BC-02 S06 @ 19.5'

BC-02 S06 @ 19.5'

BC-03 S06 @ 39.5'

BC-03 S06 @ 39.5'

BC-03 S10 @ 90'

Scale in inches 0 = Top of Tube

0310

BC-03 S10 @ 90'

BC-04 S04 @ 12.5'

BC-04 S04 @ 12.5'

BC-04 S06 @ 22.5'

BC-04 S06 @ 22.5'

Scale in inches 0 = Top of Tube

BC-04 S10 @ 52.5'

BC-04 S10 @ 52.5'

BC-09 S05 @ 23'

BC-09 S05 @ 23'

BC-13 S02 @ 12'

Scale in inches 0 = Top of Tube

BC-13 S02 @ 12'

Scale in inches 0 = Top of Tube

Scale in inches 0 = Top of Tube

BC-13 S04 @ 22'

14

12 40

BC-13 S04 @ 22'

Scale in inches 0 = Top of Tube

BC-14 S01 @ 5'

Scale in inches 0 = Top of Tube

Scale in inches

BC-14 S01 @ 5'

0 = Top of Tube

22 February, 2019

Job No. 1902023 Cust. No. 12259

Mr. John Hunt Inspection Services Inc. 1798 University Avenue Berkeley, CA 94703-1514

Subject: Project No.: 60537920 Project Name: Klamath River Dam Removal Project Corrosivity Analysis – CalTrans Test Methods

Dear Mr. Hunt:

Pursuant to your request, CERCO Analytical has analyzed the soil samples submitted on February 05, 2019. Based on the analytical results, this brief corrosivity evaluation is enclosed for your consideration.

Based upon the resistivity measurements, Sample No.003 is classified as "severely corrosive" and the remaining samples are classified as "corrosive". All buried iron, steel, cast iron, ductile iron, galvanized steel and dielectric coated steel or iron should be properly protected against corrosion depending upon the critical nature of the structure. All buried metallic pressure piping such as ductile iron firewater pipelines should be protected against corrosion.

The chloride ion concentrations reflect none detected with a reporting limit of 15 mg/kg.

The sulfate ion concentrations reflect none detected & 26 mg/kg and are determined to be insufficient to damage reinforced concrete structures and cement mortar-coated steel at these locations.

The pH of the soils ranged from 7.84 to 8.97, which does not present corrosion problems for buried iron, steel, mortar-coated steel and reinforced concrete structures.

This corrosivity evaluation is based on general corrosion engineering standards and is non-specific in nature. For specific long-term corrosion control design recommendations or consultation, please call JDH Corrosion Consultants, Inc. at (925) 927-6630.

We appreciate the opportunity of working with you on this project. If you have any questions, or if you require further information, please do not hesitate to contact us.

Very truly yours, CERCO ANALYTIÇAL, INC J. Darby Howard, Jr. President

JDH/jdl Enclosure

California State Certified Laboratory No. 2153

Klamath River Dam Removal Project Inspection Services, Inc. 60537920 5-Feb-19 1-Feb-19 Soil Client's Project Name: Client's Project No.: Date Received: Date Sampled: Authorization: Matrix: Client:

(mg/kg)* Date of Report: (mg/kg)* Chloride N.D. N.D. N.D. Sulfide (mg/kg)* ī Min.Resistivity (ohms-cm)** 840 980 470 7.97 7.84 8.97 Hd Moisture (%) 1 1 B-19, S-01 & S-02 @ 5-11.5' B-20, S-01 & S-02 @ 5-11.5' B-6, S-01 @ 5-6.5' Sample I.D. Signed Chain of Custody Job/Sample No. 1902023-002 1902023-003 1902023-001

Method:	CT 226 ^(a)	CT 643 ^(b)	CT 643 ^(b)		CT 422 ^(e)	CT 417 ^(c)	_
Reporting Limit:				50	15		PF
Date Analyzad.			14-Feb-2019 &				RIVILE
Daw Allary 2001.	,	8-reb-2019	19-Feb-2019	1	8-Feb-2019	8-Feb-2019	GE
A Results Reported on an "As Recults Reported on an "As Recults Maillen Cheryl McMillen Laboratory Director Quality Control Summary - All laboratory quality control parameters were found to be within established limits	* Results Reported on N.D None Detected were found to be within establi	Results Reported on an "As Received" Basis D None Detected o be within established limits	ed" Basis	(a) Rev. July 2010	(b) Rev. June 2007	(c) Rev. November 2006	D AND CONFIDENTIA

<u>Ouality Control Summary</u> - All laboratory quality control parameters were found to be within established limits

www.cercoanalytical.com

22-Feb-2019

Sulfate

N.D.

N.D. 26

Il Name Shu Hunt Many Hunt mpany Math Love Dan Lanov No. Sample LD. Date Time D-65501 2016 Ime	Fax				Late sampled	Date Due
Barkoley Barkoley Erice Dam Lennov Ilaine Dam Lennov	Fax	Analyte	6			
Barkoley Barkoley Erive Dam Lennov HellD. Date Time			CalTrans w/Brief Evalation	Evalation	ANALYSIS	S
Berkoley Erice Dam Lennov Ileili Dam Lennov Ielli Date Time	Phone		u			
River Dam Lennov Ileili. Date Time	Cell <u> </u>					
Sample I.D. Date Time	and Priet	j te	ride tivity- <i>N</i> Evalua			
12-10 5-101	ix Contain. Size Preserv.	Hq Hq sîlu2				
. /		×	×	•		
12 20-5 2-14 20	hearie	XX	XXX			
2000 15-20 5-11,5' 5-52 2-1	+ Slowly	XX	XXX			
DW - Drinking Water GW - Ground Water	F Total No. of Containers	Relinduiched Rv.	Bv. >		000	
DITA	EC Rec'd Good Cond/Cold		The second	144	Date 15 TG	Time 1/3
	478.1	Received By:	T	When	Date 1 2 Pred	Time, 4.5
ABBI	R Temp. a t Lab -°C SA Sampler	Relinquished	By:	1 A har	Date Date	Time
Comments: THERE IS AN ADDITIONAL CHARGE FOR METAL/POLY TUBES	L/POLY TUBES	Received By:		20	Date	Time
		Relinquished	By:		Date	Time
) Monto inspectionservices , act	*	Received By:			Date	Time

Kiewit Infrastructure West Co. Klamath River Renewal Project Geotechnical Data Report

APPENDIX D3

Rock Lab Testing Results

(Pages D3-1 to D3-139)

Engineering, Measurements and Testing, LLC

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-4-1
Report Date	5/17/2018
Drill Hole and Depth	BI-02; 27-27.9 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018

Date Opened: 4/24/2018

Date Tested: 4/27-30/2018

Method A: Caliper

Diameter (mm)	Length (mm)	Initial Weight (g)	Dry Weight (g)
		202.50	193.13

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)
4.85				

Method B: Buoyancy

Weight (g)	Saturated Weight (g)	Suspended Weight (g)	Dry Weight (g)

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

2018-22-4, R09, Dry Unit Weight and Moisture Content, AECOM Klamath River Page 1 of 5

Engineering, Measurements and Testing, LLC

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-4-2
Report Date	5/17/2018
Drill Hole and Depth	BI-02; 48.9-50.3 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018

Date Opened: 4/24/2018

Date Tested: 4/27-30/2018

Method A: Caliper

Diameter (mm)	Length (mm)	Initial Weight (g)	Dry Weight (g)
		180.47	169.63

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)
6.39				

Method B: Buoyancy

Weight (g)	Saturated Weight (g)	Suspended Weight (g)	Dry Weight (g)

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

2018-22-4, R09, Dry Unit Weight and Moisture Content, AECOM Klamath River Page 2 of 5

Engineering, Measurements and Testing, LLC

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-4-3
Report Date	5/17/2018
Drill Hole and Depth	BI-02; 55.4-56.3 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018

Date Opened: 4/24/2018

Date Tested: 4/27-30/2018

Method A: Caliper

Diameter (mm)	Length (mm)	Initial Weight (g)	Dry Weight (g)
		175.36	165.73

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)
5.81				

Method B: Buoyancy

Weight (g)	Saturated Weight (g)	Suspended Weight (g)	Dry Weight (g)

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

2018-22-4, R09, Dry Unit Weight and Moisture Content, AECOM Klamath River Page 3 of 5

D3-3 of 139

Engineering, Measurements and Testing, LLC

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-4-4
Report Date	5/17/2018
Drill Hole and Depth	BI-03; 17.4-18.4 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018

Date Opened: 4/24/2018

Date Tested: 4/27-30/2018

Method A: Caliper

Diameter (mm)	Length (mm)	Initial Weight (g)	Dry Weight (g)
		84.27	74.93

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)
12.46				

Method B: Buoyancy

Weight (g)	Saturated Weight (g)	Suspended Weight (g)	Dry Weight (g)

Moisture Con	tent (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

2018-22-4, R09, Dry Unit Weight and Moisture Content, AECOM Klamath River Page 4 of 5

Engineering, Measurements and Testing, LLC

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-4-5
Report Date	5/17/2018
Drill Hole and Depth	BI-03; 21.5-22.9 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018

Date Opened: 4/24/2018

Date Tested: 4/27-30/2018

Method A: Caliper

Diameter (mm)	Length (mm)	Initial Weight (g)	Dry Weight (g)
		177.06	160.77

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)
10.13				

Method B: Buoyancy

Weight (g)	Saturated Weight (g)	Suspended Weight (g)	Dry Weight (g)

Moisture Content (%)	Unit Weight (kN/m ³)	Unit Weight (pcf)	Dry Unit Weight (kN/m ³)	Dry Unit Weight (pcf)

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

2018-22-4, R09, Dry Unit Weight and Moisture Content, AECOM Klamath River Page 5 of 5

Earth Mechanics Institute

Client: CDM Smith

Project: Klamath River

Colorado School of Mines Mining Engineering Department

Date: 9/24/2018

ASTM D2216

Sample ID	Weight as Received	Weight After Drying	Weight of Moisture	Percent Moisture
	(gr)	(gr)	(gr)	
B-202 @ 56.2-57.5	289.66	256.46	33.20	12.9%
B-202 @ 82.0-82.8	402.18	343.52	58.66	17.1%
B-206 @ 47.4-48.7	434.16	423.74	10.42	2.5%
B-206 @ 65.2-66.5	459.22	453.96	5.26	1.2%

Earth Mechanics Institute Client: CDM Smith Project: Klamath Rive Date: 10/3/2018	COLORADO		Engineering	l of Mines Department STM D2216
Sample ID	Weight as Received	Weight After Drying	Weight of Moisture	Percent Moisture
	(gr)	(gr)	(gr)	
B-207 @ 74.5-75.5	549.94	522.26	27.68	5.3%

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-3-1
Report Date	5/17/2018
Drill Hole and Depth (ft)	BI-02; 27-27.9 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018	Date Opened: 4/24/2018	Date Tested: 4/30/2018

Diameter	Length	Weight	Bulk Density	Bulk Density
(mm)	(mm)	(g)	(kN/m ³)	(pcf)
60.54	97.72	637.28	22.22	141.42

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

Page 1 of 5

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-3-2
Report Date	5/17/2018
Drill Hole and Depth (ft)	BI-02; 48.9-50.3 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018	Date Opened: 4/24/2018	Date Tested: 4/30/2018

Diameter	Length	Weight	Bulk Density	Bulk Density
(mm)	(mm)	(g)	(kN/m ³)	(pcf)
60.85	127.87	891.59	23.51	149.67

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

Page 2 of 5

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-3-3
Report Date	5/17/2018
Drill Hole and Depth (ft)	BI-02; 55.4-56.3 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018	Date Opened: 4/24/2018	Date Tested: 4/30/2018

Diameter	Length	Weight	Bulk Density	Bulk Density
(mm)	(mm)	(g)	(kN/m ³)	(pcf)
60.68	128.33	882.58	23.32	148.46

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

Page 3 of 5
COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-3-4
Report Date	5/17/2018
Drill Hole and Depth (ft)	BI-03; 17.4-18.4 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018	Date Opened: 4/24/2018	Date Tested: 4/30/2018

Diameter	Length	Weight	Bulk Density	Bulk Density	
(mm)	(mm)	(g)	(kN/m ³)	(pcf)	
60.59	129.81	830.07	21.75	138.44	

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-3-5
Report Date	5/17/2018
Drill Hole and Depth (ft)	BI-03; 21.5-22.9 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018	Date Opened: 4/24/2018	Date Tested: 4/30/2018

Diameter	Length	Weight	Bulk Density	Bulk Density	
(mm)	(mm)	(g)	(kN/m ³)	(pcf)	
60.58	125.67	783.13	21.20	134.96	

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

Brazilian Tensile Strength Test ASTM D3967 - 16

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	Rate of loading (0.05-0.35 MPa/s or 500-3,000 psi/min)	0.11 MPa/sec	957 psi/min	
Location	Klamath River	Diameter (D)	60.94 mm	2.40 in	
Client	Klamath River Renewal Corporation	Thickness (t)	22.88 mm 0.90 in		
Client Project No.	60537920	Maximum Load (P)	6.53 kN 1,468 lbf		
Registry No.	2018-22	Tensile strength (flat platens) $\sigma_t = 2P / \pi t D$	N/A N/A		
Report No.	2018-22-2-1	Tensile strength (curved platens) $\sigma_r = 1.272P / \pi t D$	1.90 MPa	275 psi	
Report Date	5/17/2018	Direction of Loading	Orthogonal to the Borehole Axis		
Drill Hole and Depth	BI-02; 47-48.9 ft	Type of Failure	Non-S	tructural	
Rock Type	Volcanic Breccia	Conformance to dimensional Requirements			
Geologic Unit	N/A	$0.2 \le \frac{t}{D} \le 0.75$	$\frac{t}{D} = 0.38$	ОК	
Moisture Condition	As-received	D	D		

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-2, R06, Brazilian Test, Tonon USA, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 1 of 4

D3-13 of 139

Brazilian Tensile Strength Test ASTM D3967 - 16

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Date Tested:

4/30/2018

Web: tononeng.com

Project Name	Klamath River Dam Removal	Rate of loading (0.05-0.35 MPa/s or 500-3,000 psi/min)	0.11 MPa/sec	957 psi/min
Location	Klamath River	Diameter (D)	60.84 mm	2.40 in
Client	Klamath River Renewal Corporation	Thickness (t)	24.67 mm 0.97 in	
Client Project No.	60537920	Maximum Load (P)	5.25 kN 1,180 lbf	
Registry No.	2018-22	Tensile strength (flat platens) $\sigma_t = 2P / \pi t D$	N/A N/A	
Report No.	2018-22-2-2	Tensile strength (curved platens) $\sigma_r = 1.272P / \pi t D$	1.42 MPa	206 psi
Report Date	5/17/2018	Direction of Loading	Orthogonal to the Borehole Axis	
Drill Hole and Depth	BI-02; 52-54.7 ft	Type of Failure	Non-Si	tructural
Rock Type	Volcanic Breccia	Conformance to dimensional Requirements		
Geologic Unit	N/A	$0.2 \le \frac{t}{D} \le 0.75$	$\frac{t}{D} = 0.41$	OK
Moisture Condition	As-received	D	υ	

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Date Opened : 4/24/2018

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-2, R06, Brazilian Test, Tonon USA, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 2 of 4

D3-14 of 139

Brazilian Tensile Strength Test ASTM D3967 - 16

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	Rate of loading (0.05-0.35 MPa/s or 500-3,000 psi/min)	0.11 MPa/sec	957 psi/min	
Location	Klamath River	Diameter (D)	60.74 mm	2.39 in	
Client	Klamath River Renewal Corporation	Thickness (t)	26.84 mm 1.06 in		
Client Project No.	60537920	Maximum Load (P)	1.51 kN 339 lbf		
Registry No.	2018-22	Tensile strength (flat platens) $\sigma_r = 2P / \pi t D$	N/A	N/A	
Report No.	2018-22-2-3	Tensile strength (curved platens) $\sigma_t = 1.272P/\pi tD$	0.38 MPa	54 psi	
Report Date	5/17/2018	Direction of Loading	Orthogonal to the Borehole Axis		
Drill Hole and Depth	BI-03; 18.4-20.1 ft	Type of Failure	Non-S	tructural	
Rock Type	Volcanic Breccia	Conformance to dimensional Requirements			
Geologic Unit	N/A	$0.2 \le \frac{t}{D} \le 0.75$	$\frac{t}{D} = 0.44$	OK	
Moisture Condition	As-received	D	ν		

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Date Opened : 4/24/2018

Date Tested: 4/30/2018

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-2, R06, Brazilian Test, Tonon USA, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 3 of 4

D3-15 of 139

Brazilian Tensile Strength Test ASTM D3967 - 16

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	Rate of loading (0.05-0.35 MPa/s or 500-3,000 psi/min)	0.11 MPa/sec	957 psi/min	
Location	Klamath River	Diameter (D)	60.26 mm	2.37 in	
Client	Klamath River Renewal Corporation	Thickness (t)	33.83 mm	1.33 in	
Client Project No.	60537920	Maximum Load (P)	0.55 kN 124 lbf		
Registry No.	2018-22	Tensile strength (flat platens) $\sigma_i = 2P / \pi t D$	N/A N/A		
Report No.	2018-22-2-4	Tensile strength (curved platens) $\sigma_r = 1.272P / \pi t D$	0.11 MPa	16 psi	
Report Date	5/17/2018	Direction of Loading	Orthogonal to the Borehole Axis		
Drill Hole and Depth	BI-03; 22.9-24.2 ft	Type of Failure	Non-St	tructural	
Rock Type	Volcanic Breccia	Conformance to dimensional Requirements			
Geologic Unit	N/A	$0.2 \le \frac{t}{D} \le 0.75$	$\frac{t}{D} = 0.56$	ОК	
Moisture Condition	As-received	D	D		

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-2, R06, Brazilian Test, Tonon USA, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 4 of 4

D3-16 of 139

Earth Mechanics Institute

Client: CDM Smith

Project: Klamath River

Colorado School of Mines

Mining Engineering Department

Date: 9/21/2018

ASTM D3967

Sample ID	le ID Average A Length Di		Failure Load	•	zilian) Tensile ngth	Notes (Failure type)
	(in)	(in)	(lbs)	(psi)	(MPa)	
B-206 @ 60.0-61.7	1.53	2.403	8,497	1,474	10.2	Non - Structural
B-206 @ 48.7-50.0	1.49	2.406	6,039	1,069	7.4	Non - Structural
B-202 @ 82.8-83.5	1.48	2.407	209	37	0.3	Non - Structural
B-202 @ 56.2-57.5	1.46	2.452	135	24	0.2	Non - Structural

Earth Mechanics Institute Client: CDM Smith

Project: Klamath River

Date: 9/20/2018

Colorado School of Mines Mining Engineering Department

ASTM D5731

Sample ID Loading Direction		Longth	Longth Avg.		Avg. Failure Point Lo			t Load Index Strength		
		Length Diameter		Load	Load Is		Is ₍₅₀₎		Notes	
		(in)	(in)	(N)	(psi)	(MPa)	(psi)	(MPa)	(Failure type)	
B-201 @ 25.5-26.0	Diametric	3.60	2.337	25,815	1,063	7.33	1,148	7.91	Valid	
B-201 @ 28.5-29.0	Diametric	3.58	2.391	3,910	154	1.06	168	1.16	Valid	
B-202 @ 70.5-71.7	Diametric	3.53	2.365	560	23	0.16	24	0.17	Valid	
B-202 @ 81.5-81.9	Diametric	3.49	2.408	140	5	0.04	6	0.04	Valid	
B-206 @ 47.4-48.7	Diametric	3.55	2.402	17,725	691	4.76	756	5.21	Valid	
B-206 @ 74.6-75.0	Diametric	3.48	2.402	21,370	833	5.74	911	6.28	Valid	

Earth Mechanics Institute

Client: CDM Smith

Colorado School of Mines Mining Engineering Department

Project: Klamath Rive

Date: 10/3/2018

ASTM D5731

			Longth	Avg.	Failure	Po	Notes				
Sample ID	Rock Type	Loading Direction	Length	Diameter	Load]	Is	Is	(50)	THOLES	
			(in)	(in)	(N)	(psi)	(MPa)	(psi)	(MPa)	(Failure type)	
B-205 @ 22.7-23.6	Volcanic	Diametric	3.60	2.391	675	27	0.18	29	0.20	Valid	
B-207 17.0-18.1	Volcanic	Diametric	3.57	2.399	13,205	516	3.56	564	3.89	Valid	
B-208 @ 26.8-27.5	Volcanic	Diametric	3.51	2.405	18,940	736	5.08	806	5.56	Valid	

Client Name: CDM Smith Project Name: Klamath River Date: 9/20/2018

Sample ID: B-201 @ 25.5-26.0

Before

After

Client Name: CDM Smith Project Name: Klamath River Date: 9/20/2018

Sample ID: B-201 @ 28.5-29.0

Before

After

Client Name: CDM Smith Project Name: Klamath River Date: 9/20/2018

Sample ID: B-202 @ 70.5-71.7

Before

After

Client Name: CDM Smith Project Name: Klamath River Date: 9/20/2018

Sample ID: B-202 @ 81.5-81.9

Before

After

Client Name: CDM Smith Project Name: Klamath River Date: 9/20/2018

Sample ID: B-206 @ 47.4-48.7

Before

After

Client Name:CDM SmithProject Name:Klamath RiverDate:9/20/2018

Sample ID: B-206 @ 74.6-75.0

Before

After

Client Name:CDM SmithProject Name:Klamath River - Yreka Water Main CrossingDate:10/3/2018

Sample ID: B-205 @ 22.7-23.6

Before

After

Client Name:CDM SmithProject Name:Klamath River - Yreka Water Main CrossingDate:10/3/2018

Sample ID: B-207 17.0-18.1

Before

After

Client Name:CDM SmithProject Name:Klamath River - Yreka Water Main CrossingDate:10/3/2018

Sample ID: B-208 @ 26.8-27.5

Before

After

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-1
Report Date	5/17/2018
Drill Hole and Depth	BI-02; 48.9-50.3 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date Received: 4/24/2018

Date Opened: 4/24/2018

Distan	ce, D	Loa	ad, P	Corrected Point (D/50) ^{0.45}	Direction of Loading			
mm	in	kN	lbf	(B, SC) MPa	psi	Α	В	
60.86	2.40	0.74	166.352	0.22	31.66	1		
62.20	2.45	1.65	370.92	0.47	68.24		1	
47.58	1.87	0.98	220.304	0.42	61.40	1		
79.15	3.12	3.23	726.104	0.63	91.95		1	
82.44	3.25	3.00	674.4	0.55	80.18		1	
39.71	1.56	0.86	193.328	0.49	71.31	1		

Average Point Load Strength in Direction A	0.38 MPa	54.79 psi
Average Point Load Strength in Direction B	0.55 MPa	80.12 psi

Point Load Strength Anisotropy Index
1.46

A = Parallel to core axis

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

B = Orthogonal to core axis

Date Tested: 4/30/2018

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-6, R13, Point Load Test, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 1 of 1

D3-33 of 139

Klamath River Dam Removal Project

POINT LOAD TEST RESULTS BI-02 and BI-03

																					1	
										Distance	Distance	Length - Contact						D. int	Uniaxial			
			Boring		Depth	Interval		Diame	eter (D)	Between Contact	Between Contact	Points to End of Sample, L		Test	Failure Load, P	Uncorrected Point Load, Is	Size Correction	Point Load, I _{S(50)}	Compressive Strength, s _c	Uniaxial Compressive		
Test Number	Test Order	Depth of Test	Number	Date	Bottom	Тор	Rock Type ¹	(mm)	(in)	Points (cm)	Points (in)	(in)	L/D ²	Type ³	(kN) ⁴	(Mpa)⁵	Factor, F ⁶	(MPa) ⁷	(Mpa) ⁸	Strength, psi	Weathering	Notes Bottom 3.5" broke on preexisting fracture plane prior to test. Sample broke on
BI02-1-22.1	1	22.1	BI-02	4/11/2018	22.6	21.9	Volcanic Breccia	59.94	2.36	6.00	2.36	1.97	0.83	d	0.51	0.14	1.09	0.15	3	504	MW/SW	preexisting fracture plane during testing.
BI02-2-28.2	2	28.2	BI-02	4/11/2018	28.6	27.9	Volcanic Breccia	59.94	2.36	6.00	2.36	3.54	1.50	d	1.99	0.55	1.09	0.60	14	1968	MW/SW	Fractured between platens (see photo)
BI02-3-32.8	3	32.8	BI-02	4/11/2018	33.4	32.2	Volcanic Breccia	59.94	2.36	6.00	2.36	7.01	2.97	d	2.59	0.72	1.09	0.78	18	2561	MW/SW	Fractured between platens (see photo). Other breaks from rock core falling on table after testing.
BI02-4-37.4	4	37.4	BI-02	4/11/2018	37.7	37.2	Volcanic Breccia	59.94	2.36	6.00	2.36	2.68	1.13	d	2.53	0.70	1.09	0.76	17	2502	MW/SW	Fractured between platens (see photo)
BI02-5-42.8	5	42.8	BI-02	4/11/2018	43.1	42.5	Volcanic Breccia	59.94	2.36	6.00	2.36	3.86	1.63	d	2.00	0.56	1.09	0.60	14	1978	MW/SW	Fractured between platens (see photo). 1" long fracture propagated along the length of sample from the point load application.
BI02-7-55	7	55.0	BI-02	4/11/2018	55.4	54.7	Volcanic Breccia	59.94	2.36	6.00	2.36	3.74	1.58	d	1.41	0.39	1.09	0.43	10	1394	MW/SW	Fractured between platens (see photo). Platen penetrated into rock 3mm at failure.
BI02-8-57.3	8	57.3	BI-02	4/11/2018	57.6	57.0	Volcanic Breccia	59.94	2.36	6.00	2.36	3.23	1.37	d	1.5-2.0		1.09				MW/SW	Peak load not recorded. One of the broken halfs was retested in test Bl02-9-57.1.
BI02-9-57.1	9	57.1	BI-02	4/11/2018	57.6	57.0	Volcanic Breccia	59.94	2.36	6.00	2.36	1.69	0.72	d	1.80	0.50	1.09	0.54	12	1780	MW/SW	Fractured between platens (see photo)
BI02-10-64.2	10	64.2	BI-02	4/11/2018	64.7	63.7	Volcanic Breccia	59.94	2.36	6.00	2.36	6.10	2.59	d	1.05	0.29	1.09	0.32	7	1038	MW/SW	Fractured between platens (see photo)
BI03-11-10.3	11	10.3	BI-03	4/11/2018	10.5	10.1	Volcanic Breccia	59.94	2.36	6.00	2.36	2.17	0.92	d	0.60	0.17	1.09	0.18	4	593	MW	Fractured between platens (see photo)
BI03-12-17.2	12	17.2	BI-03	4/11/2018	17.4	17.0	Volcanic Breccia	59.94	2.36	6.00	2.36	2.17	0.92	d	0.56	0.16	1.09	0.17	4	554	MW	Fractured between platens (see photo)
BI03-13-21.3	13	21.3	BI-03	4/11/2018	21.5	21.0	Volcanic Breccia	59.94	2.36	6.00	2.36	2.56	1.08	d	0.76	0.21	1.09	0.23	5	752	MW	Fractured between platens (see photo)
BI03-14-29.8	14	29.8	BI-03	4/11/2018	30.1	29.5	Volcanic Breccia	59.94	2.36	6.00	2.36	3.54	1.50	d	0.73	0.20	1.09	0.22	5	722	MW	Fractured between platens (see photo)
BI03-15-32.7	15	32.7	BI-03	4/11/2018	33.5	32.0	Volcanic Breccia	59.94	2.36	6.00	2.36	8.58	3.64	d	0.77	0.21	1.09	0.23	5	761	MW	Fractured between platens (see photo)

Notes: ¹ Based on Drill Logs ² ASTM D5731 calls for L/D > 0.5 for diametral test. ³ d = diametral, a = axial, b = block, ir = irregular lump ⁴ Reading from testing apparatus ⁵ I₈ = P/D² (ASTM D5731 - for diametral test) ⁶ F = (D/50)^{0.45} (ASTM D5731) ⁷ I₉₍₅₀₎ = I₈ X F (ASTM D5731) ⁸ s = L X K⁻¹ I₈ is uscreased point load index; K=24.5 f

 8 $\,s_c$ = I_s x K; I_s is uncorrected point load index; K=24.5 for ~60 mm diameter cores (ASTM D5731)

- Fresh F

. SW MW

Slightly Weathered Moderately Weathered Highly Weathered Completely Weathered HW CW

Sample 4/11/18 BI-02 21.9-22.6 ~Top Klamath River Dan Remanal

← Top Sample 4/11/18 BI-02 32.2 - 33.4 Klamath River Dam Replacement Proj

← Top. Sample. 4/11/18 BI-02 32.2 - 33.4 Klamath River Dam Replacement Proj

4/11/18-← Top Sample BI-02 63.7-64.7 Klamath River Dam Replacement Proj

4/11/18-← тор Sample BI-02 63.7-64.7 Klamath River Dam Replacement Proj

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM		Date:	3/12/2019		-
Project Name:	Klamath River R	enewal Project	By:	PJ		-
Boring: Sample:	B-01 R5					
Depth, ft:	15.6					
Visual Description:	Brown Rock					
Test Type Test Type ID	Diametral					
Test type ib	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
	SAN	IPLE DIMENS	IONS		Γ	
Width Perpendicular to loading, W, mm	60					
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60					
Diameter at Failure, D', mm	54					
	S	TRENGTH DA	ТА		I	I
Peak Load, P, kN	0.17					
Peak Load, P, lbs	38.2					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.052					
Uncorr. Pt. Load Strength Index,I _s , psi	7.6					
Size Correction Factor, F	1.06					
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.06					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	8					
	MOIST	URE CONTEN	T DATA		ı	I
Moisture Condition of Specimen	As Received					
Pan No.	7.01.000.00					
	00.40					
Pan wt. (g)	20.16					
Total wet wt. (g)	142.33					
Total dry wt (g)	131.89					
Moisture Content, %	9.3					
Comments:						
Comments.						
Test types:	1- Diametral, 2- / Diametral - L/D r		Irregular Lump			

Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

: 020-277 :: AECOM :: Klamath River R		Project No.: Date:	60537920 3/12/2019		_
		By:	PJ		
: B-01 : R6	B-01 R6	B-01 R6	B-01 R6		
	17.2-17.5	17.2-17.5	17.2-17.5		
	Brown Rock	Brown Rock	Brown Rock		
e Diametral	Axial	Axial	Axial		
D 1	2	2	2		
FOR A	NISOTROPIC	ROCK:			
S None	None	None	None		
g N/A	N/A	N/A	N/A		
					-
n 58	58	58	58		
n 30					
n 58	40	35	23		
	40	30	20		
S	TRENGTH DA	ТА			
0 148	0.346	0.272	0 187		
	0.117	0.123	0.127		
i 6.7	17.0	17.8	18.4		
= 1.06	1.04	0.97	0.89		
a 0.05	0.12	0.12	0.11		
i 7	18	17	16		
			As Received		
	20.56	20.56	20.56		
	152.32	152.32	152.32		
	145.93	145.93	145.93		
6 5.1	5.1	5.1	5.1		
52					
	Brown Rock e Diametral D 1 FOR A is None g N/A g N/A n 58 m 30 m 55 N 0.148 os 33.3 a 0.046 si 6.7 F 1.06 a 0.05 si 7 MOIST MOIST n As Received p) 20.56 p) 152.32 p) 145.93 % 5.1	Brown Rock Brown Rock e Diametral Axial D 1 2 FOR ANISOTROPIC is None g N/A N/A g N/A N/A n 58 58 m 30 1 n 58 40 n 55 40 STRENGTH DA 0.346 n 55 40 STRENGTH DA 0.346 n 55 40 STRENGTH DA 0.346 n 6.7 17.0 F 1.06 1.04 a 0.05 0.12 si 7 18 MOISTURE CONTEN 145.93 n As Received As Received p) 20.56 20.56 p) 145.93 145.93 % 5.1 5.1	Brown Rock Brown Rock Brown Rock Brown Rock e Diametral Axial Axial D 1 2 2 FOR ANISOTROPIC ROCK: is None None g N/A N/A N/A g N/A N/A N/A n 58 58 58 n 30	Brown Rock Brown Rock Brown Rock Brown Rock Brown Rock Brown Rock e Diametral Axial Axial Axial Axial D 1 2 2 2 FOR ANISOTROPIC ROCK: is None None None None g N/A N/A N/A N/A s SAMPLE DIMENSIONS	Brown Rock Brown Rock Brown Rock Brown Rock Brown Rock e Diametral Axial Axial Axial Axial p 1 2 2 - - FOR ANISOTROPIC ROCK: - - - - - Is None None None None - - g N/A N/A N/A N/A N/A - - g N/A N/A N/A N/A N/A - g N/A N/A N/A N/A - - g N/A N/A N/A N/A - - g 0.148 0.346 0.272 0.187 - s 33.3 77.8 61.1 42.0 - a 0.046 0.117 0.123 0.127 - si 6.7 17.0 17.8 18.4 - f

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	000 077		_	60507000		
CTL Job No:	020-277 AECOM		Project No.: 60537920 Date: 3/12/2019			
	Klamath River Re	enewal Proiect	Date: By:			
Boring:	B-04					
Sample:	R5					
Depth, ft:	26.2-26.5		_			
Visual Description:	Brown Rock					
Test Type	Diametral					
Test Type ID	1					
	FOR A	NISOTROPIC	ROCK:		•	
Bedding Angle Relative to Axis	Naza					
Bedding Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
	SAN	IPLE DIMENS	ONS		I	
Width Perpendicular to loading, W, mm	60					
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60					
Diameter at Failure, D', mm	69					
	<u>S</u>	TRENGTH DA	ТА			
Peak Load, P, kN	0.137					
Peak Load, P, lbs	30.8					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.033					
Uncorr. Pt. Load Strength Index,I _s , psi	4.8					
Size Correction Factor, F	1.12					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.04					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	5					
(50), PC	MOIST				1	
Moisture Condition of Specimen	As Received					
Pan No.						
Pan wt. (g)	19.85					
Total wet wt. (g)	116.78					
Total dry wt (g)	107.55					
Moisture Content, %		<u> </u>			1	
	Invalid point. Did not fail through					
	both loading					
Commenter	points.					
Comments:						
LTest types:	1- Diametral, 2-	Axial, 3- Block,4-	Irregular Lump		I	<u> </u>
	Diametral - L/D ra		5 · I			

Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No: (Project No.:			
Client: / Project Name: Ī	AECOM Klamath River Ro	enewal Proiect	_ Date: By:	3/12/2019 PJ		
Boring:	B-05	B-05	B-05	B-05	B-05	B-05
Sample:	R7	R7	R7	R7	R7	R7
Depth, ft: Visual Description:	26.2-26.9 Gray Rock	26.2-26.9 Gray Rock	26.2-26.9 Gray Rock	26.2-26.9 Gray Rock	26.2-26.9 Gray Rock	26.2-26.9 Gray Rock
visual Description.				City Hook	City Nook	
Test Type	Diametral	Diametral	Diametral	Diametral	Axial	Axial
Test Type ID	1 FOR A		ROCK:	1	2	2
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
		IPLE DIMENS				
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	30	30		
Diameter Parallel to Loading, D, mm	60	60	60	60	26	43
Diameter at Failure, D', mm	54	54	56	55	30	38
	S	TRENGTH DA	ТА			
Peak Load, P, kN	26.016	27.563	24.68	19.511	19.242	21.155
Peak Load, P, lbs	5848.6	6196.4	5548.3	4386.2	4325.8	4755.8
Uncorr. Pt. Load Strength Index,I _s , MPa	8.030	8.507	7.345	5.912	8.396	7.287
Uncorr. Pt. Load Strength Index,I _s , psi	1164.6	1233.9	1065.3	857.5	1217.7	1056.9
Size Correction Factor, F	1.06	1.06	1.07	1.06	0.98	1.03
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	8.51	9.02	7.85	6.29	8.23	7.54
Corr. Pt. Load Strength Index,I _{s(50)} , psi	1235	1308	1139	913	1194	1093
	MOIST					
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Receive
Pan No.						
Pan wt. (g)	22.43	22.43	22.43	22.43	22.43	22.43
Total wet wt. (g)	187.35	187.35	187.35	187.35	187.35	187.35
Total dry wt (g)	186.12	186.12	186.12	186.12	186.12	186.12
Moisture Content, %	0.8	0.8	0.8	0.8	0.8	0.8
Comments:						

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:			Project No.:	60537920	
Client:	AECOM		Date:	3/12/2019	
	Klamath River Re		By:	PJ	· · · · · ·
Boring: Sample:	B-05 R11	B-05 R11	B-05 R11	B-05 R11	
Depth, ft:	36.9-37.3	36.9-37.3	36.9-37.3	36.9-37.3	<u> </u>
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	
Test Type	Diametral	Diametral	Axial	Axial	
Test Type ID		1 NISOTROPIC		2	
	FUR A	NISUIRUFIC	RUCK:		
Bedding Angle Relative to Axis	None	None	None	None	
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	
	SAN	IPLE DIMENS			<u> </u>
Width Perpendicular to loading, W, mm	60	60	60	60	
Length Perpendicular to Loading, L, mm	30	30			
Diameter Parallel to Loading, D, mm	60	60	30	40	
Diameter at Failure, D', mm	56	55 TRENGTH DA	26	32	
	3				
Peak Load, P, kN	33.123	32.033	14.521	18.344	
Peak Load, P, lbs	7446.3	7201.3	3264.5	4123.9	
Uncorr. Pt. Load Strength Index,I _s , MPa	9.858	9.707	7.311	7.504	
Uncorr. Pt. Load Strength Index,I _s , psi	1429.8	1407.9	1060.3	1088.3	
Size Correction Factor, F	1.07	1.06	0.95	0.99	
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	10.54	10.33	6.94	7.47	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	1528	1499	1007	1083	
C (00)/1			T DATA		
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	
Pan No.	A Received	//sircooned		710 110001100	
Pan wt. (g)	22.95	22.95	22.95	22.95	
Total wet wt. (g)	152.73	152.73	152.73	152.73	
Total dry wt (g)	152.3	152.3	152.3	152.3	
Moisture Content, %	0.3	0.3	0.3	0.3	
	0.3	0.3	0.3	0.3	
		1			1
					1 1
_					
Comments:					
Comments:					
Comments:					

Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1 Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1 $\,$

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM		Date:	3/12/2019		
	Klamath River Re		B of	PJ		D OF
Boring: Sample:	B-05 R15	B-05 R15	B-05 R15	B-05 R15	B-05 R15	B-05 R15
Depth, ft: Visual Description:	46.1-46.8 Gray Rock	46.1-46.8 Gray Rock	46.1-46.8 Gray Rock	46.1-46.8 Gray Rock	46.1-46.8 Gray Rock	46.1-46.8 Gray Rock
						,
Test Type	Diametral	Diametral	Diametral	Diametral	Axial	Axial
Test Type ID	1 FOR A		ROCK:	1	2	2
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAN	PLE DIMENS	IONS			
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	30	30		
Diameter Parallel to Loading, D, mm	60	60	60	60	36	34
Diameter at Failure, D', mm	56		57	56	35	28
	5	RENGTH DA				
Peak Load, P, kN	24.093	33.912	27.929	24.365	22.269	21.115
Peak Load, P, Ibs	5416.3	7623.7	6278.7	5477.5	5006.3	4746.8
Uncorr. Pt. Load Strength Index,I _s , MPa	7.171	10.093	8.166	7.251	8.329	9.871
Uncorr. Pt. Load Strength Index,I _s , psi	1040.0	1463.8	1184.4	1051.7	1208.0	1431.7
Size Correction Factor, F	1.07	1.07	1.07	1.07	1.02	0.97
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	7.66	10.79	8.76	7.75	8.46	9.53
Corr. Pt. Load Strength Index,I _{s(50)} , psi	1112 MOIST	1565 URE CONTEN	1271 T D A T A	1124	1226	1382
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	19.79	19.79	19.79	19.79	19.79	19.79
Total wet wt. (g)	138.47	138.47	138.47	138.47	138.47	138.47
Total dry wt (g)	137.97	137.97	137.97	137.97	137.97	137.97
Moisture Content, %	0.4	0.4	0.4	0.4	0.4	0.4
Comments:						
	1- Diametral, 2- A Diametral - L/D ra	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

				005055		
CTL Job No:			Project No.:	60537920		-
	AECOM Klamath River R	enewal Project	Date: By:	3/12/2019 PJ		-
Boring:			Jy.	10		
Sample:	R6					
Depth, ft:	29.3-29.6					
Visual Description:	Red Rock					
Test Type	Diametral					
Test Type ID	1					
	FOR A	NISOTROPIC	ROCK:			1
Bedding Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
Ecolomy chomation rtor. to Bodding		PLE DIMENS	IONS		<u>_</u>	Į
Width Perpendicular to loading, W, mm	60					
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60					
Diameter at Failure, D', mm	56					
		TRENGTH DA	ТА			
Peak Load, P, kN	0.22					
Peak Load, P, lbs	49.5					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.065					
Uncorr. Pt. Load Strength Index,I _s , psi	9.5					
Size Correction Factor, F	1.07					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.07					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	10					
	MOIST	URE CONTEN	T DATA		•	
Moisture Condition of Specimen	As Received					
	As Received					
Pan No.						
Pan wt. (g)	21.71					
Pan wt. (g)	21.71					
Total wet wt. (g)	148.91					
	400.07					
Total dry wt (g)	139.87					<u> </u>
Moisture Content, %	7.7					
	Invalid point. Did					
	not fail through					
	both loading points.					
Comments:	ľ					
Test types:	1- Diametral, 2- / Diametral - L/D r	Axial, 3- Block,4-	Irregular Lump			

Axial - L/D ratio 1/3 to 1 Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1 $\,$

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM	. –	Date:	3/12/2019		
	Klamath River Re		B oo	PJ	1	
Boring: Sample:	B-08 R1	B-08 R1	B-08 R1			
Depth, ft:	37.1-37.6	37.1-37.6	37.1-37.6			
Visual Description:	Gray Rock	Gray Rock	Gray Rock			
		-	-			
Test Type	Diametral	Diametral	Axial			
Test Type ID						
	FUR A					
Bedding Angle Relative to Axis	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A		ļ	
	JAI V					
Width Perpendicular to loading, W, mm	60	60	60			
	0.0					
Length Perpendicular to Loading, L, mm	30	30				
Diameter Parallel to Loading, D, mm	60	60	36			
			1.5			
Diameter at Failure, D', mm	58	59 TRENGTH DA	46			
	3	IRENGINDA				
Peak Load, P, kN	0.692	0.484	0.327			
	455.0	100.0	70.5			
Peak Load, P, lbs	155.6	108.8	73.5			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.199	0.137	0.093			
Uncorr. Pt. Load Strength Index,I _s , psi	28.8	19.8	13.5			
Uncorr. r t. Load Otrength index,is, par	20.0	13.0	15.5			
Size Correction Factor, F	1.08	1.08	1.08			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.21	0.15	0.10			
	0.21	0.15	0.10			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	31	21	15			
	MOIST	URE CONTEN	T DATA		-	
Moisture Condition of Specimen	As Received	As Received	As Received			
	AS RECEIVED	AS RECEIVED	AS RECEIVED		+	
Pan No.						
Pan wt. (g)	19.25	19.25	19.25			
Pan wi. (g)	19.20	19.20	19.20			
Total wet wt. (g)	168.79	168.79	168.79			
T Jacob (1.5)	150.0	450.0	450.0			
Total dry wt (g)	156.2	156.2	156.2		+	
Moisture Content, %	9.2	9.2	9.2			
Comments:						
Test types:	1- Diametral, 2- A	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	020-277		Project No.:	60537920]
Client:	AECOM		Date:	3/12/2019		
Project Name:	Klamath River Re	enewal Project	By:	PJ		-
Boring:	B-08 R2					
Sample: Depth, ft:	38.6-38.9					
Visual Description:	Gray Rock					
Test Type	Diametral					
Test Type ID	1					
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None					
	N1/A					
Loading Orientation Rel. to Bedding	N/A SAN	IPLE DIMENS			ļ	
Width Perpendicular to loading, W, mm	60					
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60					
Diameter at Failure, D', mm	58					
	S	TRENGTH DA	ТА		I	
Peak Load, P, kN	1.122					
Peak Load, P, lbs	252.2					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.322					
Uncorr. Pt. Load Strength Index,I _s , psi	46.8					
Size Correction Factor, F	1.08					
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.35					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	50					
Moisture Condition of Specimen	As Received					
Pan No.						
	20.6					
Pan wt. (g)	20.6					
Total wet wt. (g)	298.27					
Total dry wt (g)	282.19					
Moisture Content, %	6.1				1	
Comments:						
Comments.						
Test types:	1- Diametral, 2- A	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM		Date:	3/13/2019		
Project Name:	Klamath River Re	enewal Project	By:	PJ		-
Boring: Sample:	B-08 R4		<u> </u>			
Depth, ft:	50.2-50.6					
Visual Description:	Gray Rock					
Test Type	Diametral					
Test Type ID		NISOTROPIC	POCK.			
	FUR A					
Bedding Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
		IPLE DIMENS	IONS		ł	
Width Perpendicular to loading, W, mm	60					
	60					
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60					
	50					
Diameter at Failure, D', mm	59 S	I TRENGTH DA	ТА			
Peak Load, P, kN	3.384					
Peak Load, P, Ibs	760.8					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.956					
Uncorr. Pt. Load Strength Index,I _s , psi	138.6					
Size Correction Factor, F	1.08					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	1.03					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	150					
			T DATA		1	
Moisture Condition of Specimen	As Received					
Pan No.						
Pan wt. (g)	22.27					
Total wet wt. (g)	391.5					
Total dry wt (g)	378.35		┟────┤			
Moisture Content, %	3.7					
Comments:						
Test types:	1- Diametral, 2- A	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	020-277		Project No.:	60537920	
Client:	AECOM		Date:	3/13/2019	
	Klamath River Re	enewal Project	By:	PJ	
Boring: Sample:	B-10 R1				
Depth, ft:	30.4-30.7		<u> </u>		
Visual Description:	Gray Rock				
Test Type	Diametral				
Test Type ID	FOR A	NISOTROPIC	ROCK:		
Bedding Angle Relative to Axis	None				
Loading Orientation Rel. to Bedding	N/A				
	SAM	PLE DIMENS	IONS		
Width Perpendicular to loading, W, mm	60				
Length Perpendicular to Loading, L, mm	30				
Diameter Parallel to Loading, D, mm	60				
Diameter at Failure, D', mm	56				
	S	RENGTH DA	ТА		
Peak Load, P, kN	9.55				
Peak Load, P, lbs	2146.9				
Uncorr. Pt. Load Strength Index,I _s , MPa	2.842				
Uncorr. Pt. Load Strength Index,I _s , psi	412.2				
Size Correction Factor, F	1.07				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	3.04				
Corr. Pt. Load Strength Index,I _{s(50)} , psi	441				
	MOIST	URE CONTEN	T DATA		
Moisture Condition of Specimen	As Received				
Pan No.	AS NECEIVED				
	00.44				
Pan wt. (g)	22.44				
Total wet wt. (g)	267.19				
Total dry wt (g)	259.78				
Moisture Content, %	3.1				
Comments:					
Test types:	1- Diametral, 2- A		Irregular Lump		

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:			Project No.:	60537920		
Client: Project Name	AECOM Klamath River Re	enewal Project	Date: By:	3/13/2019 PJ		
Boring:	B-10	B-10				
Sample: Depth, ft:	R3 33.4-33.7	R3 33.4-33.7				
Visual Description:	Gray Rock	Gray Rock				
Test Type	Diametral	Avial				
Test Type ID	1	Axial 2				
	FOR A	NISOTROPIC	ROCK:		I	I
Bedding Angle Relative to Axis	None	None				
Loading Orientation Rel. to Bedding	N/A	N/A				
		IPLE DIMENS	IONS			ļ
Width Perpendicular to loading, W, mm	60	60				
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60	44				
Diameter at Failure, D', mm	56	42 TRENGTH DA				
	3					
Peak Load, P, kN	0.374	0.101				
Peak Load, P, Ibs	84.1	22.7				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.111	0.031				
Uncorr. Pt. Load Strength Index,I _s , psi	16.1	4.6				
Size Correction Factor, F	1.07	1.06				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.12	0.03				
Corr. Pt. Load Strength Index,I _{s(50)} , psi						
		URE CONTEN				
Moisture Condition of Specimen	As Received	As Received				
Pan No.						
Pan wt. (g)	22.32	22.32				
Total wet wt. (g)	159.18	159.18				
Total dry wt (g)	144.98	144.98				
Moisture Content, %	11.6	11.6				
Comments:						
Test types:	1- Diametral, 2- A	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1 Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020-277 AECOM		Project No.: Date:	60537920 3/13/2019		
Project Name:	Klamath River Re	enewal Project	By:	3/13/2019		
Boring:	B-10	B-10	B-10	B-10		
Sample:	R4	R4	R4	R4		
Depth, ft: Visual Description:	37.1-37.4 Gray Rock	37.1-37.4 Gray Rock	37.1-37.4 Gray Rock	37.1-37.4 Gray Rock		
visual Description.	Glay RUCK	Glay ROCK	Glay ROCK	Glay ROCK		
Test Type	Diametral	Diametral	Axial	Axial		
Test Type ID	1	1	2	2		
	FOR A	NISOTROPIC				
						-
Bedding Angle Relative to Axis	None	None	None	None		
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A		
Edding Chemation Ref. to Dedding				10/7	<u>ا</u> ــــــ	
	••••					
Width Perpendicular to loading, W, mm	60	60	60	60		
Length Perpendicular to Loading, L, mm	30	30				
Length rependicular to Loading, L, min						
Diameter Parallel to Loading, D, mm	60	60	37	36		
Discussion at Ealihum DI and	50	50	22	00		
Diameter at Failure, D', mm	58	56 FRENGTH DA	33	28	<u> </u>	
	3	RENGTIDA				
Peak Load, P, kN	0.435	0.521	0.225	0.313		
Deal Local D Ha	07.0	4474	50.0	70.4		
Peak Load, P, lbs	97.8	117.1	50.6	70.4		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.125	0.155	0.089	0.146		
Uncorr. Pt. Load Strength Index,I _s , psi	40.4	22 F	12.0	24.2		
Uncoll. Ft. Load Strength Index,Is, psi	18.1	22.5	12.9	21.2		
Size Correction Factor, F	1.08	1.07	1.00	0.97		
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.13	0.17	0.09	0.14		
Corr. Pt. Load Strength Index,I _{s(50)} , psi	20	24	13	20		
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received		
Pan No.						
Pan wt. (g)	22.12	22.12	22.12	22.12		
Total wet wt. (g)	154	154	154	154		
Total wet wt. (g)	104	104	104	104		
Total dry wt (g)	140.19	140.19	140.19	140.19		
Majatura Contont 0/	44 7	44 7	44 7	44 7		
Moisture Content, %	11.7	11.7	11.7	11.7		
					1 1	
Comments:						
Comments:						
Comments:						

Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1 Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1 $\,$

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:			Project No.:	60537920		ı
Client: Project Name:	Client: AECOM Project Name: Klamath River Renewal Project			3/13/2019 PJ		
Boring:	B-10	B-10	By:	15		
Sample:	R7	R7				
Depth, ft: Visual Description:	49-49.5 Gray Rock	49-49.5 Gray Rock				
	-	-				
Test Type Test Type ID	Diametral 1	Axial 2				
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None				
Loading Orientation Rel. to Bedding	N/A SAN	N/A	ONS			
Width Perpendicular to loading, W, mm	60	60				
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60	30				
Diameter at Failure, D', mm	58	29				
		TRENGTH DA	ТА			
Peak Load, P, kN	2.077	1.996				
Peak Load, P, lbs	466.9	448.7				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.597	0.901				
Uncorr. Pt. Load Strength Index,I _s , psi	86.6	130.7				
Size Correction Factor, F	1.08	0.97				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.64	0.88				
Corr. Pt. Load Strength Index,I _{s(50)} , psi	93	127				
	MOIST	URE CONTEN	T DATA		-	I
Moisture Condition of Specimen	As Received	As Received				
Pan No.						
Pan wt. (g)	22.33	22.33				
Total wet wt. (g)	379.89	379.89				
Total dry wt (g)	357.27	357.27				
Moisture Content, %	6.8	6.8				
Comments:						
Test types:	1- Diametral, 2-	Axial, 3- Block,4-	Irregular Lump		I	I

Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1 Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1 $\,$

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

AECOM Klamath River Re B-13 R4 11.9-12.4 Gray Rock	enewal Project B-13 R4 11.9-12.4 Gray Rock	Date: B-13 R4 11.9-12.4 Gray Rock	3/13/2019 PJ B-13 R4 11.9-12.4	B-13 R4
B-13 R4 11.9-12.4	B-13 R4 11.9-12.4	B-13 R4 11.9-12.4	B-13 R4	R4
R4 11.9-12.4	R4 11.9-12.4	R4 11.9-12.4	R4	R4
			11.9-12.4	
Gray Rock	Gray Rock	Gray Rock		11.9-12.4
			Gray Rock	Gray Rock
Diametral	Diametral	Diametral	Axial	Axial
			2	2
FUR A	NISUIKUPIC	RUCK:		
None	None	None	None	None
	N 1/A		N1/A	
			N/A	N/A
60	60	60	60	60
30	30	30		
60	60	60	46	40
59	57	59	45	36
			10	00
10.000	00.405	47.400	10 5 10	15 510
12.808	20.405	17.108	16.519	15.518
2879.4	4587.2	3846.0	3713.6	3488.6
3.618	5.966	4.833	4.805	5.643
524.8	865.4	700.9	696.9	818.4
1.08	1.07	1.08	1.07	1.02
3.91	6.40	5.23	5.16	5.76
567	929	758	749	836
As Received	As Received	As Received	As Received	As Received
22.32	22.32	22.32	22.32	22.32
215.87	215.87	215.87	215.87	215.87
215.69	215.69	215.69	215.69	215.69
0.1	0.1	0.1	0.1	0.1
	1 FOR A None N/A SAM 60 30 60 59 ST 12.808 2879.4 3.618 524.8 1.08 3.91 567 MOIST As Received 22.32 215.87 215.69 0.1	1 1 FOR ANISOTROPIC None None N/A N/A SAMPLE DIMENS 60 60 30 30 60 60 59 57 STRENGTH DA 12.808 20.405 2879.4 4587.2 3.618 5.966 524.8 865.4 1.08 1.07 3.91 6.40 567 929 MOISTURE CONTEN As Received As Received 22.32 22.32 215.69 215.69 0.1 0.1	1 1 1 FOR ANISOTROPIC ROCK: None None None None N/A N/A N/A SAMPLE DIMENSIONS 60 60 60 60 60 60 30 30 30 30 60 60 60 60 59 57 59 STRENGTH DATA 12.808 20.405 17.108 2879.4 4587.2 3846.0 3.618 5.966 4.833 524.8 865.4 700.9 1.08 1.07 1.08 3.91 6.40 5.23 567 929 758 MOISTURE CONTENT DATA As Received As Received As Received As Received As Received As Received 22.32 22.32 22.32 22.32 215.69 215.69 215.69 215.69	1 1 2 FOR ANISOTROPIC ROCK: None None None N/A N/A N/A N/A SAMPLE DIMENSIONS 60 60 60 30 30 30 30 60 60 60 60 30 30 30 30 60 60 60 46 59 57 59 45 STRENGTH DATA 16.519 16.519 2879.4 4587.2 3846.0 3713.6 3.618 5.966 4.833 4.805 524.8 865.4 700.9 696.9 1.08 1.07 1.08 1.07 3.91 6.40 5.23 5.16 567 929 758 749 MOISTURE CONTENT DATA As Received As Received As Received 4s Received As Received As Received As Received 22.32 22.32 22.32 22.32

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM		Date:	3/13/2019		
	Klamath River Re		By:	PJ	- · ·	5.44
Boring: Sample:	B-14 R6	B-14 R6	B-14 R6	B-14 R6	B-14 R6	B-14 R6
Depth, ft:	14.2-14.9	14.2-14.9	14.2-14.9	14.2-14.9	14.2-14.9	14.2-14.9
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
Test Type ID		1 NISOTROPIC		2	2	2
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAN	PLE DIMENS	IONS	[
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	30			
Diameter Parallel to Loading, D, mm	60	60	60	49	50	41
Diameter at Failure, D', mm	56	57	58	39	48	36
		TRENGTH DA		00	-10	00
Peak Load, P, kN	0.196	0.188	0.169	0.046	0.053	0.054
Peak Load, P, lbs	44.1	42.3	38.0	10.3	11.9	12.1
Uncorr. Pt. Load Strength Index,I _s , MPa	0.058	0.055	0.049	0.015	0.014	0.020
Uncorr. Pt. Load Strength Index,I _s , psi	8.5	8.0	7.0	2.2	2.1	2.8
Size Correction Factor, F	1.07	1.07	1.08	1.04	1.09	1.02
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.06	0.06	0.05	0.02	0.02	0.02
Corr. Pt. Load Strength Index,I _{s(50)} , psi	9	9	8	2	2	3
· · · ·	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	21.71	21.71	21.71	21.71	21.71	21.71
Total wet wt. (g)	209.08	209.08	209.08	209.08	209.08	209.08
Total dry wt (g)	195.76	195.76	195.76	195.76	195.76	195.76
Moisture Content, %	7.7	7.7	7.7	7.7	7.7	7.7
Comments:						
	1- Diametral, 2- A Diametral - L/D ra	Axial, 3- Block,4- atio>1	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM		Date:	3/13/2019		-
	Klamath River Re	enewal Project	By:	PJ		1
Boring: Sample:	B-14 R7					
Depth, ft:	20.8-21.2	<u> </u>			<u> </u>	<u> </u>
Visual Description:	Gray Rock					
Test Type	Diametral					
Test Type ID	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
	SAN	IPLE DIMENS	IONS			
Width Perpendicular to loading, W, mm	58					
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	58					
Diameter at Failure, D', mm	56					
		TRENGTH DA	ТА			
Peak Load, P, kN	0.284					
Peak Load, P, Ibs	63.8					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.087					
Uncorr. Pt. Load Strength Index,I _s , psi	12.7					
Uncorr. Pt. Load Strength Index, is, psi	12.7					
Size Correction Factor, F	1.06					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.09					
	40					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	13 MOIST					
	WUST					
Moisture Condition of Specimen	As Received					
Pan No.						
	21.09					
Pan wt. (g)	21.98					
Total wet wt. (g)	194.83					
Total dry wt (g)	185.6					
Moisture Content, %	5.6		 		<u> </u>	
Comments:						
Tast timos	1- Diametral, 2- A	vial 3- Block 4				
resitypes.	Diametral - L/D ra		megulai Lullip			

Axial - L/D ratio 1/3 to 1

	000 077			00507000	
CTL Job No:	020-277 AECOM		Project No.: Date:	60537920 3/13/2019	
Project Name:	Klamath River Re	enewal Project	By:	PJ	
Boring:	B-14	, 	[
Sample:	R8				
Depth, ft: Visual Description	23.7-23.9 Gray Rock				
Visual Description:	Glay Rock				
Test Type	Axial				
Test Type ID	2				
	FOR A	NISOTROPIC	ROCK:		
Bedding Angle Relative to Axis	None				
Loading Orientation Rel. to Bedding	N/A				
	5AN	IPLE DIMENS			
Width Perpendicular to loading, W, mm	60				
Length Perpendicular to Loading, L, mm					
Diameter Parallel to Loading, D, mm	51				
	10				
Diameter at Failure, D', mm	49 S	L TRENGTH DA			
	3				
Peak Load, P, kN	0.037				
Peak Load, P, lbs	8.3				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.010				
Uncorr. Pt. Load Strength Index,I _s , psi	1.4				
Size Correction Factor, F	1.10				
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	2				
	MOIST	URE CONTEN	T DATA		
Moisture Condition of Specimen	As Received				
Pan No.	<u> </u>				
Pan wt. (g)	22.23				
Total wet wt. (g)	109.95				
Total dry wt (g)	104.99				
Moisture Content, %	6.0				
	Invalid test. Did	· 			
	not fail through				
	both loading points.				
Comments:	II				
Test types:	1- Diametral, 2- A Diametral - L/D ra		Irregular Lump		

Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:			Project No.:	60537920		<u> </u>
	AECOM Klamath River Re	enewal Proiect	Date: By:	3/13/2019 PJ		
Boring:	B-14	B-14		. •		
Sample: Depth, ft:	R9 26.1-26.4	R9 26.1-26.4				
Visual Description:	Grayish Brown	Grayish Brown				
	Rock	Rock				
Test Type	Diametral	Axial				
Test Type ID	1	2				
	FOR A	NISOTROPIC	ROCK:		Г	ſ
Bedding Angle Relative to Axis	None	None				
Loading Orientation Rel. to Bedding	N/A	N/A				
Eddang Orientation No. to Bedding			ONS			
Width Perpendicular to loading, W, mm	60	60				
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60	51				
Diameter at Failure, D', mm	57	49				
	S	TRENGTH DA	TA		Τ	
Peak Load, P, kN	1.627	2.247				
Peak Load, P, lbs	365.8	505.1				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.476	0.600				
Uncorr. Pt. Load Strength Index,I _s , psi	69.0	87.1				
Size Correction Factor, F	1.07	1.10				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.51	0.66				
Corr. Pt. Load Strength Index,I _{s(50)} , psi	74	95				
			T DATA			
Moisture Condition of Specimen	As Received	As Received				
Pan No.						
Pan wt. (g)	22.3	22.3				
Total wet wt. (g)	127.05	127.05				
Total dry wt (g)	124.19	124.19				
Moisture Content, %	2.8	2.8				
Comments:						
Test types:	1- Diametral, 2- A	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020-277		Project No.:	60537920		
Client	AECOM		Date:	3/13/2019		
	Klamath River Re		B 45	PJ		D 45
Boring: Sample:	B-15 R4	B-15 R4	B-15 R4	B-15 R4	B-15 R4	B-15 R4
Depth, ft:	33-33.5	33-33.5	33-33.5	33-33.5	33-33.5	33-33.5
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
Test Type ID				2	2	2
	FOR A	NISOTROPIC				
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAN	PLE DIMENS	IONS	[
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	30			
Diameter Parallel to Loading, D, mm	60	60	60	44	45	30
Diameter at Failure, D', mm	59	57	57	42	39	26
	S	RENGTH DA	ТА	Γ		[
Peak Load, P, kN	0.72	0.84	1.048	1.447	1.044	0.099
Peak Load, P, Ibs	161.9	188.8	235.6	325.3	234.7	22.3
Uncorr. Pt. Load Strength Index,I _s , MPa	0.203	0.246	0.306	0.451	0.350	0.050
Uncorr. Pt. Load Strength Index,I _s , psi	29.5	35.6	44.4	65.4	50.8	7.2
Size Correction Factor, F	1.08	1.07	1.07	1.06	1.04	0.95
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.22	0.26	0.33	0.48	0.36	0.05
Corr. Pt. Load Strength Index,I _{s(50)} , psi	32	38	48	69	53	7
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	21.63	21.63	21.63	21.63	21.63	21.63
Total wet wt. (g)	128.99	128.99	128.99	128.99	128.99	128.99
Total dry wt (g)	124.4	124.4	124.4	124.4	124.4	124.4
Moisture Content, %	4.5	4.5	4.5	4.5	4.5	4.5
Comments:						
	1- Diametral, 2- A Diametral - L/D ra	Axial, 3- Block,4- atio>1	irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020 277		Drainat No.	60537920		
Client:	AECOM		Project No.: Date:	3/13/2019		
	Klamath River Re		By:	PJ	5	
Boring: Sample:	B-15 R6	B-15 R6	B-15 R6	B-15 R6	B-15 R6	B-15 R6
Depth, ft:	43.1-43.6	43.1-43.6	43.1-43.6	43.1-43.6	43.1-43.6	43.1-43.6
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2
	FOR A	NISOTROPIC	ROCK:	-	-	-
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
		IPLE DIMENS				
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	30			
Diameter Parallel to Loading, D, mm	60	60	60	32	35	30
Diameter at Failure, D', mm	57	57	55	30	32	27
	S	TRENGTH DA	ТА			
Peak Load, P, kN	1.129	1.549	1.129	1.336	1.359	0.771
Peak Load, P, Ibs	253.8	348.2	253.8	300.3	305.5	173.3
Uncorr. Pt. Load Strength Index,I _s , MPa	0.330	0.453	0.342	0.583	0.556	0.374
Uncorr. Pt. Load Strength Index,I _s , psi	47.9	65.7	49.6	84.5	80.6	54.2
Size Correction Factor, F	1.07	1.07	1.06	0.98	0.99	0.96
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.35	0.49	0.36	0.57	0.55	0.36
Corr. Pt. Load Strength Index,I _{s(50)} , psi	51	70	53	83	80	52
	MOIST					
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Receive
Pan No.						
Pan wt. (g)	20.45	20.45	20.45	20.45	20.45	20.45
Total wet wt. (g)	238.89	238.89	238.89	238.89	238.89	238.89
Total dry wt (g)	228.86	228.86	228.86	228.86	228.86	228.86
Moisture Content, %	4.8	4.8	4.8	4.8	4.8	4.8
Comments:						
	1- Diametral, 2- A Diametral - L/D ra	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM		Date:	3/13/2019		
Boring:	Klamath River Re B-17	B-17	B-17	PJ B-17	B-17	B-17
Sample:	R3	R3	R3	R3	R3	R3
Depth, ft: Visual Description:	25.1-25.7 Gray Rock	25.1-25.7 Gray Rock	25.1-25.7 Gray Rock	25.1-25.7 Gray Rock	25.1-25.7 Gray Rock	25.1-25.7 Gray Rock
Test Type Test Type ID	Diametral 1	Diametral	Diametral	Axial 2	Axial 2	Axial 2
	FOR A	NISOTROPIC	ROCK:	L	L	2
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAN	IPLE DIMENS	IONS			
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	30			
Diameter Parallel to Loading, D, mm	60	60	60	33	41	34
Diameter at Failure, D', mm	59	60	59	30	38	29
	S	TRENGTH DA	TA			
Peak Load, P, kN	0.583	0.78	0.413	1.206	2.038	1.52
Peak Load, P, Ibs	131.1	175.4	92.8	271.1	458.2	341.7
Uncorr. Pt. Load Strength Index,I _s , MPa	0.165	0.217	0.117	0.526	0.702	0.686
Uncorr. Pt. Load Strength Index,I _s , psi	23.9	31.4	16.9	76.3	101.8	99.5
Size Correction Factor, F	1.08	1.09	1.08	0.98	1.03	0.97
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.18	0.24	0.13	0.52	0.73	0.67
Corr. Pt. Load Strength Index,I _{s(50)} , psi		34	18	75	105	97
	MOIST	URE CONTEN				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Receive
Pan No.						
Pan wt. (g)	20.98	20.98	20.98	20.98	20.98	20.98
Total wet wt. (g)	165.97	165.97	165.97	165.97	165.97	165.97
Total dry wt (g)	158.36	158.36	158.36	158.36	158.36	158.36
Moisture Content, %	5.5	5.5	5.5	5.5	5.5	5.5
Comments:						

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

POINT LOAD STRENGTH INDEX OF ROCK -ASTM D 5731

CTL Job No:	020-277		Project No.:	60537920		
Client:	AECOM		Date:	3/20/2019		-
Project Name:	Klamath River Re	enewal Project	By:	PJ		-
Boring:	B-19					
Sample: Depth, ft:	R1 31.3-32.2					
Visual Description:	Brown Rock					
Test Time	Diamatral					
Test Type Test Type ID	Diametral 1					
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
		IPLE DIMENS	IONS			
Width Domondiaulay to Londian M(61					
Width Perpendicular to loading, W, mm	61					
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	61					
	01					
Diameter at Failure, D', mm	59					
	S	TRENGTH DA	TA			Γ
Peak Load, P, kN	0.582					
Peak Load, P, Ibs	130.8					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.162					
Uncorr. Pt. Load Strength Index,I _s , psi	23.5					
	20.0					
Size Correction Factor, F	1.09					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.18					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	25					
	MOIST				I	
Moisture Condition of Specimen	As Received					
Pan No.						
Pan wt. (g)	19.52					
Total wet wt. (g)	97.66					
i otai wet wt. (g)	57.00					
Total dry wt (g)	91.38					
Moisture Content, %	8.7					
					<u>.</u>	
Comments:						
Test types:	1- Diametral, 2- A	Axial, 3- Block,4-	Irregular Lump			

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

Earth Mechanics Institute Client: CDM Smith

Project: Klamath River

Date: 9/20/2018

Colorado School of Mines

Mining Engineering Department

ASTM D7012

Sample ID	Average Length	Average	Longth to		Failure	Uniaxial	Compressive	Strength	
		Diameter	Diameter	Density	Load	Failure Stress	UCS	(2:1)	Notes (Failure type)
	(in)	(in)	Ratio	(lbs/ft ³)	(lbs)	σ _c (psi)	(psi)	(MPa)	
B-202 @ 82.0-82.8	5.139	2.368	2.2	133	2,656	603	614	4.2	Non - Structural
B-206 @ 47.4-48.7	5.186	2.402	2.2	166	93,017	20,527	20,886	144.0	Non - Structural
B-206 @ 65.2-66.5	5.188	2.401	2.2	169	70,001	15,467	15,739	108.5	Non - Structural

$$UCS_{2:1correction} = \frac{\sigma_c}{0.88 + 0.222(\frac{d}{l})}$$

Earth Mechanics Institute

Client: CDM Smith

Colorado School of Mines Mining Engineering Department

Project: Klamath Rive

Date: 10/3/2018

ASTM D7012

	Average	Average	Longth to prove		Failure	Uniaxial	Compressive	Strength	
Sample ID	Length	Diameter	Length to Diameter	Density	Load	Failure Stress	UCS	(2:1)	Notes (Failure type)
	(in)	(in)	Ratio	(lbs/ft ³)	(lbs)	σ _c (psi)	(psi)	(MPa)	
B-207 @ 74.5-75.5	4.864	2.406	2.0	151	14,135	3,109	3,141	21.7	Non - Structural

$$UCS_{2:1correction} = \frac{\sigma_c}{0.88 + 0.222(\frac{d}{l})}$$

EARTH MECHANICS INSTITUTE

Uniaxial Compressive Strength - ASTM D7012

Uniaxial Compression Test without Stress-Strain Curves and Moduli ASTM D7012 - 14e1

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Date Tested: 4/30/2018

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-1-1
Report Date	5/17/2018
Drill hole and Depth	BI-02; 27-27.9 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Stress Rate	0.5 MPa/s			
Diameter of Specimen	60.54 mm	2.38 in		
Height of Specimen	97.72 mm	3.85 in		
Load at Peak	16.69 kN	3,752 lbf		
Unconfined Compressive Strength	5.80 MPa	841 psi		
Type of Failure	Non-Structural			

Note: The provided sample had a height-to-diameter ratio less than 2

Date Opened : 4/24/2018

Date Received : 4/24/2018

Photo Before Test Photo Before Test Photo After Test

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-1, R02, UCS without Moduli, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 1 of 6

Uniaxial Compression Test without Stress-Strain Curves and Moduli ASTM D7012 - 14e1 COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Picture of the sample upon arrival at Tonon USA Laboratory: no core piece allowed preparation of a specimen with a height-to-diameter ratio between 2 and 2.5.

Uniaxial Compression Test without Stress-Strain Curves and Moduli ASTM D7012 - 14e1

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-1-2
Report Date	5/17/2018
Drill hole and Depth	BI-02; 48.9-50.3 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Stress Rate	0.5 MPa/s			
Diameter of Specimen	60.85 mm	2.40 in		
Height of Specimen	127.87 mm	5.03 in		
Load at Peak	34.80 kN	7,823 lbf		
Unconfined Compressive Strength	11.97 MPa	1,736 psi		
Type of Failure	Non-Structural			

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Date Opened : 4/24/2018

Date Tested: 4/30/2018

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-1, R02, UCS without Moduli, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 3 of 6

D3-94 of 139

Uniaxial Compression Test without Stress-Strain Curves and Moduli ASTM D7012 - 14e1

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-1-3
Report Date	5/17/2018
Drill hole and Depth	BI-02; 55.4-56.3 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Stress Rate	0.5 MPa/s			
Diameter of Specimen	60.68 mm	2.39 in		
Height of Specimen	128.33 mm	5.05 in		
Load at Peak	45.59 kN	10,248 lbf		
Unconfined Compressive Strength	15.77 MPa	2,288 psi		
Type of Failure	Non-Structural			

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Date Opened : 4/24/2018

Date Tested: 4/30/2018

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-1, R02, UCS without Moduli, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 4 of 6

D3-95 of 139

Uniaxial Compression Test without Stress-Strain Curves and Moduli ASTM D7012 - 14e1

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-1-4
Report Date	5/17/2018
Drill hole and Depth	BI-03; 17.4-18.4 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Stress Rate	0.5 MPa/s				
Diameter of Specimen	60.59 mm	2.39 in			
Height of Specimen	129.81 mm	5.11 in			
Load at Peak	4.39 kN	987 lbf			
Unconfined Compressive Strength	1.52 MPa	221 psi			
Type of Failure	Non-Structural				

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Date Opened : 4/24/2018

Date Tested: 5/4/2018

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-1, R02, UCS without Moduli, AECOM Klamath River Page 5 of 6

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

D3-96 of 139

Uniaxial Compression Test without Stress-Strain Curves and Moduli ASTM D7012 - 14e1

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-1-5
Report Date	5/17/2018
Drill hole and Depth	BI-03; 21.5-22.9 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Stress Rate	0.5 MPa/s				
Diameter of Specimen	60.58 mm	2.39 in			
Height of Specimen	125.67 mm	4.95 in			
Load at Peak	6.99 kN	1,571 lbf			
Unconfined Compressive Strength	2.43 MPa	352 psi			
Type of Failure	Non-Structural				

Date Received : 4/24/2018

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Date Opened : 4/24/2018

Date Tested: 4/30/2018

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-1, R02, UCS without Moduli, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 6 of 6

	<u>C</u>	DPEF	<u>۲</u>		mpressive Stre Rock Core (ength and Yo ASTM D7012		dulus	
CTLJ	Job No.:	:	020-277B		Boring: B-0	5	Date:	3/12/2019	
Client			AECOM					/: PJ	
-			Klamath Riv	er Renewal			,		
roje	ct Name	e:	Project		Depth,ft.: 19.6	6-20.2	Checked:	DC	
Proje	ct No.:		60537920						
		Visua	I Description	: Gray Rock	-				
	Moist	ture Con	dition at Test	t Sample was	washed and in a	a moist state.			
	Τe	est Temp	perature, (°C)) Ambient					
			Remarks	:					
	e Height		5.00				4		
	e Diame		2.39	Unconfi	ned Compr	essive St	rength	14975	
	t / Diam		2.1	4	(psi)		17373	
	le Area, i)ensity, p		4.50 160.2						
	ensity, p		159.1				- ')	4 450 000	
Moist	ure Cont Rate, %	tent, %	0.7	You	ıng's Modu	ius (ヒ) (p:	51)	4,450,000	
Compressive Stress, psi	16000 - 14000 - 12000 - 8000 - 6000 -								
	4000 -							_	
	2000 - 0 - 0.0		0.10	0.20	0.30 0	40 0.	50	0.60	
	0.0		0.10		al Strain, %	- 1 0 U.		0.00	

	00	DPEF	2		ompressive Sti Rock Core	rength and Y (ASTM D701		dulus		
CTL J	ob No.	<u>.</u>	020-277C		Boring: B-	08	Date	3/12/2019		
Client		•	AECOM		Sample: R3		By: PJ			
				ver Renewal			_,			
Projec	ct Name	e:	Project		Depth,ft.: 46	.1-47	Checked	DC		
Proied	ct No.:		60537920		_					
-,		Visua		: Gray Rock	-					
	Mois				washed and in	a moist state				
			perature, (°C							
			Remarks							
Sample	e Height	t in	5.03					1		
	e Diame		2.40	Unconfi	ned Comp	ressive St	rength	45000		
	leight / Diameter 2.1				(ps		U	15268		
Sampl	e Area, i	in ^z	4.54							
	ensity, p		162.2	4						
	ensity, p ure Cont		159.3 1.8	- Υοι	ing's Modເ	ılus (E) (p	si)	3,300,000		
	Rate, %		0.25	-						
Compressive Stress, psi	16000 - 14000 - 12000 - 8000 -									
	6000 -									
	4000 -									
	2000 - 0 - 0.0	00	0.10	0.20	0.30	0.40 (0.50	0.60		
				Axi	al Strain, %					

	COOPI	ER		ompressive St Rock Core	rength and Y (ASTM D701		dulus	
CTL J	ob No.:	020-277E		Boring: B-	13	Date:	3/12/2019	
Client		AECOM		Sample: R5		PJ		
	t Name:		ver Renewal	Depth,ft.: <u>17</u>		Checked:		
Projec	t No.:	60537920						
	Vis	ual Description	: Gray Rock	_				
	Moisture C	ondition at Tes	t Sample was	washed and in	a moist state			
	Test Te	mperature, (°C) Ambient					
		Remarks	::					
	e Height, in.	5.04	Unconfi	ned Comp	ressive St	trenath		
	e Diameter, in / Diameter	. 2.40		-		uciigui	6528	
	e Area, in ²	4.52	-	(ps	1)			
Wet D	ensity, pcf	141.3					1	
Dry De	nsity, pcf	140.1		ıng's Modu	ilus (F) (n	ei)	1,630,000	
	ire Content, % Rate, % / min	0.9 0.25		ing 5 would	ius (Ľ) (þ	31/	1,030,000	
Compressive Stress, psi	6000 5000 4000 3000							
	2000							
	0,00	0.10	0.20 0.30	0.40	0.50	0.60	0.70	
			Axi	al Strain, %				

	CQ	DPEI	2	Un	nconfine		mpres: Rock (rength (ASTN			's Moo	dulus	
CTL .I	ob No.:		020-277	4			Bo	ring: B·	-20			Date [.]	3/12/20)19
Client			AECOM	•				nple: R					PJ	
	t Name	:	Klamath Project	Rive	er Renew	al).1-40.6		Che	ecked:		
Projec	t No.:		6053792	0			•							
		Visua	I Descript	ion:	Gray Ro	ck								
	Moist	ure Con	dition at T	est	Sample	was v	vashec	l and ir	n a mois	st state				
	Те	st Temp	perature, ((°C)	Ambient									
					Spalling the mea						ig trim	iming.	There	efore,
	e Height,		4.95		Unco	h	bod (`omn	rocci		ron	ath		
	e Diamet / Diame		2.40 2.1					-	ressi	ve 31	u en (yui	3	43
	/ Diame e Area, ir		4.53			(psi)								
	ensity, p		163.7											
	nsity, pc		157.9			Vali	na'a	Mod		(E) (n	ci)		200	> 000
	ire Conte Rate, % /		3.7 0.25			rou	ng s	wioa	ulus ((E) (b	51)		300	8,900
Compressive Stress, psi	400 350 300 250 200 150 100 50 0 0.0	0 0.	02 0.0	4	0.06	0.08	0.	10	0.12	0.14	0.1	6	0.18	
						Axia	l Strain, %	, o						

oject 537920 escription: on at Test ature, (°C)	Ambient Spalling oc the measu	Sample Depth,ft	ad in a moist s ds of sample of s approximate	By: Checked: during trimming.	
COM amath Rive oject 537920 escription: on at Test ature, (°C) Remarks: 4.98 2.40 2.1 4.54 165.7 160.3 3.4	Gray Rock Sample wa Ambient Spalling oc the measu	Sample Depth,ft	e: R2 45.3-46.3 Ind in a moist s ds of sample of s approximate mpressive (psi)	By: Checked: during trimming.	PJ DC Therefore, 7517
amath Rive oject 537920 escription: on at Test ature, (°C) Remarks: 4.98 2.40 2.1 4.54 165.7 160.3 3.4	Gray Rock Sample wa Ambient Spalling oc the measu	Depth,ft	ad in a moist s ds of sample of s approximate mpressive (psi)	Checked: tate. during trimming.	DC Therefore, 7517
537920 escription: on at Test ature, (°C) Remarks: 4.98 2.40 2.1 4.54 165.7 160.3 3.4	Sample wa Ambient Spalling oc the measu Uncon	as washed ar courred at end red density is	nd in a moist s ds of sample o s approximate mpressive (psi)	during trimming.	Therefore,
escription: on at Test ature, (°C) Remarks: 4.98 2.40 2.1 4.54 165.7 160.3 3.4	Sample wa Ambient Spalling oc the measu Uncon	as washed ar ccurred at end red density is fined Co	ds of sample o s approximate mpressive (psi)	during trimming. e Strength	7517
on at Test ature, (°C) Remarks: 4.98 2.40 2.1 4.54 165.7 160.3 3.4	Sample wa Ambient Spalling oc the measu Uncon	as washed ar ccurred at end red density is fined Co	ds of sample o s approximate mpressive (psi)	during trimming. e Strength	7517
ature, (°C) Remarks: 4.98 2.40 2.1 4.54 165.7 160.3 3.4	Ambient Spalling oc the measu	ccurred at end red density is	ds of sample o s approximate mpressive (psi)	during trimming. e Strength	7517
Remarks: 4.98 2.40 2.1 4.54 165.7 160.3 3.4	Spalling oc the measu Uncon	red density is	s approximate mpressive (psi)	e Strength	7517
4.98 2.40 2.1 4.54 165.7 160.3 3.4	the measu	red density is	s approximate mpressive (psi)	e Strength	7517
2.40 2.1 4.54 165.7 160.3 3.4			(psi)		
2.1 4.54 165.7 160.3 3.4			(psi)		
4.54 165.7 160.3 3.4	Y) (psi)	
165.7 160.3 3.4	Y	oung's M	odulus (E) (psi)	4,330,000
160.3 3.4		oung's M	odulus (E)) (psi)	4,330,000
				, (b2)	4,330,000
0.25					
 			0.25	0.30	0.35
	5 0				

	00	DPE	R	U	nconfi		mpress Rock C			nd You D7012D		odulus]	
CTL J	ob No.:		020-27	77J			Bor	ing: B-1	5		Date	e: 3/12/20	019	
Client			AECO					ple: R6			By: PJ			
			Klama		er Ren	ewal	_				,			
Projec	ct Name	Э:	Projec	t			Depth	,ft.: 46.	5-47.1	(Checked	I: DC		
Projec	t No.:		60537	920			_							
		Visua	al Descr	iption:	Gray	Rock	-							
	Moist	ture Cor	ndition a	t Test	Samp	le was	washed	and in a	a moist	state.				
	Те	est Tem	peratur	e, (°C)	Ambie	ent								
					-	-	urred at o d density			-	trimming	g. There	efore,	
	e Height		4.9		110	oonf:					nath			
	e Diame			34	Un	contl	ned C	-		e Stre	ingth	1	546	
	: / Diam e Area, i		2.					(psi)					
	ensity, p		4.									+		
	ensity, p		13		1	V			l	·) / !	、		1 400	
Moistu	ire Cont	ent, %	5.		1	Young's Modulus (E) (psi)							221,400	
Strain	Rate, %	/ min	0.2	25										
Compressive Stress, psi	1800 - 1600 - 1400 - 1200 - 800 - 600 - 400 - 200 -													
	0 - 0.0	0.:	20 0.	40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00		
						Axi	al Strain, %							

			dulus
020-2771	Borina [,] B-	17 Date:	3/12/2019
		Dy.	
		-41.5 Checked	DC
	20p,		20
	Grav Rock		
	-	a moist state	
	•		
		foomale during triponing	Thoroforo
			Therefore,
	Unconfined Comp	racciva Strangth	
		-	2985
	(ps		
145.6			
140.1	Vouna'o Modu	ulua (E) (nai)	E2E 700
3.9	Toung S Wool	uius (⊏) (psi)	535,700
0.20 0.			1.40
ſ	020-277L AECOM Klamath Rive Project 60537920 al Description: ndition at Test perature, (°C) Remarks:	O20-277L Boring: B-Sample: R3 AECOM Sample: R3 AECOM Sample: R3 Project Depth,ft.: 40 60537920 Depth,ft.: 40 al Description: Gray Rock ndition at Test Sample was washed and in perature, (°C) Ambient Remarks: Spalling occurred at ends o the measured density is appendent 2.37 Unconfined Comp (ps) 2.37 Voung's Mode 145.6 140.1 3.9 0.25	020-277L Boring: B-17 Date: AECOM Sample: R2 By: Klamath River Renewal Depth,ft:: 40-41.5 Checked: 60537920 Depth,ft:: 40-41.5 Checked: all Description: Gray Rock Depth,ft:: 40-41.5 Checked: 60537920 Depth,ft:: 40-41.5 Checked: all Description: Gray Rock Depth,ft:: 40-41.5 Checked: perature, (°C) Ambient Remarks: Spalling occurred at ends of sample during trimming. the measured density is approximate. Depth,ft:: 40-41.5 5.03 Unconfined Compressive Strength (psi) 145.6 145.6 140.1 Young's Modulus (E) (psi) 0.25 Voung's Modulus (E) (psi) Image: Spalling occurred at ends of sample during trimming. the measured density is approximate.

	00	DPEF	2	Ur	nconfined	d Compressive of Rock Cor			lulus
CTI .I	ob No.	:	020-277	7M		Boring	: B-17	Date:	3/12/2019
Client			AECOM			Sample	By:		
					er Renewa			-	
Projec	t Name	9:	Project			Depth,ft.	: 17.9-18.6	Checked:	DC
Projec	ct No.:		605379	20					
					Gray Ro				
						was washed an	d in a moist st	ate.	
	Т	est Temp			Ambient				
						occurred at end sured density is		uring trimming.	Therefore,
	e Height		5.0		Unco	nfined Co	nnrossivo	Strongth	
	Sample Diameter, in.2.35Height / Diameter2.2					onfined Co	-	Suengin	2130
	e Area, i		4.3				(psi)		
Wet D	Wet Density, pcf 142.9								
	Dry Density, pcf134.9Moisture Content, %5.9Strain Rate, % / min0.25					Young's Mo	odulus (F)	(psi)	224,500
Compressive Stress, psi	2500 - 2000 - 1500 -								
	500 - 0 - 0.0	00	0.50	0	1.0	00 1	50	2.00	2.50
						Axial Strain, %			

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Location	Klamath River
Client	Klamath River Renewal Corporation
Client Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-8-1
Report Date	5/17/2018
Drill Hole and Depth	BI-02; 27-27.9 ft
Rock Type	Volcanic Breccia
Geologic Unit	N/A
Moisture Condition	As-received

Date received : 4/24/2018

Date Opened : 4/24/2018

Date Tested: 4/24/2018

Mohs Hardness
3

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	
Location	Klamath River	
Client	Klamath River Renewal Corporation	
Client Project No.	60537920	
Registry No.	2018-22	
Report No.	2018-22-8-2	
Report Date	5/17/2018	
Drill Hole and Depth	BI-02; 48.9-50.3 ft	
Rock Type	Volcanic Breccia	
Geologic Unit	N/A	
Moisture Condition	As-received	

Date received : 4/24/2018

Date Opened : 4/24/2018

Date Tested: 4/24/2018

Mohs Hardness	
3	
	1

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	
Location	Klamath River	
Client	Klamath River Renewal Corporation	
Client Project No.	60537920	
Registry No.	2018-22	
Report No.	2018-22-8-3	
Report Date	5/17/2018	
Drill Hole and Depth	BI-02; 55.4-56.3 ft	
Rock Type	Volcanic Breccia	
Geologic Unit	N/A	
Moisture Condition	As-received	

Date received : 4/24/2018

Date Opened : 4/24/2018

Date Tested: 4/24/2018

Mohs Hardness	
3	

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	
Location	Klamath River	
Client	Klamath River Renewal Corporation	
Client Project No.	60537920	
Registry No.	2018-22	
Report No.	2018-22-8-4	
Report Date	5/17/2018	
Drill Hole and Depth	BI-03; 17.4-18.4 ft	
Rock Type	Volcanic Breccia	
Geologic Unit	N/A	
Moisture Condition	As-received	

Date received : 4/24/2018

Date Opened : 4/24/2018

Date Tested: 4/24/2018

Mohs Ha	ardness
3	

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	
Location	Klamath River	
Client	Klamath River Renewal Corporation	
Client Project No.	60537920	
Registry No.	2018-22	
Report No.	2018-22-8-5	
Report Date	5/17/2018	
Drill Hole and Depth	BI-03; 21.5-22.9 ft	
Rock Type	Volcanic Breccia	
Geologic Unit	N/A	
Moisture Condition	As-received	

Date received : 4/24/2018

Date Opened : 4/24/2018

Date Tested: 4/24/2018

Mohs Hardness	
3	

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

Earth Mechanics Institute Client: CDM Smith Project: Klamath River Date: 9/20/2018	1874 COLORADO	Colorado School of Mines Mining Engineering Department
Sample ID	Surface	Mohs Hardness
B-206 @ 47.4-48.7	Saw Cut	3-4
B-206 @ 65.2-66.5	Saw Cut	3-4

Tonon USA

Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	Penetration rate	0.001 in/sec			
Location	Klamath River	Diameter of specimen	60.65	mm	2.39	in
Client	Klamath River Renewal Corporation	Height of specimen	64.62	mm	2.54	in
Client Project No.	60537920	Load at peak	27.81	kN	6,251	lbf
Registry No.	2018-22	45 Degree (Standard) Index	175			
Report No.	2018-22-8-1	Peak Slope Index	39			
Report Date	5/17/2018					
Drill Hole and Depth	BI-02; 50.3-51.3 ft					
Rock Type	Volcanic Breccia]				
Geologic Unit	N/A]				
Moisture Condition	As-received					

Date Received : 4/24/2018	Date Opened : 4/24/2018	Date Tested: 5/4/2018
---------------------------	-------------------------	-----------------------

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Photo After Test

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-9, R29, Punch Penetration Index Test, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 2 of 4

D3-113 of 139

Tonon USA

Engineering, Measurements and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	Penetration rate	0.001 in/sec			
Location	Klamath River	Diameter of specimen	60.4	mm	2.38	in
Client	Klamath River Renewal Corporation	Height of specimen	67.53	mm	2.66	in
Client Project No.	60537920	Load at peak	19.46	kN	4,373	lbf
Registry No.	2018-22	45 Degree (Standard) Index	175			
Report No.	2018-22-8-2	Peak Slope Index	18			
Report Date	5/17/2018					
Drill Hole and Depth	BI-03; 24.2-25.1 ft					
Rock Type	Volcanic Breccia]				
Geologic Unit	N/A]				
Moisture Condition	As-received					

Date Received : 4/24/2018	Date Opened : 4/24/2018	Date Tested: 5/4/2018
---------------------------	-------------------------	-----------------------

2028 E Ben White BLVD #240-2660 Austin, TX 78741

Tonon USA Engineering, Measurements and Testing, LLC

Web: tononeng.com

Photo After Test

Performed by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741

2018-22-9, R29, Punch Penetration Index Test, AECOM Klamath River

Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Page 4 of 4

D3-115 of 139

Earth Mechanics Institute	Colorado School of Mines		
Client: CDM Smith	Mining Engineering Department		
Project: Klamath River	874		
Date: 9/24/2018	ASTM D7625		
	Punch Penetration Test		
Sample ID	Peak Slope		
	(kips/in)		
B-202 @ 70.5-71.7	9		
B-206 @ 65.2-66.5	195		

Web: tononeng.com

Project Name	Klamath River Dam Removal	Apparatus, Pin RH.	West Cerchar, 55/56 Perpendicular to Core Axis	
Location	Klamath River	Direction of Scratch		
Client	Klamath River Renewal Corporation	Pin Wear (mm)	0.156	0.145
Client Project No.	60537920		0.142	0.124
Registry No.	2018-22		0.144	0.133
Report No.	2018-22-5-1		0.162	0.129
Report Date	5/17/2018	Γ	0.150	0.140
Drill Hole and Depth	BI-02; 51.3-51.7 ft	Average (mm)	0.143 1.43	
Rock Type	Volcanic Breccia	CAIs		
Formation	N/A	CAI	1.	89
Surface Condition	Cut by Slab Saw	Classification	Medium At	orasiveness

Photo After Test

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

2018-22-5, R12, Cerchar Test, AECOM Klamath River

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = |SO 9001=

Tonon USA: Engineering, Measuraments and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	Apparatus, Pin RH.	West Cerchar, 55/56	
Location	Klamath River	Direction of Scratch	Perpendicula	r to Core Axis
Client	Klamath River Renewal Corporation	Pin Wear (mm)	0.046	0.037
Client Project No.	60537920		0.083	0.069
Registry No.	2018-22		0.104	0.090
Report No.	2018-22-5-2		0.087	0.098
Report Date	5/17/2018		0.100	0.093
Drill Hole and Depth	BI-03; 25.1-26.1 ft	Average (mm)	0.081 0.81	
Rock Type	Volcanic Breccia	CAIs		
Formation	N/A	CAI	1.	28
Surface Condition	Cut by Slab Saw	Classification	Medium Abrasiveness	

Photo After Test

Tested by: Dr. Fulvio Tonon, P.E., Ph.D.

Checked by: Gloria Tonon-Kozma, P.E.

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660 Austin, TX 78741 Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

2018-22-5, R12, Cerchar Test, AECOM Klamath River

Page 2 of 2

D3-120 of 139

Earth Mechanics Institute	OF	Colorado School of Mines
Client: CDM Smith	E AD	Mining Engineering Department
Project: Klamath River	1874	
Date: 9/20/2018	OLORA	ASTM D7625
Sample ID		Cerchar Abrasivity Index (CAIs)*
B-202 @ 69.8-70.5		0.6
B-206 @ 60.0-61.7		3.0

* CERCHAR tests have been run on saw cut surface. No correction factor has been added to the results.

<u>Pictures of Sample Before and After</u> <u>Cerchar Abrasivity Index</u>

Client Name: CDM Smith Project Name: Klamath River Date: 9/20/2018

Sample ID: B-206 @ 60.0-61.7

Before

After

Pictures of Sample Before and After Cerchar Abrasivity Index

Client Name:	CDM Smith
Project Name:	Klamath River
Date:	9/20/2018

Sample ID: B-202 @ 69.8-70.5

Before

After

Thin Section Petrographic Analysis

Engineering, Measurements, and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal	
Project location	Klamath River	
Client	Klamath River Renewal Corporation	
Client's Project No.	60537920	
Registry No.	2018-22	
Report No.	2018-22-7-1	
Report Date	5/17/2018	
Borehole and Depth	BI-02; 51.7-52 ft	
Studied by	Lidia Scavo and Fulvio Tonon	
Reviewed by	Gloria Tonon-Kozma	

Date Received : 4/24/2018	Date Opened : 4/24/2018	Date Tested:	5/17/2018
---------------------------	-------------------------	--------------	-----------

A sample from borehole BI-02; 51.7-52 ft was analyzed under the polarized microscope to determine its mineralogical composition from a 25 X 40 mm (0.9 X 1.58 in) thin section.

Visual inspection of the sample suggests an igneous origin.

ROCK NAME: BRECCIATED-ALTERED BASALT (according to EN 12670).

Fig. 1 - Aspect of the studied sample (hand specimen).

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
Austin, TX 78741		Phone: +1-512-200-3051
		E-mail: fulvio@tononeng.com
2018-22-7-1, R18.1, Thin Section Analysis, Aecom Klamath River	Page 1 of 6	

Web: tononeng.com

Hand specimen – Visual inspection: It is a mafic, greenish and dusty material with a very weak behavior. It is composed of a dark and very fine groundmass with phenocrysts that are millimetric in size, and light to dark colored.

According to the Rock-Color Chart of the Geological Society of America, the groundmass color is Grayish Green (5G 5/2), and the phenocrysts are Grayish Green (10G 4/2) to Light Bluish Gray (5B 7/1).

The rock fizzes under hydrochloric acid, and it can be scratched by a metal tip.

Probable Origin: It is an altered Plagioclase-rich basaltic rock.

Mineralogy: Plagioclase, Clay Minerals, Olivine, Opaque Minerals, Volcanic Glass, Carbonates

Textures: The rock has a porphyric texture with a very fine and dark groundmass, in which there are Plagioclase crystals, rare Olivine crystals, Opaque Minerals, and many alteration Clay Minerals (predominantly Phyllosilicates such as Chlorite).

Plagioclase is the most common mineral phase: crystals are quite large and well zoned. Because of their golden color, clay minerals can be hardly distinguished from the groundmass, except for Chlorite that can be locally seen in amorphous greenish individuals.

Opaque Minerals are mainly made up of Oxides of the Hematite group.

Spotted Carbonates may be also identified.

Alteration and Mineral Suturing Condition: The rock is highly altered: even the largest phenocrysts show traces of intense alteration acted upon by clayey minerals; Plagioclase crystals are intensively fractured. These fractures are commonly filled with secondary clayey material in a "quasi-stylolithic" pattern.

Discontinuities: The rock shows a very pervasive fracture system: many of these fractures have not been filled with secondary mineralization, and they predominantly cross the groundmass. Fractures crossing phenocrysts are instead filled with clay minerals.

2018-22-7-1, R18.1, Thin Section Analysis, Aecom Klamath River

Web: tononeng.com

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Plagioclase	33.3	6	1.10	As individual crystals
Chlorite	1.67	2.5	0.05	Very variable in size, alteration single crystals
Oxides	6.67	5.5	0.02-0.8	Spotted Hematite individuals
Glass	50	5	Sub-micrometric	Makes up the groundmass
Clay	8.33	4	Sub-micrometric	Phyllosilicates, unresolvable at a microscopic scale
Weighted Average:		4.2		-

Web: tononeng.com

Fig. 2 - Plane polarized light. Field of view = 4 mm wide (magnification 4X). A view of the studied sample, showing an altered Plagioclase (Plg) crystal near to a big Hematite crystal (Opq).

Fig. 3 - Cross polarized light. Field of view = 4 mm wide (magnification 4X). Same as Figure 2, but under crossed polars.

_			
Ī	2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
	Austin, TX 78741		Phone: +1-512-200-3051
			E-mail: fulvio@tononeng.com
	2018-22-7-1, R18.1, Thin Section Analysis, Aecom Klamath River	Page 4 of 6	

D3-127 of 139

Web: tononeng.com

Fig. 4 - Plane polarized light. Field of view = 1.7 mm wide (magnification 10X). A detail of a Plagioclase grain, crossed by many fractures, all filled with Clay Minerals (Cly). Some Chlorite individuals (Chl) may be identified in the upper part of the picture.

Fig. 5 - Cross polarized light. Field of view = 1.7 mm wide (magnification 10X). Same as Figure 4, but under crossed polars.

2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
Austin, TX 78741		Phone: +1-512-200-3051
		E-mail: fulvio@tononeng.com
2018-22-7-1, R18.1, Thin Section Analysis, Aecom Klamath River	Page 5 of 6	

D3-128 of 139

Web: tononeng.com

Fig. 6 - Plane polarized light. Field of view = 4 mm wide (magnification 4X). A selected area of the section with a welldeveloped fracture system (Frt).

Fig. 7 - Cross polarized light. Field of view = 4 mm wide (magnification 4X). Same as Figure 6, but under crossed polars.

2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
Austin, TX 78741		Phone: +1-512-200-3051
		E-mail: fulvio@tononeng.com
2018-22-7-1, R18.1, Thin Section Analysis, Aecom Klamath River	Page 6 of 6	

Thin Section Petrographic Analysis

Engineering, Measurements, and Testing, LLC

Web: tononeng.com

Project Name	Klamath River Dam Removal
Project location	Klamath River
Client	Klamath River Renewal Corporation
Client's Project No.	60537920
Registry No.	2018-22
Report No.	2018-22-7-2
Report Date	5/17/2018
Borehole and Depth	BI-03; 20.8-21 ft
Studied by	Lidia Scavo and Fulvio Tonon
Reviewed by	Gloria Tonon-Kozma

Date Received : 4/24/2018	Date Opened : 4/24/	/2018 Date Tested:	5/17/2018
---------------------------	---------------------	--------------------	-----------

A sample from borehole BI-03; 20.8-21 ft was analyzed under the polarized microscope to determine its mineralogical composition from a 25 X 40 mm (0.9 X 1.58 in) thin section.

Visual inspection of the sample suggests an igneous origin.

ROCK NAME: ALTERED VOLCANIC BRECCIA (according to EN 12670).

Fig. 1 - Aspect of the studied sample (hand specimen).

This report shall not be partially reproduced without the written consent of Tonon USA, LLC.

2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
Austin, TX 78741		Phone: +1-512-200-3051
		E-mail: fulvio@tononeng.com
2018-22-7-2, R18.1, Thin Section Analysis, Aecom Klamath River	Page 1 of 6	

Web: tononeng.com

Hand specimen – Visual inspection: It is a greenish mafic rock. It appears to be very weak, and it shows a dusty appearance. It is composed of a dark green groundmass with spotted whitish to bluish phenocrysts.

According to the Rock-Color Chart of the Geological Society of America, the groundmass color is Grayish Green (5G 5/2); clasts have colors ranging from Dark Greenish Gray (4G 4/1) to Light Bluish Gray (5B 7/1). The matter also shows alterations that are Dark Greenish Yellow (10Y 6/6).

The rock fizzes under hydrochloric acid, and it can be scratched by a metal tip.

Probable Origin: It is an altered volcanic breccia.

Mineralogy: Plagioclase, Volcanic Glass, Pyroxene, Chlorite, Clay Minerals, Opaque Minerals, Carbonates.

Textures: It is a mafic porphyritic rock with a chaotic structure: no preferred orientation may be identified. Plagioclase is the most common constituent mineral: its crystals range from sub-millimetric in size to glassy and are usually well shaped. Zonation is irregular.

Some of the clasts are made up of extraneous volcanic clasts; they can be easily identified because of their color variation when compared to the rest of the thin section: these clasts display a different mafic content.

Secondary mineral phases are made up of rare Augite-Pyroxene, Chlorite, Carbonates and Opaque Minerals.

Very common, but not resolvable at a microscopic observation scale, are Volcanic Glass and Clay Minerals. Clay Minerals also represent the main alteration substance of the rock, which affects both the groundmass and the clasts.

Alteration and Mineral Suturing Condition: The sample shows a substaintial clayey alteration, with clear Chlorite individuals associated with very fine-grained Clay Minerals. Spotted secondary Carbonates can be found as fracture filling material.

Crystals in this thin section have well defined rims, but they are also affected by pervasive fractures both within the crystals and all around their boundaries.

Discontinuities: The rock is heavily fractured, with two classes of discontinuities: a first one made up of empty cracks crossing the groundmass and the crystals, and a second one made up of Carbonate-filled fractures, sometimes surrounding single crystals or clasts.

2018-22-7-2, R18.1, Thin Section Analysis, Aecom Klamath River

Page 2 of 6

Web: tononeng.com

Description	of Individual	Minerals:
-------------	---------------	-----------

	Mineral	Mohs	Grain	
Minerals	Content	Hardness	Size	Description and Comments
	(%)	Hai uness	(mm)	
Plagioclase	28.33	6	0.6	As single individuals or as the main part of many external clast groundmass
Chlorite	1.67	2	0.3	As individuals of secondary crystallization
Opaque Minerals	5	5.5	0.1	Spotted individuals of Hematite
Glass	41.67	5	Sub-micrometric	Makes up the groundmass
Pyroxene	1.67	5.5	0.2	Rare sub-euhedral crystals
Carbonates	5	4	0.06	As fracture filling material
Clay Minerals	16.67	2	Sub-micrometric	Phyllosilicates of secondary alteration
Weighted Aver	age:	4.3		-

2018-22-7-2, R18.1, Thin Section Analysis, Aecom Klamath River

Page 3 of 6

D3-132 of 139

Web: tononeng.com

Fig. 2 - Plane polarized light. Field of view = 4 mm wide (magnification 4X). A view of the studied sample. The most common minerals are: Plagioclase (Plg), Clay Minerals (Cly), Opaque Minerals (Opq), and Chlorite (Chl). Also highlighted here are some structural features, such as fractures (Frt) and voids (Vd).

Fig. 3 - Cross polarized light. Field of view = 4 mm wide (magnification 4X). Same as Figure 2, but under crossed polars.

2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
Austin, TX 78741		Phone: +1-512-200-3051
		E-mail: fulvio@tononeng.com
2018-22-7-2, R18.1, Thin Section Analysis, Aecom Klamath River	Page 4 of 6	

Web: tononeng.com

Fig. 4 - Plane polarized light. Field of view = 4 mm wide (magnification 4X). A view of a volcanic clast. A common feature of all the clasts in this thin section is the presence of fractures surrounding clast boundaries (follow the green dashed line). In this case the fracture is filled with secondary Carbonates (Cbt).

Fig. 5 - Cross polarized light. Field of view = 4 mm wide (magnification 4X). Same as Figure 4, but under crossed polars.

2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
Austin, TX 78741		Phone: +1-512-200-3051
		E-mail: fulvio@tononeng.com
2018-22-7-2, R18.1, Thin Section Analysis, Aecom Klamath River	Page 5 of 6	

D3-134 of 139

Web: tononeng.com

Fig. 6 - Plane polarized light. Field of view = 1.7 mm wide (magnification 10X). A detail of a Plagioclase crystal, showing grain alteration and suturing features: fractures cross the crystal and are also filled with Clay Minerals.

Fig. 7 - Cross polarized light. Field of view = 1.7 mm wide (magnification 10X). Same as Figure 6, but under crossed polars.

2028 E Ben White BLVD #240-2660		Laboratory Director: Dr. Fulvio Tonon, P.E., Ph.D.
Austin, TX 78741		Phone: +1-512-200-3051
		E-mail: fulvio@tononeng.com
2018-22-7-2, R18.1, Thin Section Analysis, Aecom Klamath River	Page 6 of 6	

Macroscopic	Porphyritic augite basalt				
sample description	Strongly porphyritic basalt with blocky mm-scale plagioclase phenocrysts randomly oriented and uniformly distributed in black aphanitic groundmass. Plagioclase euhedral to subhedral.				
			sence of accessory magnetite. Scratches with difficulty with steel scribe. on with hydrochloric acid.		
Brief petrographic description	Large growth-zoned, partially-resorbed, polysynthetically-twinned euhedral labradorite- plagioclase phenocrysts and sparse smaller augite phenocrysts with simple contact twins randomly set in fine-grained groundmass of randomly oriented euhedral plagioclase microlites and anhedral groundmass augite and intercumulus plagioclase. Minor magnetite.				
Constituent minerals	plagioclase	85%	 20% 3,000 μm euhedral phenocrysts 40° angle between extinction of polysynthetic twins indicates labradorite composition (NaAlSi₃O₈)₃₀₋₅₀(CaAl₂Si₂O₈)₇₀₋₅₀ – most grains display sieve-like texture likely reflecting resorption event, but outermost grain margins lack development of resorption embayments, so resorption predates final crystallization. Many grains strongly compositionally growth-zoned. 20% 100 μm euhedral to subhedral microlites with polysynthetic twins in groundmass, randomly oriented 45% anhedral intercumulus grains < 100 μm 		
	augite	7%	 2% 500 μm phenocrysts with second-order interference colors and distinct 90° cleavage, commonly simple contact twinned 5% 100 μm anhedral microlites in groundmass 		
	glass	5%	black/very dark green-brown amorphous, nearly opaque, isotropic groundmass supporting both microlites and phenocrysts		
	magnetite	3%	300 μm euhedral opaque black grains, dull silver in reflected light		
Porosity	0% intergran	ular po	rosity and 0% fracture porosity		
Heterogeneity	none				

Na₂O MgO Al₂O₃ SiO₂ P₂O₅ SO₂ K₂O CaO TiO₂ FeO

Total

	norm.	Billet of porphyritic	Thin section slide of porphyritic augite basalt
wt%	wt%	augite basalt	Blocky white crystals of plagioclase in dark glassy
0.6	0.7	Dark gray blocky	groundmass. 2-mm wide late-stage aphanitic "dike" cuts
1.6	1.9	plagioclase phenocrysts in	sample (between arrows).
15.9	19.6	black aphanitic	Blue epoxy impregnation indicates 0% porosity.
		groundmass.	
47.8	58.8	Photograph of cut drill core o	of porphyritic
0.2	0.2	augite basalt. Sample lacks la	
0.1	0.1	veins or other hydrothermal for	Features –
0.8	1.0	very fresh volcanic rock.	
7.1	8.8		
0.9	1.2		
6.3	7.7		1 inch 1 cm

Kurt Friehauf, Ph.D., P.G. – friehauf@kutztown.edu

100.0

81.3

PRIVILEGED AND CONFIDENTIAL Sample: B-206 @ 60.0-61.7

Analytical methods

Billets and cut core samples were sanded smooth with 400-grit carborundum abrasive, examined with hand lens, swivel magnet, and steel scribe.

Thin section analysis used a Nikon Pol600 polarized light petrographic microscope (both plane- and crosspolarized light). Relative proportions of high contrast minerals (e.g., plagioclase) were determined by visual comparison with standardized estimation charts.

Chemical analyses were done using a silicon drift detector Bruker Tracer IV-SD portable XRF with vacuum attachment for improved analysis of light elements (Na and Mg) using a mudstone standard. Three 30-seconds spot analyses with 2x4 mm analytical window were averaged to estimate the bulk rock composition using earth materials standards. Oxide weight percent values were calculated from raw elemental weight percent values on a molar basis, allocating oxygen to balance charges. Portable XRF analyses are an objective, quantitative evaluation of the bulk chemical composition and are accurate, but generally with only \pm 2-4% precision – typical of

Kurt Friehauf, Ph.D., P.G. - friehauf@kutztown.edu

normal rock variability. This analytical method may slightly underestimate the concentrations of Na_2O and MgO and slightly overestimate the concentration of SiO₂ by a few percent in mafic igneous rocks like this sample due to X-ray absorption by abundant iron atoms.

Sample: B-206 @ 60.0-61.7

<image/>	Cross-polarized photomicrograph of compositionally-zoned plagioclase crystal (yellow arrow) and sieve texture most plagioclase phenocrysts in sample display (other large, blocky grains with dark holes). Sieve texture suggests partial resorption (dissolution) of plagioclase phenocrysts prior to precipitation of outermost growth zone (because phenocryst outlines lack well-developed resorption embayments). Sharp compositional zonation results from pressure fluctuations in magma shifting crystallization conditions – very common in volcanic or subvolcanic igneous rocks.
	Cross-polarized photomicrograph documenting unusual sieve texture in large plagioclase phenocrysts, and bimodal grain size of augite (i.e., >500 µm phenocrysts and 80-100 µm groundmass crystals).
	Cross-polarized photomicrograph at very high magnification of augite crystal with high second- order interference colors and good 90° cleavage. White grains are plagioclase microlites. This augite crystal is the width of average human hair.

PRIVILEGED AND CONFIDENTIAL Sample: B-206 @ 60.0-61.7

Kurt Friehauf, Ph.D., P.G. – friehauf@kutztown.edu