	WG499860	Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Silver (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sodium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500032	Sulfate (1312 DI)	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Pyritic Sulfide	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Total	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Total Sulfur minus Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
	WG500011	Zinc (1312)	M6010D ICP	RA	sample is too low for accurate evaluation (< 10x MDL). Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

PRIVILEGED AND CONFIDENTIAL

(800) 334-5493

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L59593-05	WG499860	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10 MDL)
		Arsenic (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Barium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Beryllium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499860	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Calcium (1312)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG499681	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499621	Chloride (1312 DI)	SM4500CI-E	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to- analysis.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Chromium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Copper (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499998	Cyanide, WAD (1312-DI)	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499921	Fluoride (1312 DI)	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG500011	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499629	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Nickel (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499570	Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499763	Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M350.1 Auto Salicylate w/gas diffusion	Q6	Sample was received above recommended temperature.
			M350.1 Auto Salicylate w/gas diffusion	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499950	Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Potassium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499928	Residue, Filterable (TDS) @180C (1312)	SM2540C	N1	See Case Narrative.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540C	Z3	Sample volume yielded a residue less than 2.5 mg
	WG499860	Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Silver (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sodium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500032	Sulfate (1312 DI)	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Pyritic Sulfide	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Total	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Total Sulfur minus Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

PRIVILEGED AND CONFIDENTIAL

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L59593-06	WG499860	Antimony (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Arsenic (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Barium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Beryllium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Bicarbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499860	Cadmium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Calcium (1312)	M6010D ICP	ZG	The ICP or ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG499681	Carbonate as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG499621	Chloride (1312 DI)	SM4500CI-E	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to- analysis.
			SM4500CI-E	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Chromium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Copper (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499998	Cyanide, WAD (1312-DI)	SM4500-CN I,E-Colorimetric w/ distillation	M2	Matrix spike recovery was low, the recovery of the associated control sample (LCS or LFB) was acceptable.
			SM4500-CN I,E-Colorimetric w/ distillation	Q6	Sample was received above recommended temperature.
			SM4500-CN I,E-Colorimetric w/ distillation	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499921	Fluoride (1312 DI)	SM4500F-C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Hydroxide as CaCO3	SM2320B - Titration	Q6	Sample was received above recommended temperature.
	WG500011	Iron (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Lead (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Magnesium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Manganese (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499629	Mercury (1312)	M7470A CVAA	Q6	Sample was received above recommended temperature.
			M7470A CVAA	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Nickel (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499570	Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M353.2 - Automated Cadmium Reduction	Q6	Sample was received above recommended temperature.
			M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499763	Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M350.1 Auto Salicylate w/gas diffusion	Q6	Sample was received above recommended temperature.
			M350.1 Auto Salicylate w/gas diffusion	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499950	Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)	HD	Analysis is outside the intended scope of the method, which does not provide hold time information for soil extracts. No hold time is observed for collection to extraction. The referenced method hold time is observed for extraction-to-analysis.
			M365.1 - Auto Ascorbic Acid (digest)	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Potassium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499928	Residue, Filterable (TDS) @180C (1312)	SM2540C	N1	See Case Narrative.
			SM2540C	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
			SM2540C	Z3	Sample volume yielded a residue less than 2.5 mg
	WG499860	Selenium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Silver (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sodium (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG500032	Sulfate (1312 DI)	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Sulfur Organic Residual	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Pyritic Sulfide	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Total	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499860	Thallium (1312)	M6020B ICP-MS	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499681	Total Alkalinity	SM2320B - Titration	Q6	Sample was received above recommended temperature.
			SM2320B - Titration	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG499362	Total Sulfur minus Sulfate	M600/2-78-054 3.2.4-MOD	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated

Knight Piesold and Co.

Inorganic Extended Qualifier Report

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
					sample is too low for accurate evaluation (< 10x MDL).
	WG500011	Zinc (1312)	M6010D ICP	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

Knight Piesold and Co.

Certification Qualifiers

ACZ Project ID: L59593

Metals Analysis		
The following par	ameters are not offered for certification of	or are not covered by AZ certificate #AZ0102.
	Selenium (1312)	M6020B ICP-MS
Soil Analysis		
The following par	ameters are not offered for certification of	or are not covered by AZ certificate #AZ0102.
	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3
	Sulfur HCI Residue	M600/2-78-054 3.2.4-MOD
	Sulfur HNO3 Residue	M600/2-78-054 3.2.4-MOD
	Sulfur Total	M600/2-78-054 3.2.4-MOD
The following par	ameters are not offered for certification of	or are not covered by NELAC certificate #ACZ.
	Neutralization Potential as CaCO3	M600/2-78-054 3.2.3
	Sulfur HCI Residue	M600/2-78-054 3.2.4-MOD
	Sulfur HNO3 Residue	M600/2-78-054 3.2.4-MOD
	Sulfur Total	M600/2-78-054 3.2.4-MOD

Wet Chemistry

The following parameters are not offered for certification or ar	re not covered by AZ certificate #AZ0102.
Cyanide, WAD (1312-DI)	SM4500-CN I,E-Colorimetric w/ distillation
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)
The following parameters are not offered for certification or ar	e not covered by NELAC certificate #ACZ.
Bicarbonate as CaCO3	SM2320B - Titration
Carbonate as CaCO3	SM2320B - Titration
Chloride (1312 DI)	SM4500CI-E
Fluoride (1312 DI)	SM4500F-C
Hydroxide as CaCO3	SM2320B - Titration
Nitrate/Nitrite as N (1312-DI)	M353.2 - Automated Cadmium Reduction
Nitrogen, ammonia (1312-DI)	M350.1 Auto Salicylate w/gas diffusion
Phosphorus, Total (1312-DI)	M365.1 - Auto Ascorbic Acid (digest)
Residue, Filterable (TDS) @180C (1312)	SM2540C
Sulfate (1312 DI)	SM4500 SO4-D
Total Alkalinity	SM2320B - Titration

DDIVII	ECED	CONE	
	LOLD	CON	IDCINIAL

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493		Sa Re	imple eceipt	
Knight Piesold and Co.AC.12672Date	Z Proje :e Rec₀	ect ID: eived: 06	6/11/202	L59593 20 10:01
F	leceive	ed By:	e la	10/0000
Receipt Verification		intea.	0/	12/2020
		YES	NO	NA
1) Is a foreign soil permit included for applicable samples?				Х
2) Is the Chain of Custody form or other directive shipping papers present?		Х		
3) Does this project require special handling procedures such as CLP protocol?			Х	
4) Are any samples NRC licensable material?				Х
5) If samples are received past hold time, proceed with requested short hold time analyse	s?	Х		
6) Is the Chain of Custody form complete and accurate?			Х	
There was no Date/Time on the COC or sample containers. The was no relinquished by Date/Time so the received Date/Time wased to log the samples in.	ere vas			
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samp	les?		Х	
Samples/Containers				
		YES	NO	NA
8) Are all containers intact and with no leaks?		Х		
9) Are all labels on containers and are they intact and legible?		Х		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time	e?	Х		
11) For preserved bottle types, was the pH checked and within limits? $ ^{1}$				Х
12) Is there sufficient sample volume to perform all requested work?		Х		
13) Is the custody seal intact on all containers?				Х
14) Are samples that require zero headspace acceptable?				Х
15) Are all sample containers appropriate for analytical requirements?		Х		
16) Is there an Hg-1631 trip blank present?				Х
17) Is there a VOA trip blank present?				Х
18) Were all samples received within hold time?		Х		
Chain of Custody Related Remarks		NA indica	tes Not Ap	plicable

The Relinquished By field on the COC was not completed. The project manager is contacting the client.

	Client	Contact Remarks	
--	--------	-----------------	--

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA33015	19.1	<=6.0	15	N/A

Was ice present in the shipment container(s)?

No - Wet or gel ice was not present in the shipment container(s).

REPAD LPII 2012-03

L59593-2006291254

PRIVILEGED AND CONFIDENT

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493	Sa Re	mple ceipt
Knight Piesold and Co.	ACZ Project ID:	L59593
12672	Date Received: 06	/11/2020 10:01
	Received By:	
	Date Printed:	6/12/2020
Client must contact an ACZ Project Manager if analysis shoul outside of their thermal preservation acce	d not proceed for samples received eptance criteria.	
¹ The preservation of the following bottle types is not checked grease), Purple (total cyanide), Pink (dissolved cyanide), Brow coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S20 1631 (total/dissolved mercury by met	at sample receipt: Orange (oil and n (arsenic speciation), Sterile (fecal D3 preserved vial (organics), and HG- thod 1631).	

		1	~~		5			1.05	CHE	TOF	
	pratories, Inc.		5	154	13	ι C	HAII		LUS	TUL	JY
2773 Downhill Drive Steamboat Sp	rings, CO 80487 (800) 334	4-5493		• -	-						
Report to:		1		4	000 D.			- 000			
Name: Cyntnia Parnow	d Component	4	Addre	ess: 1	999 Bl	oadwa	ay Sun	e 900			
Company: Knight Plesoid an		-	Den	ver, C	0 802	02					
E-mail: cparnow@knightples	old.com		Telep	hone:	303-62	29-878	38				
Copy of Report to:											
Name: Cory Vos			E-mai	il: cvos	s@knig	ghtpies	sold.co	m			
Company: Knight Piésold and	d Company		Telep	hone:	1-604-	685-0	543				
Invoice to:				<u></u>							
_{Name:} Cory Vos			Addre	ess: Su	uite 14	00 - 7	50 We	st Per	nder St	treet	
Company: same as above]	Van	couve	r, B.C	Canad	da, V6	C 2T8			
E-mail:]	Telep	hone:	1-604	-685-0	543				
If sample(s) received past holding	ı time (HT), or if insufficiei	- nt HT rei	mains	to comp	olete				YES		
analysis before expiration, shall A	CZ proceed with requeste	ed short	HT an	alyses?					NO		J
Are samples for SDWA Complian	tion. If neither "YES" nor "NO" is indicat	ted, ACZ will	Yes	th the requ	ested analys	No	HT is expire	d, and data	will be qua	lified	
If yes, please include state forms.	Results will be reported t	to PQL f	or Cold	orado.	1		E asted				
Sampler's Name:	Sampler's Site Informa	ation	State_			Zip co	de		Time Z	one	
*Sampler's Signature:	*I attest to tampering	the authenti with the sam	city and val ple in anyw	lidity of this way, is consid	sample. I un lered fraud a	derstand the	at intentions ble by State	ily misiabel law.	ing the time	/date/locat	ion or
PROJECT INFORMATION				ANA	LYSES RE	QUESTE	D (attach i	ist or use	quote nu	mber)	
Quote #: ABA 1312			ų								
PO#: 12672			ine								
Reporting state for compliance testi	na:		uta								
Check box if samples include NRC	licensed material?		Ŭ		م						
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	*	AB/	SPL						
JCBEP-1		0	1	×	X						
CRBR-1		0	1	×	X						
C2DSR-1		0	1	×	X						
C2LB-1		0	1	×	×						
IGDSS-1		0	1	X	X						
IGLV-1		0	1	X	X						
-			 								
		1									
		1									
Matrix SW (Surface Water) · GW	(Ground Water) · WW (Waste V	L Water) · D	W (Drink	king Wate	∍r) · SL (\$	Bludge) ·	SO (Soil)	· OL (O	il) · Othe	r (Specify	L /)
REMARKS											
matrix: CRUSHED ROCK									4		
Diagona and	for to ACZ to torma 9	ditional	o o o t!	am 46 -		- ا- ا	af this is				
RELINGUISHED PX		UNIONS IC	ocated	on the		e side	or inis (/	500.	_D./	TET	M E
						777	Γ.			201 -71 11	
					_/	1			6/11/.	20 1	0501
			 		V				<u> </u>		
í											

FRMAD050.06.14.14

White - Return with sample. Yellow - Retain for your records.

59593 Chain of Custod

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Cynthia Parnow Knight Piesold and Co. 1999 Broadway, Suite 900 Denver, CO 80202 Analytical Quote

> Page 1 of 3 3/9/2020

Quote Number: ABA-1312

Matrix: Soil Modified ABA and SPLP West of Mississippi Extraction on 1 soil sample Parameter Method **Detection Limit** Cost/Sample **Diskette/QC Summary** Quality Control Summary \$0.00 Inorganic Prep Total Hot Plate Digestion M3010A ICP \$0.00 Login Review Labor Charges for Sample Prep \$28.00 **Metals Analysis** Arsenic (1312) M6010D ICP 0.04 mg/L \$10.25 Barium (1312) M6010D ICP 0.007 mg/L \$10.25 Cadmium (1312) M6010D ICP 0.008 mg/L \$10.25 Chromium (1312) M6010D ICP 0.01 mg/L \$10.25 Lead (1312) M6010D ICP 0.03 mg/L \$10.25 Mercury (1312) M7470A CVAA 0.0002 mg/L \$26.75 Selenium (1312) M6010D ICP 0.05 mg/L \$10.25 Silver (1312) M6010D ICP 0.01 mg/L \$10.25 Misc. Electronic Data Deliverable \$0.00 **Sample Preparation** Air Dry at 34 Degrees C USDA No. 1, 1972 \$8.25 Crush and Pulverize (Ring & Puck) EPA-600/2-78-054 3.1.3 \$18.50 Synthetic Precip. Leaching Procedure M1312 \$77.25 Soil Analysis Acid Generation Potential (calc on Sulfur total) M600/2-78-054 3.2.4 \$0.00 Calculation Acid Neutralization Potential (calc) M600/2-78-054 1.3 Calculation \$0.00 Acid-Base Potential (calc on Sulfur total) M600/2-78-054 1.3 Calculation \$0.00 Neutralization Potential as CaCO3 M600/2-78-054 3.2.3 0.1 % \$16.50 Sulfur Forms M600/2-78-054 3.2.4-MOD 0.01 % \$76.25

REPAD.09.06.05.01

S/ tjv D/ 21 P/

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Cynthia Parnow Knight Piesold and Co. 1999 Broadway, Suite 900 Denver, CO 80202 Analytical Quote

> Page 2 of 3 3/9/2020

Cost/Sample: \$323.25

This quote is based on a Standard Turn Around Time of approximately 21 days for soil and solid matrices (15 business days). TAT may vary with seasonal heavy workload. Please contact your PM if rush TAT is required. Rush TAT needs to be pre-approved prior to sample shipment to assure that due dates can be met. Pricing includes standard reporting formats and standard ACZ EDDs. All projects received are subject to a \$125.00 Minimum Charge. Please note that method detection limits are estimates and may be elevated depending on sample matrix that require dilution. Pricing includes coolers, soil jars or bags, labels, COCs and ice-packs (if needed for your analysis), shipped to your site or office via UPS ground. Return shipping is the responsibility of the client. Please allow ample time for your bottles to arrive. Please note that soil preparation charges may change based on the condition and volume of sample(s) upon receipt. Wet samples may increase the TAT if air-drying is needed required. ACZ assigns a Project Manager to all of our clients. Your Project Manager is Max Janicek. Max will serve as your main point of contact for all bottle orders, report statuses, questions on your data and changes to your account, and can be reached at maxj@acz.com or 970-879-6590 ext 128.

REPAD.09.06.05.01

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Cynthia Parnow Knight Piesold and Co. 1999 Broadway, Suite 900 Denver, CO 80202 Page 3 of 3 3/9/2020

Analytical

Quote

Quote Number: ABA-1312

CONTRACT DETAILS

Pricing includes coolers, bottles pre-preserved as needed, labels, COCs and ice-packs shipped to your site or office via UPS ground. Return shipping is the responsibility of the client. Please allow three to five days for delivery when ordering containers. ACZ must be notified prior to receiving samples of all special requests such as electronic data deliverables or special reporting requirements. The client will be charged for special sample containers or express shipping and additional charges may apply for non-standard requests.

This quotation is valid for six months from the bid date unless specified otherwise in the bid. All bids must be signed and returned to ACZ before the project(s) is received. The authorized signature represents acceptance of the pricing as well as the general terms and conditions of ACZ Laboratories, Inc. which may be downloaded from our web site at http://www.acz.com/wp-content/uploads/2015/10/ACZ_Terms_Conditions.pdf. Please note that MDL's in this quote may possibly increase due to sample matrix or samples with high TDS.

All orders that require shipping of coolers are subject to a minimum charge of \$200.00. Local orders without shipping are subject to a minimum charge of \$125.00. Samples may incur a \$11.00/sample disposal fee for any samples deemed to be hazardous.

ACZ Representative (Authorized signature and date)

Client Representative (Authorized signature and date)

REPAD.09.06.05.01

KNIGHT PIESOLD AND CO.

1999 BROADWAY SUITE 600 900 DENVER, COLORADO 80202-5706 (303) 629-8788 FAX (303) 629-8789

(abs 7

то

PRIVILEGED AND CONFIDENTIAL SIN

12672

Show this Purchase Order Number on all correspondence, invoices, shipping papers and packages.

DATE 6-9-20 SHIP TO might Piesold 1999 0 8020 ils

	TASK		DES	SCRIPTION	BILLABLE Y/N	UNIT PRICE	TOTAL
	adamati ya wakaza nga nga nga na ana a	6	modifies A	rBA-	yes		
		6	SPIP		Ves	n yan dan manan yang bahar kanan kanan yang bahar kanan yang bahar kanan kanan yang bahar kanan kanan yang baha	
					F		
0							
0							a provinsi na seconda de la construcción de la construcción de la construcción de la construcción de la constru
22							
8天					and a star of the second star of the		
1 2	finitely and the second se				a contra contra da contra contra que a de terra de contra de la contra de la contra de la contra de la contra d		
õ d							
F X							
>					rainai halanin kana makana kana kutu kata kana kana kata kata kata kata kata		
	1 (h)						

		The partie and 29 C.	es hereby incorporate the F.R. § 471, Appendix A to	requirements of 41 C.F.R Subpart A, if applicable.	. § 60-1.4(a) This		
		CFR 60-3	r and subcontractor shall)0.5(a) and 41 CFR 60-741	abide by the requirement .5(a), if applicable. These	s of 41		فالمعارفين والمراجع والمعارفين والمعارفين والمعارفين والمعارفين والمعارفين
	1999 - 1997 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	regulation and qualit	is prohibit discrimination ied individuals with disab	against qualified protecte	d veterans		
ng filinini manana ina kata wanya penjawa manana kata ang a		by covere advance i	d prime contractors and a n employment qualified pr	subcontractors to employ rotected veterans and gua	and		
		individual	s with disabilities.		n de rekonstruien en service de la construien de la construien de la construie de la construie de la construien	innen i etti sinta konstan katalarini anan ya katalarangin katalarangin katalarangin katalaringin katalari kat	
IP. # EMPLOY	EE SIGNAT	URE		EMP. # PRINC	IPAL SIGNATURE		
x	1						
IP. # P.M. / DEI	PT MANAG	ERS SIGNAT	URE				
	$\overline{\Gamma}$					OTHER	
	7						_

EQUAL OPPORTUNITY EMPLOYER

1. Please send _ _ copies of your invoice.

Order is to be entered in accordance with prices, delivery and specifications shown above.

3. Notify us immediately if you are unable to ship as specified.

J - 367 of 376 D5-56 of 56 **VENDOR COPY**

APPENDIX E

Granular Fill Particle Size Analysis and Atterberg Limit Laboratory Results

(Pages E-1 to E-8)

